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Abstract

We show that basic hybridization (adding nominals and @
operators) makes it possible to give straightforward Henkin-
style completeness proofs even when the modal logic being
hybridized is higher-order. The key ideas are to add nomi-
nals as expressions of type ¢, and to extend to arbitrary types
the way we interpret @; in propositional and first-order hybrid
logic. This means: interpret @Q;a,, where a, is an expression
of any type a, as an expression of type a that rigidly returns
the value that a, receives at the i-world. The axiomatization
and completeness proofs are generalizations of those found in
propositional and first-order hybrid logic, and (as is usual in
hybrid logic) we automatically obtain a wide range of complete-
ness results for stronger logics and languages. Our approach is
deliberately low-tech. We don’t, for example, make use of Mon-
tague’s intensional type s, or Fitting-style intensional models;
we build, as simply as we can, hybrid logic over Henkin’s logic.

1 Introduction

Hybrid logic is an extension of modal logic in which it is possible to name worlds
using special atomic formulas called nominals. Nominals are true at a unique
world in any model, thus a nominal ¢ names the world it is true at. Once
nominals have been introduced it becomes natural to make a further extension:
to add modalities of the form @;, where 7 is a nominal, and to interpret formulas
of the form @;p as asserting that ¢ is true at the unique world named by i (for
surveys of hybrid logic, see Blackburn [5] and Areces and Ten Cate [3]).
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This basic hybridization process (that is, adding nominals and @-operators
to some modal language of interest) typically has interesting consequences, and
here we are concerned with the consequences for completeness. We shall show
that hybridization permits relatively simple Henkin-style model building tech-
niques to be used, even when the modal logic being hybridized is higher-order.

Some background remarks. Completeness theory for ordinary (unhybridized)
propositional modal logic revolves around the use of canonical models. A canon-
ical model is a large (typically uncountable) model consisting of all maximal
consistent sets (MCSs) of the logic in question, together with an appropriate
accessibility relation (see Hughes and Cresswell [25] for an introduction and the
Handbook of Modal Logic [10] for advanced material). Contrast this with what
has become (since Leon Henkin’s [22] groundbreaking work) the standard ap-
proach in first-order logic: the method of constants. In such proofs, the model
for a consistent set of sentences is built out of equivalence classes of constants
taken from a single MCS and (for countable languages) the model is countable.

It has long been known that hybridization makes it possible to carry out
Henkin-style model constructions in propositional modal logic (see for example
Bull [12], Gargov and Goranko [18], Blackburn and Tzakova [9], Blackburn and
Ten Cate [8]). The key observation is that models can be built out of equivalence
classes of nominals (much as first-order models are built out of equivalence
classes of constants in Henkin’s construction) and that the @; operators (or
stronger operators, such as the universal modality [20]) make it possible to
specify — within a single MCS — which formulas need to be true at which
worlds. More recently, it has become clear that hybridization also makes Henkin-
style completeness proofs possible when first-order modal logics are hybridized
(Braiiner and Ghilardi [11] gives a good overview). In this setting a new idea
(introduced in Blackburn and Marx [7]) comes into play: overloading the @,
operator so that it can take as arguments not merely formulas but constants
too. In this approach, @;c denotes the individual that the constant ¢ denotes
at the world named by ¢. To put it another way: @;c is a new constant that
rigidly designates what ¢ denotes at the i-world.

The goal of this paper is to investigate whether basic hybridization also leads
to simple Henkin-style completeness proofs in the setting of (classical) higher-
order modal logic (that is, modal logics built over Church’s simple theory of
types [14]), and as we shall show, the answer is “yes”. The crucial idea is to
use @; as a rigidifier for arbitrary types. We shall interpret @;a,, where « is
an expression of any type a, to be an expression of type a that rigidly returns
the value that «, receives at the i-world. As we shall show, this enables us to
construct a description of the required model inside a single MCS and hence to
prove (generalized) completeness for higher-order hybrid logic.

Higher-order modal logic is not a large field, but it is a significant one,
and over the years an impressive body of work has explored it in interestingly
different directions (for a useful survey, see Muskens [30]). Currently, higher-
order modal logic probably plays its most significant role in natural language
semantics. The pioneer here was Richard Montague, who developed various
higher-order modal logics, system PTQ being the best known [28]. PTQ made



use of three types: t for truth values, e for entities, and s for world/time pairs.
Syntactical novelties included two operators,  (the intensionalizing operator)
and v (the extensionalising operator) both of which made use of type s (the
intensional type, as it is often called). It is a complex system (Barwise and
Cooper [4] once likened it to a Rube-Goldberg machine) but its impact was
immense, and rightly so: PTQ opened the door to modern natural language
semantics. But PTQ was far from the last word. In his PhD thesis, Montague’s
student Daniel Gallin [17] proposed an alternative, TYs; this is a two-sorted
version of Church’s [14] simple theory of types, the second sort being Montague’s
intensional type s.! The TY, system (and more generally, the TY,, systems it
spawned) don’t use modal operators; instead they allow direct quantification
over worlds (as a modal logician would say: they incorporate the full first-
order modal correspondence language). Systems of this kind have since played
a significant role in natural language semantics (see, for example, Groenendijk
and Stokhof [21] and Muskens [29]).

In philosophy, perhaps the best known recent work is due to Melvin Fit-
ting [15], who developed a novel approach to higher-order modal logic and used
it to investigate Godels ontological argument for the existence of God. Fit-
ting’s approach has been influential. Syntactically, it uses modal operators, but
dispenses with the function-argument syntax usual in type theory in favor of
a predicate-term syntax reminiscent of first-order logic. But it is his seman-
tic innovation which is likely to be enduring: the use of intensional models, a
mechanism which makes it possible to avoid restrictions to rigid terms.

The most recent work comes from computer science, where Gert Smolka
and his students [26] have recently turned matters on their heads: starting
with classical type theories, they view (propositional) modal and hybrid logics
as subsystems defined within classical type theory, and use this perspective to
guide their search for efficient proof procedures. Previous authors have noted
that various kinds of modality can be defined in various type theories, but
the systematic use of higher-order logic as a tool for defining and exploring
propositional modal logic is novel.

In this paper we will not discuss alternative approaches to higher-order
modal reasoning. Indeed, our goal is to add to this variety by demonstrat-
ing the effectiveness of even basic hybridization in higher-order settings. To this
end, we have restricted the hybrid apparatus to the use of nominals and the @-
operators (thus | does not make an appearance). For most of the paper we use
a modal system with only a single O (to minimize notational clutter), though
we do treat —, A, and V as primitives, rather than defining them in terms of A
and =, to make it easier for our axiomatization to be compared with existing
propositional and first-order modal and hybrid axiomatizations. Our no-frills
approach extends to the semantics. We use a constant domain: at all worlds,
quantifiers range over a fixed function space constructed over a fixed domain of
individuals, and we don’t make use of Fitting-style intensionality (so rigidity is

!n his thesis, Gallin also proved a (generalized) completeness result for PTQ, which seems
to be one of the earliest such results for higher-order modal logic.



a key theme in this paper). We also dispense with type s, working solely with
types e and t. In a nutshell: we are simply going to add nominals, a [J, and the
@;-operators to Henkin’s [23] original higher-order logic.

We call the result BHTT (Basic Hybrid Type Theory). Its axiomatization has
a clean and comprehensible form: a Henkin-style higher-order axiomatization,
and axioms and rules familiar from the modal and hybrid literature, are woven
together with the aid of three new axiom schemas and a hybrid version of the
Barcan formulas. This gives rise to a basic completeness result strong enough to
automatically support extended completeness results for a wide range of frame
classes and multimodal extensions.

2 Syntax and semantics of BHTT

In this section we lay the foundations for the work that follows. We introduce
the syntax and standard semantics for BHTT, and then motivate and define its
generalized semantics. We then prove two simple results about rigidity.

Syntax

Definition 1 (Syntax of BHTT) Types: Let ¢t and e be two fized, but other-
wise arbitrary, objects. The set TYPES of types of BHTT is defined recursively
as follows:

TYPES ::=t | e | (a,b) with a,b € TYPES and a #t.

Meaningful Expressions: The set ME, of meaningful expressions of
type a consists of the basic and complex expressions of type a we now define.

Basic Expressions: For each type a # t, there is a denumerably infinite set
CON, of non-logical constants c,, ., where n is a natural number. Constants
of type t are truth and falsity, that is, CON, = {T, L}. Let CON = |J, CON,,
and for A a set of formulas let CON(A) be the set of constants appearing in
formulas of A. For each type a # t, there is a denumerably infinite set VAR,
of variables v, o, where n is a natural number. Let VAR = Ua VAR,. Finally,
for type t, there is a denumerably infinite set NOM of nominals i,, where n is
a natural number. Summing up, for each natural number n we have that:

in € ME; | ¢h,q € ME, | Up,q € ME, with a # t.
Complex Expressions: These are recursively generated as follows:

'7<b,a)ﬁb € ME, | Aupa € ME(b,a) | Q;aq € ME,
{aa = O‘:y P, Pt A wtvvub(pta D@t} g MEt7

where aq,a, € MEy, By € MEy, Yp.ay € ME(qy, us € VAR, @ € NOM and
wi, U € MEy. In what follows, we often explicitly give the type of a meaningful
expression (writing, for example, o, ) to emphasize that o € ME,.



