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Abstract

Screening already approved drugs for activity against a novel pathogen can be an

important part of global rapid-response strategies in pandemics. Such high-throughput
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repurposing screens have already identified several existing drugs with potential to

combat SARS-CoV-2. However, moving these hits forward for possible development

into drugs specifically against this pathogen requires unambiguous identification of

their corresponding targets, something the high-throughput screens are not typically

designed to reveal. We present here a new computational inverse-docking protocol

that uses all-atom protein structures and a combination of docking methods to rank-

order targets for each of several existing drugs for which a plurality of recent high-

throughput screens detected anti-SARS-CoV-2 activity. We demonstrate validation of

this method with known drug-target pairs, including both non-antiviral and antiviral

compounds. We subjected 152 distinct drugs potentially suitable for repurposing to

the inverse docking procedure. The most common preferential targets were the human

enzymes TMPRSS2 and PIKfyve, followed by the viral enzymes Helicase and PLpro.

All compounds that selected TMPRSS2 are known serine protease inhibitors, and those

that selected PIKfyve are known tyrosine kinase inhibitors. Detailed structural analysis

of the docking poses revealed important insights into why these selections arose, and

could potentially lead to more rational design of new drugs against these targets.

Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the etiological

agent of the COVID-19 pandemic. Since the first cases reported in December 2019, this

virus has spread over 223 countries with more than 111 million positive confirmed cases and

almost 2.5 million deaths counted up to February 2021.1 By the end of 2020, several vaccines

have been approved for human immunization against the virus. However, there is a constant

need to discover antiviral agents for the treatment of SARS-CoV-2, in order to help control

the possibility of new outbreaks, especially from several mutant strains of the virus.2,3

The process of de novo drug design against a novel pathogen can require many years

of effort, which in the case of the COVID-19 pandemic is a luxury that the world cannot
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afford. In the light of this difficulty, drug repurposing presents a very practical strategy for

drug development against SARS-CoV-2.4–6 Drug repurposing is based on the use of already

approved drugs for the treatment of other diseases, in this case COVID-19, bypassing the

clinical trials and regulatory stages associated with the development of a new drug. The

reduction in the number of required steps for approval potentially reduces the time required

for the drug to reach the market.4–6 As a consequence, many repurposed drugs are currently

in clinical trials, although there is not yet any approved antiviral medication against SARS-

CoV-2.

SARS-CoV-2 is a single-stranded positive-sense RNA virus that belongs to the family of

betacoronaviruses. Its genome encodes four structural proteins: envelope (E), nucleocapsid

(N), membrane (M) and spike (S) proteins,7 and 16 non-structural proteins, such as the main

protease (3CLpro), Papain like protease (PLpro), polimerase (RdRp), helicase, and others.8

It has already been suggested that the non-structural proteins 3CLpro, PLpro, RdRp and

Helicase enzymes are viable antiviral drug targets.8 During the COVID-19 pandemic a large

number of research groups dedicated time and effort to resolve the structures of almost all

the previously mentioned viral proteins. For instance, the RCSB Protein Data Bank cur-

rently houses approximately 1,000 published SARS-CoV-2 related proteins.9,10 SARS-CoV-2

proteins whose structures remain unresolved have been the object of structure-predictions

made using a variety of computational approaches (Swissmodel,11,12 Zhang Lab13,14 and

Alphafold15). These predicted structures could become quite important if experimental

difficulties slow the release of validated X-ray or cryo-EM-derived structures. Besides the

studies on viral proteins, researchers have also focused on key human proteins, identifying

several drugs that have anti-SARS-CoV-2 activity by inhibiting host enzymes essential for

the SARS-CoV-2 life cycle.16,17

Several groups around the world have been combining drug repurposing strategies with

high-throughput screening (HTS) in order to find already approved drugs that show in vitro

activity against SARS-CoV-2. The antiviral activity in these HTS studies can be measured
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against an individual known SARS-CoV-2 target, such as some viral enzymes,18,19 or against

cultured viral-infected cells.20–22 In these later publications, promising compounds showing

high antiviral activity on the HTS assay were identified. One disadvantage in these studies,

unlike the target-based assays mentioned prior, is that the molecular targets of the tested

drugs remain unknown.

The combination of this limitation of the cell-based HTS assays with the accumulated

knowledge of all the resolved and predicted SARS-CoV-2 and human related structures

provides strong motivation for in silico repurposing campaigns aimed at identifying potential

targets. Identifying the viral or human target for any anti-SARS-CoV-2 repurposed drug

would be beneficial for focused structural and mutagenic studies as well as optimization.

