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Abstract. We present some new geometries with spheroidal symmetry,
with and without mass, that involve new kind of energy momentum ten-
sors, and which are suitable for the description of dark matter phenomena.

1. Introduction

The standard characterization of dark matter phenomena is through models
that assume the generally accepted cold dark matter model. However, when
studying dark matter phenomena with di�erent techniques one often �nds non-
trivial disagreement among the measurements.

Notably, when estimating the matter content in a region using gravitational
weak lensing e�ects and dynamical studies, the di�erent techniques do not coin-
cideSerra and Romero(2011) in the estimated value.

These problems might be related to the way in which one normally deals with
inhomogeneities in cosmology. We will comment brie�y on the inherent problems
involved in the notion of averaging of tensors; that contribute to unexpected
terms in the energy momentum tensor.

In a previous study of weak lensing we have noticed that a spacelike contribu-
tion of the energy-momentum tensor has been neglectedGallo and Moreschi(2011)
in previous works. This is the source of inspiration for the suggestion of a family
of solutions with a nontrivial contribution to the geometry but with less require-
ment of mass content. In the past we have presented static spherically symmetric
solutionsGallo and Moreschi(2012); in this case we generalize to spheroidal sym-
metry,

We present some new geometries that involve new kind of energy momentum
tensors which are suitable for the description of dark matter phenomena.

1.1. What could be missing from the standard picture?

The problem with implicit averages: In a simple cosmological model one can
consider a Universe made out of small pieces of matter distributed in corre-
sponding islands. If a photon would reach us from one of those bodies it would
feel: a vanishing Ricci tensor and a non-vanishing Weyl tensor, namely:

Rab = 0 , W d
abc 6= 0.
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While in a smooth averaged description, one would have the contrary, that is: a
non-vanishing Ricci tensor and a vanishing Weyl tensor:

Rab 6= 0 , W d
abc = 0;

as is the case in the Robertson-Walker spacetimes.
One normally thinks that the Robertson-Walker spacetimes are a good

model for the large scale structure of the Universe in which the small scales
inhomogeneities are smooth out in some kind of averaging process. However,
there is no notion of average that coming from a zero tensor would produce a
non-zero average. As is the case with the Ricci tensor as mention above.

The standard approach to weak lenses: In standard textbooks, such as: Gravita-
tional lenses, P. Schneider, J. Ehlers and E.E. Falco (1992)Schneider et al.(1992)Schneider,
Ehlers, and Falco, one �nds that the de�ection angle is expressed by:

α̂(~ξ) =
4G

c2

∫
R2

Σ(~ξ′)
~ξ − ~ξ′

|~ξ − ~ξ′|2
d2ξ′, (1)

where Σ(~ξ) is the mass density projected onto a plane perpendicular to the light

path, ~ξ describes the position of the light ray in the lens plane.
Instead we have shown in [GM11]Gallo and Moreschi(2011) the following

expressions for the bending angle in terms of energy-momentum components
and the mass content M(r), of a spherically symmetric stationary spacetime

α(J) = J

∫ dls

−dl

[
3J2

r2

(
M(r)

r3
− 4π

3
%(r)

)
+ 4π (%(r) + Pr(r))

]
dy ; (2)

where J = |~ξ| is the impact parameter and r =
√
J2 + y2.

Let us observe the appearance of a term proportional to the radial compo-
nent of the energy-momentum tensor; namely Pr.

This suggested us to consider a simple model with Pr 6= 0 and M(r) = 0
(zero mass), ρ(r) = 0 (zero mass density); which describes fairly well dark matter
phenomena; id.est. rotation curves, weak lens, scape velocities; as we have shown
in previous works[GM12]Gallo and Moreschi(2012).

Here we present a new exact solution of Einstein equations with prolate and
oblate spheroidal symmetry and zero mass, which is the natural generalization
of our previous construction with spherical symmetry. We also present a family
of solutions with mass resembling well known pro�les.

