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Abstract. We present a brief study of compound systems of di�erent
scales. It is shown that the detailed dynamical studies of massless and
massive particles can hardly be associated to standard averaging tech-
niques.

1. Introduction

Recently new expressions for the deviation angle and for the optical scalars in the
study of weak lensing have been derived in terms of curvature scalar of the lens
geometry [GM11]. This formulas, in contrast to standard treatments found in the
literature, take into account the spacelike components of the energy-momentum
tensor of the lens. One of the advantage of the new expression is that they allow
us to model the lens with a broader kind of objects.

In particular, it have been shown the case of a peculiar geometry without
mass but with non-vanishing spacelike components[GM12]. This geometry is
an exact solution of the Einstein's equations with a non-conventional energy-
momentum tensor; despite its bizarre nature it has remarkable features, as we
now mention.

It was shown that this geometry can �t the shear pro�le in studies of weak
lensing in Coma's cluster.

A dynamical study of the rotation curves in this geometry shows that if the
observations of the tangential velocity, vt, of the rotation curves in this geometry
are interpreted with the usual Newtonian relations

MN (r) =
rc2

G
v2
t ; (1)

it gives the expected linear growth of the deduced Newtonian mass MN (r) with
the radial coordinate. Here G is the gravitational constant and c denotes the
speed of light in vacuum.

The radial mass pro�le of a matter distribution deduced by means of the
estimation in the scape velocity of the system can be �tted using the radial scape
velocity, ve, in this geometry together with a Newtonian interpretation, this is
associating a Newtonian mass MN (r) given by

MN (r) =
rc2

2G
v2
e . (2)
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This is pertinent to observations in systems where the issue of the missing
mass, or dark matter problem is manifest. This geometry, although a toy model
since it has not mass density, gives account in a very acceptable way some of the
features found it in the observations of �dark matter� in astrophysical systems.

This fact rises the question about the possible nature of this peculiar solu-
tion and its relation to the dark matter problem and also to the way in which
observations are carried out.

The study of phenomenology of dark matter in the new peculiar solutions
presented in [GM12] involves the use of two tools: The geodesic equation for mas-
sive and massless particles, and the deviation geodesic equation for a congruence
of null geodesics.

The former only contains the information that comes from the connection
associated to the geometry while the last has information of the curvature (second
derivatives) of the geometry.

We want to consider a system composed of small point-like subsystems that
contribute to a big complete system.

Each subsystem is considered to have very small velocity with respect to
each other so that all of them can be considered as geometric linear stationary
contribution over a common �at background.

We employ a generalization of the optical scalars for the case of a such
distribution in the approximation of thin lens.

2. The system

The distribution of the small constituents of the big system can be described in
terms of the stationary distribution function P(xi) with i = 1, 2, 3 denoting the
spacelike coordinates of the �at background. This is a continuous distribution
that models the density of the small subsystems.

We work with several pictures in mind: Each subsystem is considered as a
vacuum gravitating central object; which therefore is associated to a Schwarzschild
geometry. We also consider the case of spherically symmetric geometries with
halos which contribute only to their respective Pr component of the microscopic
energy-momentum tensor. We consider astrophysical useful distributions to the
energy density %, as is the isothermal mass distribution.

We are assuming that the nature of the observations is such that one can
consider each subsystem and the compound system as stationary; so that we can
assume the existence of a global timelike Killing vector �eld, t̃a.

2.1. Decomposition of the geometry

Let us express the metric gab of the spacetime in terms of a reference metric ηab,
such that

gab = ηab + hab. (3)

Let ∂a denote the torsion free metric connection of ηab and ∇a the torsion
free metric connection of gab; then one can express the covariant derivative of an
arbitrary vector va by

∇avb = ∂av
b + Γ b

a cv
c; (4)
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and one can prove that

Γ c
a b =

1

2
gcd (∂ahbd + ∂bhad − ∂dhab) = Γ c

b a. (5)

Since we are considering contributions of many subsystems A's, the tensor
hab must be the sum of all the contributions, namely

hab =
∑
(A)

h
(A)
ab . (6)

3. Testing a spherically symmetric system with massless particles

In reference [GM11] we have deduced the general equations for the description
of weak lensing. We will use here those that are appropriate for the study of
spherically symmetric systems.

Let us recall that the lens scalars in the thin lens approximation, in terms of
the curvature invariants Ψ0 and Φ00 associated to the Weyl's and Ricci's tensor
respectively, are given by

κ =
dldls
ds

∫ dls

−dl
Φ00 dy,

γ =
dldls
ds

∫ dls

−dl
|Ψ0| dy;

(7)

where here γ refers to the modulus of the shear.
For thin lenses the bending angle is given by[GM11]

α(J) = J
(

Φ̂00(J) + Ψ̂0(J)
)

; (8)

Φ̂00 =

∫
Φ00dλ, Ψ̂0 =

∫
Ψ0dλ. (9)

This expression are valid for each subsystem.
We use J to denote the impact parameter of the null geodesic to center of

the lens; y is the Cartesian coordinate along which the photons path, λ the a�ne
parameter along the null geodesics and the coordinate r is satis�es r2 = J2 + y2.

