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A universal inequality that bounds the angular momentum of a body by the square of its size is presented
and heuristic physical arguments are given to support it. We prove a version of this inequality, as
consequence of the Einstein equations, for the case of rotating axially symmetric, constant density, bodies.
Finally, the physical relevance of this result is discussed.
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Introduction.—Consider a rotating body U with angular
momentum JðUÞ. Let RðUÞ be a measure (with units of
length) of the size of the body. A precise definition for the
radius R will be given later on, for the present discussion
it is enough to consider only the intuitive idea of size: for
example, if the body is a sphere in flat space thenR should
be proportional to the radius of the sphere.
We conjecture that there exists a universal inequality for

all bodies of the form

R2ðUÞ≳ G
c3

jJðUÞj; (1)

where G is the gravitational constant and c the speed of
light. The symbol ≳ is intended as an order of magnitude,
the precise universal (i.e., independent of the body) con-
stant will depend, of course, on the definition of R.
The purpose of the first part of this Letter is to provide

physical arguments supporting the validity of this inequality.
In the second part we prove, as a consequence of the Einstein
field equations, Theorem 1. This theorem provides a precise
version of the inequality (1) valid for rotating, axially
symmetric, constant density, bodies. Finally, we conclude
with a discussion of the physical relevance of this result.

Heuristic arguments.—The arguments in support of the
inequality (1) are based in the following three physical
principles: (i) the speed of light c is the maximum speed;
(ii) for bodies which are not contained in a black hole the
following inequality holds:

RðUÞ ≳ G
c2

mðUÞ; (2)

wheremðUÞ is the mass of the body; and (iii) the inequality
(1) holds for black holes. Let us discuss these assumptions.
Item (i) is clear. Item (ii) is called the trapped surface
conjecture [1]. Essentially, it says that if the reverse
inequality as in (2) holds then a trapped surface should
enclose U. That is, if matter is enclosed in a sufficiently
small region, then the system should collapse to a black

hole. This is related to the hoop conjecture [2] (see also
[3–5]). The trapped surface conjecture has been proved in
spherical symmetry [6–8] and also for a relevant class of
nonspherical initial data [9]. The general case remains open
but it is expected that some version of this conjecture
should hold.
Concerning item (iii), the inequality

A ≥ 8π
G
c3

jJj (3)

was recently proved for axially symmetric black holes (see
[10] and references therein), where A is the area of the
stable marginally trapped surface and J its angular momen-
tum. The area A is a measure of the size of a trapped
surface, hence the inequality (3) represents a version of (1)
for axially symmetric black holes. In fact the inequality (3)
was the inspiration for the inequality (1). A possible
generalization of (3) for bodies is to take the area
Að∂UÞ of the boundary ∂U of the body U as measure
of size. But unfortunately the area of the boundary is not a
good measure of the size of a body in the presence of
curvature. In particular, an inequality of the form Að∂UÞ ≳
Gc−3jJðUÞj does not hold for bodies. The counterexample
is essentially given by a rotating torus in the weak field
limit, with large major radius and small minor radius. The
details of this calculation will be presented elsewhere [11].
It is important to emphasize that principles (i) and (iii)

have a different status than principle (ii). The former are
well-established facts; the latter is a conjecture. Assuming
(i), (ii), and (iii) we want to argue that (1) should hold.
Consider, in Newton theory, an axially symmetric body U
with mass density μ̄, rotating around the axis of symmetry
with angular velocity ω. These functions are not required to
be constant on U. The angular momentum and the total
mass of the body are given by

JðUÞ ¼
Z
U
μ̄ωρ2dv0; mðUÞ ¼

Z
U
μ̄dv0; (4)
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where ρ is the Euclidean distance to the axis and dv0 is
the Euclidean volume element. The angular velocity is
bounded by

jωj ¼ jvj
ρ

≤
c
ρ
; (5)

where we have used the principle (i): jvj ≤ c, where v is the
linear velocity. Using (5) in the expression for the angular
momentum (4) we obtain

jJðUÞj ≤ c
Z
U
μ̄ρdv0 ≤ cmðUÞ sup

U
ρ: (6)

Note that this inequality is deduced using only the
Newtonian expression for the angular momentum and
principle (i). If the body is contained in a black hole, then
the inequality (1) holds for the black hole boundary
according to principle (iii). Hence, we assume that it is
not contained in a black hole, and then, according to
principle (ii), the inequality (2) holds. Using this inequality
for the mass in (6) we get