We introduce oy <> ¥y as shorthand for ¢, = 1y. The remaining booleans,
the existential quantifier 3, and the modal diamond ¢ are defined as usual.

Given a meaningful expression « the set of free variables occurring in
aq (notation FREE(«)) is defined recursively as follows:

FREE(r) = & forT € CONUNOM

FREE(v) {v} for v € VAR
FREE(a = ) = FREE(af3) = FREE(a A 8) = FREE(a) U FREE(S)
)
)

FREE(~a) = FREE(Oa) = FREE(a)
FREE(Vua) = FREE(Aua FREE(a)\{u}.

A meaningful expression ay of type t is called a sentence if FREE(ay) = &.

The syntax is (with two exceptions) fairly standard. The two exceptions are
the introduction of nominals, and the use of the @Q; operators, the two basic tools
of hybrid logic. We will discuss these additions in more detail when we have
defined the semantics. For the moment, simply note that nominals are of type ¢
and are regarded as forming a distinct syntactic class (they are not constants of
type t, of which there are only two, namely T and L). Moreover, note that for
any expression «, (of any type a) the result of prefixing it with @Q; (where 7 can
be any nominal) yields an expression @;«, which is also of type a. Nominals
and expressions of the form @;a, play a central role in the completeness result:
nominals are a key model-building material, and @;«, expressions supply the
architectural blueprint.

Semantics

Definition 2 (BHTT models) A standard structure (or standard model)
for BHTT s a pair M = (S,F) such that

1. 8 = {{Da)aeTvPES, W, R) is a standard skeleton, where:

(a) (Da)acTYPES, the standard type hierarchy, is defined recursively as

follows:
D; = {T,F} isthe set of truth values,
D. # & is the set of individuals,
Dy = Dl?“ is the set of all functions from D, into Dy

for a,b € TYPES, a #t.

(b) W £ & is the set of worlds.
(¢c) RCW x W is the accessibility relation.
2. The denotation function F assigns to each non-logical constant a func-

tion from W to an element in the hierarchy of appropriate type, and to
each nominal a function from W to the set of truth values. More precisely:

(a) For any constant c,, we define F(cp o) : W — Dy. Moreover,
(F(T))(w) =T and (F(L))(w) = F, for any world w € W.



(b) F(@) : W — {T, F} such that (F(i))(v) =T for a unique v € W. To
simplify notation, we sometimes write F(i) = {v} and say that v is the
denotation of i.

Most of the above is standard, familiar from either higher-order or modal
logic. The only novelty is the interpretation of nominals. Propositional hybrid
logic, which in its earliest form was due to Arthur Prior [31, 32, 6], trades on
the idea of using formulas as terms. Because nominals are true at precisely one
world in any model, they (so to speak) name that world by being true there
and nowhere else; and in that way they blur the distinction between terms and
formulas. This is what our interpretation of nominals does too: we treat them
as formulas (they will be of type ¢) but the interpretational constraint ensures
they can act as “names” of worlds.

Another remark. As we have already mentioned, Montague and Gallin made
use of a third type s, the type of possible worlds.? Now, in this paper we have
restricted ourselves to types e and t. But nominals are names for possible
worlds. So although we don’t have a type s, our object language is very much
attuned to entities of this type. BHTT’s attunement to worlds will become even
more pronounced when we define the semantics of @;c,, and this attunement
is the key to our Henkin construction. Treating formulas as terms takes on new
significance in higher-order modal settings; hybridization will allow us to work
over the original Church-Henkin type system in a particularly direct fashion.

Definition 3 An assignment of values to wvariables g is a function with
domain VAR such that for any variable vy, o, g(Un.q) € Dg.

An assignment ¢’ is a v-variant of g if it coincides with g on all values
except, perhaps, on the value assigned to the variable v. We use g? to denote
the v-variant of g whose value for v € VAR, is 6 € D,.

Definition 4 (BHTT interpretations) A standard interpretation is a pair

(M, g), where M is a standard structure for BHTT and g is a variable assign-

ment on M. Given a standard structure M = {{{Ds)acTYPES, W, R),F) and an

assignment g we recursively define, for any meaningful expression a, the stan-

dard interpretation of o with respect to the model M and the assignment g, at

the world w, denoted by [[a]]M9, as follows:

7)JMw9 = (F(7))(w), for 7 € CONUNOM

vn,a]]M’w“q = g(vn,a)a fOT Un,a S VARa

Auparg)|[M 9 = h, where h : Dy — Dy, is the function defined by h(0) =
0

JIPM 9 for any 6 € Dy

(b,a) B9 = [[ovgp, a1V 9 ([Be)] )

ag = o]l =T iff [ M9 = [[B]] M9
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2Strictly speaking, Montague’s type s was the type of world/time pairs. But this is irrele-
vant to the present discussion. The important point is that type s is the type of the entities
at which we evaluate formulas be they world/time pairs, worlds, times, epistemic states, or
something else entirely.



6. (o9 = T if [ = F

7. llge A M9 = T iff []]M9 = T and [ M0 =T

8. [[Vzape|Mw9 = T iff for all § € Dy @]9 =T

9. [[Op)]Mw9 = T iff for all v € W such that (w,v) € R, [[oi]]""9 =T
10. [[Q;aq]]M9 = [[ag]]M 9 where F(i) = {v}.

The last clause is the novelty. As promised, @;« is an expression (of the same
type as «) that rigidly returns the value of « at the i-world. BHTT’s ability
to inspect named worlds and determine the semantic values of expressions of
arbitrary types at them, is what enables it to specify the blueprint for a model
that will satisfy a (consistent) set of formulas.

We now come to Henkin’s crucial idea for taming higher-order logic. The
standard semantics just defined (ignore for the moment the modal and hybrid
components) is the usual semantics for higher-order logic and it is logically in-
tractable: if we define validity as truth in all standard structures, we have a
complex (indeed, provably unaxiomatizable) notion of validity. The situation
is rendered more unsatisfactory by the existence of plausible looking candidate
axiomatizations. These axiomatizations seem to capture all that can be said
about higher-order semantics, but in the face of the unaxiomatizability result
they must all be incomplete. A puzzling situation. The way around the impasse
was provided in 1950 by Henkin, who proposed a more liberal notion of interpre-
tation for higher-order logic (see Henkin [23, 24] and Manzano [27]). His notion
of generalized interpretations (defined below) simultaneously lowers the logical
complexity of validity (as there are more generalized structures than standard
ones, it is, so to speak, easier for a formula to be falsified, and indeed, higher-
order validity becomes recursively enumerable) and makes clear just why those
plausible looking axiomatizations were so plausible: they are complete with re-
spect to Henkin’s generalized semantics.® All of which provides the background
motivation for the following definitions:

Definition 5 (BHTT skeletons and structures) A type hierarchy is a fam-
ily (Da)acTyPES Of sets defined recursively as follows:

D. @
D, = {T,F}
Dy C Dp* fora,be TYPES,a # t.

RN

A skeleton § = ((Dy)actvPES, W, R) is a triple satisfying all the conditions
of a standard skeleton except that (Da)aecTyrPES @5 @ (not necessarily standard)
type hierarchy.

A structure (or model) is a pair M = (S,F) where S is a skeleton and F
s a denotation function.

3While this is true for axiomatic systems, the situation for sequent calculi and tableaux
systems is more subtle, and reasonable looking cut-free systems may be incomplete even with
respect to the generalized semantics; see Fitting [15], pages xiv—xv and elsewhere, for further
discussion.



The idea of using type hierarchies as just defined, rather than the full func-
tion space hierarchy, is the big step forward. To interpret expressions of type
{(a,b) we don’t need all the set-theoretically possible functions from D, to Dy.
However we do need to ensure that we have chosen enough functions to inter-
pret the expressions of our language. Hence we must insist upon closure under
interpretation. This prompts the following definition:

Definition 6 (General interpretation) A general interpretation is a pair
(M, g) where M is a structure, g a variable assignment, and for any meaningful
expression in ME,, its interpretation (as given by Definition 4) is in Dy.

Summing up: generalized interpretations may lack some set-theoretical pos-
sibilities (they need not contain the full set-theoretical function hierarchy) but
they are not permitted to lack any structure that the language can actually see.
From now on we will work with this more liberal notion of interpretation. That
is, from now on, given a (not necessarily standard) model M, an assignment
g, and an expression «, we will allow ourselves to interpret o on M using the
clauses given in Definition 4.

We are now ready for the key semantic definitions. Clearly all standard
interpretations are generalized interpretations. Hence the following definitions
really do generalize the standard notions:

Definition 7 (Consequence and validity) Let T'U {p} C ME; and M be a
structure. We define consequence and validity as follows:

Consequence: I' = ¢ iff for all general interpretations (M, g) and allw € W,
if [V)JM9 =T for all v € T then [[p]]Mv9 =T.

