

UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES

ASIGNATURA: PRÁCTICA SUPERVISADA

INFORME TRABAJO FINAL

Título: Provisión de Agua Potable para la localidad de Villa Ciudad Parque Los Reartes

Autor: LÉPORE, Mauricio Eduardo

Tutor: Ing. Civil PORCHIETTO, Hugo

Supervisor Externo: Ing. Civil BRAVO, Gonzalo

RESUMEN

A lo largo de este informe se desarrolla el proyecto para dar solución a la provisión de agua potable a la localidad de Villa Ciudad Parque Los Reartes ubicada en el departamento Calamuchita de la provincia de Córdoba.

Este proyecto se encuentra compuesto por una toma de agua ubicada en el subálveo del río Los Reartes que escurre sobre la margen oeste de la mancha urbana, una planta de potabilización donde se realizarán principalmente los procesos de floculación, decantación, filtración rápida y desinfección, y el sistema de almacenamiento de agua ya potabilizada.

A su vez, el proyecto comprende las cañerías de impulsión tanto desde la obra de toma en el río hasta la planta de tratamiento como la correspondiente al abastecimiento de las correspondientes cisternas desde dicha planta para luego desde estas alimentar la red de distribución.

El presente informe se encuentra dividido en diferentes capítulos que abarcan desde la descripción del lugar de emplazamiento de la obra y la situación actual del servicio, pasando luego por el cálculo de cada una de las partes componentes de la obra a desarrollar y finalmente un capítulo de conclusiones.

Por último, se presenta un anexo con los planos correspondientes a cada elemento del sistema donde se puede observar de manera gráfica el resultado del proyecto.

1

ÍNDICE

ÍNDICE GENERAL

CAPÍTULO 1: INTRODUCCIÓN	4
CAPÍTULO 2: CONCEPTOS PREVIOS	5
2.1. SISTEMAS DE ABASTECIMIENTO DE AGUA POTABLE	5
2.2. NORMATIVA – ENOHSA (ENTE NACIONAL DE OBRAS HÍDRICAS DE SANEAMIENTO)	5
2.3. ASPECTOS A CONSIDERAR EN UN PROYECTO	
2.4. ESTUDIOS PRELIMINARES	7
2.4.1. Recopilación de antecedentes y estudios de campo	7
2.4.2. Trabajo y estudios de gabinete – Parámetros básicos de diseño	
2.5. ALMACENAMIENTO Y REGULACIÓN DE LA PRESIÓN	
2.5.1. Capacidades de las cisternas y tanques	14
2.5.1. Proyecto de cisternas y tanques	14
2.6. EPANET	
2.6.1. Características del programa	15
2.6.2. Características del modelo hidráulico	15
2.6.3. Componentes físicos	16
2.6.4. Componentes no físicos	
2.6.5. Modelo de simulación hidráulica	
2.6.6. Hipótesis y ecuaciones utilizadas en EPANET	
2.6.7. Ecuaciones de comportamiento en tuberías	21
CAPÍTULO 3: LOCALIDAD DE VILLA CIUDAD PARQUE LOS REARTES	23
3.1. DESCRIPCIÓN GENERAL	23
3.2. ESTADO ACTUAL DEL SERVICIO	24
3.3. RÍO LOS REARTES	25
CAPÍTULO 4: CAPITULO 4: MEMORIA DE CALCULO	26
4.1. PARÁMETROS DE DISEÑO:	26
4.1.1. Período de Diseño	26
4.1.2. Población de Diseño	26
4.2. CAUDALES DE DISEÑO	38
4.3. TOMA SUBÁLVEA	39
4.3.1. Cálculo de la captación de agua	39
4.3.2. Cañería de aducción de alimentación al pozo de bombeo	40
4.3.3. Pozo de bombeo	
4.4. CAÑERÍA DE IMPULSIÓN DE AGUA CRUDA	
4.4.1. Esquemas y Planillas de Cálculo	42
4.4.2. Desarrollo del cálculo	
4.4.3. Válvulas de aire y Cámaras de desagüe y limpieza	46
4.4.4. Cálculo de Sobrepresiones sobre cañería de impulsión	
4.5. PLANTA POTABILIZADORA DE AGUA	
4.5.1. Sistema de Tratamiento Adoptado:	
4.5.2. Parámetros de diseño:	
4.5.3. Cámara de carga:	
4.5.4. Cámara de carga de floculadores	
4.5.5. Floculadores de eje vertical	
4.5.6. Decantadores a placa plana inclinada	
4.5.7. Conductos de agua decantada	F.C
4.5.8. Tolva de barro de decantadores	58

ANEXO I: PLANOS	82
BIBLIOGRAFÍA	81
5.2. PARTICULARES	80
5.1. GENERALES	
CAPÍTULO 5: CONCLUSIONES	80
4.6.2. Cálculo de Sobrepresiones sobre cañería de impulsión	77
4.6.1. Válvulas de aire y Cámaras de desagüe y limpieza	
4.6.2. Desarrollo del cálculo	
4.6.1. Esquemas y Planillas de Cálculo	
4.6. CAÑERÍA DE IMPULSIÓN DE AGUA TRATADA	
4.5.11. Residuos generados en los procesos de la planta de potabilización	
4.5.10. Conducciones y comunicaciones de filtros rápidos	62

CAPÍTULO 1: INTRODUCCIÓN

El presente informe persigue describir y analizar las tareas llevadas a cabo con el fin de dar solución a la demanda de agua potable en la localidad de Villa Ciudad Parque Los Reartes, ubicada en el departamento Calamuchita de la provincia de Córdoba. Dicho trabajo se realiza a modo de práctica profesional supervisada, instancia final para la obtención del título universitario de Ingeniero Civil en la Universidad Nacional de Córdoba.

La labor realizada se basó fundamentalmente en la aplicación de los conocimientos adquiridos en la Facultad de Ciencias Exactas, Físicas y Naturales, principalmente en la materia de "Ingeniería Sanitaria" y complementados con aportes de materias afines a la hidráulica. Las mismas fueron desarrolladas formando parte de un equipo de trabajo conformado por ingenieros civiles y otros estudiantes avanzados de la misma carrera, y bajo la supervisión tanto del tutor externo, el ingeniero civil Gonzalo Bravo, como del tutor interno, el ingeniero civil Hugo Porchietto.

La decisión del tema a abordar se debe esencialmente a la importancia de que posee un recurso tan valioso como como el agua potable en la vida cotidiana de una población. Por lo cual, se consideró apropiado exponer el diseño y cálculo de un sistema de provisión conformado por: Obra de Toma, Impulsión de agua cruda, Planta potabilizadora, impulsión de agua potable y Tanques de reserva, de manera de garantizar un servicio en condiciones de calidad y cantidad adecuadas.

Pasando a lo que se refiere a la forma en que se estructura el texto subsiguiente, el mismo cuenta con: un marco teórico (Capítulo 2) en el cual se detallan conceptos básicos sobre los sistemas de abastecimiento de agua potable, normativa existente y el software utilizado para la modelación de cañería a presión; posteriormente, en el Capítulo 3, se encuentra una descripción del lugar de emplazamiento de las obras y el estado actual del servicio; a continuación de este último, en el Capítulo 4, se desarrollan todos los cálculos llevados a cabo para la solución adoptada; por último, se encuentra el Capítulo 5 en el cual se exponen una conclusión final y observaciones en base a la experiencia llevada a cabo.

CAPÍTULO 2: CONCEPTOS PREVIOS

2.1. SISTEMAS DE ABASTECIMIENTO DE AGUA POTABLE

Un sistema de abastecimiento de agua potable es el conjunto de obras, equipos y servicios destinados al suministro de agua potable para consumo doméstico, industrial, servicios públicos y otros usos.

Para la elaboración de un proyecto de abastecimiento de agua, es necesario realizar estudios de campo, de laboratorio y de gabinete, para un correcto dimensionado o análisis que considere las necesidades actuales de consumo y las futuras, contemplando la posibilidad de la construcción por etapas o modular.

Un sistema de abastecimiento de agua comprende:

- Captación o toma de agua.
- Conducción principal de agua cruda.
- Tratamiento de potabilización.
- Tanques de almacenamiento y/o distribución.
- Red de distribución.
- Estaciones de bombeo, en caso de ser necesarias.

Para el diseño de estos sistemas son requisitos básicos la fijación de la cantidad de agua a suministrar, que determinará la capacidad de las distintas unidades del proyecto total, el relevamiento planialtimétrico, estudios sobre la calidad y la cantidad de agua disponible en las distintas fuentes cercanas, conocimiento del suelo y el subsuelo y todos los antecedentes que se consideran indispensables para la ejecución para la elección de la solución más adecuada y la preparación de presupuestos ajustados a la realidad.

2.2. NORMATIVA – ENOHSA (ENTE NACIONAL DE OBRAS HÍDRICAS DE SANEAMIENTO)

El ENOHSa es un organismo descentralizado del Estado Nacional dotado de personería jurídica y autarquía administrativa. Fue creado en 1995 por la Ley 24.583, y se desenvuelve en el ámbito de la Secretaría de Infraestructura y Política Hídrica del Ministerio del Interior, Obras Públicas y Vivienda.

La misión del ENOHSa es:

 Organizar, administrar y ejecutar programas de infraestructura que deriven de las políticas nacionales del sector agua potable y saneamiento básico, en toda la extensión del territorio del país.

- Mejorar la calidad de vida de las personas a través de la asignación eficaz y
 eficiente de los recursos del estado en el sector agua potable y saneamiento
 básico.
- Concientizar acerca del uso y cuidado del agua.
- Transparentar la gestión y el uso de los recursos asignados.

Dichas políticas y programas deberán comprender, armonizar y coordinar las estrategias y acciones provinciales y municipales, tanto sean públicas como privadas, que estuvieren orientadas al mismo objetivo y sean tendientes a promover:

- La expansión y explotación de los servicios, asegurando el acceso universal, el uso racional del recurso medio ambiente, la calidad de los productos y prestaciones, y la aplicación de tarifas justas y equitativas que permitan la sostenibilidad y expansión de los sistemas.
- La regulación y control de los servicios, preservando equilibradamente los derechos y obligaciones de los titulares de los sistemas, de los usuarios y de los prestadores (públicos y privados).
- La integración y participación de empresas públicas y privadas, cooperativas, entidades comunitarias y trabajadores de la actividad en la gestión de servicios y en el financiamiento de su optimización y crecimiento en términos de sustentabilidad de y eficiencia.

En el presente trabajo se transcriben aquellos requerimientos que deben considerarse al elaborar proyectos y que son enunciados por el Ente Nacional de Obras Hidráulicas de Saneamiento (ENOHSa) en su Guía para la Presentación de Proyectos de Agua Potable – Criterios Básicos.

2.3. ASPECTOS A CONSIDERAR EN UN PROYECTO

En el caso de sistemas de agua potable un proyecto debe tener un enfoque integral, que debe comprender en forma simultánea un conjunto de actividades relacionadas con el mejoramiento comercial, el mejoramiento operativo, la optimización, rehabilitación y ampliación de las instalaciones existentes, la ejecución de nuevas instalaciones y el fortalecimiento del ente prestador del servicio de agua potable.

El proyecto puede integrar un sistema local o regional, tanto desde el punto de vista de la captación como del tratamiento. Se debe basar en un diagnóstico integral y debe considerar todas las partes componentes, obras, instalaciones y equipos del sistema en su conjunto, tanto para sistemas nuevos como para la ampliación o rehabilitación de sistemas existentes.

2.4. ESTUDIOS PRELIMINARES

2.4.1. Recopilación de antecedentes y estudios de campo

La recopilación de antecedentes provee elementos básicos para la elaboración de un proyecto. En dicha etapa se deberá obtener información de los organismos oficiales, la que además deberá ser confirmada por los estudios de campo correspondientes.