A powerful in silico methodology to conquer this challenge is inverse docking (INDO),

which aims to find the best target(s) for a given drug within a large collection of biologically

relevant macromolecular targets,23–26 using molecular docking. Given that molecular docking

methods are not conceived to identify potential target(s) for a given ligand, INDO protocols

are still relatively immature, and new strategies for improve true positive ligand-protein pairs

continue to be reported.24,26–28

Here we report an improvement to INDO that aims specifically to identify the potential

targets of repurposed drugs with experimentally proved activity against SARS-CoV-2. This

strategy is distinct from theoretical drug database screening29–32 because we restrict our

pool of drugs to those already shown by consensus of two or more experimental HTS studies

to have anti-SARS-CoV-2 activity. From a joint dataset built from three independent HTS

assays that measure inhibition of infection of cultured cells,20–22 we built a ligand set from

the top 25% most active compounds in two out of the three studies, comprising 158 distinct

compounds. Our target set consists of a total of 18 SARS-CoV-2 proteins and 6 human

proteins. Our INDO protocol uses a novel combination of several docking scores which

yields increased accuracy in identifying the true positive ligand-protein pairs in a validation

set.
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In the remainder of this work, we first present our INDO protocol applied over a test

set of know protein-ligand complexes in order to find the best scoring function combination.

Then, a list of the ligands and targets considered, are indicated. Finally, the INDO study

results are analyzed, which in summary show that the preferential targets were human and

viral enzymes. Further analysis over every one of this preferential targets were developed

in detail, indicating the most suitable repurposed drug for every target, and revealing the

molecular interaction patterns present on the binding sites. To the best of our knowledge,

this is the first virtual HTS INDO study developed to connect highly active anti-SARS-

CoV-2 drugs, gathered from HTS assays, with their respective potential viral and human

molecular targets.

Methods

Inverse docking using multiple scoring functions

In the context of ligand-protein interaction prediction, inverse docking (INDO) is a procedure

which aims to predict, within a predefined set of proteins, the best target(s) for a given

ligand using docking calculations.23–26 For a successful INDO campaign the most important

steps include (i) selection of docking software package(s), (ii) ligand and protein structure

preparation, and (iii) proper analysis of the results. In this work, our strategy was first

to evaluate different programs and analysis options using a well-defined test set, and then

proceed with the identification of potential targets for those molecules found to be active

from experimental HTS.

Docking software and methodology

The docking calculations were performed with a beta version of Vinardo33 and Ledock.34

Vinardo has a scoring function based on Vina.35 The new beta version is being developed

by one of the present authors and was successfully used in the D3R grand challenge 4
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competition (see Quiroga/Villarreal submission in Tables 2 and 3 of Parks et al.36). Ledock is

commercial software with free access for academic use and which has shown good performance

in docking benchmarks.37 We also applied the recently developed coarse grained Korp-PL38

scoring function to re-score the 10 best poses generated with Vinardo. All programs were

used with default options, except the search space, which was adapted to every protein.

In those cases where a ligand is present in a crystallographic target structure, the docking

box was defined by extending 8 Å from the ligand’s maximum and minimum x, y, and z

coordinates. For the other cases, the docking box was defined to cover the active site of

the enzyme or, if the goal was to test the drug action on protein-protein interactions, the

interface between protomers. In the Supplementary Materials, Table S6 shows details about

the docking boxes and their intent, together with some illustrative figures. All the structures

used here are available in PDB format in our repository.39

Analysis

The docking calculations produced optimal poses of each ligand in every target, together with

its score. Generally, any inverse docking protocol uses this set of information to decide which

is the preferred target for a given ligand from among all tested targets. A basic approach

could be to simply rank the targets for each ligand according to the scoring function in use,

with the highest affinity at the top of the list. However, this algorithm does not work well

in practice, mainly due to biases in the scoring functions arising from the limited datasets

against which they themselves were developed. There are different strategies to overcome

this problem, and we follow the approach of Kim et al.23 They proposed normalize the

docking scores using a Z-score approach before each ligand selects its preferred targets. An

additional way to overcome scoring-function bias is to combine results of multiple distinct

scoring functions. Because there are several ways to combine scores, we evaluated both

exponential consensus average ranking40 and a simple arithmetic mean of Z-scores before

the selection step. The latter approach was found to be superior in our test set and then was
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used for the rest of the analysis of the INDO results. When several structures for a given

ligand and for a given protein were used, only the combination that produced the best score

were considered for this analysis.

Test Set

In order to validate the INDO methodology we prepared a control test which consisted of 209

crystallographic protein-ligand complexes taken from the PDBBIND database.41 PDBBIND

is a curated database where every complex is annotated with the experimentally measured

binding affinities and UniProt ID, among other useful information. Beginning with PDB-

BIND’s refined 2018 set, representing more than 4,000 complexes, we applied several filters

to build a subset more manageable in size and that better matches the properties of the set

of drugs selected from the experimental HTS. Molecules in this test set were limited to a

molecular weight between 200 to 700 Da, with 3 to 7 rotatable bonds, and experimentally

measured affinity of 1 µM or lower. To eliminate redundancy we clustered molecules using a

binning clustering method, with a Tanimoto coefficient of 0.6, as implemented in Chemmine

tools.42 Finally, we deleted all but one replica of repeated receptors based on UniProt IDs.