2. A spacetime with prolate spheroidal symmetry and zero mass

2.1. Using the hyperbolic coordinate

The metric

We will consider spacetimes with spheroidal symmetry of the form

ds2 =a(ξ, t)dt2 − b(ξ, t)r2µ(sinh2(ξ) + sin2(θ))dξ2

− r2µ
(
(sinh2(ξ) + sin2(θ))dθ2 + sinh2(ξ) sin2(θ)dφ2

)
;

(3)
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where rµ characterizes the position of the focus, for the spheroidal geometry, as
it will become more clear later when we relate the geometric coordinate ξ with
the radial coordinate r.

In particular we present the static solution given by

a = a0(ξ + C)2, (4)

and
b = 1; (5)

so that the whole geometry is characterized by the two constants a0 and C.
The Einstein tensor

The corresponding components of the Einstein tensor which are di�erent
from zero are:

Gξξ =− (2 cosh2(ξ)− 2 + sin2(θ)) cosh(ξ) sinh(ξ)

(cosh2(ξ) + sin2(θ)− 1)(cosh2(ξ)− 1)(ξ + C)
, (6)

Gξθ =− cos(θ) sin(θ)

(cosh2(ξ)− 1 + sin2(θ))(ξ + C)
, (7)

Gθθ =− cosh(ξ) sin2(θ) sinh(ξ)

(cosh2(ξ)− 1 + sin2(θ))(cosh2(ξ)− 1)(ξ + C)
. (8)

2.2. Using the radial coordinate

The metric

From the relation

ξ = arcsinh

(
r

rµ

)
= ln

(
r

rµ
+

√
(
r

rµ
)2 + 1

)
; (9)

or alternatively r = rµ sinh(ξ); one can express the metric as:

ds2 = a(r)dt2 −
(

(r2 + r2µ sin2(θ))

(
dr2

r2 + r2µ
+ dθ2

)
+ r2 sin2(θ)dφ2

)
, (10)

and the timelike component of the metric is

a = a0

(
ln

(
r

rµ
+

√
(
r

rµ
)2 + 1

)
+ C

)2

. (11)

The Einstein tensor

The corresponding components of the Einstein tensor which are di�erent
from zero are:

Grr = −
(2r2 + r2µ sin2(θ))√

r2 + r2µ(ln

(√
r2+r2µ+r

rµ

)
+ C)(r2µ sin2(θ) + r2)r

, (12)
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Grθ = −
r2µ cos(θ) sin(θ)√

r2 + r2µ(ln

(√
r2+r2µ+r

rµ

)
+ C)(r2µ sin2(θ) + r2)

, (13)

Gθθ = −
(r2 + r2µ)r2µ sin2(θ)√

r2 + r2µ(ln

(√
r2+r2µ+r

rµ

)
+ C)(r2µ sin2(θ) + r2)r

. (14)

The Riemann tensor

The components of the Riemann tensor which are di�erent from zero are:

Rtrtr =

−(ln

(√
r2+r2µ+r

rµ

)
+ C)a0r√

r2 + r2µ(sin(θ)2r2µ + r2)
, (15)

Rtrtθ =

−(ln

(√
r2+r2µ+r

rµ

)
+ C) cos(θ) sin(θ)a0r

2
µ√

r2 + r2µ(sin(θ)2r2µ + r2)
, (16)

Rtθtθ =

(ln

(√
r2+r2µ+r

rµ

)
+ C)(r2 + r2µ)a0r√

r2 + r2µ(sin(θ)2r2µ + r2)
, (17)

Rtφtφ =

(ln

(√
r2+r2µ+r

rµ

)
+ C)(r2 + r2µ) sin(θ)2a0r√

r2 + r2µ(sin(θ)2r2µ + r2)
. (18)

3. A prolate spheroidal distribution as a gravitational lens

3.1. The adapted coordinate system

We have in mind a gravitational lens con�guration in which the source is located
far away close to the y axis, the lens is near the origin of the frame, and the
observer along negative values of the y axis; as depicted in �gure 1. We use
coordinates (x, z) for the plane of the lens.

3.2. A rotated spheroid

The spheroidal distribution is assumed to be at an angle ι from the z axis in the
direction of y.