Validity: | ¢ iff @ E ¢.

Variables, substitution, and rigidity

Before proceeding, we need two small technical lemmas concerning the interpre-
tation of nominals and free variables.

Lemma 8 (Coincidence lemma for nominals) Let (M, g) and (M*,g) be
two general interpretations such that M = (S,F) and M* = (S,F*) have the
same skeleton and F agrees with F* for all arguments except the nominal i. Let
aq € ME, be any meaningful expression in which i does not occur. Then, for
any world w, [[ag]]M9 = [[arg]]M 9

Proof Straightforward. -

Lemma 9 (Coincidence lemma for variables) If g and h are assignments
that agree on the free variables of o, € ME, (that is, g1FREE(ay) = MFREE(aw))s

and (M, g) and (M,h) are general interpretations, then for any world w we
have that [[og ]9 = [[arg]] M.



Proof By induction on the construction of meaningful expressions. We give
the cases for Aupa, and Yugp:
o [[AupBa]]Mw+9 is the function with domain Dy, such that for any § € D,
its value is [[6a]]M’w’ga. We know that g9 (uy) = h (u;) and also that
95 (vg) = hY (vg) for any v, € FREE(AupB,) = FREE(B,)\{us}. Thus,
by the induction hypothesis, [[@LHM’“”gzb = [[Ba]]M’w’hib for all § € D,.
Therefore [[AupB,]]"% 9 = [[AupB,)]**", because both are functions re-
turning the same values for all arguments.
o [[Vupp]]Mw9 = T iff for all 6 € D, [[@]]M’w’gzb = T iff for all § € D,
[l o =T iff [[Fupp] Mot =T

_|

We will also make heavy use of substitution (particularly of rigid terms).
Let us define this notion precisely.

Definition 10 (Variable substitution) For all o, € ME,, the substitution

of v. for a variable v. in o, written a, ’Y‘, 18 inductively defined as follows:

1. 72 =7 for 7 € CONUNOM

PR _:{ Yo if vga € VAR and v, = v,
T e Ve if vqa € VAR and vg # v,
Aty if ve & FREE(\u, )
Mup(Bu2) if v € FREE(Auyfh),
3. (AupBp)3e = up & FREE(7,)
Azp(Byg2)Le if ve € FREE(Aupfy),

u, € FREE(, ) Tp new

4 (Bip,ay0s) 2 = Bip,ayacobas | (Bo = 0p) e 1= Ppoe = dp°
5. (mp)ye o= e (<P/\1/))ZZ =l N | (DY ) = 0(y3e)
Vi) if ve ¢ FREE(Vu, )
Vupy e if ve € FREE(Vu,),
6. (Vuyp)le = ‘ up ¢ FREE(Ye )
‘ Va,($32) 3 if ve € FREE(Vuyy),
u, € FREE(Y.), zp new

7. (@zﬁb)%: = @z(ﬂbe)

It is time to define one of the paper’s key concepts: rigid expressions.
These are expressions that have the same value at all worlds; good examples are
T and L (their rigidity is hard-wired into the definition of what denotation func-
tions F are), variables of all types (after all, variable denotations are determined
globally and directly by assignment functions), and expressions prefixed by an
@ operator (indeed, these operators were designed with rigidification in mind).
Rigid expressions play a key role in our axiomatization and equivalence classes
of rigid expressions are the building blocks used in our model construction.



Definition 11 (Rigid meaningful expresions) The set RIGIDS of rigid mean-
ingful expressions is defined inductively as follows:

RIGIDS ::= L ‘ T‘Ua ‘ @iga | )\Ubaa |’7(b,a)ﬁb|ab = ﬁbl_‘got“@t A 1/)t |vv¢l90t7

where 0, € ME, and caa, B, Vb.ay, 5 Pt € RIGIDS. We say that a € RIGIDS,
if a is rigid and of type a, that is, if a« € RIGIDS N ME,,.

Lemma 12 Let (M, g) be a general interpretation. Ify € RIGIDS then [[]]M%9 =
[Y]]M9 for all w,v € W.

Proof By induction on the construction of rigid expressions. We give the cases
for Avpa, and Vo, p:

Mw.g ig the func-

o If v is of the form vy, with «, rigid, then [[Avpa,]]
6
tion A with domain Dy, such that h(6) = [[aa]]"* 9, for any 6 € D,. On
the other hand, [[Avpa,]]* "9 is the function A’ with domain Dy, such that
6 6 6

B (0) =[], for any 6 € Dy. Now, [[aa]]™* 9 = [[ag )], us-
ing the induction hypothesis for a,, and thus [[Avpa, ]9 = [[Avpa, ]9
for all w,v € W.

e If v is of the form Vv, with ¢ rigid, then [[Vv, ]| M9 = T iff [[@}]M’“”gga =

T for all 8 € D, iff [[@}]M’”’gsa =T for all § € D, (by the induction hy-

pothesis for rigid ¢) iff [[Vv,¢]]"9 = T. Note that here we make use of

the fact that we are quantifying over a constant domain.

Rigid expressions are well-behaved with respect to substitution:

Lemma 13 (Rigid substitution) Let (M, g) be a general interpretation. Then
for all worlds w, all oy € ME,, all 7. € RIGIDS, and any variable v. of type c:

o M09 = [ 7%

where ¥, is an abbreviation for [[y.]]M9.

Proof Straightforward by induction on the construction of meaningful expres-

sions, with the help of Lemma 9. -

3 Axiomatization
We now introduce deductions (formal proofs) for BHTT. We will select an

infinite set of logical axioms, and several rules of proof which will enable us to
prove certain meaningful expressions of type t .
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Rules of proof

1. Modus Ponens: If - ¢ and - ¢ — 1, then - 4.
2. Generalizations:

(a) Geng: If F ¢, then F O

(b) Geng: If F ¢, then F @; .

(¢) Geny: If F ¢, then F Va,0.

3. Rigid replacement: If F ¢, then F ¢', where ¢’ is obtained from ¢ by
uniformly replacing nominals by nominals, variables of type a by rigid ex-
pressions of type a, and vice-versa (that is, we can replace rigid expressions
of type a by variables of type a too).

4. Name: If - @Q;¢ and ¢ does not occur in ¢, then F .

5. Bounded Generalization: If - @;0j — @Q;p and j # ¢ and j does not
occur in ¢, then = @;Clp.

These are all standard rules drawn from the literature on modal and hybrid
logic. For a detailed discussion of the Name and Bounded Generalization rules,
see Blackburn and Ten Cate [8]. The restriction in the rigid replacement rule
that nominals must replace nominals is standard in hybrid logic; it reflects the
fact that nominals embody namelike information, and replacement must respect
this. The additional restriction we have imposed (that variables can only be
freely replaced by rigid terms and vice-versa) reflects the fact that assignment
functions interpret variables rigidly, and replacement must respect this too.

Axioms
We will give the logical axioms as general schemas.
1. Tautologies: All BHTT instances of propositional tautologies.
2. Distributivity axioms:
(a) O-distributivity: - O(¢ — ¢) — (Op — Ov).
(b) @-distributivity: F @Q;(¢p — ¥) = (Q;p — Q;1)).
(¢c) V-distributivity: + Vay(@ — ) = (Vape — V).
3. Quantifier axioms:
(a) V-elimination: For §, rigid, F Va,o — (pf—:.
(b) Vacuous: F ¢ — Vy,p, where y, does not occur free in .
4. Equality axioms:
(a) Reflexivity: F a, = a,.
(b) Substitution: For «,, 8, rigid, - a, = 8, — (5%—: = §.52).
5. Functional axioms:

(a) Extensionality: = Voy(v(b,q)06 = d(b,a)06) = V(b,a) = O(b,a), Where v
does not occur free in 7y, q) O d(p,q)-

11



(b) B-conversion: For rigid By, F (Axpa,)fy = aa%.
(c) m-conversion: = (AZpY(b,0)Tb) = V(b,a), Where xp, is not free in v qy.
6. Axioms for Q:
(a) Selfdual: F @Q;p +> ~@Q;—¢.
(b) Intro: ki — (p <> Q).
(c) Back: F 0@Q;p — @Q;¢.
(d) Ref: F Q3.
(e) Agree: F @;Q 0, =Qjay.
7. Domain Axioms:
(a) Hybrid Barcan: + Vz,Q;¢ <> Q;Va,p.
8. New Axioms:

(a) Equality-at-i: - Q;(8, = dp) = (Q; 8, = Q;0p).
(b) Rigid function application: = @Q;(v(.4)5) = (QiV(b,a)) (Qi ).
(¢) Rigids are rigid: If «, is rigid then - @Q;a, = «,.