G
c3

JðUÞ ≲RðUÞ sup
U

ρ: (7)

A reasonable property for a size measure (at least in flat
space) is that

sup
U

ρ ≤ RðUÞ: (8)

Using (8) in (7) we obtain (1). Note that even if the property
(8) does not hold, the right-hand side of (7) can be
interpreted as the square of a measure of the size of U
and hence an inequality of the form (1) also holds for that
new measure of size.
It is clear that one of the main difficulties in the study of

inequalities of the form (1) and (2) is the very definition of
the quantities involved, in particular the measure of size. In
fact, despite the intensive research on the subject, there is
no known universal measure of size such that the trapped
surface conjecture (or, more generally, the hoop conjecture)
holds (see the interesting discussions in [4,12,13]).
However, as we will see in the next section, the remarkable
point is that in order to find an appropriate measure of size
R such that (1) holds we do not to need to prove first (2),
and hence we do not need to find the relevant measure of
mass mðUÞ for the trapped surface conjecture.
The arguments of the previous discussion can be

summarized as follows. In order to increase the angular
momentum of a body with fixed size there are two
mechanisms: to increase the angular velocity or to increase
the mass inside the body. But there is a physical limit to
both mechanisms. The angular velocity is bounded by the
speed of light, and increasing the mass (at fixed size) will

eventually produce a black hole, where the inequality (1)
holds. Hence, a universal inequality of the form (1) is
expected for all bodies.

A precise version of the inequality.—We make precise the
three notions involved in the inequality (1): a body U, the
angular momentum J, and the sizeR of the body. A bodyU
is a connected open subset U ⊂ S with smooth boundary
∂U; where S is a spacelike three-surface which gives rise
to the initial data set for Einstein equations defined as
follows. An initial data set for the Einstein equations is
given by (S, hij, Kij, μ, ji) where S is a connected three-
dimensional manifold, hij a (positive definite) Riemannian
metric, Kij a symmetric tensor field, ji a vector field, and μ
a scalar field on S, such that the constraint equations

DjKij −DiK ¼ −8π G
c4

ji; (9)

R − KijKij þ K2 ¼ 16π
G
c4

μ; (10)

are satisfied on S. Where D and R are the Levi-Civita
connection and the scalar curvature associated with hij, and
K ¼ Kijhij. In these equations the indices are moved with
the metric hij and its inverse hij. In terms of the four-
dimensional energy momentum tensor Tμν, the matter fields
are given by μ ¼ Tμνnμnν, jν ¼ −hνλTλνnν, where nν is the
timelike unit vector normal to the slice S. The relation
between the mass density μ̄ used in (4) and the energy
density μ is given by μ ¼ c2μ̄.
We require that the matter fields satisfy the dominant

energy condition

μ ≥
ffiffiffiffiffiffiffi
jiji

q
: (11)

In order to have a proper definition of the angular
momentum of the body we will further assume that the
data are axially symmetric (in general, the angular momen-
tum of a bounded region U is very difficult to define; see
the review article [14] and reference therein). That is, we
assume the existence of a Killing vector field ηi, i.e.,

Lηhij ¼ 0; (12)

where L denotes the Lie derivative, which has complete
periodic orbits and such that

Lημ ¼ Lηjj ¼ LηKij ¼ 0: (13)

We denote the norm of the Killing vector by λ ¼ ðηiηiÞ1=2.
The angular momentum of the body U is defined by

JðUÞ ¼ − 1

c

Z
U
jiηidv; (14)

where dv is the volume measure with respect to the
metric hij.
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Finally, we should define a notion of size for the bodyU.
This notion will be a variant of the following definition of
radius presented by Schoen and Yau in [15]. Let Γ be a
simple closed curve in U which bounds a disk in U. Let p
be largest constant such that the set of points within a
distance p of Γ is contained within U and forms a proper
torus. Then p is a measure of the size of U with respect to
the curve Γ. The radius RSYðUÞ is defined as the largest
value of p we can find by considering all curves Γ. That is,
RSYðUÞ is expressed in terms of the largest torus that can
be embedded in U. Using this definition, the following
deep theorem was proved in [15]. Let U be any subset of S.
Assume that the scalar curvature R of the metric hij is
bounded from below R ≥ Λ in U by a positive constant Λ.
Then the following inequality holds:

Λ ≤
8π2

3

1

R2
SY

: (15)