3.3. Gravitational lens geometry for prolate spheroidal distributions

In the calculation of gravitational lens, one needs to calculate the spinor com-
ponents of the Ricci tensor Φ00 and the Weyl component Ψ0, with respect to a
null tetrad adapted to the null geodesic congruence of the photons.
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Figure 1. Standard notation for deviation angles and background co-
ordinate system. ds denotes the distance to the source of the image; dl
to the lens and dls the lens-source distance.

We choose the null tetrad in the �at background as in our previous article;
so that in the (t, x, y, z) frame, one has

la =(−1, 0, 1, 0), (19)

ma =
1√
2

(0, i, 0, 1), (20)

m̄a =
1√
2

(0,−i, 0, 1), (21)

na =
1

2
(−1, 0,−1, 0). (22)

Let us note that the Ricci component is:

Φ00 = −1

2
Rabl

alb = −1

2
Gabl

alb. (23)

The Weyl component is given by:

Ψ0 = Cabcdl
amblcmd. (24)
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We �nally obtain the expression

Φ00 =− 1

2

(
Grrl

rlr + 2Grθl
rlθ +Gθθl

θlθ
)

=
1

2
√
r2 + r2µ(ln

(√
r2+r2µ+r

rµ

)
+ C)(r2µ sin2(θ) + r2)r(

(2r2 + r2µ sin2(θ))lrlr + 2 r r2µ cos(θ) sin(θ)lrlθ

+ (r2 + r2µ)r2µ sin2(θ)lθlθ
)

;

(25)

while the Weyl component is given by:

Ψ0 =
1

gtt
Rtbtdm

bmd

=
1

gtt
Rtrtr(m

r)2 +
2

gtt
Rtrtθm

rmθ

+
1

gtt
Rtθtθ(m

θ)2 +
1

gtt
Rtφtφ(mφ)2

=
1

(ln

(√
r2+r2µ+r

rµ

)
+ C)

√
r2 + r2µ(sin(θ)2r2µ + r2)(

− r(mr)2 − 2 cos(θ) sin(θ) r2µm
rmθ

+ (r2 + r2µ)r(mθ)2 + (r2 + r2µ)r sin(θ)2(mφ)2
)
.

(26)

3.4. The optical scalars

Let us recall from [GM11]Gallo and Moreschi(2011) that the optical scalars,
namely, the expansion κ and the shear components γ1 and γ2, in the thin lens
approximation, are given by:

κ =
dldls
ds

Φ̂00, (27)

γ1 + iγ2 =
dldls
ds

Ψ̂0, (28)

where

Φ̂00 =

∫ ds

0
Φ00dλ,

Ψ̂0 =

∫ ds

0
Ψ0dλ,

(29)

are the projected curvature scalars along the line of sight.
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4. Numeric calculation of the optical scalars

4.1. The expansion

For the numerical calculation we have taken the following values: The parameter
C was taken as − ln(µ), from reference [GM12]Gallo and Moreschi(2012) which
it was adjusted to the observations of weak lens in the Coma cluster. The radius
rµ was arbitrarily taken to have the value 3Mpc. The rotation angle ι was chosen
to be π

4 . The lens distances were taken as: dl = 97.10Mpc, ds = 1068.03Mpc,
dls = 970.92Mpc; which are values from the Coma cluster used in our previous
work. The integration was carried out using Chebyshev-Gauss techniques. The
number of points evaluated was automatically adjusted to a chosen tolerance.
The results are presented in the graphics of Figures 2, 3 and 4.

Figure 2. The expansion κ plotted in a log scale. One can see that
it copies the geometry of the projected spheroids.

In �gure 2 we plot the expansion optical scalar κ, with the contour level at
the bottom. One can see that the contours copy very well the projection of the
spheroidal geometry, to the (xz) plane.

Figure 3 shows the plot of the modulus of shear optical scalar γ, with the
contour level at the bottom. It is observed that in this case the structure is much
more complicated, and that in the inner region the behaviour of the modulus does
not follow the projection of the spheroidal geometry. However, in �gure 4; where
the shear is represented by small segments, it is easier to follow and understand
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Figure 3. The modulus γ of the shear expansion. The contour curves
are more complicated in this case.

the e�ects of the spheroidal geometry on the gravitational lens. The segments
represent the direction of the maximum shear deformation.