The axiomatization is not designed to be minimal, it is designed to be per-
spicuous and to make use of well-known axioms from propositional and first-
order modal and hybrid logic, and higher-order logic.* Indeed (if we ignore
side restrictions to rigid terms) almost all the above axioms should be familiar.
The only novelties are Equality-at-i (Axiom 8a), Rigid function applica-
tion (Axiom 8b), and Rigids are rigid (Axiom 8c). These, together with
Hybrid Barcan (Axiom 7a) play a key role in the model construction. Note
that Hybrid Barcan combines the standard modal Barcan and converse Barcan
formulas, but with @; taking the place of [J. Hybrid Barcan will later lead us
to what we call the Rigid Representatives Theorem, which will help us to build
the function hierarchy required for the completeness proof.

Definition 14 A deduction of v is a finite sequence a, . . ., o, of expressions
such that o, == ¢ and for every 1 < i < n —1, either a; is an axiom, or o is
obtained from previous expressions in the sequence using the rules of proof. We
will write = ¢ whenever we have such a sequence and we will say that ¢ is a
BHTT-theorem.

Definition 15 IfT'U{¢} is a set of meaningful expressions of type t, a deduc-
tion of ¢ from T is a deduction of b y1 A...Ayn — @ where {y1,..., v} CT.
We say that a meaningful expression ¢ of type t is deducible from a set of
expressions I', and we write T' = , iff there is a deduction of ¢ from I.

Theorem 16 (Soundness) For all ¢ € ME;, we have b ¢ implies = .

40ne obvious redundancy is the @-distributivity axiom: this is a straightforward conse-
quence of Equality-at-i (Axiom 8a).
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Proof Straightforward but tedious. -

What is provable in BHTT? We shall meet many examples in the course of
the completeness proof. Some of these will be important for the completeness
proof, but their derivability will be fairly clear. For example, we shall need
to make use of existential forms of Hybrid Barcan (that is, expressions of the
form F @;3xpp <> J1,@;¢ ) but it is simple to check that BHTT is powerful
enough to derive these from the universal forms given as axioms. Others, such
as the Bridge principle - @;05 A Qo — @Q; O, are trickier. In any case, we
have gathered together all the required BHT T-theorems into the Appendix at
the end of the paper. Note that many of the theorems are essentially hybrid
rather than higher-order in nature (both Bridge and Barcan are good examples
of this). As we have noted, it is the nominals and @Q; operators that carry much
of the load of specifying the required model, and this is reflected in the form of
the theorems we need to derive.

4 Maximal consistent sets

In this section we define and explore maximal consistent sets of BHTT sentences
with various useful properties, prove the variant of Lindenbaum’s Lemma we
shall require, and then prove a result we call the Rigid Representatives Theorem,
which will give us valuable information about the building blocks of our type
hierarchy.

Definition 17 A C ME; is inconsistent (or contradictory) iff for every ¢ €
ME;, A - p. A is consistent iff it is not inconsistent. A is a mazximally
consistent set iff A is consistent and whenever ¢ € ME; and ¢ ¢ A, then
AU {p} is inconsistent.

The following four lemmas note some easy consequences of the definitions
and rules of the calculus.

Lemma 18 Let A,T' C ME; and ¢ € ME;. Then:
1. If A is consistent and I' C A, then I' is consistent.
If A is inconsistent and A C T, then I' is inconsistent.
A C ME; is inconsistent iff for some ¢ € ME, A ¢ and A F —p.
A C ME; is inconsistent iff A+ L.

If A is consistent, then for all ¢ € ME; such that A F ¢ we have AU {¢}
18 consistent.

6. A is consistent iff every finite subset of A is consistent.

Lemma 19 Let A C ME; be a mazimal consistent set and ¢, 1 € ME;. Then:

1. Ay iff o€ A.
2. If b then ¢ € A.

13



e Aiff o A.

peAiffpdA.

oAV eAiffoeAandyp € A

Either ¢ € A or —p € A but not both.

IfFAU{p}F Y and AU{Y} @ then ¢ € A iff b € A.

NS U

Lemma 20 Let A be a mazimal consistent set. If @Q;,00p € A then for any
nominal j we have: @Q;0j € A implies Q0 € A.

Proof Let @;00p € A. Then -@Q;$—¢p € A using the definition of ¢ and the
fact that @; is selfdual (Axiom 6a). So let j be a nominal such that @;Qj €
A; assume that @Q;o ¢ A. Then @Q;—¢ € A, using Part 3 of the previous
lemma and the selfduality of @;. Now - @;0j A Q;—~¢ — @;O—p by Bridge
(Claim 57). Hence as A is maximal consistent, @;0—¢ € A. But this contradicts
the consistency of A as =@;$—p € A. —

Lemma 21 Let A be a mazimal consistent set. If QNVx,p € A, then @ﬁa% S
A for all oy € RIGIDS,.

Proof For any rigid expression o, we have - Vz,p — @2+ (Axiom 3a). Ap-
plying @-generalization and @Q-distributivity yields F Q; ancp — @Zgoa“ so this
formula must be in A by maximal consistency. Hence if Q;Vx,p € A then
@zgo— € A. -

With these preliminaries noted, we are ready to begin. As we have said, our
completeness proof follows Henkin’s strategy. The key idea is to build a model
out of the information contained in a maximal consistent set of sentences —
but not any maximal consistent set will do. When dealing with the quantifiers,
Henkin demanded that each 3-formula be witnessed by an appropriate constant,
for he defined the domain of quantification out of equivalences classes of con-
stants. We need to do this, but we also need to demand that each {-formula be
witnessed by a nominal, for we shall define the worlds and the accessibility rela-
tion out of equivalence classes of nominals. Furthermore, we need the maximal
consistent set to contain at least one nominal; in the model we shall eventually
construct, the equivalence class containing this nominal will be the world that
satisfies the consistent set of sentences. In short, we shall be demanding the
following three properties:

Definition 22 Let X be a set of meaningful expressions.

1. ¥ is named iff one of its elements is a nominal.

2. ¥ is O-saturated iff for all expressions Q;Qp € X there is a nominal j €
NOM such that Q;0j € ¥ and Q;p € 2.

3. ¥ is J-saturated iff for all expressions Q,Jx,p € X there is a constant
cq € CON, such that @Z-go@;c“ IS

14



Note the similarity between Clauses 2 and 3: {-saturation is a clear modal
analogue of Henkin’s notion of 3-saturation. This similarity is underlined by
the following two lemmas. First, 3-saturation guarantees us the following:

Lemma 23 Let A be mazimal consistent and 3-saturated. If @i(cp@g;—j“) €A
for all ¢, € CON(A) then Q;Va,p € A.

Proof Let @i(ap@fﬂ) € A for all ¢, € CON(A). Assume that Q;Vr,p ¢ A.
Then -Q;Vz,p € A. Therefore @;dz,—p € A, using the definition of 3 and
Axiom 6a. As A is maximal consistent and J-saturated, there exists a constant
¢q € CON(A) such that @i(ﬂgo@;—(f") € A. Then using the selfduality of @;, we
have ﬁ@i(w@;—‘f“) € A, contradicting the consistency of A. =

But now consider the following lemma. Its proof trades on {-saturation, but
the underlying strategy is identical:

Lemma 24 Let A be maximal consistent and {-saturated, and suppose that for
all nominals j, if @Q;05 € A then Q0 € A too. Then @Q;0p € A.

Proof Suppose A satisfies the statement of the lemma. Now assume that
@,Op € A. Then -@Q;C0p € A. Therefore @;0—p € A, using the definition of
¢ and Axiom 6a. As A is maximal consistent and {-saturated, there exists a
nominal j such that @;¢j € A and @;—¢p € A. Then -Q;¢ € A and Q;p € A,
contradicting the consistency of A. -

As our Henkin proof is for a higher-order logic, part of our completeness
proof will involve constructing a type-hierachy. The following lemma, which
trades on J-saturation, will help us do this.

Lemma 25 Let A be mazximal consistent and 3-saturated, and let gy, 4y and
’YEb,a) be rigid expressions of type (b,a). If for all ¢, € CON(A) we have
Vibya)Qicy = 72b,a)@icb € A then QYvy(Vp,ayvp = ’YEb,a)vb) e A for v ¢
FREE(7(p,qy) U FREE(yzbm).

Proof Let vq)@ic, = Vzbm @;cp € A for all ¢, € CONp(A). We want to prove
that A F @;Voy(yp,q)v6 = ’VZb,a)Ub)' Suppose for the sake of contradiction that
QY (V(p,ay b = ’YZb,a)Ub) & A. Then —@;Yvy(Vp,ayvp = vzbmvb) € A, since A
is maximally consistent. Thus @;Jvy—(y(,q)v6 = 72b’a>vb) € A using Axiom 6a
and the definition of 3. Since A is 3-saturated, there is a ¢, € CONy(A) such
that @;—(y(p,a)@icy = 7y 4y Qicy) € A So A+ Q= (g, v Qicy = Y(p,a) Qi)
and thus A _‘@i(72b7a)@icb = V(b,a)@icp) by Axiom 6a.