Ligand preparation

Up to five structures per ligand were prepared using Gypsum-DL,43 from the SMILEs in

the ChEMBL database. Using the available options of Gypsum-DL, ring conformations

were explored for all molecules with aliphatic rings, while stereochemistry was explored only

for those molecules without explicit prescription in the corresponding SMILE. Protonation

states were explored in the 7.0 +- 1 pH range, and were manually adjusted when deemed

necessary. Analysis of the molecular weight (MW) distribution showed that most molecules

were between 130 to 750 Da. Five molecules with higher MW and one with a lower MW

were not considered.
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Protein targets

As previously mentioned, the SARS-CoV-2 RNA genome encodes for at least 20 structural

and non-structural proteins. Any and all of these can be used as potential targets for the

INDO study, but according to their roles in the viral life cycle and also on the availability

of a three-dimensional structure (experimental or by structural modeling), 18 of them were

selected for this work. In order to permit the selection of human proteins as targets in the

INDO study, several were selected because of their important role on the early stages of

SARS-CoV-2 infection. One of the most important is the angiotensin-converting enzyme

II (ACE2) receptor, which is responsible for viral recognition and entry into the host cell.

After ACE2 recognition, SARS-CoV-2 can enter the host cell following either endosomal

or nonendosomal pathways, depending on the infected cell-type. In both pathways, several

human enzymes (TMPRSS2, Furin, PIKfyve, etc.) play critical roles in viral entry.16,17

Table S1 list the proteins targets used.

For almost all selected targets it was possible to obtain an experimentally solved three-

dimensional structure. The exceptions were Nsp6, ExoN, M protein and TMPRSS2, which

were obtained from different modeling sources (see Table S6 for more details). In most cases,

at least two different structures for every target were used in order to have a wider represen-

tation of the conformations of the receptor selected in the INDO study. The exceptions were

ORF3a, ORF7a, PIKfyve, and the M protein, for which we were able to either retrieve from

the PDB database, or model, only one structure. For the four modeled targets, two of them

were obtained from the Alphafold project (Nsp6 and M protein).15 The structures of ExoN

were obtained from the Swiss-Model server11,12 and Zhang lab.13 The structure retrieved

from the Swiss-Model server was based on the structure of SARS-CoV-1 ExoN (PDB acces-

sion code 5C8S), with a sequence similarity of 95% with respect to SARS-CoV-2 ExoN, while

the model from the Zhang Lab was constructed with I-TASSER.14 The structures for the

soluble domain of TMPRSS2 were modeled with the Swiss-Model server. The templates used

were Hepsin serine protease (PDB accession code 5CE1), with a 33% of sequence similarity,
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and Plasma kallikrein (PDB code 6O1G) with a 44% similarity.

For every viral and human target the docking region was selected based on the previous

knowledge of importance on the biological function for the particular target. For enzymes

(PLpro, 3CLpro, etc.), the selection was based on the position of the catalytic site and also

on the known position of the binding site for the natural substrate. For those targets for

which two distinct bindings sites are known, both were included as potential sites in the

study (RdRp, Hel, ExoN, 2-O-MT, etc.). In the case of the non-enzyme targets, usually a

protein-protein interface was selected as docking site, because this inhibition of interaction

with other protein can prevent an important biological function on the viral life cycle. This is

the case for several non-structural proteins (such as Nsp7, Nsp8 and Nsp10) that participate

in viral replication by binding to functional enzymes. See Table S1 and Table S6 for more

details.

In the important case of the SARS-CoV-2 spike (S) protein complex, we searched for

potential ligand binding sites at interprotomer interfaces, the rationale being that binding

in such a location could either anchor the trimer in the closed conformation or prevent

post-activation separation of protomers. First we analyzed the 10 µs molecular dynamics

simulation trajectories of the glycosylated S trimer in the closed state from D. E. Shaw

Research.44 From these trajectories we calculated the atomic density of the highly flexible

glycans, which revealed that almost all interprotomer interfaces at the complex surface are

within reach of a glycan (Figure S7). This suggested that the interprotomer interfacial

sites on the exterior of S are not good candidates for high affinity binding sites due to

glycan competition. We therefore elected to search for druggable sites in the interior of the

S protein. We performed exploratory docking assays using probe molecules taken from a

set of 300 randomly selected FDA approved drugs with molecular weight from 400 to 600

Da and with a logP from 0 to 6. Structures and properties of the FDA molecules were

obtained from the SuperDrug2 database.45 After exhaustive docking in the interior space

of the S protein, clustering analysis of the center of mass positions of the docked molecules
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revealed six clear sites with extensive interchain contacts and with good predicted affinity

for the FDA approved drugs (Figures S8 and S9). Three of these sites are equivalent due

to the symmetry of the trimer, leaving four distinct internal sites. Details of the locations of

these sites are given in Table S6. Besides these interior sites, we also performed the INDO

procedure on the RBD domain, which is occluded from water and glycans in the closed state,

but fully exposed in the open state. In this case we used the structure co-crystallized with

the ACE2 receptor and explored independently the S and the ACE2 sides of complex.46 This

is a critical point, since if we had explored the actual RBD:ACE2 complex, the search could

produce enhancers of the interaction rather than inhibitors. Taking into consideration all

the mentioned binding sites, a total of 65 protein structures representing 35 distinct sites

were selected for the INDO study (Table S6).

