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CHAPTER FOUR 

THE USE OF THE ‘MATERIALITY ARGUMENT’ 
IN THE LITERATURE ON COMPUTER 

SIMULATIONS 

JUAN M. DURAN 
UNIVERSITY OF STUTTGART – SRC SIMTECH 

UNIVERSIDAD NACIONAL DE CÓRDOBA 
 
 

Introduction 

Much of the current philosophical interest in computer simulations 
stems from their extended presence in scientific practice. This interest has 
centered on studies of the experimental character of computer simulations 
and, as such, on the differences (and similarities) between computer 
simulations and laboratory experiments. The philosophical effort, then, has 
been primarily focused on establishing the basis of this contrast; 
specifically by means of comparing the epistemic power of a computer 
simulation with that of a laboratory experiment. The basic intuition has 
been that if computer simulations resemble laboratory experiments in 
relevant epistemic respects, then they too can be sanctioned as a means of 
providing understanding of the world. 

The literature on the topic distinguishes computer simulations from 
laboratory experiments on both ontological and representational grounds. 
The fact that a computer simulation is an abstract entity, and therefore 
bears only a formal relation to the system being investigated, contrasts 
with a laboratory experiment, which typically has a causal connection to 
the target system. These ontological and representational differences have 
suggested to some philosophers that establishing external validity is a 
much more difficult task for computer simulations than for laboratory 
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experiments. For others, however, it has been a motivation to reconsider 
experimental practice, and see it as a broader activity that also includes 
simulations as a new scientific tool. These two approaches, I claim, share a 
common rationale that imposes restrictions on the epistemological analysis 
of computer simulations. In this paper I propose to discuss this claim. 

The most well-known criterion for distinguishing between computer 
simulations and laboratory experiments is given by the so-called 
materiality argument. Parker has provided a helpful account of this 
argument:  

 
In genuine experiments, the same ‘material’ causes are at work in the 
experimental and target systems, while in simulations there is merely 
formal correspondence between the simulating and target systems [...] 
inferences about target systems are more justified when experimental and 
target systems are made of the ‘same stuff’ than when they are made of 
different materials (as is the case in computer experiments). (2009, 484) 
 
Two claims are being made here. The first is that computer simulations 

are abstract entities, whereas experiments share the same material 
substratum as the target system.1 The second, which is essentially epistemic, 
is that inferences about empirical target systems are more justified by 
experiments than by computer simulations due to the material relations 
that the former bears with the world. 

Current literature has combined these two claims into two different 
proposals: either one accepts both claims and encourages the view that 
being material better justifies inferences about the target system than being 
abstract and formal (Guala 2002, Morgan 2005); or one rejects both claims 
and encourages the view that computer simulations are genuine forms of 
experimentation and, as such, epistemically on a par with experimental 
practices (Morrison 2009, Winsberg 2009, Parker 2009). I claim that these 
two groups of philosophers, that superficially seem to disagree, actually 
share a common rationale in their argumentation. Concretely, they all 
argue for ontological commitments that ground their epistemic evaluations 
on computer simulations. I will refer to this rationale as the materiality 

principle.  

                                                 
1 Some of the terminology in the literature remains unspecified, such as ‘material’ 
causes or ‘stuff’ (Guala, 2002). I here take them to mean physical causal relations, 
as described, for instance, by Dowe (2000). In the same vein, when I refer to 
causes, causality, and similar terms, they should be interpreted in the way here 
specified. 
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In order to show that the materiality principle is at work in most of the 
philosophical literature on computer simulations, I discuss three distinctive 
viewpoints: 

 
a) Computer simulations and experiments are ontologically similar 
(both share the same materiality with the target system); hence, 
they are epistemically on a par (Parker, 2009); 
 
b) Computer simulations and experiments are ontologically 
dissimilar. Whereas the former is abstract in nature, the latter shares 
the same materiality with the phenomenon under study; hence, they 
are epistemically different (Guala 2002, Giere 2009, Morgan 2003, 
2005);  
 
c) Computer simulations and experiments are ontologically similar 
(both are ‘model-shaped’); hence, they are epistemically on a par 
(Morrison 2009, Winsberg 2009). 
 
With these three viewpoints in mind, the materiality principle can be 

reframed from another perspective: it is due to the philosophers’ 
commitment to the abstractness (or materiality) of computer simulations 
that inferences about the target system are more (or less thereof) justified 
than laboratory experiments.  

 
The principal aim of this paper is to show that philosophers of 

computer simulations do adhere, in one way or another, to the materiality 
principle. I am also interested in outlining some of the consequences of 
adopting this rationale. In particular, I am convinced that grounding the 
philosophical analysis on the materiality principle, as most of current 
literature seems to do, places a conceptual corset on the study on the 
epistemological power of computer simulations. The philosophical study 
on computer simulations must not be restricted to, not limited by, a priori 
ontological commitments. By analyzing themes in the literature, then, I 
show that the materiality principle does not engender a helpful 
conceptualization of the epistemic power of computer simulations. I will 
also give some suggestions as to how to circumvent this issue and address 
the epistemology of computer simulations at face value. 

The paper is divided in a way that corresponds to the three uses of the 
materiality argument listed above. The section entitled ‘the identity of the 
algorithm’ discusses option a); the section entitled ‘material stuff as 
criterion’ addresses option b), which comes in two versions, the strong 
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version and the weak version; and finally option c) is addressed in the 
section entitled ‘models as (total) mediators.’  