But by hypothesis A F v 4y @;cp = 72b7a)@icb' Hence

A Qi(Y(p,0) Qich = Vip,a)Qich) = Vib,a) Qich = V(p,qy Qict

using Axiom 8c and the fact that v, .)@Q;c, = 721) a>@icb is rigid. Thus A +
Q;(V(b,a)Qicy = 'yzbw@icb) by modus ponens and the definition of <, contra-
dicting A’s consistency. -

15



We must now prove that any consistent set of formulas can be extended to
a maximal consistent set with all three desirable properties. We need, in short,
the following version of Lindenbaum’s Lemma:

Lemma 26 (Lindenbaum) Let ¥ be a consistent set of formulas. Then ¥
can be extended to a maximal consistent set X that is named, (-saturated and
d-saturated.

Proof Let {i,}ne, be an enumeration of a countably infinite set of new nom-
inals, {¢n,q tnew an enumeration of a countably infinite set of new constants of
type a, and {®,, }ne, an enumeration of the formulas of the extended language.
We will build {¥"},,cw, a family of subsets of ME;, by induction:

o 30 = EU{’L()}

e Assume that X" has already been built. To define ¥"*! we distinguish
four cases:

1. ¥t =357 if ¥ U {¢,} is inconsistent.

2. ¥l = nu{ep,}, if X" U{p,} is consistent and ¢,, is not of the form
@Q; O or Q; Az,

3. ¥t = 3" U {pn, @Q;Olp, Q;, 1}, if X" U {p,} is consistent, ¢, =
@,; 01 and iy, is the first nominal not in 3" or ,,.

4. ¥ = 3nu{ep,, Q; ¢©me —mee d Gf $"U{p, } is consistent, ¢, := @; Iz, 1)
and ¢, q is the first constant of type a not in X" or g,.

Now, let ¥« = UnEw "™, Y% is named, (-saturated and J-saturated. We
only need to prove that it is maximal consistent. This will follow easily once we
prove that each X is consistent, which we shall do by induction.

For the base case, suppose %0 is inconsistent. Hence X U {ip} F L, hence
Y Fip — L and hence by Arrow Name (Claim 61) ¥ L, which is impossible.

Now assume as inductive hypothesis that X" is consistent. Now, X"*! has
only four possible forms:

1. ¥t = ¥" is consistent by the induction hypothesis.
2. Yt = ¥m Yy {p,} is consistent by construction.

3. So suppose X" = X" U {p,, Q;Qip, @Q; b}, where ¢, := @;O01p and iy,
is the first new nominal that does not occur in " or ¢,,. By construction,
E"U{pn} is consistent. Suppose that X" U{yy, @; i, @; ¢} L. Then,
S U{pn} F @0t AQ; 10 — L, hence X" U{p,} F @;01p — L, by using
Pasteg (Claim 62) and the fact that i, # ¢ and i,, does not occur in ¢ or
L. Thus " U {¢,} F L, which is impossible.

4. Lastly, suppose X" U {gpm@iw%}, where ¢, = @Q;Jz,¢ and cp, 4 is
the first new constant of type a that does not occur in ¥" or ©n. By
construction, X" U {y,} is consistent. Suppose X" U{¢,, Q; wo —ma b |,
Then X" U{py, Jx,Q;¢} F L, by Claim 44. Thus X" U{¢,, @, Elx,ﬂ/)} F L,
using Claim 45. Thus %™ U {gon} F L, which is impossible.
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We conclude that 3¢ is consistent. Maximality is clear by construction. -

Maximal consistent sets which are named, ¢-saturated and F-saturated con-
tain lots of useful information. We will be particularly interested in what they
tell us about the equivalence of rigid expressions:

Definition 27 Let A be a named, {-saturated and 3-saturated mazximal con-
sistent set. Then:

e For all ay, By € RIGIDS,: ag =~a Ba iff g = Ba € A, for every a €
TYPES— {t}. The rigidity equivalence class of a,, notation [ag)a, is
the set {Bq | aq =a B4}

o For ¢, p € ME; : p =a ¥ iff p =1 € A.The truth equivalence class of
©, notation [¢|a, is the set {1 | ¢ ~a ¥}.

When A is clear from context we will usually write =~ instead of ~a, and [«]
instead of [a|a. It is straightforward to check that both rigidity equivalence and
truth equivalence are equivalence relations.

And now for a key result: in named and saturated maximal consistent sets,
these equivalence classes are all represented by constants. This result will sim-
plify the construction of the type hierarchy in the following session; its proof
makes use of the Hybrid Barcan axioms.

Theorem 28 (Rigid Representatives) Let A be a maximal consistent set
which is named, {-saturated and 3-saturated.

1. Leti € NOM and o € ME;. Then [a] = [Q; L] or [a] = [@;T].

2. Leti € NOM and o, € RIGIDS,, such that a # t. Then there is a constant
¢q € CON such that [ag] = [@Qicq]-

Proof The proof is by induction on type structure.

[Type t] Let ¢ be any nominal and a € ME,. Assume that o € A. But
a— (a=T) € A, by propositional logic. Thus a =T € A, and « = @Q; T € A,
by Axiom 8c and maximal consistency. Hence [a] = [@;T]. On the other hand,
if we assume that o ¢ A, both —a and -« — (o« = 1) € A, and similar
reasoning lets us conclude that [a] = [@; L]. A further remark may be helpful.
Since for any nominal ¢ we have that F @Q; | = | and - @; T = T, by Axiom 8c
[@; 1] =[L1] and [@; T] = [T]. That is, the choice of the nominal i is irrelevant;
there really are only two truth equivalence classes.

[Type ¢] Let a. € RIGIDS.. By Axiom 4a and Rule 2b, F @;(a, = )
which can be rewritten as - @Q;(y. = ae)%. By Claim 39 and Modus Po-
nens - Jy.Q;(y. = a.). By Existential Hybrid Barcan (Claim 42), we have
F @;Jye(ye = ae) < FyeQ;(ye = a.). Therefore, @;Jy.(y. = a.) € A by
maximal consistency. By F-saturation, there exists a constant ¢, € CON such
that @;(@;c. = a.) € A. Thus Q;c, = a, € A, by Axioms 8a and 8¢, and so
[ac] = [@ic].
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[Inductive step] Let 7, 4y € RIGIDS;, oy. By Rigid Comprehension (Claim 52)
we have = 3, 4y Q; Vv (2 (5,0)Ub = Y(b,a)V6) With 2 4y and vy, not in 7 4y, and
so this formula is in A by maximal consistency. Existential Hybrid Barcan gives
us that @; 32 0y V0u(Z(h,a) Vb = V(b,a)v) € A, hence, as A is I-saturated, there
is a constant ¢, oy € CON such that @;Yv,(Q ey qyvs = Y(p,a)vs) € A too.
Using Axioms 5a and 2b, and Rule 2b we have @;(Q;c( 4y = Vp,ay) € A.
By Axioms 8a and 6e = @;(Q;cq) = V(b)) = (Qicpay = @QiVp,qy) and thus
Qicp,ay = Qivpay € A As yp,q) 1s Tigid we can use Axiom 8c to get Q;cy, o) =
Yib,a) € A. Hence [@ic(b,a>] = [7(1,7@)]. -

5 Completeness of BHTT

We come to the heart of the proof: building generalized interpretations out of
(named and saturated) maximal consistent sets. We shall do this in three steps.

Recall that a structure has the form M = (S,F) consisting of a skeleton
S = {(Da)acTyPES, W, R) and a denotation function F. In the first step we
define the type hierarchy (D,)aecTvpes. This is the most technical step, and this
is where we make use of the Rigid Representatives Theorem. In the second step
we define (W, R) and F. This part is straightforward: F is easy to define, and we
use the standard hybrid construction of (W, R). In the third step we define the
general interpretation (M, g) we need, and show that it satisfies all the formulas
in the maximal consistent set used to build it. Completeness follows.

Constructing the hierarchy

How does Henkin construct type hierarchies? On page 86 of Completeness in
the Theory of Types he says this:

We now define by induction on « a frame of domains {Dy} and si-

multaneously a one-one mapping ® of equivalence classes onto the
domains Dy, such that ®([Aa]) is in D,.

Our logic and notation are somewhat different, but the proof of following

theorem is thoroughly Henkin in spirit.

Theorem 29 (Hierarchy Theorem) Given a mazimal consistent set A, which
is named, Q-saturated and 3-saturated, there exists a family of domains (Dg)acTYPES
and a function ® such that:

1. ® is a bijection from BB (Building Blocks) to |J D, where
a€TYPES

BB= |J {laal| s €RIGIDS,} U {[g] | ¢ € ME,}.
a€TYPES\{t}

2. D; = {®([¢]) | ¢ € ME;} and D, = {®([ay]) | @ € RIGIDS,} for a # .
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Proof The proof is by induction on a € TYPES by simultaneously defining the
hierarchy (Dg)qeTvpes and the function ®.

[Type t] We define D, to be the two elements set D; = {[@; L], [@;T]}, and for
every ¢ € ME; we define:

B [@T] iff peA
®(lel) = {[@iL] iff fweA,

where the chosen nominal i is arbitrary. It is immediate by the first part of the
Rigid Representatives Theorem that ® is well-defined, one-to-one, and onto.