Results and discussion

Test set

The INDO validation test consisted of docking of every ligand against every target in the

test set, resulting in a total of 43,681 (209x209) docking calculations with each of the three

docking programs. Then based on the individual or composite Z-scores (see Analysis in

Methods section), every ligand produced an ordered list of its preferred targets. From these

lists, the fraction of ligands which select the correct crystallographic target as its first option

(“top-1”) or in general within the first N targets (“top-N”) was calculated. The results are

shown in Figure S1. Clearly, the combined use of Ledock, Korp-PL, and Vinardo scoring

functions results in a better recovery of the correct protein-ligand complex compared to use

of any one individually. The combined use of the scoring functions recovered 66%, 75%, 81%

and 88% in the top-1, top-3, top-5, and top-10 respectively. We further characterized the

discrimination performance of our procedure by plotting the ROC curves (Figure S2). Two

extreme cases were analyzed, first considering all the predictions, and second considering
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only top-1 predictions. When using all the predictions the AUC is 0.95, while for top-1 only

predictions the AUC is 0.85. Also, the major differences between true positive rate (TPR)

and false positive rate (FPR) are obtained at the average Z-scores of -0.90 and -1.50 for each

case. These threshold values are useful references and were used to guide analysis of the

following results of INDO.

The highly active repurposed drug (HARD) list

In the work of Heiser et al.,20 the anti-SARS-CoV-2 activity of 1,670 drugs was studied

via HTS, including FDA-approved drugs, EMA-approved drugs, and compounds in late

stage clinical trials. In the HTS made by Touret et al.,21 1,520 off-patent drugs from the

prestwick chemical library, most of them approved by FDA, EMA and other agencies, were

tested. Finally, the HTS by Ellinger et al.22 use 5,632 compounds including 3,488 compounds

that are marketed or have been tested in human clinical trials. All three HTS studies

were conducted using different assays techniques in order to measured the anti-SARS-CoV-2

activity for every repurposed drug.

Our HARD list is constructed of those compounds that were among the top 25% most

active compounds in at least two of the three studies mentioned above. This information was

obtained from the ChEMBL database version 27.47,48 To make the activity entrees of different

assays compatible, we associate those drugs that share the same parent compound according

to the molecule-hierarchy table of the database. In this way, we avoid distinguishing different

salts of the same drug. ChEMBL IDs of the resulting list can be found in our repository,39

together with the set of scripts and SQLite queries used to process the ChEMBL database.

The preferred compound names of the resulting list is shown in the supporting information

(Table S2).

This list comprises 158 drugs. After applying the MW filter mentioned in the Methods

section, we obtain a total of 152 compounds. This HARD list was submitted to the INDO

procedure in order to identify the most likely potential SARS-CoV-2-related target for every
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compound.

Control compounds (CC)
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Figure 1: Target identification for control compounds. Green arrows indicate that the cor-
responding target is obtained among the top 5 of each compound. Orange dashed lines
indicate those compounds for which the corresponding target was not found in the top 5.
Line thickness shows a fine partition of the prediction ranking as indicated in the legend.

In order to further test the INDO procedure, 14 known inhibitors of different targets

included in this study were added as control compounds (CC). The targets of these CC are

five human (Cathepsin L, PIKfyve, TMPRSS2, Trypsin and Furin) and four viral (3CLpro,

PLpro, E protein and 2-O-MT) proteins. These CC, described in Table S3, which are known

to inhibit the activity of one or two specific targets, were combined with the 152 compounds

from the HARD list and all were analyzed in a single INDO experiment. Table S3 and
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Figure 1 displays the top5 target selection for every CC after the INDO procedure. The

number of CC compounds that select its correct target in top-1, top-3 and top-5 position

are 3, 10 and 12, which translates to 21%, 71% and 85% correct predictions respectively.

This values are only slightly lower than the obtained in the Test set, but this reduction is

somewhat expected, as in this case the receptor is not always co-crystallized with the ligand

as they are in the test cases, and also some CC’s showed reported inhibition for several

selected targets, as is the case for several inhibitors of serine-proteases, discussed on the

next section. These confounding factors were mitigated in the design of the Test set by

clustering the ligands and selecting the receptors by UniProt ID. Notably, in the case of CC

with two known targets, like FOY251 and Diminazene, the INDO procedure was also able

to pick both targets in the top-3 (Figure 1). These results clearly show the robustness of the

INDO procedure in finding the correct SARS-CoV-2 protein/enzyme target. In addition to

this reassuring finding, the CCs also serve as a reference to analyze the interactions of the

predicted binders of the HARD list. In this way, it is possible to advance in the chemical

rationale behind the target selection and not to rely in the calculated Z-scores alone. A

detailed discussion of the targets detected by INDO for both CC and HARD is given in next

section.