Aspectos físicos:

- Topográficos
 - Recopilación de mapas, fotografías aéreas e imágenes satelitales si las hubiera.
 - Recopilación de planos con la red actual de la ciudad.
 - Datos geométricos de las cañerías utilizadas
- Edafológicos
 - o Déficit/exceso de agua en el suelo.
 - Red de drenaje natural y artificial.
- Geotécnicos
 - o Estudios geotécnicos existentes.
 - Posición del nivel freático.

Características de las fuentes de abastecimiento de agua:

Es necesario a la hora de realizar un análisis saber con exactitud:

- Caudales que puede aportar cada una de las fuentes.
- Obras existentes y otros usos de las fuentes.
- Cantidad de conexiones de agua potable existentes.
- Disponibilidad del recurso, capacidad máxima, media y mínima.
- Información específica requerida por los modelos a emplear.

Aspectos socio-económicos y demográficos:

- Población actual y evolución demográfica histórica según los diferentes censos nacionales y provinciales, así como apreciaciones demográficas municipales necesarias para realizar los estudios demográficos.
- Población de verano, turística, temporaria y rotación de la población turística.
- Ubicación e importancia de los establecimientos industriales, comerciales y oficinas públicas. En caso de parques industriales y/o grandes industrias es importante conocer el consumo de a agua a fin de considerarlo como gasto puntual en el diseño del sistema.

Infraestructura urbana:

Toda información sobre el desarrollo urbano actual y futuro del área a abastecer será indispensable para establecer las áreas a servir y los caudales de diseño usados. A tal fin se deberá contar con:

- Zonas hacia las cuales tiende a desarrollarse la localidad.
- Distribución espacial de las viviendas y baldíos en la planta urbana.

Abastecimiento actual de agua:

Se debe estudiar la siguiente información:

- Calidad del agua para consumo humano, ya sea proveniente de fuentes subterráneas, de cursos superficiales y/o de planta potabilizadora.
- Planos de la red de agua potable con ubicación planialtimétrica de las tuberías acotadas respecto a la línea municipal. Planos y ubicación de la planta potabilizadora y de las instalaciones complementarias, estaciones de bombeo, reservas, etc. Radio servido actual y futuro. Horizonte del proyecto. Capacidad de las fuentes, de la planta y de las conducciones, actual y prevista. Posibilidades de ampliación.
- Evolución del número de conexiones y de la población servida en los últimos años. Comparación con la población total.
- Identificación de grandes consumidores de agua potable con el objeto de determinar la ubicación de los grandes consumos de agua potable comerciales y/o industriales.
- Estado de las instalaciones y como se atiende la demanda del servicio.
- Características del organismo que presta el servicio de abastecimiento de agua.

2.4.2. Trabajo y estudios de gabinete - Parámetros básicos de diseño

Una vez realizada la recopilación de antecedentes y el relevamiento de campo, en gabinete se realizará el ordenamiento de la información recogida y se la analizará a fin de tomar las decisiones respecto a la solución a adoptar y el análisis de la misma.

Periodo de previsión o diseño:

Se considera periodo de diseño al tiempo, la actualidad y el momento en que por agotamiento de materiales o por falta de capacidad para prestar eficientemente el servicio, se agota la vida útil de las obras no cumpliéndose las condiciones ideales de funcionamiento.

El manual del Ente Nacional de Obras Hídricas de Saneamiento brinda al proyectista la tabla que se adjunta, como guía para establecer el periodo de diseño de cada unidad componente del sistema:

Sector	Período de diseño en años
Ciatamas da cantación	20 (Superficiales)
Sistemas de captación	10 (Pozos)
Líneas de impulsión	15
Plantas de potabilización	
Obras civiles básicas	20
Obras civiles del Módulo de tratamiento	10
1° etapa	-
Instalaciones electromecánicas	10
Tanque y Cisternas de Almacenamiento	10
Redes de distribución	15
Estaciones de bombeo	
Obras civiles	20
Instalaciones electromecánicas	10
Medidores Domiciliarios	5 a 8

Proyecciones de población:

En general, es bastante incierto el cálculo del desenvolvimiento de la población de una ciudad en cuanto al número de habitantes, pues diversos factores pueden influir en este crecimiento tanto espacial como temporal y/o estacionalmente.

Las poblaciones crecen por el movimiento vegetativo dado por la diferencia entre nacimientos y defunciones, pero además crecen o decrecen por movimientos migratorios en función de mayor confort, atracciones laborales o educativas, etc.

Métodos de cálculo de proyección demográfica:

Las obras de saneamiento poseen una vida útil, por lo que hay que diseñarlas, proyectarlas y dimensionarlas para que presten servicio eficiente hasta el fin de ese periodo. Por ello, la correcta proyección de la población futura es fundamental para la estimación de las caudales de diseño de cualquier obra de Ingeniería Sanitaria.

Es necesario contar con una proyección demográfica fehaciente basada en censos nacionales de población y vivienda realizados por el Instituto Nacional de Estadísticas y Censos (INDEC), así como de otras fuentes confiables.

Existen diferentes métodos a utilizar para efectuar la proyección demográfica:

 Curva logística: de aplicación en localidades que han experimentado un crecimiento acelerado, el cual posteriormente ha sufrido una atenuación observable en la estabilización de tasas de crecimiento.

- Tasas geométricas decrecientes: para localidades que han sufrido un aporte migratorio o un incremento de la población significativo en el pasado reciente, debido a factores que generan atracción demográfica y cuyo crecimiento futuro previsible sea de menor importancia.
- Relación-tendencia: se basa en la relación entre la población total del país, la de la provincia, la del partido o departamento y la de la localidad y en las tendencias de evolución que presentan las mismas.
- Incremento relativo: se fundamenta en la proporción del crecimiento absoluto de un área mayor, que corresponde a áreas menores de un determinado periodo de referencia.
- Método de los componentes: proyecta la población por sexo y grupos de edad.
 Se basa en un análisis detallado de los nacimientos, defunciones y movimientos migratorios.

Consumos

• Dotación media anual efectiva: es la cantidad de agua promedio consumida en un determinado año n por cada habitante servido por día y se expresa:

$$D_n\left(\frac{lts.}{hab.\,dia}\right) = \frac{Consumo\ total\ residencial\ durante\ el\ a\~no\ n}{365\ d\'as\ \times Poblaci\'on\ total\ servida\ al\ a\~no\ n} = \frac{V_{cresn}}{365\ d\'as\ \times P_{sn}}$$

Donde: Dn (lts./hab.día) es la dotación efectiva en el año n; Vcresn (lts.)es el volumen toral consumido por usuarios residenciales durante el año n; Psn (habitantes) es la población servida en el año n.

 Dotación media anual aparente: es el cociente entre el consumo medio diario total de agua potable del año n por cualquier concepto (consumos residenciales y no residenciales) y la población total servida exclusivamente.

$$Da_n\left(\frac{lts.}{hab.\,dia}\right) = \frac{V_{cn}}{365\,\,dias\,\,\times\,\,P_{sn}}$$

Donde: Dn (lts./hab.día) es la dotación efectiva en el año n; Vcresn (lts.)es el volumen total consumido por usuarios residenciales durante el año n; Psn (habitantes) es la población servida en el año n.

Esta dotación aparente puede usarse para realizar cálculos estimativos o comparativos.

Dotación de diseño

La dotación de consumo a utilizar como dotación de diseño media anual debe calcularse para cada caso en base a la capacidad de la fuente, la influencia del clima, las características socio-económicas y al tipo de servicio y se sus usuarios.

A continuación, se transcriben valores de dotación efectiva de consumo o de diseño media anual sugeridos por el ENOHSa para las realidades locales, los que deben ser

chequeados al momento de proyectar de acuerdo a las costumbres del lugar de proyecto:

- Surtidores públicos: 40 lts./hab.día.
- Conexiones domiciliaras con medidor: 150 a 200 lts./hab.día, con un máximo de 250 lts./hab.día cuando hay condiciones de clima semiárido o árido. (a)
- Conexiones domiciliarias sin medidor: 150 a 300 lts./hab.día.
- Conexiones para comercios, se deben justificar en función del número de empleados o locales sanitarios.
- Conexiones para industrias que produzcan alimentos destinados al consumo de la población. Se debe determinar el consumo en base al tipo de industria y al volumen de producción. Es conveniente individualizarlos e indagar el consumo real consumido.
- Para el resto de las industrias la conexión a la red debe atender la demanda para usos higiénicos y biológicos.
- Conexiones para escuelas, hospitales y hoteles, se calcula el consumo según:
 - o Escuelas: 20 a100 lts./alumno.turno.
 - o Hospitales y clínicas con internación: 200 a 300 lts./cama.día.
 - o Hoteles: 100 a 250 lts./cama.día
- (a) Los valores expuestos son consumos racionales, en lo posible deben justificarse en cada caso en base a datos de campo ya que no siempre se hace uso racional del aqua potable.
- (b) Es conveniente confirmar estos valores con los establecimientos correspondientes del lugar de proyecto.

Caudales

Las causas mencionadas que afectan el consumo de una población, no actúan simultáneamente y pueden variar a través de intervalos de tiempo, durante las horas del día, de un día respecto a otro o de una estación del año respecto a otra.

Estas fluctuaciones podrán ser fácilmente observadas cuando se cuente con un aforador o caudalímetro que mida macrométricamente los consumos de la población, de lo contrario se tendrán que estimar por comparación con localidades similares. Dichas fluctuaciones se ven reflejadas en coeficiente de relación que se incorporaran más adelante. La nomenclatura propuesta por el ENOHSa es la siguiente:

Caudal (Q)	Nomenclatura
Mínimo horario	Q_{A}
Mínimo diario	Q_B
Medio diario	Q_C
Maximo diario	Q_{D}
Maximo horario	Q_E

	Denominacion	Definicion		
Q _{An}	Caudal mínimo horario del año n	Menor caudal instantáneo del dia de menor		
		consumo de agua potable del año n.		
0-	Caudal mínimo diario del año n	Caudal medio del dia de menor consumo		
Q_{Bn}	Caudai minimo diano dei ano n	de agua potable del año n.		
	Madia diaria dal assa n	Cantidad de agua promedio consumida en		
Q _{Cn}	Q _{Cn} Medio diario del año n	el año n por cada habitante servido.		
	Caudal mavima diaria dal assa n	Caudal medio del dia de mayor consumo de		
Q _{Dn} Caudal maximo diario del año n		agua potable del año n.		
		Mayor caudal instantáneo del dia de mayor		
Q_{En}	Caudal maximo horario del año n	consumo de agua potable de ese año.		
		Caudal horario máximo absoluto del año.		

En todo proyecto se debe incluir un cuadro en el que se especifiquen los coeficientes adoptados y los valores de caudales definidos en la table precedente, para el año inicial del período de diseño (n = 0 años), el intermedio (n = 10 años) y el final (n = 20 años).

Si relacionamos los distintos caudales obtenemos los siguientes coeficientes de relación que nos serán útiles luego para determinar el caudal de diseño de cada parte de una instalación de suministro de agua potable, pues cada estructura componente del sistema se dimensiona en función de distintos caudales.