Note that this is a purely local and purely Riemannian
result. There is no requirement that S be asymptotically flat
and only assumptions on the metric hij are made.
In [16] O'Murchadha made the following important

observation. Define another radius ROMðUÞ as follows.
Let ROMðUÞ be the size of the largest stable minimal two-
surface that can be imbedded inU, where size of the surface
is the distance (with respect to the ambient metric hij) from
the boundary to that internal point which is furthest from
the boundary. Then, it can be proved that

ROMðUÞ ≥ RSYðUÞ; (16)

and also that the same bound (15) holds forROMðUÞ, under
similar assumptions [17]. Namely,

Λ ≤
8π2

3

1

R2
OM

: (17)

Since we have (16), the right-hand side of (17) is smaller
than the right-hand side of (15), and henceROM provides a
better bound.
To have an intuitive idea of these measures, let us

compute them for some relevant domains in flat space.
Recall that the planes are minimal stable surfaces in flat
space. For a sphere of radius b we have that RSY ¼ b=2,
ROM ¼ b. We see that both radii give essentially the same
desired value for the sphere. For a torus with major radius b
and minor radius a we have RSY ¼ a=2, ROM ¼ a. Both
radii are independent of the major radius b for the torus.
Hence, we cannot expect an inequality of the form (1) for
RSY or ROM, since in the weak field limit a torus of
large radius b and small radius a will have large angular
momentum J and small RSY or ROM (a similar counter-
example as in the case of the area discussed above). Finally,
to see the relevant difference between RSY and ROM

consider a cylinder with radius a and height L. We have
RSY ¼ minfa=2; L=2g,ROM ¼ a. When L > a, then both
radii give similar values, however for a thin disk with L < a
we have RSY ¼ L=2 and ROM ¼ a. That is, RSY → 0 as
L → 0 while ROM is independent of L.
Motivated by the example of the torus, we define a new

radius for axially symmetric bodies as follows. Considering
a region U with a Killing vector ηi with norm λ, we define
the radius R by

RðUÞ ¼ 2

π

ðRU λdvÞ1=2
ROMðUÞ : (18)

This will be our measure for size for the inequality (1). The
most natural normalization for R in the inequality (1) is to
require that R ¼ b for an sphere in flat space of radius b.
This is the reason for the factor 2=π in (18).
We have also the analog definition with respect to RSY,

namely

R0ðUÞ ¼ 2

π

ðRU λdvÞ1=2
RSYðUÞ : (19)

Using the inequality (16), we obtain

R0ðUÞ ≥ RðUÞ: (20)

That is, from the point of view of the inequality (1), the
radius R provides a sharper estimate than R0.
For the torus in flat space, the volume integral of the

norm of the Killing vector is given by

Z
Torus

ρdv0 ¼ 2π2a2
�
a2

4
þ b2

�
: (21)

Then we obtain

R ¼ 23=2
�
a2

4
þ b2

�
1=2

; R0 ¼ 2R: (22)

The important point is that in the limit a → 0 we obtain
R ¼ 23=2b, that is, a torus with a large b has also large size
in contrast with the original radii RSY or ROM. For a thin
disk with L < a we have

R ¼ 23=2ffiffiffiffiffiffi
3π

p ffiffiffiffiffiffi
aL

p
; R0 ¼ 25=2ffiffiffiffiffiffi

3π
p a3=2

L1=2 : (23)

We see that R → 0 and R0 → ∞ as L → 0. That is, the
difference between the two measures is significant.
Finally, it is important to compute R for a very dense

body where the gravitational field is strong. Consider a
constant density star of total mass m with area radius equal
to Schwarzschild radius 2mG=c2. That is, we are consid-
ering the limit case before the formation of a black hole.
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The radiusROM for that case was calculated in [16]. Using
that result we obtain

R ¼ 211=2

π
ffiffiffi
3

p G
c2

m ≈ 8.16
G
c2

m: (24)

We see that R is of the same order of magnitude than the
area radius, and hence it is a reasonable measure of size in
that case.
We have the following result.
Theorem 1 Let (S, hij, Kij, μ, ji) be an initial data set that

satisfy the energy condition (11). We assume that the data
are maximal (i.e., K ¼ 0) and axially symmetric. Let U be
an open set in S. Assume that the energy density μ is
constant on U. Then the following inequality holds:

R02ðUÞ ≥ 24

π3
G
c3

jJðUÞj: (25)

The same bound holds forRðUÞ if we assume, in addition,
that the boundary ∂U is mean convex.
Proof. The angular momentum of the bodyU is given by

(14). Define the unit vector η̂i by

η̂i ¼ ηi

λ
: (26)