Inverse docking (INDO)

Preferential targets

Based on the results for the test set, it is clear that lower average Z-scores correlate with

higher probability of correctly assigning the target for a given compound (Figure S2). In

order to give an overview of the preferred targets for the drugs in the HARD list, we analyzed

which targets were selected as top-1 for every compound, with an average Z-score of -1.0

or lower. With this threshold value we expected to include all true positive results. In

total we found 52 repurposed drugs, and we show how they are distributed across targets

in Figure 2, with and further details given in Table S4. The most preferred targets are
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enzymes, with the human enzymes TMPRSS2 and PIKfyve being the most populated with

7 and 6 drugs, respectively. These targets were followed by three viral targets, two enzymes

and one structural protein: the catalytic site of Helicase, the S protein at the internal site

S4 and PLpro, with 5, 5 and 4 compounds respectively. Notable absences on this list are

the non structural (NSP) viral proteins, the ACE2 receptor and the RBD of the S protein.

This analysis clearly shows that the human enzymes included in this INDO procedure were

highly selected as top-1 targets, over all the viral targets included in the same study, possibly

due to a critical role of those enzymes in the viral cycle of SARS-CoV-2, but also possibly

due to the fact that the original targets for these drugs were also human enzymes of similar

functions to those found here.

Analysis of selected targets

In this section, some of the preferred targets have been selected in order to thoroughly analyze

the repurposed drugs from the HARD list that showed potential as inhibitors. We based this

selection on a combination of Z-scores values and a predicted mode of interaction resembling

the pharmacophoric interaction of known inhibitors used in the Control Compounds section.

All the gather information is resumed on Figure 3 and Table S5.

Host targets

Serine proteases The infection of SARS-CoV-2 to the human cell depends on the ACE2

receptor and a diverse set of host proteases.16,49,50 These proteases prime the S protein of

SARS-CoV-2 and are responsible for efficient fusion with the host lipid membrane to deliver

the viral genetic material.16 Among the most important proteases, three serine proteases,

transmembrane protease/serine 2 (TMPRSS2), furin, and trypsin16 recognize a similar pro-

tease cleavage site pattern (Arginine-Serine, R-S) present on the S1/S2 and S2 sites of the

SARS-CoV-2 S protein.16 In the case of furin, the S1/S2 site also contains the furin multiba-

sic cleavage motif (RRAR).7,51 Similar protease cleavage patterns indicated similar catalytic
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Figure 2: Preferred target distribution. Top-1 predictions with a average Z-score ≤ −1.0
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binding sites for the three serine proteases, composed of a catalytic triad (Ser-His-Asp) and a

pocket containing an Asp residue, responsible for the substrate Arg interaction recognition.7

Comparable catalytic binding sites suggest the possibility that one compound can inhibit

the biological function of more than one of these enzymes. This is the case for two of the

selected CC, Diminazene (CC7)7 and the Camostat derivative, FOY251 (CC6),52,53 that

have been reported to have inhibitory activity against furin/trypsin and TMPRSS2/trypsin,

respectively (Table S3).

After INDO, Diminazene’s top-3 target matches represented the three serine proteases

with a high average Z-score (between -2.01 and -2.62, Table S3). Previous work showed

that Diminazene displays inhibitory activity against furin and trypsin.7,54 This experimental

evidence agrees with the present INDO analysis, where these targets represent the sec-

ond and third position among Diminazene’s selections. Diminazene’s top-selected target is

TMPRSS2, making this serine protease a very reasonable preferred target for Diminazene.

From the HARD list, two compounds share the same top-3 potential target patterns: Na-

famostat and Hydroxystilbamidine (Figure 3). Nafamostat displayed the mentioned top-3

sequence with a high average Z-score (between -1.99 to -2.70, shown in Table S5). Previous

work showed that this drug inhibits trypsin and TMPRSS2,53 which is consistent with our

results. A superposition of the lower energy interaction conformation of Diminazene and

Nafamostat in the active binding site of furin showed that both drugs display identical inter-

action pattern with residues of the active site (Figure 4a, S3a and S3b), producing hydrogen

bonds and ionic interactions in three separated pockets: 1) the Asp pocket with Asp306, 2)

the catalytic triad site with Ser368 and 3) the opposite side with Asp191 or Asn192. This

common interaction motif and the high average Z-score strongly suggest that furin is also a

preferred target for Nafamostat.

Hydroxystilbamidine also displayed the same top-3 targets as did Diminazene and Na-

famostat (Figures 1 and 3). Hydroxystilbamidine, selected furin as preferred target on the

third position and with a lower average Z-score than Diminazene and Nafamostat. Previous
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a b

c d

Figure 4: 3D superposition of: (a) Diminazene (orange), Nafamostat (yellow) and Hydrox-
ystilbamidine (green) on the catalytic site of Furin; (b) Apilimod (orange), Pexidartinib
(yellow) and Vatalanib (green) on the active site of PIKfyve; (c) GRL-0617 (orange), Cle-
bopride (yellow) and Mosapride (green) on the S3 and S4 PLpro subsites; (d) Sofalcone
(orange), Bumetanide (yellow) and Stepronin (green) on the Helicase NTPase binding site.
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work showed that Hydroxystilbamidine does not inhibit furin,7 and consistent with this fact,

our docking calculations showed that Hydroxystilbamidine only displays hydrogen bond in-

teractions with two of the previously mentioned pockets: 1) the Asp pocket with Asp306

and 2) the opposite side pocket with Asp191 (Figure S3c). We therefore attribute Hydroxys-

tilbamidine’s lack of furin activity to the absence of a third hydrogen bond interaction with

residues from the the catalytic triad site (Ser368). According to the present analysis, only

trypsin and TMPRSS2 were selected as preferred targets for Hydroxystilbamidine.