The Identity of the Algorithm 

Wendy Parker’s formulation of the materiality argument has a 
prominent place in the recent literature on computer simulation. Following 
Hartmann (1995), Parker defines a computer simulation as a time-ordered 
sequence of states that abstractly represents a set of desired properties of 
the target system. Experimentation, on the other hand, is the activity of 
putting the experimental setup into a particular state by means of 
intervening in it, and studying how certain properties of interest in the 
setup change as a consequence of that intervention (Parker 2009, 486).2 

Parker’s goal is to show that computer simulations and experiments 
share the same ontological basis, and to use this basis as justification for 
the claim that computer simulations and experiments are epistemically on 
a par. To her mind, the central problem is that current definitions of 
computer simulation do not qualify as an experiment because they lack the 
crucial intervening mechanisms. Indeed, it is the abstract character of the 
model that prevents computer simulations from serving as intervening 
systems. The solution to this issue consists in construing the notion of 
computer simulation studies as a computer simulation where an 
intervention is made into the physical computer itself. So defined, a 
computer simulation study does qualify as an experiment. 

 
A computer simulation study […] consists of the broader activity that 
includes setting the state of the digital computer from which a simulation 
will evolve, triggering that evolution by starting the computer program that 
generates the simulation, and then collecting information regarding how 
various properties of the computer system, such as the values stored in 
various locations in its memory or the colors displayed on its monitor, 
evolve in light of the earlier intervention. (2009, 488) 
 
The notion of intervention is now defined as the activity of setting the 

initial state of the computing system and triggering its subsequent 
evolution. Thus understood, a computer simulation study is an experiment 
in a straightforward sense, for now the system intervened is the 
programmed digital computer (2009, 488). On this basis, Parker claims 
that there is ontological equivalency between computer simulations and 

                                                 
2 ‘Intervention’ is conceived of as the manipulation of physical causal relations in 
the experimental setup. 
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experiments, and this in turn allows her to claim an equivalency in their 
epistemic power.  

Notably, she does not explain what it means for a computer simulation 
study to be epistemically powerful. Instead, she limits the argument to 
asserting that an epistemology of computer simulations should reflect the 
fact that it is the observed behavior of the computer system that makes 
them experiments on a real material system (and therefore epistemically 
powerful).  

The influence of the materiality principle can be made yet more 
explicit. First, Parker conceives of the digital computer as the ‘substratum’ 
for the simulated system, thus claiming ontological equivalence between 
computer simulation studies and experiments. Since the computer 
simulation study is the activity of putting the physical computer into an 
initial state, triggering the evolution of the simulation, and collecting 
physical data as indicated by prints-outs, screen displays, etc. (2009, 489), 
then the epistemic value of computer simulation studies also corresponds 
to that of experiments. The evolution in the behavior of the programmed 
computer represents material features of the simulated phenomenon. Our 
understanding of such a phenomenon, then, is justified by this evolution 
on the physical computer. Computer simulation studies and experiments 
are, then, ontologically on a par, and so is their epistemological power. 

Here I have briefly outline Parker’s main claims. The problem is that it 
is still not clear which are the reasons for considering the materiality of the 
digital computer as the relevant player in the epistemology of computer 
simulations. Let me put this concern in other terms. To my mind, Parker’s 
motivations are to subvert the materiality argument by showing that 
computer simulations and experiments are ontologically on a par (and so is 
their epistemic power). This move, as I have argued, is grounded on a 
rationale behind the same materiality argument that she is trying to 
overthrown. The question, then, is what role does the materiality of the 
digital computer play in the evaluation of the epistemic power of computer 
simulation studies? Let me now reconstruct three interpretations of 
Parker’s argument. 

First, Parker takes the materiality of the digital computer to play some 
relevant role in the interpretations of results (2009, 490). Under this 
interpretation, hardware failure, round-off errors, and analogous sources of 
miscalculation affect the results of the simulation in different ways. This is 
true of computers and of computation, and it does not call for any special 
terminology or treatment. It is then doubtful that Parker is grounding her 
ontological claim on the fact that a digital computer is prone to errors that 
might affect the final results. 
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A second possible interpretation is that the system of interest is the 
physical computer itself, regardless of the represented empirical system. In 
this scenario, the researcher runs her simulations as usual, only paying 
attention to the changes in the behavior of the physical computer. These 
behavioral changes become the substance of the scientist’s inquiry, 
whereas the target system is only regarded as the initial point of reference 
for the construction of the simulation model. In this context, the researcher 
learns first and foremost from collecting information on the properties of 
the physical computer—the values in its memory and the colors on the 
monitor (Parker 2009, 488).3 If this is the correct interpretation, then it is 
incumbent upon Parker to show that the scientist can cognitively access 
the various physical states of the computer, something that she fails to do. 
Philosophers have discussed whether it is possible to access different 
locations inside a computer—the memory, the processor, the computer 
bus, etc.—and the general agreement is that these are cognitively 
inaccessible for the unaided human. There is a guiding principle of 
epistemic opacity ascribed to computational process which rules out any 
possibility of cognitively accessing the internal states of the physical 
computer (see Humphreys 2004, 2009). Moreover, even if scientists could 
actually access these locations (say, if they were aided by another 
computer), it is still not clear why accessing these locations would be of 
any relevance for the understanding the simulated phenomenon. 