α _{1n}	Coeficiente de máximo diario del año n	$\alpha_{1n} = Q_{Dn} / Q_{Cn}$
α_{2n}	Coeficiente de máximo horario del año n	$\alpha_{2n} = Q_{En} / Q_{Dn}$
α_{n}	Coeficiente total máximo horario del año n	$\alpha_n = Q_{En} / Q_{Cn}$
β _{1n}	Coeficiente de mínimo diario del año n	$\beta_{1n} = Q_{Bn} / Q_{Cn}$
β _{2n}	Coeficiente de mínimo horario del año n	$\beta_{2n} = Q_{An} / Q_{Bn}$
βn	Coeficiente total mínimo horario del año n	$\beta_n = Q_{An} / Q_{Cn}$

En los coeficientes no se considera agua no contabilizada ni consumos puntuales concentrados.

$$\begin{split} \alpha_{1n} &= \frac{caudal \ medio \ del \ día \ de \ mayor \ consumo}{caudal \ medio \ diario \ anual} = \frac{Q_{Dn}}{Q_{Cn}} \\ \alpha_{2n} &= \frac{caudal \ máximo \ horario}{caudal \ medio \ del \ día \ de \ mayor \ consumo} = \frac{Q_{En}}{Q_{Dn}} \\ \alpha_n &= \alpha_{1n} \times \alpha_{2n} = \frac{caudal \ máximo \ horario}{caudal \ medio \ diario \ anual} = \frac{Q_{En}}{Q_{Cn}} \\ \beta_{1n} &= \frac{caudal \ medio \ del \ día \ de \ menor \ consumo}{caudal \ medio \ diario \ anual} = \frac{Q_{Bn}}{Q_{Cn}} \\ \beta_{2n} &= \frac{caudal \ mínimo \ horario}{caudal \ medio \ del \ día \ de \ menor \ consumo} = \frac{Q_{An}}{Q_{Bn}} \end{split}$$

$$eta_n = eta_{1n} imes eta_{2n} = rac{caudal\ m\'{n}imo\ horario}{caudal\ medio\ diario\ anual} = rac{Q_{An}}{Q_{Cn}}$$

Los valores de estos coeficientes pueden permanecer invariables en el tiempo o variar dependiendo de las condiciones y características del servicio bajo las que se definen.

El caudal medio diario de consumo de agua potable (Q_{Cn}) para el año n se determina teniendo en cuenta:

- Caudales medios diarios residenciales consumidos (Q_{Cresn}).
- Caudales medios diarios consumidos no residenciales originados por instituciones públicas, privadas, comercios, industrias, etc. (Q_{Cnresn}).
- Caudales medios diarios consumidos por grandes usuarios comerciales y/o industriales (Q_{Cgun}).

$$Q_{Cn} = Q_{Cresn} + Q_{Cnresn} + Q_{Cgun}$$

Los Q_{Cgun} consumidos por grandes usuarios se determinan en base a datos aportados por los mismos. Se deben considerar como gastos puntuales cuando el valor máximo horario previsto para los mismos sea igual o mayor a 5 veces el consumo máximo horario de una conexión típica de la localidad.

Cuando no existan registros confiables ininterrumpidos de al menor los 36 últimos meses de consumo de agua potable que permitan determinar los coeficientes de caudal, se pueden adoptar los valores que especifica el ENOHSa, los cuales se transcriben en la siguiente tabla:

Población servida	α _{1n}	α_{2n}	α_n	β _{1n}	β _{2n}	βn
500 hab. < P < 3.000 hab.	1,40	1,90	2,66	0,60	0,50	0,30
3.000 hab. < P < 15.000 hab.	1,40	1,70	2,38	0,70	0,50	0,35
15.000 hab. < P	1,30	1,50	1,95	0,70	0,60	0,42

Estos coeficientes van variando según costumbres y usos, por lo que se recomienda confirmar siempre con nuevas bibliografías.

2.5. ALMACENAMIENTO Y REGULACIÓN DE LA PRESIÓN

Todo sistema de agua potable debe disponer de un almacenamiento cuya finalidad básica es la de efectuar la regulación entre la producción de agua y la demanda del consumo, esencialmente variable, y de disponer de reservas estratégicas.

El dimensionamiento del almacenamiento debe contemplar:

- Las reglamentaciones locales que exijan reservas para atender las necesidades de combate de incendios.
- El volumen necesario para la regulación indicada.

 La reserva necesaria para una interrupción de energía o de las fuentes de abastecimiento. El diseño del sistema debe contemplar la instalación de cisternas enterradas o semienterradas y/o tanque elevados, con el fin de lograr la configuración más económica para el sistema de distribución.

Cuando sea necesario, los tanques elevados y las cisternas pueden, además, ser aptos para la regulación de las presiones en el sistema de distribución de acuerdo a su ubicación topográfica o a su propia elevación.

En los casos donde se justifique técnica y económicamente, la regulación de la presión puede realizarse como alternativa mediante tanques hidroneumáticos o con bombas de velocidad variable.

Cuando se trate de sistemas sectorizados en terrazas de presión debe considerarse la conveniencia de la interconexión de los sectores mediante la instalación de cámaras rompecarga o válvulas reguladoras de presión.

2.5.1. Capacidades de las cisternas y tanques

Como criterio general se establece que el volumen mínimo de almacenamiento para la regulación y para considerar una interrupción de energía o de las fuentes de abastecimiento, debe ser en todos los casos, como mínimo, el 25% del gasto medio diario para la población al horizonte de diseño, lo que representa una reserva del orden de 6 horas para ese consumo.

Reducción y/o distribución de capacidades

Puede proyectarse capacidades mínimas de almacenamiento distintas a las consignadas en el numeral anterior, siempre que se dé las razones técnico-económicas correspondientes, que a criterio del ENHOSa, justifiquen los volúmenes adoptados.

En especial, en el caso de sistemas con conducciones de escasa longitud entre el almacenamiento y el sistema de distribución, cuando se cuente con dos fuentes de energía independientes entre sí, puede disminuirse o distribuirse el volumen de almacenamiento.

Reserva contra incendio

En todos los casos debe cumplirse con las reglamentaciones locales que exijan reservas contra incendios. Cuando no existan reglamentaciones locales el ENOHSa puede exigir el cumplimiento de las exigencias de los cuerpos locales de bomberos, los que deben ser consultados formalmente por el proyectista.

2.5.1. Proyecto de cisternas y tanques

En general, por razones económicas, se deben adoptar como criterios para la ubicación de los tanques los siguientes:

• En las proximidades de la fuente de abastecimiento o de la planta de tratamiento.

- Dentro o en las cercanías de la zona de mayores consumos.
- En una zona alta de la localidad.

En todos los casos el proyectista debe justificar las razones que lo llevaron a definir la ubicación de tanques y cisternas, considerando además que preferentemente deben localizarse en cada sector de importancia en que esté subdividida la red.

La cota del fondo de tanque o de la cisterna debe garantizar, cuando corresponda, las presiones mínimas necesarias en la red de distribución.

Dado que los materiales a utilizar deben ser durables, impermeables y de resistencia estructural adecuada, las cisternas se pueden construir de hormigón armado o mampostería y los tanques elevados de hormigón armado, plástico reforzado con fibra de vidrio (P.R.F.V.) o metálicos. Queda librado, en todos los casos, a un cotejo económico la elección de uno u otro material.

2.6. EPANET

2.6.1. Características del programa

EPANET es un programa que realiza simulaciones en periodo extendido del comportamiento hidráulico y de la calidad del agua en redes de distribución a presión. Este programa determina el caudal que circula por cada una de las conducciones, la presión en cada uno de los nudos, el nivel de agua en cada tanque y la concentración de diferentes componentes químicos en la red durante un período de simulación analizado en diferentes intervalos de tiempo.

EPANET puede emplearse para multitud de aplicaciones en el análisis de sistemas de impulsión y/o distribución. Esto incluye:

- Utilización alternativa de las fuentes de suministro en sistemas que disponen de múltiples fuentes de abastecimiento.
- Variación de los esquemas de bombeo, llenado y vaciado de los depósitos.
- Uso de técnicas de tratamiento satélite, tales como la recloración en determinados depósitos de almacenamiento.
- Simulación de puntos de trabajo de sistemas de bombeo y las cañerías a presión afectadas para determinar cambios de diámetros y/o presiones nominales.

2.6.2. Características del modelo hidráulico

EPANET posee las siguientes características en relación al modelo hidráulico:

- No existe límite en el tamaño de la red.
- Calcula las pérdidas por fricción en las conducciones mediante las expresiones de Hazen-Williams, Darcy-Weisbach, Chezy-Manning.

- Incluye pérdidas menores en elementos tales como codos, acoplamientos, etc.
- Calcula la energía consumida y el costo de bombeo de las estaciones.
- Modela diferentes tipos de válvulas, incluyendo válvulas de regulación, de retención, de aislamiento, válvulas reductoras de presión, válvulas de control de caudal, etc.
- Permite el almacenamiento de agua en tanques que presenten cualquier geometría.
- Considera la posibilidad de establecer diferentes categorías de consumo en los nudos, cada una de ellas con su propia curva de modulación.
- Puede determinar el funcionamiento del sistema simplemente con el nivel de agua en el tanque y controles de tiempo o utilizar un complicado sistema de regulación temporal.

2.6.3. Componentes físicos

El programa EPANET modeliza un sistema de distribución de agua como una serie de líneas conectadas a los nudos. Las líneas representan tuberías bombas y válvulas de control. Los nudos representan conexiones, tanques y depósitos. A continuación, se describen las características de cada componente del modelo.

Conexiones

Las conexiones son puntos en la red donde se unen las líneas o por donde entra o sale el agua de la red. La información que se requiere para las conexiones es:

- Cota
- Demanda de agua
- Calidad del agua inicial

Los resultados que se obtienen de las conexiones a lo largo de toda la simulación son:

- Altura piezométrica
- Presión
- Calidad del agua

Las conexiones también pueden:

- Tener una demanda que varíe en el tiempo.
- Tener diferentes categorías de demandas asignadas
- Tener una demanda negativa indicando que el agua entra en la red.

- Ser fuente de calidad del agua por donde los constituyentes entran en la red.
- Contener emisores o aspersores haciendo que el caudal descargado dependa de la presión.

Embalses

Los embalses son nudos que representan una fuente externa de alimentación de capacidad ilimitada, o bien un sumidero de caudal. Son utilizados para modelizar lagos, ríos y conexiones a otros sistemas.

Sus principales características son su altura piezométrica y su calidad inicial para el análisis de la calidad del agua. El depósito es un punto frontera de la red, su altura y calidad del agua no pueden verse afectadas por lo que ocurra en el resto del sistema. Por lo tanto, no se ordenan características de salida. A pesar de todo, podemos hacer variar su altura con el tiempo si le asignamos un patrón de tiempo.

Depósito

Los depósitos son nudos con capacidad de almacenamiento, donde el volumen de agua almacenada puede variar con el tiempo a lo largo de la simulación.

Las principales características de los tanques son:

- Cota
- Diámetro
- Valores iniciales máximos y mínimos de agua
- Calidad del agua inicial

Los principales valores que se piden a lo largo del tiempo son:

- Nivel de la superficie libre de agua
- Calidad del agua

Los tanques operan limitados por sus niveles máximo y mínimo. EPANET detiene el aporte de caudal si el nivel del tanque está al mínimo y detiene el consumo de caudal si el nivel del tanque se encuentra en su máximo.

Tuberías

Las tuberías son líneas que llevan el agua de un punto de la red a otro.

EPANET asume que todas las tuberías se encuentran completamente llenas en todo momento y, por consiguiente, que el flujo es a presión. Los parámetros hidráulicos más importantes para las tuberías son:

Nudos de entrada y salida

- Diámetro
- Longitud
- Coeficiente de rugosidad
- Estado (abierta, cerrada o con una válvula)

Las características de la calidad del agua para las tuberías consisten en:

- Coeficiente de reacción del flujo
- Coeficiente de reacción de pared

Los principales valores que podemos obtener son:

- Caudal
- Velocidad
- Pérdidas
- Factor de fricción Darcy-Weisbach
- Variación de la velocidad de reacción a lo largo de su longitud
- Variación de la calidad del agua a lo largo de su longitud

Las pérdidas de carga en la conducción debido a la rugosidad de las paredes de la tubería pueden obtenerse utilizando las ecuaciones siguientes:

- Hazen-Williams
- Darcy-Weisbach
- Chezy-Manning

Bombas

Las bombas son elementos que aportan energía al fluido incrementando su altura piezométrica. Las características más importantes para una bomba son su entrada y salida y su curva característica (relación entre altura de presión y caudal impulsado).

El parámetro de salida más importantes es el punto de trabajo de las mismas, es decir, el caudal que aportan y la carga.

Al igual que las tuberías, las bombas pueden activarse y desactivarse en determinados momentos establecidos por el usuario o bien cuando existan ciertas condiciones en la red. El caudal que atraviesa la bomba es unidireccional, pero si las condiciones del sistema requieren que la bomba trabaje fuera de sus posibilidades, EPANET intentará desconectarla.