[Type e] We define D, = {[Q;c.] | c. € CON(A),i € NOM}. We also define
O ([ae]) = [ae] for every a. € RIGIDS,.. Clearly ® is well-defined, one-to-one and
onto. And by the second part of Rigid Representatives (Theorem 28) we have
that De = {[ae] | @e € RIGIDS, }, and thus D, = {®([c.]) | ae € RIGIDS,.}.

[Inductive step] Assuming that the theorem holds for a,b € TYPES with b # ¢,
we now prove it for (b,a) € TYPES.

For every 7,4y that is an element of RIGIDS, 4y we define the value of ®
for the argument [y, 4)] as follows: ®([y(,q)]) is itself a function with domain

D, and range D, whose value for any element ®([5]) of D; is the element
®([V(b,a)B6]) of Dy. That is, we have:

‘p([’Y(b,a)])(‘I’([ﬂb])) = (I)(h(b,a)ﬁb])'

It is easy to see that ® does not depend on the particular representative chosen.
For suppose ’72b7a) ~ V(b,ay and By ~ By, Thus A+ 72b7a) = V(b,a) and A B =
By, and by Claim 51 we have that A + ’YZb,a>6é = Y(b,a)Bp- This means that
Y(b,a)Bb = 'ng,a)ﬂll) and 80 [Vp.q)Bp] = [72b7a)6£]. So & is well defined.

Next we define: D(b,a) = {(p(h/(b,a)]) ‘ Y(b,a) € R|G|D5<b7a>} Now, D(b,a)
clearly has the form we require, and ® is obviously a mapping onto D 4, but
is it one-to-one? To see that it is, reason as follows. Let ([}, »]) = ®([v(p,0)])-

We need to show that [v}, ] = [Y(p,a)]- As they are equal, the functions

([v(,y)) and ©([v(p,0)]) give the same value for any argument ®([3]) € Dy,
for B, € RIGIDS,. By the second part of the Rigid Representatives Theorem
each member of Dy is of the form ®([Q;cp]) with ¢, € CON(A), so we can write

(b, (R([@ics])) = P([7(p ) D(@([@ic]))

for all ¢, € CON(A). But @([y(p,q)Qicy]) = (I)(['YZb,@@iCbD because, by the
induction hypothesis for elements of type a, the function ® is one-to-one, and
so we have that [y q)@;icp] = [’721),@@2‘01)]' Therefore A = v, 0y @iy = 72b,a>@icb
for all ¢, € CON(A). Thus A = @;Yvy(Vp,ayvs = 72b,a>”b) for v, not free in v, q)
and VZb,aw by Lemma 25. Now, by Axiom 5a we have that:

= Y0b(V(b,a) Vb = Vib,ay V) = Vbia) = Vib.a)-
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Hence:

= @05 (V(b,a) V6 = V{pay V) = Qi(Vib,a) = Vip,ay)
by Rule 2b and Axiom 2b. So A vy, 4y = VZb,a) by Axiom 8c. And this means
we have that [y, ] = [¥(p,q)] which means that ® is one-to-one. 4

Corollary 30 (D,)aseTvPES is a type hierarchy.

Proof By definition, D; is a two element set. Also, D, # &, because for
every ve € VAR, the formula @,3v. T € A (Claim 40 and Rule 2b). Hence, as
A is 3-saturated, there exists a constant ¢, € CON(A) such that the formula
@iT@vi—:e € A for every variable from the infinite set VAR.. Thus [@;c.] € D,.
Finally, D(b,a) - DE*’ as D(b,a) = {(I)(['Y(b,@]) | Vib,a) € RlGlDS(b’@} and each
®([V(p,a)]) is a function from Dy to D,. =

Defining the structure

That was the tricky part. But with the hierarchy now defined it is straightfor-
ward to complete the definition of the structure we require by defining (W, R)
and F. To this end we first define an equivalence relation between nominals.

Definition 31 Let A be a mazximal consistent set. Define, for i,j € NOM,
i~ jiff Qj € A. Forie NOM, [i]] = {j € NOM : i &' j}. It is easy to show
that =’ is an equivalence relation on NOM.

Definition 32 (Basic Hybrid Henkin Structures) Let A be a mazimal con-
sistent set which is named, ¢-saturated and 3-saturated. The Basic Hybrid
Henkin Structure M = (S,F) over A is made up of:

1. The skeleton S = ((Dg)acTYPES, W, R), defined by:
(a) (Da)acTvPES, 0S given by the Hierarchy Theorem,
(b) W ={[i] | ¢ is a nominal},
(¢) R={([}. [J]) | @:0j € A}.
2. F is a function with domain NOM U CON, defined by:
(a) For ¢, € CON, F(cnq) is a function from W to D,, such that
Flen,a)([i]) = ([Qicn,al)-
(b) Fori € NOM, F(i) is a function from W to Dy = {[@Q;T],[Q; L]}, such
that (F(i))([7]) = [@Q; T] iff © € [].
The set A over which a basic hybrid Henkin structure is built is usually clear
from context, so often we don’t mention it.

Lemma 33 Any basic hybrid Henkin structure is a well-defined structure.
Proof We already know that S is well-defined, for (D,)qcTvpPES is a type hi-

erarchy by Corollary 30. The equivalence relation on NOM is easily seen to be
well defined, so it only remains to show that R and F are too. For R we have:
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1. i =" 4" and ([d],[j]) € R implies ([¢'],[j]) € R. We have - @;i' — (Q;0j —
@y 0j) by Claim 58. Thus @;i’ € A and @;¢j € A implies @;Oj € A.

2. j~'j and ([i],[j]) € R implies ([i], [j']) € R. We have - @;0j A Q;j" —
Q, <>j by Claim 57 . Thus @;j" € A and @;0j € A implies @;0j" € A.

Moreover, F is well defined. For if ¢ &~" j then (F(cp,q))([)]) = (F(en,qo))([4])
because by Claim 55 we have that - Q5 — (Q;c,,q = Qjcp.q). B

General Interpretation and Completeness
One last detail remains: defining our variable assignment. We do so as follows:

Definition 34 An assignment on a basic hybrid Henkin structure M is a func-
tion mapping each variable v, to some element of D, = {P([ag]) | aa €
RIGIDS,}. The Hybrid Henkin Assignment on M is the function g defined
as follows. For every v, € VAR, :

9(va) = @([va])-

Note that since all variables v, are rigid, Q;v, = v, for alli € NOM, and so we
could also have defined g(v,) to be ®([Q,v,]).

Theorem 35 Let M be a basic hybrid Henkin structure and g its hybrid Henkin
assignment. For all meaningful expressions By and for all i € NOM we have:

(B9 = B([@;8,]).

Proof The proof is a conceptually clear but somewhat finicky induction on
the formation of expressions. We give a selection of cases.

[Case j € NOM] [[j]**119 = (F(j))([d). By Definition 32, (F(5))([1]) = [ T]
iff j € [i], which in turn is equivalent to @;j € A. Therefore, [[j]]M 9 =
®([@;4]).

[Case ¢, € CON] [[ep)]M 19 = (F(c))([i]) = ®([Qscp)), by definition.
[Case v, € VAR] [[vp]]M119 = g(v,) = ®([@Q;up]), by the definition of g.

[Case —¢] [[~]| M9 = [@;T] iff ®([Q;¢p]) = [@; L] (by the induction hypoth-
esis) iff ®([@Q;—p]) = [@;T] by Axiom 6a

[Case ¢ A ] [[p A gIM 09 = [@T] iff [[]] M09 = [@;T] and [[]]*419 =
[@, T] iff ([@;¢]) = [@;T] and ®([@Q;4)]) = [@;T] (by the induction hypothesis)
&([,(p A )]) = [@:T], by Claim 59.

[Case a)7c] By definition, [[ovge,5yve] 119 = [l ) JMOI9 ([0 19). By
the induction hypothesis we have that [[oep ]9 = &([@;0v(.4]) and that
[[%]]M,[i],g = ®([@;7.]). This means:

[levge, I (eI E9) = @([@scriey])(2([@ie])).
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Using the definition of function ® for type (c,b), the right hand side of this
equality is ®([@;av(cp)@;7c]). By Axiom 8b and properties of maximal consistent

sets, [@;(aepyVe)] = [Qiaiep @ive]. Thus [[oep Vel M9 = @[Q; (e pyve)]-

[Case @; 3] [[@;B)] M9 = [[8,]] M [K].9 where [K] is the unique element such
that (F(j))([k]) = [@; T] — and if this holds it means that j € [k] and Q;k € A.
Thus [j] = [k]. Hence [[By]]M*19 = [[8]]M ]9 = ®[@;B,] using the induction
hypothesis for ;. Using Axiom 6e and properties of maximal consistent sets,
@i@jﬂb = @jﬂb € A and SO [@l@]ﬁb] = [@Jﬂb] and (I)[@]Bb] = (I)[@z@jﬂb]
Therefore [[@;3,]] (19 = ®[@;@;5y).