The above expressions can be put in terms of the total mass, M(r) and
the components of the energy-momentum tensor of the lens, using the following
relations;

Ψ0 = −3
J2

r2
Ψ̃2e

2iϑ = −3
J2

r2

[
4π

3
(%− Pr − Pt)−

M

r3

]
e2iϑ; (10)

where here ϑ is the angle of polar coordinates in the plane y = 0 in a Cartesian
coordinate system; and

Φ00 = 2
J2

r2

(
Φ̃11 −

1

4
Φ̃00

)
+ Φ̃00 = 4π

J2

r2

(
Pt − Pr

)
+ 4π (%+ Pr) . (11)
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In particular, the well known results for a lens with the Schwarzschild ge-
ometry

κ(J) = 0, (12)

γ(J) =
dldls
ds

4M

J2
, (13)

α(J) =
4M

J
. (14)

are obtained by taking ρ = Pt = Pr = 0 and M = constant with the integration
limits going to in�nity.

3.1. Treatment of a compound system

When dealing with a compound system, the standard treatment �nd in textbooks
is to consider the situation of a monopole mass (Schwarzschild) and to generalize
eq. (14) to a vector equation in the plane of the thin lens.

Here, we generalize the bending angle equation for a an axially symmetric
distribution; but before let us recall that given the scalar expression α(J) for
bending angle, one can write[GM11] the 2-dimensional equation in terms of the
components of αi = (α1, α2) as

(αi) = α(J)(
z0

J
,
x0

J
); (15)

taking into account the appropriate orientation in the two dimensional space of
the images.

3.2. Generalization for a distribution of spherically symmetric de-
�ectors:

It could be convenient to change the notation to a most common one when we
consider a distribution of sources. Then, let us denote by ξ′ the vector in the
plane of the thin lens joining an arbitrary location in the distribution with a
given point in the plane of the lens. Then we rewrite equation (15) in the form

α̂(ξ) = α(|ξ − ξ′|)
(
ξ − ξ′

)
|ξ − ξ′|

; (16)

which for a macroscopic distribution P(ξ′, y′) results in

α(ξ) =

∫
R2

∫ ∞
−∞

P(ξ′, y′)α(|ξ − ξ′|)
(
ξ − ξ′

)
|ξ − ξ′|

d2ξ′dy′; (17)

or put it in a compact form we have

α(ξ) =

∫
R2

Σ(ξ, ξ′)

(
ξ − ξ′

)
|ξ − ξ′|2

d2ξ′; (18)

with

Σ(ξ, ξ′) =

∫ ∞
−∞

P(ξ′, y′)α(|ξ − ξ′|)|ξ − ξ′|dy′. (19)
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In the case of small de�ectors of Schwarzschild type, α(|ξ − ξ′|) = 4m
|ξ−ξ′| ;

the quantity Σ(ξ, ξ′) represent the total mass of the distribution projected in the
plane of the thin lens. For analogy with this case we will refer to Σ(ξ, ξ′) in the
most general case as the generalized projected mass.

4. Testing the system with massive particles

4.1. The equation of motion

The dynamics of massive particles is determined by the geodesic equation. Let
the vector ua be the four velocity of the particle, then one can express

ua∇aub = ua∂au
b + uaΓ b

a cu
c = 0. (20)

Since we are assuming small velocities we can express, in �rst order in the
velocities

ua = (1 +
u2

2
)ta + va + O(u3); (21)

where

ηabt
avb = 0, (22)

ηabv
avb = −u2. (23)

In this way, we see that the equation of motion can be expressed as

ta∂av
b + Γ b

a ct
atc + 2Γ b

a ct
avc = 0; (24)

4.2. The case of spherical symmetry

A stationary spherically symmetric geometry can be expressed by

ds2 = e2Φ(r)dt2 − dr2

1− 2M(r)
r

− r2
(
dθ2 + sin2 θdφ2

)
; (25)

in terms of a standard spherical coordinate system (t, r, θ, φ).
For this case one has that the non-vanishing components of the connection

tensor are

Γ r
θ θ = 2M(r), (26)

Γ r
φ φ = 2M(r) sin2 θ, (27)

Γ t
t r =

dΦ(r)

dr
, (28)

Γ r
t t =

dΦ(r)

dr
, (29)

Γ r
r r =

d

dr

(
M(r)

r

)
; (30)

where we are considering only linear terms.
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Then, considering the non-zero contributions from the connection, one has

dvr

dt
= −dΦ(r)

dr
. (31)

Therefore, we have only one equation dynamically interesting.
It is important to emphasize that the notion of the r direction is dependent

on the system we are considering the interaction with. To carry out the sum
over all subsystems A it would be better to introduce a Cartesian description
with respect to the background.

When the sum it is carried one obtains the Newton's equation for a particle
in a gravitational �eld. Where the e�ective potential is given by the sum of
the individual contributions of the distribution of the form (31). In particular,
when the big scale distribution is spherically symmetric one can use the Newton's
theorem on spherical systems to evaluate the e�ective potential inside of a central
sphere of radius r with respect to the origin.

5. Summary and perspectives

We have just seen that when studying the dynamics of massive and massless par-
ticles, while the �rst reduces to the simple application of Newtonian techniques,
the later is much more complicated, specially when the spacelike components of
the energy momentum tensor can not be neglected; as is the case for the ge-
ometries that we have presented elsewhere. Therefore, the physical smoothing
procedures are not necessarily associated with standard averaging of geometrical
quantities as tensors; but come from a detailed study of the particular observa-
tion.

Acknowledgments. We acknowledge support from CONICET, SeCyT-UNC
and Foncyt.

References

[GM11] Emanuel Gallo and Osvaldo M. Moreschi. Gravitational lens opti-
cal scalars in terms of energy- momentum distributions. Phys. Rev.,
D83:083007, 2011.

[GM12] Emanuel Gallo and Osvaldo M. Moreschi. Peculiar anisotropic stationary
spherically symmetric solution of Einstein equations. Mod.Phys.Lett.,
A27:1250044, 2012.