Válvulas

Las válvulas son líneas que limitan la presión y el caudal en puntos específicos de la red. Sus principales parámetros característicos son:

- Nudos de entrada y salida
- Diámetro
- Consigna
- Estado

Los valores de salida que arroja el programa suelen ser el caudal y las pérdidas.

Los diferentes tipos de válvulas que incluye EPANET son:

- Válvulas Reductoras de Presión (VRP)
- Válvulas Sostenedoras de Presión (VSP)
- Válvulas de Rotura de Carga (VRC)
- Válvulas Controladoras de Caudal (VCQ)
- Válvulas Reguladoras por Estrangulación (VRG)
- Válvulas de Propósito General (VPG)

Cada tipo de válvula tiene un parámetro consigna que define su punto de operación (presión para las VRPs, VSPs y VRCs; caudal para las VCQs; coeficiente de perdida para las VRGs; y curva característica de pérdidas para las VPGs).

Las válvulas pueden caracterizar su estado de control especificando si están completamente abiertas o completamente cerradas. El estado de una válvula y su consigna puede cambiarse durante la simulación utilizando los controles de estado.

2.6.4. Componentes no físicos

Además de los componentes físicos, EPANET utiliza tres tipos de objetos informativos – curvas, patrones y controles – que describen el comportamiento y los aspectos operacionales de un sistema de distribución.

Curvas

Las curvas son objetos que representan la relación existente entre pares de datos por medio de dos magnitudes o cantidades. Dos o más objetos pueden formar parte de la misma curva. Un modelo de EPANET puede utilizar los siguientes tipos de curvas:

- Curva de características de una bomba: representa la relación entre la altura y el caudal que puede desarrollar a su velocidad nominal. Esta curva debe disminuir la altura a medida que aumenta el caudal.
- Curva de rendimiento: determina el rendimiento de la bomba como función del caudal de la bomba. Esta curva se usa únicamente para cálculos energéticos.
- Curva de volumen: determina cómo el volumen de agua en el tanque varía en función del nivel de agua. Se usa cuando es necesario representar exactamente tanques cuya sección transversal varía con la altura.
- Curva de pérdidas: se usa para representar las pérdidas en una válvula de propósito general en función del caudal.

Patrones de tiempo

Un patrón de tiempo es una colección de factores que pueden aplicarse a una cantidad para representar que varía a lo largo del tiempo.

Los patrones de tiempo pueden asociarse a demandas en los nudos, alturas de depósitos, programas de bombas y fuentes de calidad de agua. El intervalo de tiempo utilizado en todos los patrones es un valor fijo, determinado con las opciones de tiempo del proyecto.

Controles

Los controles son consignas que determinan como la red trabaja a lo largo del tiempo. En ellos se especifica el comportamiento de las líneas seleccionadas como una función del tiempo, niveles de agua del tanque y presiones en puntos determinados del sistema.

2.6.5. Modelo de simulación hidráulica

El modelo de simulación hidráulica de EPANET calcula alturas en conexiones y caudales en líneas para un conjunto fijo de niveles de depósitos, niveles de tanques y demandas de agua a lo largo de una sucesión de Instantes temporales. La solución de altura y caudal en un determinado punto a lo largo del tiempo supone el cálculo simultáneo de la conservación del caudal en cada conexión y la relación de pérdidas que supone su paso a través de los elementos de todo el sistema. Este proceso requiere métodos iterativos de resolución de ecuaciones no lineales. EPANET utiliza el "Algoritmo del Gradiente" con este propósito.

2.6.6. Hipótesis y ecuaciones utilizadas en EPANET

Hipótesis simplificativas

Cuando las variaciones de caudal y presión son pequeñas, podemos despreciarlas sin conducir a demasiados errores, considerando el sistema como permanente De este modo, las hipótesis simplificatlvas serán las siguientes:

- Hipótesis referentes al flujo:
 - o flujo unidimensional en el sentido del eje de la conducción
 - o invariabilidad temporal de las variables relacionadas con el flujo
 - o distribución uniforme de velocidad y presión en secciones transversales
- Hipótesis referentes al fluido:
 - o incompresible
 - o monofásico
 - o homogéneo
 - newtoniano
- Hipótesis referentes a las conducciones:
 - o homogeneidad y constancia en material, sección transversal y espesor

Ecuaciones fundamentales

Se aplican los principios de conservación de masa y energía, de modo que las ecuaciones planteadas serán:

La ecuación de continuidad en nudos: enunciada de la siguiente manera:

"La suma algebraica de los caudales másicos (o volumétricos, ya que el fluido es incompresible) que confluyen en el nudo debe ser 0 (cero)".

• La ecuación de Bernoulli: expresada como sigue:

"La energía por unidad de peso del fluido en la sección aguas arriba (E_1), más la energía por unidad de peso cedida al mismo a través de elementos activos, tales como bombas (h_b) en el trayecto de 1 a 2 es igual a la energía por unidad de peso en la sección aguas abajo (E_2) más las pérdidas de energía por unidad de peso entre las secciones 1 y 2 (h_{1-2})".

$$E_1 + h_h = E_2 + h_{1-2}$$

La energía por unidad de peso en una determinada sección consta de tres componentes:

$$E = \frac{P}{\gamma} + Z + \frac{v^2}{2g}$$

Donde: P/y es la altura de presión; Z es la cota geométrica; v²/2g es la altura cinética.

2.6.7. Ecuaciones de comportamiento en tuberías

La pérdida de carga o altura piezométrica en una tubería debida a la fricción por el paso del agua puede calcularse con EPANET utilizando las siguientes formulaciones:

- Darcy-Weisbach (para todo tipo de líquidos y regímenes)
- Hazen-Willlams (sólo para agua)

• Chezy-Manning (para canales y tuberías de gran diámetro)

La ecuación básica de estas tres fórmulas es:

$$h_L = AQ^B$$

Donde: h_L es la pérdida de carga; Q es el caudal; A es el coeficiente de resistencia; B es exponente de caudal.

Los valores de los parámetros A y B se encuentran representados en la siguiente tabla:

Fórmula	Coeficiente de Resistencia (A)	Exponente de Caudal (B)
Hazen-Williams	10,674 C ^{-1,852} d ^{-4,781} L	1,852
Darcy-Weisbach	0,0827 f(ε, d, Q) d ⁻⁵ L	2
Chazy-Manning	10,294 n ² d ^{-5,33} L	2

Donde: C es el coeficiente de rugosidad de Hazen-Williams; ϵ es el coeficiente de rugosidad de Darcy-Weisbach (m); f es el factor de fricción (depende de ϵ , d y Q); n es el coeficiente de rugosidad de Manning; d es el diámetro de la tubería (m); L es la longitud de la tubería (m); Q es el caudal m³/s.

Los coeficientes de rugosidad que aparecen en las tres formulaciones se encuentran clasificados según el tipo de tuberías en la siguiente tabla:

Material	C Hazen-Williams (adimensional)	ε Darcy-Weisbach (mm)	n Manning (adimensional)
Fundición	130-140	0,26	0,012-0,015
Hormigón	120-140	0,30-3,00	0,012-0,017
Hierro galvanizado	120	0,15	0,015-0,017
Plástico	140-150	0,0015	0,011-0,015
Acero	140-150	0,045	0,015-0,017
Cerámica	110	0,30	0,013-0,015

CAPÍTULO 3: LOCALIDAD DE VILLA CIUDAD PARQUE LOS REARTES

3.1. DESCRIPCIÓN GENERAL

Villa Ciudad Parque es una localidad ubicada en el Departamento Calamuchita, de la Provincia de Córdoba, República Argentina. Se encuentra a 852 m sobre el nivel del mar y sus coordenadas geográficas son: 31° 54′ 43″ Sur, 64° 31′ 30″ Oeste. La misma cuenta con una población permanente de 1165 habitantes, según el censo nacional del año 2010 y una población turística de 400 habitantes según el censo del año 2011(Datos proporcionados por el INDEC).

Las localidades más cercanas son Villa General Belgrano, a 9 km al sur y Los Reartes, 5 km al oeste. Se accede a la misma desde la capital provincial viajando hacia el suroeste por ruta provincial Nº5, pasando por la localidad de Alta Gracia y luego por el embalse de Los Molinos.

Figura 3.1: Ubicación localidad de Villa Ciudad Parque Los Reartes.

La principal actividad económica es el turismo, debido a su ubicación serrana, su cercanía a grandes lagos, como ser Embalse Los Molinos y Río Tercero.

La localidad de Villa Ciudad Parque por estar enclavada en la región conocida como Sierras Pampeanas, presenta un clima templado, con más de 250 días de sol al año y con un período de lluvias que se extiende de octubre a marzo y otro seco entre abril y septiembre.

Los veranos son cálidos y con elevada humedad relativa mientras que el invierno se presenta seco y no muy riguroso. En otoño y primavera en general se presenta buen tiempo, con marcada amplitud térmica.

En lo referido a la topografía por encontrarse en un valle se caracteriza por ser una llanura rodeada de serranías. Siendo la principal fuente de ingresos el turismo, debido a su cercanía con los grandes lagos, sus bosques y su infraestructura hotelera y complejos de cabañas.

Es notable destacar el hecho de que se observa una acentuada pendiente general del área ocupada por la mancha urbana en dirección oeste, dando como resultado un desnivel entre sus puntos extremos de aproximadamente 100 metros.

Se presentan precipitaciones de 659 mm anuales. La temperatura media anual es de 15,5°C.

3.2. ESTADO ACTUAL DEL SERVICIO

En la actualidad la localidad se abastece a través de la captación de agua superficial del río Los Reartes a través de una toma directa, y de aguas subterráneas por medio de dos (2) perforaciones con sus correspondientes cisternas de almacenamiento. Una de ellas se ubica sobre Ruta Provincial N°5 entre calles San Juan y San Luis, mientras que la otra se encuentra ubicada en intersección de calles San Martín y San Juan, ambas en predios públicos.

La toma superficial es una caja de hormigón sumergida revestida con piedra en la zona del cauce del río, que a través de dos cañerías de hierro galvanizado y por gravedad, conduce hasta el pozo de carga circular de ladrillo de 6 metros de profundidad que aloja una bomba de 15 HP.

En cuanto a las perforaciones, ambas son del orden de 135 metros de profundidad con caño camisa de hierro de \emptyset 6", tubería de elevación de \emptyset 3" y bomba sumergible de elevación de 15 HP.

El sistema existente posee dos cisternas de almacenamiento, la central de 400.000 litros y la ubicada en la entrada de 300.000 litros. Las coordenadas de las mismas son:

- Perforación N°1 (sobre ruta provincial N°5):
 - Latitud Sur: 31°54'52.94"S
 - o Longitud Oeste: 64°31'25.19"O
- Perforación N°2 (en intersección de calles San Martín y San Juan):
 - o Latitud Sur: 31°54'32.75"S
 - o Longitud Oeste: 64°32'40.47"O

Las conducciones existentes constan de una tubería de DN 75 mm que alimenta la reserva central y parte de la red desde el pozo de carga y reconduce desde la cisterna central hasta la ubicada en la entrada de la localidad.

Existen tres casillas de comando de mampostería de ladrillo en correspondencia con cada una de las fuentes de abastecimiento.

Por último, la red de distribución cuenta con cañerías de policloruro de vinilo (P.V.C.), siendo de DN 75 mm para los troncales y de DN 50 mm y 25 mm para el resto de las conducciones, pudiéndose encontrar en casos cañerías de polietileno de alta densidad (P.E.A.D.).

3.3. RÍO LOS REARTES

El río Los Reartes integra la cuenca superior del río segundo o Xanaes. Nace al pie del Cerro Negro, en las Sierras Grandes, y desde allí bajan sus aguas que atraviesan varias localidades generando escenarios con arboledas, playas y aguas mansas. Cuenta con varios kilómetros de calles costaneras que permiten acceder a diferentes balnearios naturales y paradores. Un río de montaña con playas grandes, aguas cristalinas y poco profundas.