5. Spacetimes with prolate spheroidal symmetry and mass

The zero mass spacetime just presented can be generalized to spacetimes with
mass content; as we do next.
The metric

Here we present a new stationary solution with mass content, spheroidal
symmetry and a non-trivial spacelike component of the energy momentum tensor
whose metric is:

ds2 = a(r)dt2 −
(

(r2 + r2µ sin2(θ))

(
dr2

r2 − 2M(r)r + r2µ
+ dθ2

)
+ r2 sin2(θ)dφ2

)
,

(30)

and the timelike component of the metric is:

a = a0

(
ln

(
r

rµ
+

√
(
r

rµ
)2 + 1

)
+ C

)2

, (31)
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Figure 4. The shear plotted as segments in the plane of the lens.

and where M(r) is:

M(r) =
M∗
r∗
r for r 6 r∗ and M(r) = M∗ for r > r∗ (isothermal) or

(32)

M(r) = 4πρ∗r
3
∗

(
ln(1 +

r

r∗
)−

r
r∗

1 + r
r∗

)
(NFW); (33)

where the constant M∗ is the mass of the generalized isothermal distribution, r∗
denotes the maximum radius for the isothermal distribution, or the characteristic
radius for the generalized Navarro-Frenk-White (NFW) distribution, and ρ∗ the
density parameter. These two mass distributions, considered in these solutions,
are the natural generalization of the isothermal mass density and of the NFW
pro�le to the spheroidal geometry.

6. A spacetime with oblate spheroidal symmetry and zero mass

We generalize here the previous discussion to oblate spheroidal symmetry.

6.1. Using the radial coordinate

The metric
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From the relation r = rµ sinh(ξ); one can express the metric as:

ds2 = a(r)dt2 −
(

(r2 + r2µ cos2(θ))

(
dr2

r2 + r2µ
+ dθ2

)
+ (r2 + r2µ) sin2(θ)dφ2

)
,

(34)

and the timelike component of the metric is

a = a0

(
ln

(
r

rµ
+

√
(
r

rµ
)2 + 1

)
+ C

)2

. (35)

7. Spacetimes with oblate spheroidal symmetry and mass

The zero mass spacetime just presented can be generalized to spacetimes with
mass content; as we do next.
The metric

Here we present a new stationary solution with mass content, spheroidal
symmetry and a non-trivial spacelike component of the energy momentum tensor.
The metric is:

ds2 = a(r)dt2−(r2 + r2µ cos2(θ))
dr2

r2 − 2M(r)r + r2µ

−
(

(r2 + r2µ cos2(θ))dθ2 + (r2 + r2µ) sin2(θ)dφ2
)
,

(36)

and the timelike component of the metric is

a = a0

(
ln

(
r

rµ
+

√
(
r

rµ
)2 + 1

)
+ C

)2

, (37)

and where M(r) is:

M(r) =
M∗
r∗
r for r 6 r∗ and M(r) = M∗ for r > r∗ (isothermal) or

(38)

M(r) = 4πρ∗r
3
∗

(
ln(1 +

r

r∗
)−

r
r∗

1 + r
r∗

)
(NFW). (39)

These mass distributions are the natural generalization of the isothermal mass
density to the spheroidal geometry and of the NFW distribution to spheroidal
geometry.

8. Final comments

We have presented several new static exact solutions of the Einstein equations,
with spheroidal symmetry. Some of them have Ttt = 0, and therefore they have
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zero mass, although with a non-trivial geometry whose gravitational e�ects are
of interest for the explanation of dark matter phenomena.

They are the natural generalization of a previous geometry we presented be-
fore[GM12]Gallo and Moreschi(2012), with spherical symmetry; that adequately
represents dark mater observations.

The behaviour of the shear in the weak lens calculation, for the prolate
zero mass case, is not yet well understood; but it might indicate a non-trivial
behaviour of the spin 2 nature of the Weyl Ψ0 component.

These geometries have the property that they can naturally be generalize to
other matter distributions with spheroidal symmetry; using the same form of the
metric. That is they represent a family of solutions with multiple possibilities.

We wish to develop these techniques for applications to typical non-spheric
systems as binary systems, irregular clusters, galaxies, and others.
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