Camostat belongs to the same family as Nafamostat and it inhibits trypsin and TM-

PRSS2.53 Our INDO analysis showed these enzymes as the top-2 selected targets(Figure 3),

with average Z-score of -2.02 and -2.09, respectively (Table S5), supporting the present

analysis as an adequate tool to find serine-protease inhibitors.

Finally, Figure 3 showed that Mosapride, Apixaban and Clebopride also displayed trypsin

and TMPRSS2 in their top-3 for preferred targets, with high average Z-scores between -1.09

and -1.75 (Tables S5). Considering that these average Z-score values are similar to those from

known trypsin and TMPRSS2 inhibitors (FOY251, Table S3 and Camostat, Table S5),52,53

we suggest that these three drugs are potential inhibitors of the above-mentioned serine

proteases.

PI-3P-5-kinase (PIKfyve) Binding of a virus to specific host cell receptor triggers mem-

brane fusion, which can occur directly at the plasma membrane or following endocytic up-

take.55 Viruses that require endocytic uptake can use different initial trafficking routes.55

One endolysosomal system used by SARS-CoV-2 is conducted through phsphoinositides,

where the phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is particularly important for

endosome homeostasis.55,56 PI(3,5)P2 is produced by PI-3P-5-kinase (PIKfyve) through the

phosphorylation of the D-5 position in phosphatidylinositol-3-phosphate (PI3P).55–57 It has

been reported that inhibitors of PIKfyve can inhibit infection by several viruses, including

Ebola and Lassa.58,59 Among these inhibitors, Apilimod was reported to inhibit viral entry
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of MERS-CoV, SARS-CoV and SARS-CoV-2.55 This agrees with our INDO study, where

Apilimod displays PIKfyve as the top-1 preferred target (Figure 1) with a very high average

Z-score of -2.21 (Table S3). This supports the value of the INDO procedure as a tool in the

search for PIKfyve inhibitors.

In a recent publication reporting the structure of the PIKfyve lipid kinase complex,

Lys1877 was confirmed as catalytically essential in the enzyme active site.57 A detailed

observation of the active site shows that it is formed mostly by hydrophobic residues, such

as Ile54, Lys56 (Lys1877), Phe69, Ala90, Met116, Phe120, Leu199, Tyr216 and Ile217. The

lowest energy interaction conformation of Apilimod on the active site of PIKfyve (Figures 4b

and S4a) shows mainly hydrophobic interactions with these residues, separated into two

different binding pockets. Apilimod’s 3-methylphenyl moiety is placed in binding pocket

1, lined by Phe66, Phe69, Ala90, Ile92, Leu114, Tyr216 and Ile217 present on one side of

the active site. Apilimod’s pyridine ring occupies pocket 2 on the other side of the PIKfyve

binding site, formed by Ile54, Leu119, Leu119 and Phe120, and also displays a hydrogen bond

interaction with Leu119. To the best of our knowledge, this is the first study to postulate a

structural model of a putative inhibitor such as Apilimod bound in the PIKfyve active site.

Several HARD have selected PIKfyve as a top-1 preferred target (Figure 3), with average

Z-scores between -1.08 and -1.94 (TableS5). These compounds belong to the pharmacological

group of tyrosine kinase inhibitors, developed for a variety of clinical purposes. Several

previous publications have reported that approved drugs from the family of tyrosine kinase

inhibitors, in particular Imatinib, Dasatinib and Saracatinib, can block coronavirus infection

(SARS-CoV and MERS-CoV) at early stages of the viral life cycle.17,60–62 This activity has

been attributed to the inhibition of various tyrosine kinases, such as Abelson tyrosine kinase

2 (Abl2)61,62 and the Src-family of tyrosine kinases (SFKs),60 but the reported results were

not conclusive on whether these enzymes are the actual targets for these inhibitors in the

context of their anti-coronavirus activity.

Figures 4b and S4, displayed that this family of compounds exhibited high similar in-
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teraction pattern to the reference compound Apilimod. Figure S4 shows that Pexidartinib

and Vatalanib place the halogenated ring, present in every structure, in pocket 1, and the

heteroaromatic ring displaying the previously-mentioned hydrogen bond interaction with

Leu119 and the hydrophobic interactions, in pocket 2.