Como se dijo antes, este río nace en las sierras Grandes, abriéndose paso en forma torrentosa entre escarpadas laderas y fondo rocoso. Después de un curso superior, el tramo de su curso inferior que zigzaguea suavemente y deposita los sedimentos de arena, cruza la Pampa de Los Reartes junto al pueblo del mismo nombre, uniéndose al río Del Medio en la desembocadura del lago los Molinos.

Se destaca fundamentalmente el aspecto turístico de este curso de agua, el cual es esencial para la economía de las localidades que atraviesa. Entre las actividades desarrolladas a lo largo de su recorrido se destacan, además del acceso a los numerosos balnearios, el avistaje de aves y fauna autóctona, turismo aventura (trekking, mountain bike, excursiones y cabalgatas) y la presencia de morteros de piedra (cuencos hechos en la roca por los comechingones que se encuentran sobre las márgenes del río).

CAPÍTULO 4: CAPITULO 4: MEMORIA DE CALCULO

4.1. PARÁMETROS DE DISEÑO:

A continuación, se fijarán los parámetros necesarios para realizar el diseño y los cálculos de la nueva obra de captación, planta potabilizadora y obras complementarias para la provisión de agua potable.

4.1.1. Período de Diseño

En el presente proyecto se adopta un período de diseño de 22 años, en función de las obras e instalaciones previstas, y teniendo en cuenta el período transcurrido entre la ejecución del Proyecto y la habilitación del mismo. El mismo se mide a partir de la fecha efectiva de iniciación de las operaciones del sistema, el cual se prevé para el año 2018.

4.1.2. Población de Diseño

Estudio Demográfico:

A través de los métodos de proyección propuestos por la normativa del ENOHSa, se determina el crecimiento de la población.

Se considera como población inicial la correspondiente a la fecha prevista para la habilitación del sistema (año 2020).

Hipótesis de Crecimiento Adoptada

Para definir la hipótesis a adoptar se van a comparar los resultados que surjan de la aplicación de los diferentes métodos de proyección de población utilizados.

Método de la Tasa Geométrica Decreciente

La tasa media anual para la proyección de la población se define en base al análisis de las tasas medias anuales de los dos últimos períodos intercensales.

Se determinan las tasas medias anuales de variación poblacional de los dos últimos períodos intercensales (basándose en datos oficiales de los tres últimos censos de población y vivienda):

$$i_I = \sqrt[n_1]{\frac{P_2}{P_1}} - 1$$

$$i_{II} = \sqrt[n2]{\frac{P_3}{P_2}} - 1$$

Donde: i_l es la tasa media anual de variación de la población durante el penúltimo período censal; i_{ll} es la tasa media anual de variación de la población del último período censal; P₁ es el número de habitantes correspondientes al primer censo en

estudio; P_2 es el número de habitantes correspondientes al penúltimo censo en estudio; P_3 es el número de habitantes correspondientes al último censo; n_1 es el número de años del período censal entre el primero y segundo censo; n_2 es el número de años del período censal entre el segundo y el último censo.

Años Censales	
1996	
2008	
2010	

Población		-
P ₁ =	217	hab.
P ₂ =	840	hab.
P ₃ =	1.165	hab.
n ₁ =	12	años
n ₂ =	2	años
i ₁ =	0,11940	
in =	0,17767	
		•

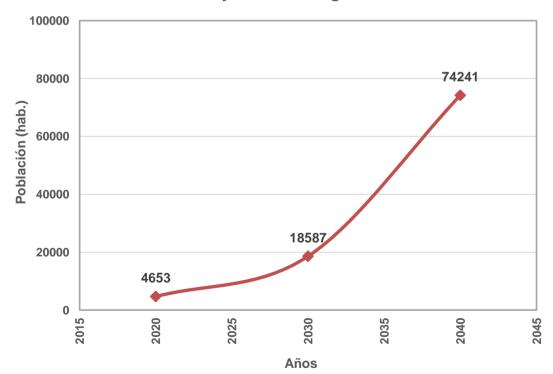
Para el intervalo comprendido entre el último censo y el año inicial del período de diseño, así como el primer subperíodo de n₁ años, se debe efectuar la proyección con las tasas media anual del último período intercensal utilizando las siguientes expresiones:

Fecha de Ejecución del Proyecto	$P_a = P_3$.(1+i) ^{na}	
Echa de habilitación del Proyecto	$P_0 = P_a$	(1±i) ⁿ⁰	
2020	10—1a	.(171)	
Años de Proyección del Diseño	$P_n = P_0$.(1+i) ⁿ	
20			
	n _a =	9	años
	$n_0 =$	1	años
	n =	20	años
	P a =	3071	hab.
Año 2020	$P_0 =$	4653	hab.
Año 2030	$P_{n/2} =$	18587	hab.
	_		
Año 2040	$P_n =$	74241	hab.
Si iı < iıı i = (iı + iı) / 2 = si iı > iı i = iıı	i =	0,14853	

Siendo: P_a la estimación de población existente a la fecha de ejecución del proyecto; P₀ la estimación de población al año previsto para la habilitación del sistema; P_n la estimación de población al año "n"; i la tasa media anual de proyección; n_a el número de años transcurridos entre el último censo y la fecha de ejecución del proyecto; n₀ el número de años transcurridos entre la fecha de ejecución del proyecto y la habilitación

del sistema; n el número de años transcurridos entre la población base y el año inicial de proyección.

Para cada subperíodo se determina la tasa media anual de proyección comparando los valores de las tasas medias históricas i_I e i_{II}. Considerando los datos de los tres últimos censos i_I correspondería a la calculada con los dos primeros valores e i_{II} con los dos últimos. Si i_I resulta menor que i_{II}, la tasa utilizada en la proyección del primer subperíodo debe ser igual al promedio entre ambas, resultando:


$$P_1 = P_0 \cdot \left(1 + \left(\frac{i_I + i_{II}}{2}\right)\right)^{n_1}$$

En el caso que i_l resulte mayor que i_{ll} , la tasa de proyección debe ser igual al valor de i_{ll} , resultando:

$$P_1 = P_0 \cdot (1 + i_{II})^{n_1}$$

Los valores de las tasas medias anuales de proyección que han sido determinados por este procedimiento, son válidos para la generalidad de los casos. No obstante ello, si por las características particulares de la localidad en estudio los valores no se ajustaran a la realidad observable, el proyectista puede adoptar otras tasas de crecimiento, debiendo en ese caso suministrar las razones que lo justifiquen y gestionar la correspondiente aprobación del ENOHSa.

Proyección Demográfica

Método de la relación - tendencia

El método se basa en el análisis de las relaciones entre la población total del país, la total de la provincia, el partido o departamento y la localidad y en las tendencias de evolución que presentan las mismas.

Se obtienen los valores de población total del país resultantes de los tres últimos censos nacionales y de la proyección oficial para las siguientes tres décadas. En todos los casos, se deben utilizar las proyecciones efectuadas por el INDEC:

P_{T1} = población del país según el antepenúltimo censo nacional

P_{T2} = población del país según el penúltimo censo nacional

P_{T3} = población del país según el último censo nacional

 P_{T0} = población del país proyectada al año inicial del período de diseño (n = 0)

P_{Tn1} = población del país proyectada al año n₁ del período de diseño

P_{Tn2} = población del país proyectada al año n₂ del período de diseño

Años Censales	Población Total País				
1991	P _{T1} =	35196000	hab.	antepenúltimo censo	
2001	$P_{T2} =$	39745613	hab.	penúltimo censo	
2010	$P_{T3} =$	40117096	hab.	último censo	

Las poblaciones del país P_{T0} ; P_{Tn1} y P_{Tn2} pueden extraerse de la publicación Estimaciones y Proyecciones de Población Total del País (versión revisada), INDEC – CELADE, serie de Análisis Demográfico N° 5, Buenos Aires, 1995. En dicha publicación se considera la población al 30 de Junio de cada año y se encuentran valores desde el año 1950 al 2050.

Estimaciones y	P _{T0} =	44494502	Año 2020
Proyecciones de población Total País	P _{Tn1} =	48653385	Año 2030
(INDEC)	P _{Tn2} =	52778477	Año 2040

Cada vez que se aplique este método es conveniente consultar en dicho organismo oficial la última Publicación sobre estimaciones.

Se obtienen los valores de población total de la provincia, resultantes de los tres últimos censos nacionales y de la proyección oficial para las siguientes tres décadas:

 p_1 = población total de la provincia según el antepenúltimo censo nacional.

 p_2 = población total de la provincia según el penúltimo censo nacional.

 p_3 = población total de la provincia según el último censo nacional.

 p_0 = población total de la provincia proyectada al año inicial del período de diseño (n=0).

 p_{n1} = población total de la provincia proyectada al año n_1 del período de diseño.

 p_{n2} = población total de la provincia proyectada al año final n_2 del período de diseño.

Años Censales	Población Total Provincia				
1991	$p_1 =$	2.766.683	hab.	antepenúltimo censo	
2001	p ₂ =	3.066.801	hab.	penúltimo censo	
2010	p ₃ =	3.308.876	hab.	último censo	

De ser necesario, para la determinación de p_0 , p_{n1} y p_{n2} se aplica un criterio similar al utilizado para calcular la población total del país en los mismos años.

Se relacionan los datos históricos de la provincia y del país para cada año, obteniéndose:

$$R_1 = \frac{p_1}{P_{T1}}$$
 $R_2 = \frac{p_2}{P_{T2}}$ $R_3 = \frac{p_3}{P_{T3}}$ $R_1 = 0.07861$ $R_2 = 0.07716$ $R_3 = 0.08248$

Se extrae el logaritmo decimal de las relaciones R1, R2 y R3 y se determinan las siguientes relaciones, para los dos períodos intercensales históricos:

$$I_1 = log \ R_2 - log R_1$$
 para N_1 = años del 1° período intercensal $I_2 = log \ R_3 - log R_2$ para N_2 = años del 2° período intercensal I_1 = -0,00807 I_2 = 0,02896

Se determina la relación provincia/país para el año inicial del período de diseño (n = 0), utilizando la siguiente expresión:

$$log_{R_4} = log_{R_3} + \frac{I_1 \cdot C_{10} + I_2 \cdot C_{20}}{C_{10} + C_{20}}$$
 $log R_4 = -1,06558$
 $R_4 = 0,08598$

Siendo: $R_4 = p_0/P_{T0}$ la relación entre las poblaciones de la provincia y del país para el año inicial del período de diseño; C_{10} y C_{20} coeficientes de ponderación calculados según la tabla siguiente.

Períodos Intercensales	Período desde el último censo hasta el año inicial	Subperíodo	s de Diseño
(años)	$n_0 = B_0 - A_3$	$n_1 = B_1 - B_0$	$n_2 = B_2 - B_1$
$N_1 = A_2 - A_1$	$C_{10} = \frac{1}{\left(A_3 + \frac{n_0}{2}\right) - \left(A_1 + \frac{N_1}{2}\right)}$	$C_{11} = \frac{1}{\left(B_0 + \frac{n_1}{2}\right) - \left(A_1 + \frac{N_1}{2}\right)}$	$C_{12} = \frac{1}{\left(B_1 + \frac{n_2}{2}\right) - \left(A_1 + \frac{N_1}{2}\right)}$
$N_2 = A_3 - A_2$	$C_{20} = \frac{1}{\left(A_3 + \frac{n_0}{2}\right) - \left(A_2 + \frac{N_2}{2}\right)}$	$C_{21} = \frac{1}{\left(B_0 + \frac{n_1}{2}\right) - \left(A_2 + \frac{N_2}{2}\right)}$	$C_{22} = \frac{1}{\left(B_1 + \frac{n_2}{2}\right) - \left(A_2 + \frac{N_2}{2}\right)}$

Donde: A_1 es el año en que se realizó el antepenúltimo censo nacional; A_2 es el año en que se realizó el penúltimo censo nacional; A_3 es el año en que se realizó el último censo nacional; B_0 es el año previsto para la habilitación de la obra; B_1 es el año en que finaliza el primer subperíodo de n_1 ; B_2 es el año final del período de diseño.