To my mind, neither of the above interpretations is correct. Rather, 
Parker should be interpreted as taking the materiality of the digital 
computer as playing the fundamental role of ‘bringing about’ the target 
system (i.e., brings into causal existence the phenomenon simulated). In 
other words, the behavioral changes that the scientist observes in the 
physical computer are instantiations of the representations built into the 
computer simulation.4 Such representations are, naturally, representations 
of a target system. In this way, the digital computer behaves as if it were 
the empirical phenomenon simulated in the programmed computer. I refer 

                                                 
3 Eckhart Arnold (this volume, 50) interprets Parker in a similar way. As he puts it: 
“the data of a simulation usually does not convey any information about the 
computer on which it was produced, but only information about the simulated 
system.” 
4 Note that appealing purely to the visual behavior of the machine is not enough for 
claiming that computer simulation studies are ontologically on a par to 
experiments. Moreover, Parker is clearly thinking of causal relations originating in 
the machine: “The experimental system in a computer experiment is the 
programmed digital computer (a physical system made of wire, plastic, etc.)” 
(2009, 488-489). 



Chapter Four 82

to this interpretation metaphorically as the ‘phenomenon in the machine.’ 
Let me now explore this possibility a little further.  

No Phenomenon in the Machine 

Parker’s main strategy consists in locating the notion of physical 
causality in the digital computer, and assuming that the evolution of the 
simulation (represented by the physical states of the digital computer) 
corresponds to the physical evolution of the target system. In the same 
vein, intervention in the computational system corresponds to intervention 
in the target system. Taking this interpretation to be correct, I will now 
object that there is a principle of multi-realizability in computer software 
that prevents us relating the physical states of the computer with the target 
system simulated. Unlike experiments, where the scientist assumes 
consistency in the causal relations at work in the phenomenon, the 
physical states of the computer are not constantly the same; rather, they 
change with each run and for each type of computer architecture. It 
follows that the physical computer cannot work as the basis for the target 
system in the same way as materiality works as the basis of the 
phenomenon. 

Let me begin by pointing out some basic modes of operation of the 
computer. The physical state of the computer is understood as the 
electronic configuration that the computer has at a given time. Such a 
configuration is provided by the state of the memory, the state of the 
computer bus, the I/O devices, and of every other physical component of 
the computer. Parker refers to this electronic configuration as the 
materiality of the computer. 

Now, Parker’s argument requires that a set of sufficiently similar 
physical states of the digital computer is instantiated by the same computer 
program. To put the same idea slightly different: a computer program must 
instantiate sufficiently similar physical configuration of the digital 
computer over each run of the program. This assumption must be met 
otherwise Parker has no grounds for claiming for the epistemological 
value of computer simulations (2009, 489). The misunderstanding from 
Parker is that the physical states of the digital computer are rarely, if ever, 
similar between multiple instantiations of the same computer program. 
Indeed, the simulation is not the only process running on the digital 
computer for it must share the digital computer with the operating system, 
the processes in charge of running the physical machine, and other user 
process. Moreover, with a computer processor switching back and forth 
among all the processes that are running, the rate at which a process 
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performs its computation is not uniform, and therefore not reproducible on 
the same machine (Tanenbaum and Woodhull 2006, 56). 

To illustrate this point, consider the unique case of one computer 
program running once on the same machine. A general setup would be: let 
Pt be the logical state to which a computer program enters when running at 
time t. In this sense, Pt could be the if … then clause, a loop, or simply an 
instruction for printing out some data. Since the computer process is 
implemented on the physical computer, Pt instantiates the physical state of 
the computer at time t, let us call it Mt. Now, there is a unique mapping 
relation from Pt to Mt described by Ft which takes as its argument the state 
of the computer program at time t and matches it with the physical state of 
the computer at the same time t (Tanenbaum and Woodhull 2006, 56).  

Consider now the situation where the same computer program is 
executed on the same machine, although multiple times. This situation 
looks very much like Figure 4-1. Using the previous notation: there exists 
a Pt such that, for each execution 1 � i � n on M, and for each Fi,t, there 
exists an Fj,t, 1 � i � n and i � j, such that Fi,t � Fj,t and Mi,t � Mj,t . In other 
words, if we run the same instruction on multiple occasions, the internal 
behavior of the computer will be to create different mappings to different 
physical states of the same machine. 

If we were to draw an analogy with experiments, we would be 
envisaging something along the following lines: intervention on the same 
variables instantiates different causal relationships, despite which we 
obtain the same set of results. This is an unacceptable consequence, 
because it shows that it is impossible to identify one set of causal relations 
that is consistent for a given phenomenon. 

 
 

 
 
Figure 4-1: Program P at time t running on multiple occasions on the same 
machine M 



Chapter Four 84

Similarly, if the same computer program is run on different physical 
computers, there are no reasons for thinking that will instantiate the same 
physical state across the different machines. This situation is illustrated in 
Figure 4-2. 

 

 
Figure 4-2: Program P at time t running on multiple machines M1...n 

In addition, it is a common practice to upgrade hardware by adding 
new components, or to completely renew the architecture of the computer. 
For this latter case, take Mi

t as the machine i running at time t. Then Mi
t 

differs from Mj
t, for all 1 � i, j � n, i � j (see Figure 4-2). 

With these ideas in mind, any attempt to recreate the ‘phenomenon in 
the machine’ is fundamentally flawed for it contradicts basic principles of 
computer architecture. As I have said, however, this is only an 
interpretation of Parker’s central thesis. Whether correct or not, it should 
not affect our main claim that her account of computer simulation studies 
follows the dictates of the materiality principle. This is the case because, 
as I argued before, Parker takes it that the epistemology of computer 
simulations is restricted to the conditions imposed by laboratory 
experiments. The epistemological value of computer simulations is 
established, therefore, by arguing that the ontology of simulations is 
equivalent to the ontology of experiments.  