Considering that PIKfyve is a lipid kinase, it is reasonable to speculate that it shares a

similar active domain with the family of tyrosine kinase enzymes. It has been reported that

active domains in tyrosine kinases showed the presence of an ATP binding pocket, where a

Lys residue (Lys52) is responsible for holding the ATP alpha and beta-phosphates in position

for the phosphorylation catalysis procedure. As was previously mentioned, PIKfyve has

Lys1877 in the active site, which is critical kinase activity. It stands to reason, therefore, that

drugs that compete for ATP binding can be active against both tyrosine kinases and PIKfyve.

The gathered information previously reported, added to the INDO study performed in this

work, suggests that tyrosine kinase inhibitors show activity against coronaviruses, including

SARS-CoV-2, potentially through the inhibition of the PIKfyve enzyme during the early

stages of the viral life cycle.

Viral targets

Papain-like protease (PLpro) SARS-CoV-2 PLpro is a cysteine protease which is re-

sponsible for the early cleavage of the viral polypeptide63 during virus maturation. PLpro

has also been reported to suppress host innate immune responses through the reversal of

certain post-translational protein modifications.64,65 Ratia et al. developed a series of naph-

thalene derivatives as SARS-CoV-1 PLpro inhibitors, among which the compound GRL-0617

displayed the highest activity against SARS-CoV-1 PLpro.63 Recently, Freitas et al. tested

several of those naphthalene derivatives against SARS-CoV-2 PLpro.66 As with SARS-CoV-

1, GRL-0617 displayed the highest activity in inhibiting PLpro as well as SARS-CoV-2 repli-

cation.66 In Table S3 (CC10) we show that our INDO protocol indeed selects SARS-CoV-2

PLpro as the top-1 target for GRL-0617.
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Crystallographic structures of SARS-CoV-1 and SARS-CoV-2 PLpro-GRL-0617 com-

plexes have been reported.63,67 In both cases, the inhibitor occupies the same position away

from the catalytic active site and instead bound to the S3 and S4 PLpro subsites, because

despite the differences between SARS-CoV-1 and SARS-CoV-2 PLpro, the residues lining

the active site and the nearby S3 and S4 cavities are identical.63,66,67 The interaction be-

tween GRL-0617 and PLpro is stabilized mainly through a pair of hydrogen bonds and a

series of hydrophobic interactions.63,66,67 The present INDO study successfully recapitulates

the crystallographic interaction pattern of the PLpro-GRL-0617 complex. The amide moi-

ety of GRL-0617 displays two hydrogen bond interactions with residues Asp165 and Gln270.

The rest of the inhibitor structure, including the naphthyl and the substituted benzyl rings,

shows hydrophobic interactions with non-polar residues lining the mentioned sites: Leu163,

Gly164, Pro249, Tyr265, Try269 and Tyr274 (Figures 4c and S5a).63,66,67

The INDO procedure on the HARD list shows numerous compounds beyond GRL-0617

with PLpro as the top-1 preferred target (Table S5). A closer look at the interaction patterns

of these compounds with PLpro showed that none were able to participate in the previously

mentioned hydrogen bond interactions with both Asp165 and Gln270 residues. From Fig-

ures 3, Mesopride and Clebopride display PLpro as a potential target on their top-3 position.

The interaction patterns of the mentioned compounds with the residues of PLpro showed

a similar interaction pattern as GRL-0617, especially because of the presence of an amide

group on their structures, allowing hydrogen bond interactions with residues Asp165 and

Gln270 (Figures 4c, S5b and S5c). The similarities between these two compounds, regard-

ing both the high average Z-score and the interaction with residues from S3 and S4 PLpro

subsites with the PLpro inhibitor GRL-0617, explain why Mosepride and Clebopride also

claim PLpro as their potential target.

Helicase Helicase, together with the RNA-dependent RNA polymerase (RdRp), form

the main components of the replication-transcription complex (RTC) responsible for vi-
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ral genome replication and transcription of coronaviruses like SARS-CoV-2.8,68,69 Previous

reports revealed that Helicase exhibits multiple enzymatic activities, including hydrolysis of

NTPs and dNTPs, unwinding of DNA and RNA duplexes and RNA 5′-triphosphatase ac-

tivity.8,69 This enzyme is one of the most evolutionarily conserved proteins in coronaviruses

and therefore an important target for drug development.8,68 It had been reported that small

molecules can inhibit the NTPase activity of helicase through interference with ATP bind-

ing.8,68 This NTPase domain is positioned in a cleft between domains 1A and 2B, lining by

the residues Lys288, Ser289, Asp374, Glu375, Gln404 and Arg567.8,68

The present INDO study showed various HARD with helicase as their most preferred

target option (Figure 3). All the mentioned compounds present a carboxylic acid on their

structures. From this list of compounds, Sofalcone, Bumetanide and Stepronin displayed

the most relevant interaction pattern with residues from the helicase NTPase binding do-

main (Figures 4d and S6). These compounds placed their acid groups on the phosphate

binding position from the natural NTPs substrates,68 producing extensive hydrogen bond

interactions with residues Gly285, Gly287, Lys288, Gln404, Arg443 and Arg567. This inter-

action pattern resembles that of natural substrates across the NTPase binding site residues

and the elevated average Z-score obtained on the INDO suggest Sofalcone, Bumetanide and

Stepronin as promising potential inhibitors of helicase.