$A_1 = 1991$	$N_1 = A_2 - A_1 =$	10	$C_{10} =$	0,08333
$A_2 = 2001$	$N_2 = A_3 - A_2 =$	9	$C_{11} =$	0,04762
$A_3 = 2010$			$C_{12} =$	0,03125
$B_0 = 2020$	$n_0 = B_0 - A_3 =$	10	$C_{20} =$	0,20000
$B_1 = 2030$	$n_1 = B_1 - B_0 =$	10	$C_{21} =$	0,07143
$B_2 = 2040$	$n_2 = B_2 - B_1 =$	10	$C_{22} =$	0,04000

Se determina la relación provincia/país para los dos subperíodos de diseño de n₁ y n₂ años, por las siguientes expresiones:

$$log_{R_5} = log_{R_4} + \frac{I_1 \cdot C_{11} + I_2 \cdot C_{21}}{C_{11} + C_{21}}$$

$$log_{R_6} = log_{R_5} + \frac{I_1 \cdot C_{12} + I_2 \cdot C_{22}}{C_{12} + C_{22}}$$

$$log_{R_5} = -1,05144$$

$$R_5 = 0,08883$$

$$log_{R_6} = -1,03872$$

$$R_6 = 0,09147$$

Donde: C₁₁, C₁₂, C₂₁, C₂₂ son coeficientes de ponderación calculados según indica la tabla anteriormente mostrada.

Para las poblaciones de la localidad y la provincia se definen relaciones similares a las establecidas en previamente a nivel país y los coeficientes de ponderación siguen obteniéndose a través de las expresiones de la misma tabla.

Años Censales	Población	Total Lo	calidad	
1991	$P_1 =$	217	hab.	antepenúltimo censo
2001	$P_2 =$	840	hab.	penúltimo censo
2010	$P_3 =$	1.165	hab.	último censo

$$log_{L_4} = log_{L_3} + \frac{l'_1.C_{10} + l'_2.C_{20}}{C_{10} + C_{20}}$$

$$log_{L_5} = log_{L_4} + \frac{l'_1.C_{11} + l'_2.C_{21}}{C_{11} + C_{21}}$$

$$log_{L_6} = log_{L_5} + \frac{l'_1.C_{12} + l'_2.C_{22}}{C_{12} + C_{22}}$$

$$L_1 = \frac{P_1}{p_1} \qquad L_2 = \frac{P_2}{p_2} \qquad L_3 = \frac{P_3}{p_3}$$

$$l'_1 = log_{L_2} - log_{L_1} \qquad \text{para N}_1 = \text{años del 1° período intercensal}$$

$$l'_2 = log_{L_3} - log_{L_2} \qquad \text{para N}_2 = \text{años del 2° período intercensal}$$

$$L_1 = 0,000078 \qquad \log_{L_1} = -4,105410$$

$$L_2 = 0,000274 \qquad \log_{L_2} = -3,562406$$

$$L_3 = 0,000352 \qquad \log_{L_3} = -3,453355$$

$$l'_1 = 0,543093$$

$$l'_2 = 0,109052$$

$$log_{L_4} = -3,21664$$

$$L_4 = 0,00061$$

$$log_{L_5} = -2,93398$$

$$L_5 = 0,00116$$

$$log_{L_6} = -2,63455$$

$$L_6 = 0.00232$$

Se obtienen las relaciones de población provincia/país y localidad/provincia para el período de diseño:

$$R_4 = \frac{p_0}{P_{T0}} = ant(log R_4)$$

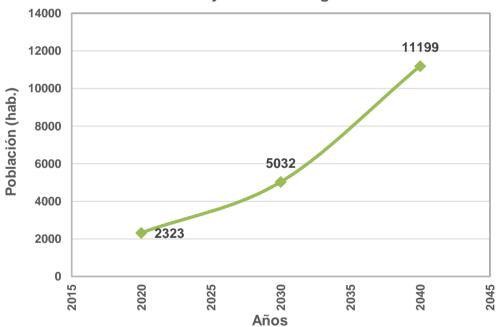
$$R_5 = \frac{p_1}{P_{T1}} = ant(log R_5)$$

$$R_6 = \frac{p_2}{P_{T2}} = ant(log R_6)$$

$$L_4 = \frac{P_0}{p_0} = ant(log \ L_4)$$

$$L_5 = \frac{P_{n1}}{p_{n1}} = ant(log L_5)$$

$$L_6 = \frac{P_{n2}}{p_{n2}} = ant(log \ L_6)$$


Se obtienen los valores de población de la provincia para el período de diseño:

$p_0 = R_4$. $P_{T0} = 3825802$ hab.	Año	2020
$p_{n1} = R_5$. $P_{Tn1} = 4321893$ hab.	Año	2030
$p_{n2} = R_6$. $P_{Tn2} = 4827627$ hab.	Año	2040

De igual manera se deben proyectar las poblaciones del departamento o partido según corresponda y de la localidad.

$P_0 = L_4 \cdot p_0 = 2323$	hab.	Año	2020
$P_{n1} = L_5 \cdot p_{n1} = 5032$	hab.	Año	2030
$P_{n2} = L_6 \cdot p_{n2} = 11199$	hab.	Año	2040

Proyección Demográfica

Método de los incrementos relativos

Este método se fundamenta en la proporción del crecimiento absoluto de un área mayor, que corresponde a áreas menores en un determinado periodo de referencia.

La información básica necesaria para la aplicación del método es:

- Proyección de la población del área mayor para el período en estudio.
- Población de cada una de las áreas menores correspondiente a las dos últimas fechas censales.

Para la estimación de la población total de cada área se acepta que:

$$P_i^{(t)} = a_i \times P_T^{(t)} + b_i$$

Siendo: $P_i^{(t)}$ a población del área menor (i) en el año (t); $P_T^{(t)}$ la población del área mayor en el año (t).

El coeficiente de proporcionalidad del incremento de la población del área menor en relación al incremento de la población del área mayor es igual a:

$$a_i = \frac{{P_i}^{(1)} - {P_i}^{(0)}}{{P_T}^{(1)} - {P_T}^{(0)}} = \frac{P_i}{P_T}$$

$$b_i = \frac{{P_i}^{(1)} + {P_i}^{(0)} - \frac{P_i}{P_T} ({P_T}^{(1)} + {P_T}^{(0)})}{2}$$

Se puede utilizar publicaciones del INDEC para extraer las estimaciones de población para las áreas mayores, por ejemplo para el país y la provincia para la cual es necesario aplicar el método.

Se parte de considerar a la Argentina como área mayor y la provincia como área menor, luego se aplica nuevamente la técnica para estimar la población del departamento y por último la de la localidad.

Años Censales $t^{(0)} = 2001$ $t^{(1)} = 2010$		País (Pτ) 36260130 hab. 40788453 hab.	Argentina
Estimaciones t0 = 2020 t1 = 2030	•	44494502 hab. 48653385 hab.	
t2 = 2040	·	52778477 hab.	
Años Censales $t^{(0)} = 2001$	Población $P_i^{(0)} =$	Provincia (P _i) 3066801 hab.	Córdoba

 $t^{(1)} = 2010$

Lépore, Mauricio Eduardo 34

 $P_i^{(1)} = 3308876$ hab.

$$a_i = 0.0535$$

$$b_i = 1128408$$

 $P_i^{(2020)} = 3506994$

 $P_i^{(2030)} = 3729319$

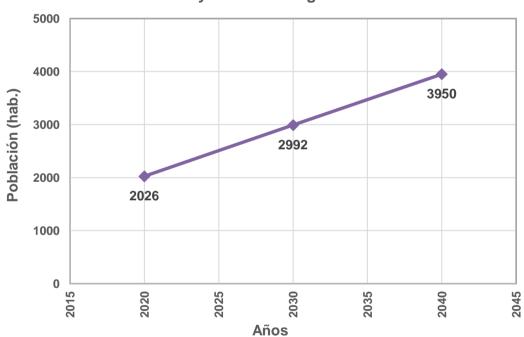
 $P_i^{(2040)} = 3949838$

Años Censales $t^{(0)} = 2001$ $t^{(1)} = 2010$	-	Provinc 3066801 3308876	hab.	Córdoba
Estimaciones				
t0 = 2018	$P_T^{t0} =$	3506994	hab.	
t1 = 2028	$P_T^{t1} =$	3729319	hab.	
t2 = 2040	$P_T^{t2} =$	3949838	hab.	
Años Censales	Población	Departam	ento (P _i)	Calamuchita
$t^{(0)} = 2001$	$P_{i}^{(0)} =$	45418	hab.	
$t^{(1)} = 2010$	$P_{i}^{(1)} =$	55280	hab.	

$$a_i = 0,0407$$
 $b_i = -79522$
 $P_i^{(2020)} = 63351$
 $P_i^{(2030)} = 72409$
 $P_i^{(2040)} = 81392$

Años Censales	Población	Departamento (P _T)		Calamuchita
$t^{(0)} = 2001$	$P_{T}^{(0)} =$	45418	hab.	
$t^{(1)} = 2010$	$P_{T}^{(1)} =$	55280	hab.	
Estimaciones				
t0 = 2018	$P_T^{t0} =$	63351	hab.	
t1 = 2028	$P_T^{t1} =$	72409	hab.	
t2 = 2040	$P_T^{t2} =$	81392	hab.	

Años Censales	Población	Locali	dad (P _i)	Villa Ciudad Parque - Los Reartes
$t^{(0)} = 2001$	$P_{i}^{(0)} =$	113	hab.	
$t^{(1)} = 2010$	$P_{i}^{(1)} =$	1165	hab.	
	a _i =0,1067	,		
	$b_i = -4732$			

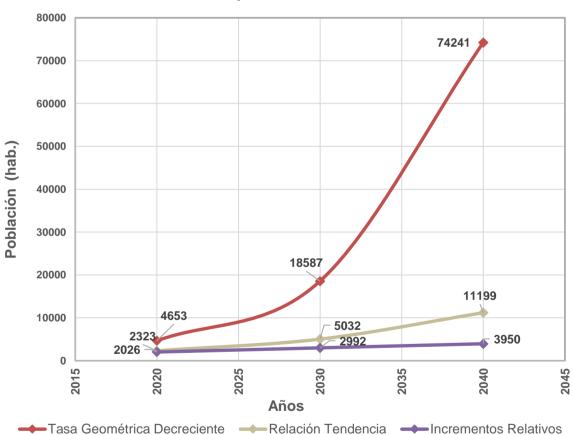

Población Final de Proyecto:

$$P_i^{(2020)} = 2026$$

$$P_i^{(2030)} = 2992$$

$$P_i^{(2040)} = 3950$$

Proyección Demográfica


Conclusión

En todos los métodos se realiza una proyección de la población al año 2040, ya que se estima entre la ejecución del proyecto y la habilitación de la obra un período de 2 años.

En cuanto al método de los Incrementos Relativos, si bien presenta una proyección de crecimiento poblacional similar y paralela en el inicio al método de Relación Tendencia, analizando la posible expansión territorial de la localidad, este último resulta más representativo que el método de los Incrementos Relativos ya que al final del período existe una gran diferencia.

Analizando los resultados que arrojaron los tres métodos aplicados para la determinación de la proyección poblacional, y a las características de la localidad en estudio, se adopta la hipótesis de crecimiento poblacional correspondiente al método de la Relación Tendencia, ya que es más uniforme que el resto en cuanto al desarrollo de la población a través del tiempo, arrojando la misma una población de diseño de 11.199 habitantes.