Material ‘Stuff’ as Criterion 

The idea of ‘material stuff as criterion’ is perhaps the most faithful 
account of the materiality argument.5 According to this view, there are 

                                                 
5 There is a generalized and, to my mind, imprudent use of the word ‘stuff’ in 
current literature. In this section, however, I use it in the same context and in the 
same sense as the authors. 
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fundamental and irreconcilable ontological differences between computer 
simulations and experiments, the latter being epistemically superior. There 
are two versions of this account: a strong version and a weak version. 

The strong version holds that the causal relations responsible for 
bringing about the phenomenon must also be present in the experimental 
setup. This means that the experiment must replicate the causal relations 
present in the empirical system. According to the strong version, then, the 
experiment is a ‘piece’ of the world. 

Take as an example a beam of light used for understanding the nature 
of the propagation of light. In such a case, the experimental setup is 
identical to the target system; that is, it simply is the empirical system 
under study. It follows that any manipulation of the experimental setup 
does address the same causes as the phenomenon, and that an insight into 
the nature of light can be delivered by our understanding of the controlled 
experiment (i.e., the beam of light (Guala 2002)).  

Applied to computer simulations, the strong version takes it that the 
merely formal correspondence between the computer and the target system 
provides a sufficient basis for downplaying their status as epistemic 
devices. If there are no causal relations acting, then the epistemic power of 
inferences thereby made about the world is conceptually downgraded. 

The weak version, on the other hand, relaxes some of the conditions 
imposed by the strong version on experimentation. According to this view, 
a controlled experiment requires only the set of relevant causal relationships 
that bring the phenomenon about. In this vein, the proponents of the weak 
version do not commit themselves to a complete reproduction of the 
phenomenon under study, as the strong version does, but rather to the set of 
relevant causes that characterize the behavior of the phenomenon.  

Let us illustrate the weaker version with a simple example: a ripple-
tank can be used as a material representation of light, thus providing 
insight into its nature as a wave. To the proponent of the weaker version, it 
is enough to have a representative collection of causal correspondences 
between the experimental setup and the target system in order for the 
former to provide some insight into the latter. The relation between the 
experiment and the real-world phenomenon, then, is one of causal 
similarity: a cloud chamber detects alpha and beta particles, just as a 
Geiger counter can measure them. But neither instrument is a ‘piece’ of 
the phenomenon under study nor fully interacts with all kinds of particles. 
It follows that experimental practice, as exemplified by the detection and 
measurement of particles, depends on a complex system of actual causal 
relations between the experimental setup and the target system. 
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Applied to the general evaluation of computer simulations, the weak 
version presents a more complex and rich picture, which affords of 
degrees of materiality being ascribed to computer simulations. 

Despite these differences, however, both versions share the same 
viewpoint regarding computer simulations; namely, that they are 
epistemically inferior to experiments. This claim follows from the 
ontological conceptualization previously depicted, and stems from the 
same rationale as underlies the materiality principle. To show this, I 
discuss arguments provided by two authors.  

The Strong Version 

Francesco Guala champions the defense of the strong version. He 
assumes from the outset the existence of fundamental differences between 
computer simulations and experiments grounded on causality. 

 
The difference lies in the kind of relationship existing between, on the one 
hand, an experimental and its target system, and, on the other, a simulating 
and its target system. In the former case, the correspondence holds at a 
‘deep’, ‘material’ level, whereas in the latter the similarity is admittedly 
only ‘abstract’ and ‘formal’ [...] In a genuine experiment the same 
‘material’ causes as those in the target system are at work; in a simulation 
they are not, and the correspondence relation (of similarity or analogy) is 
purely formal in character. (Guala 2002, 66-67)  
 
Guala conceives the experiment as one that reproduces the causal 

relations present in the phenomenon. The author emphasizes the changes 
of materiality by appeal to the concepts of ‘same’ and ‘different stuff.’ The 
case of the ripple-tank is paradigmatic in this sense. According to Guala, 
the media in which the waves travel are made of ‘different stuff’ (and 
therefore so are the equations of force): while one medium is water, the 
other is light. The ripple-tank, then, is a representation of the wave nature 
of light only because there are similarities in the behavior at a very 
abstract level (i.e., at the level of Maxwell’s equations, D’Alambert’s 
wave equation, and Hook’s law). The two systems obey the same laws and 
can be represented by the same set of equations, despite their being made 
of ‘different stuff.’ However, water waves are not light waves (2002, 66), 
and a difference in the materiality presupposes a difference in the 
epistemic insight into nature. Indeed, Guala straightforwardly admits that 
the ontological difference between experiments and simulations grounds 
epistemological differences (2002, 63). His loyalty to the materiality 
principle is unquestionable: there is a clear distinction between what we 
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can learn and understand by direct experimentation and what we can learn 
by mediated simulation. The epistemic payoff of the latter is less than the 
former, and this is because, on this view, there is an ontological 
commitment to causality as epistemically superior that determines the 
downplaying of the epistemology of computer simulations. 