Then we have

jJðUÞj ≤ 1

c

Z
U
jjiηijdv ¼ 1

c

Z
U
jjiη̂ijλdv (27)

≤
1

c

Z
U

ffiffiffiffiffiffiffi
jiji

q
λdv (28)

≤
1

c

Z
U
μλdv; (29)

where in the line (28) we have used that η̂i has unit norm, in
the line (29) we used the energy condition (11).
We have assumed that the data are maximal and hence,

by equation (10), we obtain

R ≥ 16π
G
c4

μ: (30)

Since we have assumed that μ is constant [which should be
positive by the energy condition (11)] on U, we can take
Λ ¼ 16πGc−4μ and then we are under the hypothesis of
the Schoen-Yau theorem. That is, the bound (15) holds, and
hence we get

μ ≤
π

6

c4

G
1

RSY
2
: (31)

Using this bound in (29) we obtain

jJðUÞj ≤ π

6

c3

G
1

ROM
2

Z
U
λdv ¼ π3

24

c3

G
R02; (32)

where in the last equality we have used the definition
(19). Under the additional assumption that the boundary
∂U is mean convex, we have the same bound (31) for the
radius ROM, and hence the same inequality (32) holds
for R. ▪
It is interesting to note that this proof is very similar to

the heuristic argument presented above. There is a physical
reason for this similarity: in axial symmetry the gravita-
tional waves have no angular momentum. All the angular
momentum is contained in the matter sources. Hence the
Newtonian expression for the angular momentum (4) is
similar to relativistic one (14). Condition (i) on the maximum
velocity of the matter is expressed in the dominant energy
condition (11). Moreover, from inequality (29) (without
using the assumption that μ is constant), we get the analog of
the inequality (6), namely

jJðUÞj ≤ cmðUÞsup
U
λ; (33)

where we have defined

mðUÞ ¼ 1

c2

Z
U
μdv: (34)

Note that the length of the azimuthal circles is given by 2πλ,
hence λ represents a natural generalization for curved spaces
of the coordinate ρ that appears in (6).
The important new ingredient is that instead of using the

bound (2) for the mass of the body, we use the Schoen-Yau
bound for the energy density (15). This allows us to bypass
the hoop conjecture and its associated definition of size
and mass.
Note that the radius used in the theorem cannot be

applied in general to black holes, since it requires a regular
interior region. And even when the interior is regular the
radius is not a priori related to the black hole area. A
relevant open problem is to find a suitable measure of size
that can be applied for both black holes and bodies.

Physical relevance.—It is important to emphasize that the
validity of inequality (1) is entirely independent of any
specific matter model; the only requirement is that the
dominant energy condition is satisfied.
The inequality (1) is a prediction of Einstein theory and

hence it should be contrasted with observational evidences.
In order to violate this inequality a body should be small
and highly spinning, a natural candidate for that is a neutron
star. For the fastest rotating neutron star found to date (see
[19]) we have

ω ≈ 4.5 × 103 rad s−1: (35)
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Assuming that the neutron star has about three solar masses
(which appears to be a reasonable upper bound for the
mass; see [20]) we obtain

mω ≈ 2.7 × 1037 s−1 g: (36)

The radius of the neutron star is typically

R ≈ 1.2 × 106 cm: (37)

Assuming that the star is spherical with constant density we
get that the angular momentum is given by

G
c3

jJj ¼ G
c3

2

5
mR2ω ≈ 3.8 × 1010 cm2: (38)

This should be compared with the square of the radius

R2 ≈ 1.44 × 1012 cm2: (39)

We see that the inequality (1) is satisfied.
Finally, it is also interesting to consider what kind of

limit the inequality (1) imposes on elementary particles.
From quantum mechanics we get that the angular momen-
tum of an elementary particle is given by

J¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p
ℏ; ℏ¼ 1.05× 10−27 cm2 s−1 g; (40)

where s is the spin of the particle. Using this expression in
(1) we obtain that the classical theory impose the following
minimal size for a particle with spin s:

R0 ¼ ½sðsþ 1Þ�1=4lp; lp ¼
�
Gℏ
c3

�
1=2

; (41)

where lp ¼ 1.6 × 10−33 cm is the Planck length. We
recover the Planck length essentially because the order
of magnitude of the universal constant in the inequality (1)
is one. It appears to be a remarkable self-consistence of the
Einstein field equations that they predict a minimum length
of the order of magnitude of the Planck length if we assume
that there exists a minimum for the angular momentum
given by quantum mechanics.
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