4.2. CAUDALES DE DISEÑO

Cantidad de conexiones =	2800	conexiones	
Población =	11199	Hab.	
Dotación =	250	L/día.	
Coef. Máx. diario α₁=	1,4		
Coef. Máx. Horario α ₂ =	1,7		
Coef. Mín diario β₁=	0,7		
Coef. Mín Horario β ₂ =	0,5		
Coef. Total Máx. α=	2,38		
Cof. Total Mín. β=	0,35		
Caudal medio Q _{Cn} =	2799750,00	lts./día	
Q Cn=	116656,25	lts./h	
Q Cn=	32,40	lts./s	
Q Cn=	2799,75	m³/día	
Q Cn=	116,66	m ³ /h	
Q Cn=	0,0324	m ³ /s	
Caudal máximo diario Q _{Dn} =	3919650,00	lts./día	ria, sta al
Q _{Dn} =	163318,75	lts./h	sai has aud de de
Q _{Dn} =	45,37	lts./s	ente necesa ulsiones ha serva y caud estación de bombeo
Q _{Dn} =	3919,65	m³/día	e no sion va y aci
Q _{Dn} =	163,32	m³/h	Fuente necesaria, impulsiones hasta reserva y caudal estación de bombeo
Q _{Dn} =	0,0454	m ³ /s	Fuente necesaria, impulsiones hasta reserva y caudal estación de bombeo
Caudal máximo horario Q En=	6663405,00	lts./día	
Q _{En} =	277641,88	lts./h	Red, estación de bombeo y reserva finales
Q _{En} =	77,12	lts./s	estació eo y re: finales
Q _{En} =	6663,41	m³/día	esta eo y ina
Q _{En} =	277,64	m³/h	d, e
Q _{En} =	0,0771	m³/s	Re
Caudal mínimo diario Q _{BN} =	1959825,00	lts./día	
Q _{BN} =	81659,38	lts./h	
Q _{BN} =	22,68	lts./s	
Q _{BN} =	1959,83	m³/día	
Q _{BN} =	81,66	m³/h	
Q _{BN} =	0,0227	m ³ /s	
Caudal mínimo horario Q An=	979912,50	lts./día	
Q _{An} =	40829,69	Its./h	
Q _{An} =	11,34	Its./s	
Q _{An} =	979,91	m³/día	
Q _{An} =	40,83	m³/h	
Q _{An} =	0,0113	m ³ /s	

Caudal de diseño:

$$Q_{Dn} = Q_i = 163,32 \; \frac{m^3}{h}$$

Contemplando un 20% por A.N.C. (agua no contabilizada):

$$Q_D = 204,15 \ \frac{m^3}{h}$$

4.3. TOMA SUBÁLVEA

4.3.1. Cálculo de la captación de agua

Adoptando los caños filtro de acero inoxidable con ranura continua para la captación de agua subterránea, mediante el sistema de toma subálvea, obtendremos el caudal que podremos recolectar por el pozo de bombeo, y que luego será impulsado hacia la planta potabilizadora.

DN	Ø	Ø	Abertura de	Considerando V = 3 cm/s				
DN Interno		Externo	ranura	Caudal Admisible	Área ab metro		Peso filtro s/accesorios	
pulg.	[mm]	[mm]	[mm]	[m³/h*m]	[cm ²]	%	[kg/m]	
			0,25	5,30	490	9	12,80	
			0,50	9,60	890	17	12,10	
6"	152	165	0,75	13,30	1230	24	11,50	
0	152	103	1,00	16,50	1520	29	11,00	
			1,25	19,20	1770	34	10,50	
			1,50	21,60	2000	38	10,10	
	8" 203	03 216	0,25	6,90	640	9	16,60	
			0,50	12,60	1170	17	15,70	
0"			0,75	17,50	1610	24	14,90	
0			1,00	21,60	2000	29	14,20	
			1,25	25,10	2320	34	13,60	
		1,50	28,20	2600	38	13,10		
			0,25	6,90	640	8	28,30	
		0,50	12,90	1190	14	27,10		
10"	10" 254	271	0,75	18,10	1670	20	26,00	
10			1,00	22,60	2090	25	25,00	
			1,25	26,60	2460	29	24,10	
			1,50	30,20	2800	33	23,40	

Q_(necesario) = 204,15 m³/h Caudal de diseño

 N^0 ramas = 2 Adoptado

 $Q_{(por rama)} = 81,66 \text{ m}^3/\text{h}$

Lépore, Mauricio Eduardo

39

DN = 8 pulgadas Adoptado

Abertura ranura = 1,5 mm Adoptado

 $Q_{(ca\tilde{n}o adoptado)} = 28,20 \text{ m}^3/\text{h*m}$ De tabla

 $L_{\text{(necesario)}} = 2,90 \text{ m}$

 $L_{\text{(adoptado)}} = 5,00 \text{ m}$

 $L_{\text{(total)}} = 10,00 \text{ m}$

Q (colectado teórico) = $282,00 \text{ m}^3/\text{h}$

Coeficiente de seguridad = 0,75

 $Q_{\text{(colectado real)}} = 211,50 \text{ m}^3/\text{h}$

 $Q_{(colectado real)} > Q_{i}$

 $211,50 \text{ m}^3/\text{h} > 204,15 \text{ m}^3/\text{h}$

4.3.2. Cañería de aducción de alimentación al pozo de bombeo

En base al caudal recolectado por la toma subálvea se adopta el diámetro de la cañería de aducción que alimentará el pozo de bombeo ACERO DN 10" Schedule 20 y se verifica que la velocidad sea menor a 1,5 m/s.

$$Q_{(captado)} = 211,50 \text{ m}^3/\text{h} = 0,05875 \text{ m}^3/\text{s}$$

$$D_{\text{(adoptado)}} = 260,3 \text{ mm}$$

$$A_{(adoptada)} = \frac{\pi \times D_{(adoptado)}^2}{4}$$

A
$$(adoptada) = 0.053215 \text{ m}^2$$

$$V_{(adoptada)} = rac{Q_{(captado)}}{A_{(adoptada)}}$$

$$V_{(adoptada)} = \frac{0.05875 \, m^3/_S}{0.053215 \, m^2}$$

$$V_{(adoptada)} = 1,10 \text{ m/s} < 1,5 \text{ m/s}$$

VERIFICA

4.3.3. Pozo de bombeo

El volumen mínimo del pozo de bombeo depende de la cantidad de bombas que participan activamente del proceso (sin considerar la de reserva, que en nuestro caso no se dispone) y la máxima cantidad de arranques consecutivos de la bomba adoptada en el diseño. En nuestro caso la capacidad de impulsión supera al caudal que ingresa a la cámara.

Tenemos que:

$$Q_{b1}=\ Q_{b2}=rac{Q_{captado}}{2}$$

 Q_{b1} = caudal de bombeo de cada bomba = 102,75 m³/h

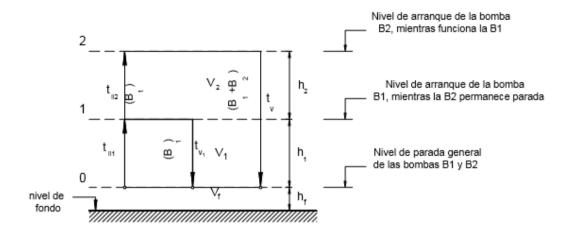
$$V_1 = \frac{Q_b}{(4*f_{cmax1})}$$

Siendo: V₁ volumen útil mínimo para la primera bomba (m³); f_{cmax1} frecuencia máxima de arranques consecutivos por hora de las electrobombas recomendadas por el fabricante del equipamiento.

$$V_1 = \frac{81,66 \, m^3}{4*8} = 3,189 \, m^3$$

Luego:

$$V_2 = V_1 * V'$$


Siendo: V' relación entre volumen útil mínimo de la segunda bomba y el de la primera en función del valor μ (según normativa ENOHSa para este caso es igual a 0,4); μ relación de caudales de diseño de cada bomba (en este caso serán iguales Q_{b1}/Q_{b2} = 1); V_2 volumen útil mínimo para la segunda bomba (m³).

$$V_2 = 2,552 * 0,4 = 1,276 \, m^3 = 1,276 \, m^3$$

Volumen útil mínimo:

$$V_{u,min} = V_1 + V_2 = 4,465 m^3$$

Se debe asegurar un nivel de sumergencia mínimo de las bombas (el cual depende del modelo de bomba), desde el nivel de pelo libre del agua hasta la succión de la bomba. Este volumen corresponde al volumen de fondo (V_f) del pozo de bombeo.

4.4. CAÑERÍA DE IMPULSIÓN DE AGUA CRUDA

4.4.1. Esquemas y Planillas de Cálculo.

Se realiza la simulación hidráulica de la cañería de impulsión de agua cruda que abastecerá a la cámara rompe carga de la planta potabilizadora de la localidad de Villa Ciudad Parque.

Esta impulsión se realiza desde el pozo de bombeo, el cual extrae el agua desde el Río de los Reartes mediante la intervención de una toma subálvea que cuenta con dos (2) ramas de cañerías ranuradas para tal fin.

La cañería a emplear será de P.V.C. clase 10 de Ø200 mm los 350 m de longitud que constituyen su recorrido. Las uniones serán de espiga enchufe flexibles con aros de goma.

La cañería se alojará en las calles y la tapada mínima será de 1,00 m y 1,20 m en zonas afectadas por el tránsito vehicular.

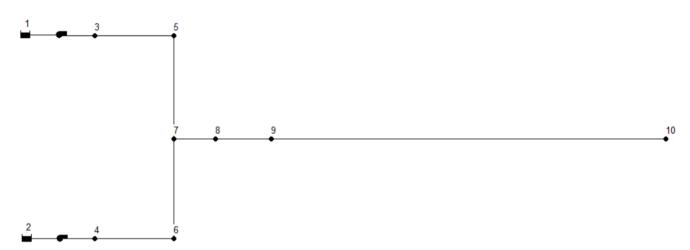
Se estimó el caudal a impulsar desde el pozo de bombeo de la toma subálvea, mediante la determinación de la proyección poblacional a 20 años, cuyo caudal de diseño resultó Q=204,15 m³/h y a 10 años un caudal de diseño de Q=91,73 m³/h.

Se prevé la colocación de dos bombas de pozo sumergibles trabajando en paralelo para los primeros 10 años y luego para los 20 años.

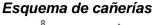
Para cubrir el consumo proyectado al año 2030 se estima un bombeo apto para cubrir entre las dos bombas un caudal de $Q = 91,73 \text{ m}^3/\text{h}$ y una H = 37 m.c.a. mientras que para el año 2040 se estiman dos bombas en paralelo capaces de cubrir una demanda de $Q = 204,15 \text{ m}^3/\text{h}$ y una H = 40 m.c.a.