[Case \u.,] We want to prove that [[Mucog ]9 = &([@Q;(Aucaq)]). On the
one hand, [[Aucaq]]M 19 is the function h : D, — Dy, that for every element

6 € D. gives the value [[aa]]M’[i]’gﬁu in D,. As all the elements of D, are of the
form ®([5.]) with . rigid, we can define the function by

2([Bc])
ue

h(@([B])) = [[aa]] M b

and then observe that

1 P([Bel]) . [[Bc]]M’[i]'g
Haa]]M"[l]’g“c _ [[aa”M,[z],guC

because [[8.]]M[19 = &([@;5.]) by the induction hypothesis for type c. More-
over, we also know that:

Pl o, Geppaig

[[aa ”

using the fact that (. is rigid and Lemma 13.
On the other hand, ®([@;(Aucay)]) is the function h’ : D, — D, that, for
o([5.]) € D, with 8. rigid, returns

R (@[B]) = @([@;(Mucaa)])(R([Be])) = 2([Qi((Mucara) Be)])-
By Axiom 5b for 5. we have - (Aucaq)B. = g, and thus Q; (Aucag)Be) =

@i(aaﬁ—z) € A, by Axioms 8a and 2b. Hence [E@i(()\ucaa)ﬂc)] = [@i(aaﬁ—z)]
and so we have that ®([Q;((Au.a,)B:)]) = @([@i(aa%)]). This in turn means

that h(®([5.])) = #'(P[B.]) as [[aai—z]]M7[i]’9 = @([@i(aa%)]) by the induction
hypothesis for type a. Thus h = [Aucog M9 = &([Q; (Muear,)]) = 1.

The cases we have given illustrate the kind of argumentation required. The
omitted proofs for =, OJ are straightforward, but the argument for V (like the
step for A given above) probably requires a little more patience and a taste for
superscripts. -

Corollary 36 A pair (M, g) where M is a basic hybrid Henkin structure and
g is its Henkin assignment is a general interpretation.
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Proof We have just proved that every expression has an interpretation in the
corresponding domain of the hierarchy, but this is precisely what we require of
general interpretations. b

Theorem 37 (Henkin’s theorem) FEvery consistent set of formulas has a
general interpretation that satisfies it.

Proof Let I' be a consistent set of formulas. By Lemma 26, there exists
a maximal consistent extension A of I" which is named, (-saturated and 3-
saturated. As A is named, there exists a nominal k£ in A. By Theorem 35 and
Corollary 36 there is a general interpretation (M, g) such that, for all 5; € ME;
the following holds:

(B9 = d([@is)).

Let ¢; € T. Therefore Qpp; € A. Therefore [[p]]M*9 = [@,T] because
O([Qpipy]) = [@Q,T], since Qg € A. N

Theorem 38 (Completeness) For allT' C ME; and ¢ € ME;, the following
holds: T' = ¢ implies T+ ¢

Proof Standard. =

6 Not quite so basic

We have proved the basic completeness result for BHTT; as we shall now show,
we have actually done rather more. Work on propositional and first-order hybrid
logic has shown that constructing models out of equivalence classes of nominals
has an important advantage: it more-or-less automatically leads to completeness
proofs for stronger logics and languages. We retain these advantages even in the
setting of higher-order logic. As we shall see, our basic result for BHTT yields
further completeness results when we demand that the accessibility relation
R have special properties (for example, reflexivity, irreflexivity, symmetry or
antisymmetry), or when we enrich BHTT with various useful modalities (such as
the universal modality F, the difference operator D, and the Priorean operator
pairs F and P).

Additional conditions on R

In BHTT we have a single modality OJ (at least, if we ignore the @; opera-
tors) and no constraints on the relation R used in its interpretation. Thus the
completeness result we have proved is a basic (or minimal, or K) result for a uni-
modal language. We will shortly discuss what is involved in adding additional
modalities, but let’s first ask: if we are interested in imposing restrictions on R
(that it be transitive, irreflexive, and trichotomous, for example) how should we
proceed?
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Hybrid logic provides some general answers. The simplest is this: if we
can find pure formulas that define the required conditions on R, then adding
these formulas as axioms results in a logic complete with respect to the desired
conditions. Now, for present purposes, a pure formula is simply an expression of
type t that does not contain any non-logical constants or variables; that is, it is
built up solely from nominals. And for the example just mentioned (transitivity,
irreflexivity, and trichotomy) an easy axiomatization is available:

It should be clear that the first formula is valid iff R is transitive, the second iff
R is irreflexive, the third iff R is trichotomous (that is, given two worlds, either
the first can access the second, or they are identical, or the second can access
the first). It follows by standard hybrid logical results that adding these three
formulas to our axiomatization of BHTT results in a system that is complete
with respect to the class of models whose accessibility relation R is a strict linear
order.

The pure axioms lead to general completeness results in this way is a re-
flection of simple model theoretic facts about hybrid logic; see the section on
Model Theory in the survey by Areces and Ten Cate [3] for a clear discussion.
A deeper and more difficult question is: what conditions on R can be handled
in this way? For some answers, see Ten Cate [13].

Additional modalities

We defined BHTT as a system containing only a single modality [0 (and its
defined dual ¢). For many applications it is common to have a finite collection
of box modalities [3] and their associated diamonds (), where 3 ranges over the
elements of some suitable index set B. Now, if BHTT is extended in the obvious
way with such modalities (that is, if each modality [5] is interpreted with respect
to a binary relation Rg using the familiar Kripke satisfaction definition) the
completeness result we have proved extends in the obvious way. Working in the
richer language simply means that we need a S-indexed collection of axioms and
rules of proof. For each modality [3] we have the S-distributivity axioms and
the -back axioms

[Bl(¢ = ¥) = (1Ble = [B¥) (B)Qip — Q;¢p,

the S-generalization rule (if - ¢ then F [5]p), and the S-bounded generalization
rule (if F @;(5)j — @Q;¢ and j # i and j does not occur in ¢, then - @;[5]p).
No new ideas are needed to extend our completeness result to such multimodal
extensions. Moreover, as just discussed, with the help of pure formulas we
can impose additional conditions on the various relations. For example, to
axiomatize a multimodal extension that utilizes a symmetric relation R, and
an antisymmetric relation R; simply add the axioms

@;[a){a)i and  @;[b]((bYi — 9).
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Often multimodal extensions involve interactions between modalities, and
where these interactions can be handled using pure axioms, completeness results
are forthcoming. The classic example is Priorean tense logic.® Here we interpret
two dual pairs of operators over the same binary relation <, the idea being that
the F', G pair look forward along the relation, the P, H pair backwards:
Fop)|Mw9 = T iff for some v € W such that w < v, [[p]]M*9 =T
]| M9 = T iff for all v € W such that w < v, [[p]]M¥9 =T
Py |]JMw9 = T iff for some v € W such that v < w, [[p]]M"9 =T

Hpy)|Mw9 = T iff for all v € W such that v < w, [[p]]M¥9 =T

::%:

Once again, adding such operators to BHT T and axiomatizing them is straight-
forward. We add the G-distribution and H-distribution axioms

Gl = ) = (Go — Gv) and  H(e — ) = (He — HY),
the F-back and P-back axioms
FQ,p — Q;p, and PQ;p — Q;p,

and G- and H-generalization and bounded generalisation rules. But how do
we capture the desired interaction between these modalities? By adding the
following pure axiom:

It is easy to check that this forces F' and P to look forwards and backwards,
respectively, along the same relation.®

Two other modalities are worth mentioning; both have a long association
with hybrid logic: the universal modality E (see Goranko and Passy [20]) and
the difference operator D (see De Rijke [33]). Informally, F¢ says that at some
point in a model ¢ is true, while its dual A lets us insist that ¢ is true at all
points in a model. And Dy says that at a different point of the model ¢ is true,
while its dual form D insists that ¢ is true everywhere else. More precisely:

sl

@MW 9 = T iff for some v € W, [[p]]M09 =T

o |Mwd =T iff for all v € W, [[p]] M09 =T

i) Mow.9 — T iff for some v # w € W, [[%]]Mﬂhg T
Dy M9 =T iff for all v # w € W, [[p]]M"9 =T

o =

[
[
[
[

]
]
]
]

Once again, with the help of pure axioms, we can add either of these oper-
ators to BHTT. Depending on which of the two operators we want, we add the

5For some background discussion of higher-order hybrid tense logic, see [1] and [2].
6This in turn permits a further simplification: the Bounded Generalization rule is derivable
for pairs of converse operators like F' and P. See [8, 9] for further discussion and details.
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appropriate distribution axioms, back axioms, and generalization and bounded
generalization rules. And here’s how we capture their characteristic behaviors:

FEi Di < —u.
These pure axioms really do accomplish what is required. If RY is the binary
relation interpreting the universal modality, then we want it to have the property
that Vwvw'RVww’. Tt is easy to see that Ei defines this property. And if RP
is the binary relation interpreting the difference modality, then we want it to
have the property that Vwvw'(RPww’ « w # w'). Clearly Di ¢+ —i imposes
this condition on RP.