Let me now consider a few objections to Guala’s point of view. Parker 
has objected that his position is too restrictive for experiments, as well as 
for computer simulations (Parker 2009, 485). I agree with her on this 
point. Guala’s conceptualization of experiments and computer simulations 
imposes artificial restrictions on both that are difficult to back up with 
examples in scientific practice. Moreover, and complementary to Parker’s 
objection, I believe that Guala is adopting a perspective that takes both 
activities as chronologically mutually exclusive: that is, the computer 
simulation becomes a relevant tool when the experimentation cannot be 
implemented. STRATAGEM, a computer simulation of stratigraphy, 
provides us with an example here: when geologists are faced with 
difficulties in carrying out controlled experiments about strata formation, 
they appeal to computer simulations as the most efficacious replacement 
(2002, 68).6 Such a tendency towards a disjunctive assessment of the two 
activities is a natural consequence of taking computer simulations to be 
epistemically inferior to experimentation. In other words, it is a natural 
consequence of adopting the materiality principle. 

The Weak Version 

For a proponent of the weak version, I turn to the work of Mary 
Morgan. She has presented the richest and most exhaustive analysis 
currently to be found in the literature regarding the differences between 
experiments and computer simulations. 

Morgan’s primary concern is with so-called vicarious experiments, that 
is: 

Experiments that involve elements of nonmateriality either in their objects 
or in their interventions and that arise from combining the use of models 
and experiments, a combination that has created a number of interesting 
hybrid forms. (2003, 217) 
 

                                                 
6 Guala allows that experiments and computer simulations are appropriate research 
tools, knowledge-producers as he calls them, although only for different contexts 
(2002, 70). 
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Having thus set out the features of vicarious experiments, she then 
turns to the question of how they provide an epistemic basis for empirical 
inference. Briefly, the more ‘stuff’ is involved in the vicarious experiment, 
the more epistemically reliable it becomes. In plain words, degrees of 
materiality determine degrees of reliability. As Morgan comments: “on 
grounds of inference, experiment remains the preferable mode of enquiry 
because ontological equivalence provides epistemological power” (2005, 
326).  

Morgan thus adheres to the weak version, because a vicarious 
experiment is characterized by different degrees of materiality, as opposed 
to the strong version that holds that experiments must be a ‘piece’ of the 
world. In terms of the materiality principle, however, there are no 
fundamental differences between the two versions: she also considers 
ontology to determine the epistemological value of computer simulations. 
The difference lies, again, in the detailed analysis of the different kinds of 
experiments involved in scientific practice. Let me now briefly address her 
account. 

As noted above, vicarious experiments can be classified according to 
their degree of materiality; that is, the different degrees to which the 
materiality of an object is present in the experimental setup. Table 4-1 
summarizes four classes of experiments: Ideal laboratory experiment (also 
referred as a material experiment), two kinds of hybrid experiments, and 
finally mathematical model experiment. As the table indicates, the 
classification is in terms of the kind of control exerted on the class of 
experiment, the methods for demonstrating the reliability of the results 
obtained, the degree of materiality, and the representativeness of each 
class.  

The first and last classes are already well known to us: an example of 
an ideal laboratory experiment is the beam of light, for it requires effort by 
the scientist to isolate the system, rigorous attention to the control of the 
interfering circumstances, and intervention under these conditions of 
control. An example of the mathematical model experiment, on the other 
hand, would be the famous mathematical problem of the seven bridges of 
Königsberg; that is, a class of experiment whose control requirements are 
achieved by simplifying assumptions, whose demonstration method is via 
a deductive mathematical/logical method, and one whose materiality is, as 
expected, inexistent (2003, 218).  

Among the number of ways in which these two classes of experiment 
differ, Morgan emphasizes those constraints imposed naturally via 
physical causality, and those imposed artificially via assumptions:  
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The agency of nature creates boundaries and constraints for the 
experimenter. There are constraints in the mathematics of the model, too, 
of course, but the critical point is whether the assumptions that are made 
there happen to be the same as those of the situation being represented and 
there is nothing in the mathematics itself to ensure that they are. (2003, 
220) 

 
 Ideal lab   Mathematical  

 experiment  Hybrid experiments  model experiment  

  Virtually  Virtual   
     
Controls on:      
Inputs  experimental  experimental on  assumed  assumed  
Intervention  experimental  inputs; assumed  assumed  assumed  
Environment  experimental  on intervention  assumed  assumed  
  and environment    
     
Demonstration  experimental  simulation: experimental/  deductive  

method  in laboratory  mathematical using model object  in model  
     
Degree of materiality of:  
Inputs  material  semimaterial  nonmaterial  mathematical  
Intervention  material  nonmaterial  nonmaterial  mathematical  
Outputs  material  nonmaterial  non- or  mathematical  
   pseudo-material  
    
Representing  representative of...   representation of...  
and Inference  ... to same in world  ... back to other kinds of  
Relations  representative for...   things in the world  
 ... to similar in world   
 
Table 4-1: Types of experiment: Ideal laboratory, hybrids, and 
mathematical models with representing relations (Morgan, 2003, 231)  

Hybrid experiments, meanwhile, can be conceived as experiments in-
between the other two: they are neither material nor mathematical.7 The 
class of virtually experiments, then, are understood as those “in which we 
have nonmaterial experiments on (or with) semimaterial objects,” whereas 
virtual experiments are those “in which we have nonmaterial experiments 
but which may involve some kind of mimicking of material objects” 

                                                 
7 “By analyzing how these different kinds of hybrid experiments work, we can 
suggest a taxonomy of hybrid things in between that include virtual experiments 
(entirely nonmaterial in object of study and in intervention but which may involve 
the mimicking of observations) and virtually experiments (almost a material 
experiment by virtue of the virtually material object of input)” (2003, 232). 
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(2003, 216). Table 4-1 again summarizes the properties of all four kinds of 
vicarious experiments showing their representing and inference relations. 