S protein SARS-CoV-2 S protein plays a key role in the early stage of viral infection,

with the S1 domain responsible for the molecular recognition to ACE2 and the S2 domain

mediating the membrane fusion. Due to this important role in the viral cycle, we analyzed

several docking sites in the interior of S protein as previously described in the Methods

section. The S protein has no known catalytic function, but in order to interact with the

ACE2 receptor a conformational change from the closed to the open state must occur. The

interior docking sites found in the closed state (See Methods section and Figures S7, S8

and S9) have extensive interprotomer contacts and therefore ligands at those sites may
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stabilize the closed state or prevent post-activation separation of protomers. We also explored

the spike RBD and the ACE2, in this cases searching for molecules that may impair its

interaction. As was already mentioned, our results showed that no compound from the

HARD list selected either the spike RBD or the ACE2 in their respective top-3 choices. This

result indicated that these interfaces are not druggable sites for these compounds.

However, from the four distinct internal sites analyzed (Figures S29 to S32), internal site

4 is preferred, both in terms of number of drugs and in Z-scores values (Figure 2, Table S5).

This site is located at the apex of the trimer in the closed state, and it permits access to

residues of the RBD that form the interaction interface with ACE2. It is reasonable to

speculate that drugs at this position may prevent the opening of the RBD, resulting in

inhibition of SARS-CoV-2 entry. Ponatinib and Silodosin select the internal site 4 as their

top-1 choice with average Z-scores of -2.20 and -1.57, respectively (Figure 3 and Table S5).

Figure S10 schematically shows this interaction.

Conclusion

In this work, an inverse docking procedure was performed on 152 approved drugs experimen-

tally determined to be highly active against SARS-CoV-2 (HARD ) in three independent

in vitro HTS assays. Our objective was to identify potential human and viral targets for

these drugs. Our INDO approach was first validated on a test set of 209 protein-ligand

crystallographic complexes not involving SARS-CoV-2 targets. This validation showed that

the combined use of three different scoring functions (Ledock, Korp-PL and Vinardo) re-

sulted in accurate recovery of the correct protein-ligand complex compared to use of any one

scoring function individually. When applied to known inhibitors of different SARS-CoV-2

targets this INDO methodology successfully identified 10 out of 14 in their top-3 preferences,

showing good accuracy in identifying the correct SARS-CoV-2 protein/enzyme target. The

analysis of the INDO results of the 152 potentially repurposable drugs showed that the

24



preferential targets were the human enzymes TMPRSS2 and PIKfyve, followed by the viral

enzymes Helicase and PLpro. This observation is in line with the fact that enzymes are more

druggable targets that any other non-structural or structural SARS-CoV-2 protein.

A closer analysis over the preferential targets showed that the three human serine pro-

teases included in this work were selected as top-3 position targets for Nafamostat, showing

the same preference as one of the control compounds, Diminazene. This observation indicates

that both drugs can inhibit TMPRSS2, trypsin and furin enzymes. Conversely, we found

Hydroxystilbamidine and Camostat as inhibitors of only human Trypsin and TMPRSS2,

because they were not able to perform the required molecular interaction on the active site

of furin.

The INDO procedure selected PIKfyve as the top-1 target for five drugs from the HARD

list. These compounds belong to the family of tyrsine-kinase inhibitors and they were able to

establish the same molecular interaction as did Apilimod, a well-known PIKfyve inhibitor,

on the active site of the enzyme. This information indicates that a tyrosine-kinase inhibitor

can show anti SARS-CoV-2 activity by inhibiting the human PIKfyve enzyme.

The observations over the two preferential viral targets showed that PLpro select this

target as top-1 for the GRL-0617, the control compound reported as specific inhibitor of

this viral enzyme. Also the docked pose reproduce the crystallographic interaction pattern

observed in the PLpro:GRL-0617 complex. These pharmacophoric interactions were also

observed by two drugs from the HARD list: Mosapride and Clebopride, which display PLpro

as their top-3 target choices. For helicase, the present study found several compounds

selected this enzyme as their top-1 target, acting on the catalytic site of the enzyme. All

such drugs share a carboxylic acid moiety on their structures, possibly playing the role of

the phosphate group present on the natural NTPs substrates.

Overall, to the best of our knowledge, this is the first INDO study that definitively

indicates potential viral and/or human targets for a list of HARD with anti-SARS-CoV-2

activity. The results presented in this work contribute to the characterization of drugs with
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potential for directly repurposing against SARS-CoV-2 and to the further development of

novel compounds with anti-SARS-CoV-2 activity. When combined with high-throughput

screening and structure-based rational drug design, the INDO protocol demonstrated here

should therefore contribute substantially to the fight against SARS-CoV-2 and other diseases.

Acknowledgement

This work was supported by CONICET-Consejo Nacional de Investigaciones Cient́ıficas

yTecnológicas,http://www.conicet.gov.ar; Secyt-UNC.Secretaŕıa de Ciencia y Técnica de
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