More can be achieved stronger methods. For example, Goranko [19] uses the
notion of local definability to give a simple hybrid axiomatization of the Until
operator, while Blackburn and ten Cate [8] make use of existential saturation
rules to axiomatize frame classes for which no pure axiom exists. The details
of these refinements are irrelevant here; what matters is the basic point. Theo-

rem 38, our basic completeness result, is strong. Using standard hybrid-logical
methods, it straightforwardly gives rise to further completeness results.

7 Concluding remarks

In this paper we defined a hybrid type theory called BHTT. We kept it as
simple as possible: we used only e and t types together with the most basic
hybrid apparatus, nominals and @. We wanted to see whether the Henkin-
style completeness techniques used in propositional and first-order hybrid logic
extended straightforwardly to higher-order hybrid logic, and they do — at least,
if @; is used as a rigidifying operator for all types.

We have sketched how our results extend to richer extensions of the basic
system, but that is hardly the end of the story. Many other questions beckon,
and three particularly interest us. The first is to adapt BHTT to deal with
variable domain semantics. In the setting of first-order logic, shifting between
constant and variable domains is relatively straightforward (see Chapter 4 of
Fitting and Mendelsohn [16]) but in higher-order settings we work with function
hierarchies, not merely individuals, and here the choices are not so clearcut;
further experimentation is called for. Secondly, we would like to experiment
with a Fitting-style intensional semantics, thus avoiding the restriction to rigid
terms. Some authors view rigidity restrictions as unnatural. We don’t agree
with such sentiments — but Fitting’s approach is intriguing and we’d like to
explore it. Thirdly, we intend to add the hybrid | operator (see [19, 5, 3]) to
the system. Although we have not used an intensional type s, BHTT is well
attuned to the structure of (W, R) thanks to the nominals and @; operators.
Adding |, which will let us bind nominals to the world of evaluation on the fly,
will further boost this attunement — with useful consequences (we hope) for
both logical elegance and applications in natural language semantics.
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8 Appendix: Theorems of BHTT

We list here the BHT T-theorems (and derived rules) required to push the com-
pleteness proof through. Only for the more interesting (or tricky) examples are
deductions given. For a detailed discussion of axiomatic proofs in hybrid logic
(which discusses the derived rules introduced below in depth) see Blackburn
and Ten Cate [8].

Claim 39 + gpf_—z — Jdxp for By rigid.

Claim 40 + 3z, T

Claim 41 F @;p%% — @;3z,p.

Claim 42 (Existential Hybrid Barcan) F Q;3xp¢ < J2,@Q; 0.
Claim 43 IfT'F ¢ then T' - Vy,p for y, not free in T.

Claim 44 If w@;'—z“ F 4 then Jxqp F 1), for Q;c, not in @, .

Claim 45 If 3z,Q;p F ¢ then @Q;3x,p F 1.

Claim 46 + o, = 8, — (%% YRS %f—:) for ay and B, rigids.

Claim 47 F oy = 84 = Ba = aq for ag and B, rigids.

Claim 48 (Symmetry) F Vz,y,(Za = Yo = Yo = Ta)-

Claim 49 F a, = B4 = (Ba = Ya — Qa = Ya) for aa, Ba and v, rigids.
Claim 50 (Transitivity) F V2,ya2a(Ta = Yo = (Ya = 2o = Ta = 24))-

Claim 51 F 7}, v = Y0y = (B, = Bo = Yy 85 = Vi0,0)B) fOr Vi oy Vba)»
By and By rigids.

Claim 52 (Rigid Comprehension) = 374, o) Q;Vyy (2 ,0)% = Vib,a)¥s) for
Vib,ay Ti9id, and yy and T qy NOL AN Yy, 4) -

= Az (Vp,0) %)) y6 = (Vo a)ﬁb) , for @y, yp ot in (4 4y, by Axiom 5b
F (Azp(y Vb a)xb)) V(b a)yb
- @i(()\xb( Y(b,a)Tb )) Yo, a>yb) by Rule 2b

F Yy, @; (Azs (s, a>$b))yb =70, a)Ub), by Rule 2¢
F Yy @ (2 6,0y 6 = Vb, Mﬂ;)w

F QY (T (b,a)Yb = V(b,a)Yb)
F 32,0y Qi Vys (T (p,0) Yb = V(b,a)Ub), by Claim 39 as Axy(v(p,qy ) is rigid.

Ay (F(b.ay 2) by Axiom 7a
Ty ?

N@P‘PP"!\"!—‘

Claim 53 + @ﬂ — @JZ

1. j — (i ¢ @ji), by Axiom 6b
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Q;(j — (i ¢ @ 1)), by Rule 2b

(Q;5 — (@i +» @;Q;4)), by Axiom 2b
@;Q;i <+ @Q;4, by Axiom 6e

Q;j — (Q;i +» @;i), from lines 3 and 4
@;i, by Axiom 6d

Q;j — Q@ 14, from lines 5 and 6

Claim 54 F @Q;j — (Q;¢ <> Q).

AN

Fj— (¢ Qp), by Axiom 6b

F@Q;(j — (¢ <> Q;¢p)), by Rule 2b

H @Zj — (@,(p Ad @i@j@), by Axiom 2b
F@;Q;p <+ Q;¢, by Axiom 6Ge

FQ;j — (Qip <> Qj¢p), from previous lines

Claim 55 + @]k — @jﬁb = @kﬁb

Ll e e

[ @]k — ( ( @jﬂb) — @k(ﬁb = @jﬂb)), by Claim 54

H @]k — (@ ﬁb @j@jﬁb Rd @kﬂb = @k@jﬂb)a by Axiom 8a
F @Jk — (@ Bb @jﬁb A d @kﬂb = @jﬂb), by Axiom 6e

- @,k — (@B, = @;8,), by Axiom 4a

Claim 56 - @;j — (@;k — @;k).

Claim 57 (Bridge) F @;0j A Q,p — @Q;0¢p.

© XN WD

— ==
N = O

F@;p — (j = ¢), by Axioms 6b and 1

F@Q,(Qj¢ — (j — ¢)), by Rule 2b

FQ;0k — @,(Q;0 — (j — ¢)), by Axiom 1 and Rule 1
F@,0(Q;¢ — (j = ¢)), by Rule 5, Bounded Generalization
FQ;(0Q;¢ — 0O(j — ¢)), by Axiom 2a

F@,00;¢0 — @;,0(j — ¢)), by Axiom 2b

F@,Q;p — @,0(j — ¢)), by Axioms 6¢ and 6a

F Qo — @0(; — ¢)), by Axiom 6e

FOG — ¢) — (07 = Op), by Axiom 2a and Rule 2a
FQ,0@( — ¢) = (@07 — @Q;0p), by Axiom 2b and Rule 2b

- FQijp = (@;Q) — @;Qyp), by Axiom 1
. F @05 ANQjp = @0, by Axiom 1

Claim 58 - @Q;k — (@;0] — @,07).

Claim 59 + @i(go AN w) = Q;p A Q1.

Claim 60 (Kg') F (@0 — Qb)) — Q;(¢ — 9).

1.
2.

F@Q;=(p — ¢) = @;¢, by Axiom 1, Rule 2b and Axiom 2b
F@;=(p — ¢) = @;—¢), by Axiom 1, Rule 2b and Axiom 2b
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3. F@Q~(p = ¢) = (Q;p AQ; =), by Axiom 1
4. F=Q;(p = ¢) = (Q;p A =Q;9)), by Axiom 6a
5. F (@iﬁp — @Z’L/J) — @2(90 — ¢), by Axiom 1

Claim 61 (Arrow Name) Ift1i— ¢ thenF ¢ fori € NOM not in .

F i — ¢, by hypothesis

F@;(: — ¢), by Rule 2b

F Q;i — Q;p, by Axiom 2b and Rule 1
F @;¢p, by Axiom 6d and Rule 1

F ¢, by Axiom 4

Cuk W N

Claim 62 (Pastey) IfF (Q,0j AQ;¢) — ¢ and j # i and j does not occur in
p and 1, then - @Q;Qp — 1.

F(@;0j A Q) — 9, by hypothesis

FQ,Q;Qj — (Q,Q;¢p — Q1)) by Axiom 1, Rule 2b and Axiom 2b
FQ;05 = (Qjp — Qpep), by Axiom 6e

F@Q@;0j = (Q;p — @Q;Q1), by Axiom Ge

F Q07 = Q;(p — Qg1p), by Claim 60

F@;0(p — @Qg1p), by Rule 5, Bounded Generalization

FO(e = Q) — (O — 0Qp), by Axioms 2a and 1, and Rule 2a
F@,0(p — Q) = (@Q;0p — @Q;0Qp1)), by Axiom 2b and Rule 2b
FQ;0p — @Q;0Q, by Rule 1

F QrQ,;0p — Qi1p, by Axioms 6¢ and 6e

. F@r(Q;0p — 1), by Claim 60

. F@;0¢ — ¢, by Rule 4 (k does not occur in @;0p — )

© 0N oE W=

— = =
N = O
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