The differences between virtually and virtual experiments can be 
illustrated with the example of a cow hipbone used as surrogate for the 
internal structure of human bones. In this context, there are two 
alternatives: one can use a high-quality 3-D image of the hipbone that 
creates a detailed map of the bone structure, or, alternatively, a 
computerized 3-D image of the stylized bone; that is, a computerized 3-D 
grid representing the structure of the stylized bone. According to Morgan, 
the 3-D image has a higher degree of verisimilitude to the structure of the 
real hipbone because it is a more faithful representation of it, as opposed 
to the mathematization represented by the computerized 3-D grid (2003, 
230). The former is referred to as virtually an experiment, whereas the 
latter are called virtual experiments. 

What are the differences among the kinds of experiment? As 
expounded in Table 4-1, whereas a virtually experiment is semi- or 
nonmaterial, an ideal laboratory experiment is strictly material. Also the 
demonstration methods are also significantly different. The distinction 
between a virtual experiment and a mathematical model, on the other 
hand, seems to be located solely in the method of demonstration, which is 
experimental for the former and deductive for the latter. Morgan also 
shows how models of stock market prices, despite being mathematical 
models simulated on a computer, can also be classed as a virtual 
experiment on account of the input data and the observation of results 
(2003, 225). The boundaries between all four classes of experiment, 
however, seem to be unfixed and dependent on factors external to the 
experiment in question. For instance, if a 3-D grid of the cow bone makes 
use of real measurements of the cow bone as input data, then what was 
originally a virtual experiment becomes virtually an experiment. 

The epistemological analysis, on the other hand, is a function of the 
degree of materiality of the class of experiment: “ontological equivalence 
provides epistemological power” (2005, 326), as Morgan indicates. Back 
inference to the world from an experimental system can be better justified 
when the experiment and the target system are of the same material. As 
Morgan explains: “the ontology matters because it affects the power of 
inference” (2005, 324). A computer simulation, for instance, cannot test 
theoretical assumptions of the represented system because it has been 
designed for delivering results consistent with built-in assumptions. A 
laboratory experiment, on the other hand, has been explicitly designed for 
letting the facts about the target system ‘talk’ by themselves. According to 
Morgan, then, it is the material substratum underlying an experiment that 
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is responsible for its epistemic power. Hence, the ideal laboratory 
experiment is epistemically more powerful than a virtually experiment; in 
turn, a virtually experiment is more powerful than a virtual experiment, 
and so on. Since computer simulations can only be conceived as hybrid 
experiments or as mathematical experiments, it follows that they are 
always less epistemically powerful than ideal laboratory experiments. To 
Morgan’s mind, therefore, there are degrees of materiality that determine 
the degrees of epistemic power. 

In this context, Morgan uses the terms surprise and confound to depict 
the epistemic states of the scientist regarding the results of a computer 
simulation and of a material experiment, respectively. Results of a 
computer simulation can only surprise the scientist because its behavior 
can be traced back to, and re-explained in terms of, the underlying model. 
A material experiment, on the other hand, can surprise as well as confound 
the scientist, for it can bring up new and unexpected patterns of behavior 
inexplicable from the point of view of current theory (2005, 325; 2003, 
219). The materiality of the experiment, then, works as the epistemic 
guarantee that the results may be novel, as opposed to the simulation, 
which takes results as capable of being explained in terms of the 
underlying model. 

This shows how Morgan’s ideas regarding experiments and computer 
simulations bear the stamp of the materiality principle. It exhibits the same 
rationale, putting materiality as the predominant feature for epistemic 
evaluation. Despite Morgan’s strong emphasis on the place that materiality 
has in the discovery of new phenomena, there are examples of virtual 
experiments whose epistemic power is clearly superior to any ideal 
laboratory experiment. Take as a simple example the dynamics of the 
micro fracture of materials. It is virtually impossible to know anything 
about micro fractures without the aid of computers. Indeed, only the 
computational efficiency of finite element methods and multi-scale strong 
discontinuity can tell us something about the micro fractures of materials 
(Linder 2012). The lesson is that understanding something about the world 
do not necessarily comes from material experiments, or from any degree 
of materiality whatsoever. Neither a field experiment nor a high-definition 
3-D image would provide the understanding about the dynamics of micro 
fractures that can be provided by an accurate mathematical model. The 
conclusion is that the rationale behind the materiality argument is once 
more misdirecting us regarding the epistemic power of computer 
simulations. 
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Models as (Total) Mediators  

The last account in my list is the one I called ‘models as (total) 
mediators.’ As the title suggests, this account is directly influenced by 
Morgan and Morrison’s Models as Mediators (2009). Briefly, their book is 
a defense of the mediating role of models in scientific practice. It 
considers that scientific practice is neither driven by theories, nor is purely 
about direct manipulation of Nature. Instead, scientific practice needs the 
mediation of models in order to be successful in achieving its goals. A 
theory, then, cannot be directly applied to the phenomenon, but only by 
means of the mediation of a model; similarly, in experimental practice, 
models render data from measurements and observations in a form that is 
available for scientific use. In the following, I focus on the mediating role 
of models in experimental practice, since the proponent of the models as 
(total) mediators approach is more interested in analyzing computer 
simulations in the light of experiments. I will thus leave the mediating role 
of models in the context of theory unanalyzed. 

Now, according to the proponent of the models as (total) mediators 
account, experimental practice consists in obtaining, by manipulation of 
the phenomenon, data that inform us about certain properties of interest. 
This data, however, is in such a raw state that it is impossible to consider it 
reliable or representative of the properties measured or observed. Rather, 
for these raw data to be of any scientific use, it is necessary to further 
process it by filtering out noise, correcting values, implementing error-
correcting techniques, and so forth. These correcting techniques are 
conducted by theoretical models and, as such, are responsible for rendering 
reliable data. 

Scientific practice, then, is conceived as strongly mediated by models; 
and scientific knowledge is no longer obtained uniquely by our 
intervention into the world, but also by the conceptual mediation that the 
model–world relation represents. In this vein, the epistemic analysis now 
concerns the data filtered out, corrected, and refined by models, rather than 
the raw data collected by directly manipulating Nature. 

Computer simulations should easily fit into this new image of scientific 
practice. One might think that since they are conceived as models 
implemented on the digital computer, then their results must be data 
produced by a reliable model in a straightforward sense. Unfortunately this 
is not what the proponent of models as (total) mediators has in mind. To 
them, it is correct to say that computer simulations are models running on 
a digital computer, and it is also correct to say that there is no intervention 
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into the world in the empiricist’s sense.8 Nevertheless the data obtained by 
running a simulation are ‘raw’ in the same sense as the data collected by a 
scientific instrument.9 The reason for this is that there are material features 
of the target system that are being modeled into the simulation, and thus 
represented in the final simulated data (Morrison 2009, 53). Simulated 
data, then, need to be post-processed by a further theoretical model, just in 
the same way as raw data. In other words, simulated data must also be 
filtered, corrected, and refined by another set of models in order to 
produce data that can be reliably used in scientific practice. Ontologically 
speaking, then, there are no differences between data produced by a 
scientific instrument and data produced by a computer simulation. In 
addition, the proponent of this approach takes that there are no epistemic 
differences between these two kinds of data either.  

 
Let me now elaborate on these points by appealing to the work of 

Margaret Morrison. In 2009, she published a fundamental contribution to 
the debate on measurement in the context of computer simulations. In that 
work, she claimed that certain types of computer simulations have the 
same epistemic status as experimental measurements precisely because 
both kinds of data are ontologically and epistemically comparable. 

To illustrate this point, let us briefly consider her example of 
measuring the force g.10 In an experimental measurement, Morrison 
argues, a scientific instrument measures a physical property up to a certain 
degree of precision, although such measurement will not necessarily 
reflect an accurate value of that property. The difference between precision 
and accuracy is of paramount importance for Morrison here: whereas the 
former is related to the experimental practice of intervening in nature (or 
computing the model in the simulation), the latter is related to the 
mediation of models as rendering reliable data. In this context, a precise 

measurement consists of a set of results wherein the degree of uncertainty 
in the estimated value is relatively small (2009, 49); on the other hand, an 
accurate measurement consists of a set of results that are close to the true 
value of the measured physical property.11 

                                                 
8 I am using the term empiricists in a rather loose way. Here, I refer only to the 
epistemic attitude of knowing the world by causally intervening or manipulating it. 
9 In order to keep these two notions of data separate, I will continue referring to 
data collected by the scientific instrument as ‘raw data,’ while I will refer to the 
data obtained by running the computer simulation as ‘simulated data.’ 
10 Morrison also discusses the more sophisticated example of spin measurement 
(2009, 51). 
11 The difference between precision and accuracy is framed by Franklin in the 
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The distinction between these two concepts constitutes the cornerstone 
of Morrison’s strategy: data collected from experimental instruments only 
provide precise measurements of g, whereas reliable measurements must 
first and foremost be accurate representations of the value measured. It is 
in this context that Morrison considers that raw data must be post-
processed in the search for accuracy (for the particular case of measuring 
g, Morrison proposes the ideal point pendulum as theoretical model). 

From Morrison’s perspective, then, the reliability of the measured data 
is a function of the level of accuracy, which depends on a theoretical 
model rather than on the scientific instrument or on the computer 
simulation. 

 
The calculation generates a large amount of data which requires that they 
be appropriately modelled in order to render them interpretable. Only by 
doing that can we say that the computer experiment, like an ordinary 
experiment, has measured a particular quantity. In both cases models are 
crucial. And, just as in the pendulum example where we are interested in 
both the precision and accuracy, similar concerns arise for simulation 
where the precision of the machine and the behaviour of apparatus is 
related to the observed properties of the microscopic system. (2009, 53) 
 
Computer simulations, just like scientific instruments, share the same 

fate of being precise but not accurate—for the latter, it is because of the 
physical constraints related to manipulating the real world; for the former, 
it is because of the fact that a computer simulation implements the 
physical constraints of the target system as well as the physical constraints 
of the machine itself (e.g., round-off errors, truncation errors, and so 
forth). The precision/accuracy dichotomy, then, applies to computer 
simulations just as it does to experimental measurement, making both 
practices ontologically equal at the level of precise data, and epistemically 
equal at the level of accurate data. The materiality argument is also present 
here: equal ontology determines equal epistemology. And this was 
precisely the intention behind Morrison’s analysis: “the connection 
between models and measurement is what provides the basis for treating 
certain types of simulations outputs as epistemically on a par with 
experimental measurements, or indeed as measurements themselves” 
(2009, 36).  

                                                                                                      
following example: “a measurement of the speed of light, c = (2.000000000 ± 

0.000000001) x 1010 cm/s is precise but inaccurate, while a measurement c = (3.0 

± 0.1) x 1010 cm/s is more accurate but has a lower precision” (Franklin 1981, 
367n1). 



The Use of the ‘Materiality Argument’ 95

Thus interpreted, Morrison is applying a philosophy of modeling and 
experimentation onto a philosophy of computer simulations. This is also a 
consequence of following the materiality principle; that is, there is no 
analysis provided of computer simulations in itself, but only in the light of 
a more familiar philosophy. By making raw data and simulated data 
ontologically equal, and the post-processing a further epistemic step, 
Morrison is applying model techniques to computer simulations, 
regardless of the particularities of the latter. With this move in mind, 
Morrison also narrows down the class of computer simulations to those 
that are used as measuring devices; and in doing so, she is narrowing 
down the epistemic analysis to those simulations.  

There is a further concern about Morrison’s argument. According to it, 
simulated data need post-processing. The claim considers simulated data 
as if they were not model data in a straightforward sense, but rather raw 
data as obtained by experimentation. A computer simulation, however, 
consists of a series of nested models that produce a final output, and 
therefore the data produced by a simulation is already accurate as regards 
the value measured. In this vein, there is no need to postulate any further 
post-processing step, as Morrison does. However, let us accept for a 
moment the argument that simulated data needs to be post-processed. If 
this were the case, Morrison’s argument faces another challenge. Given 
the fact that computer simulations produce vast amounts of data, arguing 
for a separate correcting process such as post-processing begs the question 
about a possible ‘computer regress’; that is, the need for another computer 
model capable of processing the initial simulated data. This new computer 
model would fix some inaccuracies in the original data, but would also 
introduce new ones, since the same physical constraints apply to this new 
processing stage. It then seems reasonable to be concerned about a 
possible infinite regress of post-processing simulated data. To my mind, 
there are no other motivations for thinking about post-processed simulated 
data except for Morrison’s interest in analyzing computer simulations in 
the light of scientific experimentation, which is an unnecessary 
precondition for the epistemological analysis of computer simulations. 

Conclusions 

I have discussed three different views of how philosophers currently 
understand the epistemological study of computer simulations. I have 
shown that all three make use of the same rationale as the guide for their 
argumentation. I called this rationale the materiality principle, and I 
conceptualize it as the philosophers’ commitment to an ontological 
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account of computer simulations (and experimentation) that determines 
the evaluation of their epistemic power. 

The aim of this paper was to show that the materiality principle is a 
rationale shared by many philosophers working on the epistemology of 
computer simulations. It was also the aim of this paper to alert us to the 
possible consequences of allowing the philosophical discussion to be so 
diverted. In this vein, I have suggested that adapting our philosophical 
investigations in line with the materiality principle might be placing a 
conceptual corset on inquiries regarding the epistemology of computer 
simulations. In this context, I distinguished three viewpoints that conform 
to this rationale, and set out the various restrictions that they place on the 
epistemological analysis of computer simulations. 

The first two views were rejected on the grounds that they purport 
internal inconsistencies in the conceptualizations of experiments and 
computer simulations. The objection to the ‘identity of the algorithm’ is 
that it makes implausible claims regarding the ontology of computing 
machines; whereas the objection to the strong version of the ‘materiality 
stuff as criterion’ is that misplaces the role of computer simulations in 
scientific practice. I also claimed that the materiality principle is the 
underlying motive for these inconsistencies. On the other hand, the weak 
version of the ‘materiality stuff as criterion’ and the ‘models as (total) 
mediators’ views are, to my mind, the most promising interpretations of 
experimental as well as computational practice. However, as I showed, 
neither account directly addresses the epistemology of computer 
simulations. Rather, they reduce it to the epistemology of semi-material 
experiments (weak version of the ‘materiality stuff as criterion’), or to 
scientific modeling via measurement (‘models as (total) mediators’). 

The conclusion is that philosophers who accept the materiality 
principle are less likely to recognize what is distinctive about the 
epistemology of computer simulations than those who do not. Of course, I 
am not urging the adoption of an entirely new epistemology, enlightened 
and guided by computer simulation, as Frigg and Reiss have proposed 
(2009). My conclusion is more modest, and aims to encourage certain 
changes in the philosophical inquiry on computer simulations. For 
instance, Barberousse et al. (2009) have made a central contribution to the 
notion of computer-simulated data, and Humphreys has followed their 
work by analyzing the notion of data in more detail (this volume). 
Nevertheless, more work needs to be done and, to my mind, it must begin 
by reconsidering certain classic topics in the philosophy of science 
through the lens of computer simulations. In this sense, a review of 
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traditional notions of explanation, prediction, confirmation, evidence, and 
the like might work as the starting point. 

Evidently, there is a way of doing philosophy of science that is 
strongly grounded on empirical inquiry exemplified by experimentation. 
The guiding epistemic principle is that the ultimate source of knowledge is 
given by interaction with and manipulation of the world. However, the 
continuous success of computer simulations is calling these principles into 
question: first, there is a growing tendency towards representing rather 
than intervening into the world; second, computational methods are 
pushing humans away from the center of the epistemological enterprise 
(Humphreys 2009, 616). The philosophical inquiry on the epistemological 
power of computer simulations has thus been misguided, for some 
philosophers are still maintaining a false dichotomy between experiment 
and computer simulation while ignoring the fact that scientific practice has 
already transcended this division. 
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