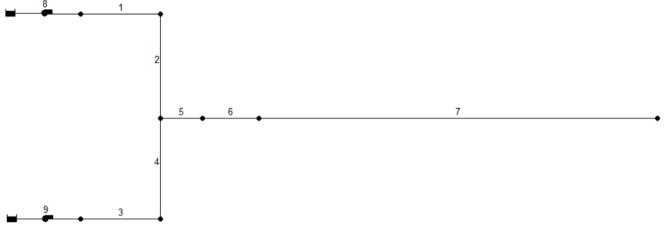
4.4.2. Desarrollo del cálculo

CÁLCULO DE PÉRDIDAS TOT	ALES E	N EL TRA	MO	
Diferencia Altimétrica		H=	26,00 m	
Diámetro		п = D =		
Longitud		D = L =	•	
Caudal de Diseño		Q _d = C =	0,0567 m ³ /s	
Coeficiente de fricción		C =	140	
Velocidad V = 2,21 m/s		VER	IFICA]
1. PÉRDIDAS TOTALES POR FRICCIÓN				
hf = 10,654. L. (Q/C) 1,85	2 (1/D ^{4, 8}	704) =	8,060 m	
III = 10,004. L. (&/0)	. (1/D)	0,023 m/m	
2. PÉRDIDAS POR SINGULARIDADES		31 =	0,023 111/111	
Descripción		К	n	K · n
A. Manifold a la salida de bombas				
Codo a 90º		1,00	3	3
Tee flujo convergente Qa/Q = 0,50		1,00	1	1
Expansión Cónica		0,40	4	1,6
Válvula de Retención a clapeta		2,50	2	5
Válvula Esclusa		0,20	1	0,2
Pérdidas por Singularidades	hs = ∑ K	(. (v2/2g) =	2,69 m	
B. Conducción en el tramo	<u> </u>			
Codo a 90º		1,00	2	2
Tee flujo pasante Q/Qa = 0,50		0,50	2	1
Desembocadura		1,00	1	1
Pérdidas por Singularidades	hs = ∑ K	$(v^2/2g) =$	1,00 m	


,		Altura Total	37,74 m
---	--	--------------	---------

Con los valores mencionados, se procede a realizar la Simulación hidráulica al año 2040:


Dotación	250	lts./hab.día
	204,15	m³/h
Caudal de Impulsión	4899,6	m³/día
	204.150	lts./h
Rugosidad (Hazen-Williams)		140

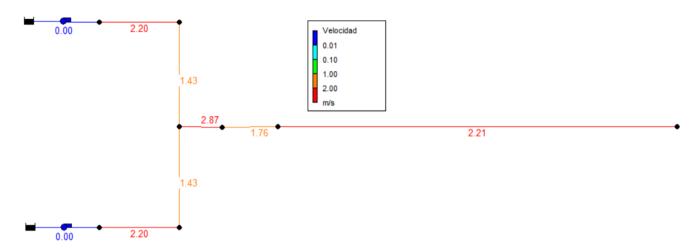

Se modeló la impulsión utilizando el programa Epanet, con el criterio de Hazen-Williams para estimar las pérdidas, obteniendo los siguientes resultados y esquema:

Esquema de nudos

Estado de los Nudos de la Red					
ID Nudo	Cota	Cota Demanda		Presión	
ID Nuuo	m	m³/h	m	m	
Conexión 3	0,9	0	40	39,1	
Conexión 4	0,9	0	40	39,1	
Conexión 5	3,4	0	39,9	36,5	
Conexión 6	3,4	0	39,9	36,5	
Conexión 7	3,4	0	39,89	36,49	
Conexión 8	4,4	0	39,84	35,44	
Conexión 9	4,4	0	39,83	35,43	
Conexión 10	26,9	204,15	31,75	4,85	



	Estado de las Tuberías de la Red								
Tubería	Long.	Ø	Rugosidad	Caudal	Veloc.	Pérdida Unitaria	Factor de	Nudo	Nudo
	m	mm	ŭ	m³/h	m/s	m/km	Fricción	Inicial	Final
1	2,5	128,2	130	102,07	2,2	39,15	0,020	3	5
2	0,6	158,74	130	102,07	1,43	13,82	0,021	5	7
3	2,5	128,2	130	102,07	2,2	39,15	0,020	4	6
4	0,6	158,74	130	102,07	1,43	13,83	0,021	6	7
5	1	158,74	130	204,15	2,87	49,91	0,019	7	8
6	1	206,4	130	204,15	1,76	15,16	0,020	8	9
7	350	188,2	140	204,15	2,21	23,09	0,017	9	10


Para los cálculos se adoptó un caudal de 102,075 m³/h a impulsar por cada bomba sumergible de pozo, garantizando presión positiva en la cámara rompecarga de la planta potabilizadora y cumpliendo con las velocidades limites aconsejadas de la cañería utilizada, para no permitir erosión en las tuberías.

A continuación, se muestra la imagen de la Modelación de la Red.

Esquema de presiones de la red

Esquema de velocidades de la red

4.4.3. Válvulas de aire y Cámaras de desagüe y limpieza

Las mismas irán ubicadas según corresponda a lo largo de la traza de la cañería, colocándose las válvulas de aire o venteo en los puntos altos de la conducción donde se acumula el aire naturalmente y puede llegar a provocar una obstrucción o perdida de eficiencia en la impulsión, y las cámaras de desagüe y limpieza en los puntos más bajos de la misma con el fin, como su nombre lo indica, de realizar el vaciado del líquido en su interior y cualquier suciedad presente.

Su ubicación particular se detalla en los planos adjuntos como ANEXO I: Planos.

4.4.4. Cálculo de Sobrepresiones sobre cañería de impulsión

Se presenta el cálculo de las sobrepresiones que se presentarán en la cañería de impulsión de P.V.C. diámetro 200 mm clase 10 cuya longitud es de 350,00 metros lineales.

Datos de la conducción:

Datos de la instalación:

H_g (m.c.a.)=	26,00	
H_m (m.c.a.)=	40,00	Altura manométrica de la instalación
$Q (m^3/s) =$	0,05671	
v (m/s)=	2,20882	Velocidad del Agua en la instalación
i (%)=	7,43	Pendiente media de la instalación
ρ (Kg/m ³) =	1000	Peso específico del fluido
$g (m/s^2) =$	9,81	
$\gamma (N/m^3) =$	9810	

Frecuencia de propagación de la Onda de Presión:

$$Tc = \frac{2 x L}{c} \qquad c = \frac{\sqrt{\frac{\varepsilon}{\gamma}}}{\sqrt{1 + \frac{\varepsilon x D_{ext}}{e x E}}}$$

c (m/s) = 117,376 Celeridad de la conducción Tc (s) = 5,964 Frecuencia de propagación de la onda de presión

Tiempo de parada del agua (fórmula de Mendiluce):

$$T = C + \frac{K x L x v}{g x H m}$$

Longitud Crítica:

$$Lc = \frac{c \times T}{2}$$

Coeficientes de ajuste determinados experimentalmente:

L (m)	K
< 500	2
≈ 500	1,75
500 < L < 1500	1,5
≈ 1500	1,25
> 1500	1

i	С
< 20%	1
≈ 25%	0,8
≈ 30%	0,6
≈ 40%	0,4
> 50%	0

K = 2

C = 1

T (seg) = 4,940 Cierre brusco

Lc (m)= 289,94 Instalación Larga

Si T < Tc; La Sobrepresión ΔP, se obtiene aplicando la Fórmula de ALLIEVI

Allievi
$$\Delta P = \frac{c \, x \, v}{g}$$

Si T > Tc; La Sobrepresión ΔP, se obtiene aplicando la Fórmula de MICHAUD

$$Michaud \Delta P = \frac{2 x L x v}{g x T}$$

$$\Delta P = 26,43 \text{ m.c.a.}$$

Debido a que el resultado en estudio fue un tiempo de maniobra de Cierre Brusco e instalación Larga, "La Presión Máxima se establecerá en forma constante en toda la cañería y a partir de la longitud crítica, comenzará a decrecer en forma proporcional hasta anularse antes de la descarga".

Por lo que analizaremos en la sección inmediatamente después a la Longitud Crítica, donde se presenta la presión máxima según el modelado hidráulico.

Como la Longitud Crítica se presenta a los 289,94 metros desde el punto de descarga, analizaremos el punto posterior ubicado a los 350 m al cual corresponde una presión de trabajo de P= 31,62 m.c.a. según lo calculado con el software EPANET.

De donde:

$$P + \Delta P = 31,62 + 26,43 = 58,05 \text{ m.c.a.}$$
 VERIFICA

Siendo los 100 m.c.a la presión resistida por la clase del material de la conducción (P.V.C. C10 DN 200 mm), con este análisis comprobamos que la instalación no sufrirá inconveniente alguno durante el desarrollo de su función.

4.5. PLANTA POTABILIZADORA DE AGUA

4.5.1. Sistema de Tratamiento Adoptado:

La planta potabilizadora contempla realizar los siguientes procesos para el tratamiento del agua cruda, coagulación, floculación, decantación, filtración, desinfección y adecuación de pH a la salida si fuera necesario. Por medio de módulos compuestos de la siguiente manera:

- Una (1) cámara de inicio cuya función será romper carga, garantizar la mezcla rápida del floculante y posterior abastecimiento de los módulos de floculación.
- Dos (2) baterías de floculadores del tipo agitadores mecánicos, cada batería estará compuesta por dos módulos de gradiente de mezcla decreciente de paletas verticales.
- Dos (2) decantadores de alta velocidad de flujo ascendente de placas planas inclinadas.

- Dos (2) baterías de filtros rápidos de arena de flujo vertical con sistema de retrolavado, cada batería estará compuesta por dos unidades de filtrado.
- Un (1) tanque compensador.
- Un (1) concentrador de barros.
- Dos (1) filtros de bandas.
- Un (1) sistema de inyección de hipoclorito de sodio para desinfección.
- Una Cisterna de Capacidad para 400.000 litros para almacenamiento del agua tratada.

Se potenciará el proceso de coagulación – floculación – decantación – filtración, con la inyección de coagulante en un punto donde el gradiente de mezcla sea adecuado (1° cámara rompecarga y floculación), previo al ingreso a las cámaras de floculadores mecánicos se incorporará sulfato de aluminio como ayudante de floculación a los fines de lograr la desestabilización, aglutinación y posterior decantación de partículas.

4.5.2. Parámetros de diseño:

Caudal de ingreso:

 $QT = 4899,56 \text{ m}^3/\text{dia} = 0,05671 \text{ m}^3/\text{s} = 204,15 \text{ m}^3/\text{h}$

4.5.3. Cámara de carga:

L = 2,00 m	Longitud adoptada de cámara
B = 1,40 m	Ancho de cámara
a = 0.90 m	Altura adoptada de vertedero
H" = 1,80 m	Altura de cámara
$V = 2,52 \text{ m}^3$	Volumen de la cámara
t = 44,44 seg	Tiempo de permanencia hidráulica

Ingreso del líquido a cada cañería desde la cámara de carga

Se adoptan dos conductos para comunicar la cámara de carga con la cámara alimentadora de los floculadores:

$Qc = 102,07 \text{ m}^3/\text{h}$	Caudal de líquido en cada cañería
V = 0.50 m/s	Velocidad adoptada del líquido en la cañería
$A_n = 0.057 \text{ m}^2$	Área necesaria de cada cañería
$D_n = 0.269 \text{ m}$	Diámetro necesario
$D_a = 0.2966 \text{ m}$	Diámetro adoptado (caño PVC clase 6 diámetro 315 mm)

 $A_a = 0,0691 \text{ m}^2$ Área real adoptada

V_a = 0,410 m/s Velocidad real del líquido

Calculo de pérdida de carga en un conducto

Pérdidas por fricción

 $J_{4,87} = 10,64 * Q^{1,85} * C^{-1,85} * D^{-4,8704}$

C = 140,00 Coeficiente de Williams Hazen

 $J_{4.87} = 0.000582 \text{ m/m}$ Pérdida de carga unitaria

 $L_1 = 3,00 \text{ m}$ Longitud equivalente

 $\Delta h_f = j^*L = 0,0017 \text{ m}$ Pérdida de carga en el tramo de longitud estimada que

comunica la cámara de agua sedimentada con cada unidad de

filtrado.

Pérdidas por Singularidades

 $h_s = \sum K^*(v^2/2g) = 0,013 \text{ m}$ Perdida por singularidades

Singularidad K
Embocadura 0,50
Desembocadura 1,00

h_T= 0,015 m Perdida de carga total

h_T= 0,03 m Perdida de carga total adoptada

Resumen geométrico

L= 2,00 Longitud interna de cámara de carga m B= 1,40 Ancho interno de cámara de carga m 0,90 Altura de pared de vertedero a= m H"= Altura de cámara de carga 1,80 m

4.5.4. Cámara de carga de floculadores

 $Q_T = 0,0567 \text{ m}^3/\text{s}$ Caudal que ingresa a la cámara

 $Q_{T1} = 0,0284 \text{ m}^3/\text{s}$ Caudal que desborda por cada vertedero

L = 0,50 m Longitud adoptada de cámara

B = 1,00 m Ancho de cámara

a = 0,75 m Altura adoptada de vertedero

H" = 1,00 m Altura de cámara

V = 0,38 m³ Volumen de la cámara

Ingreso del líquido a cada floculador desde la cámara de carga

El líquido ingresa a cada floculador a través de un orificio:

 $Qc = 0.0284 \text{ m}^3/\text{s}$ Caudal que ingresa a cada floculador

 $h_0 = 0.15 \text{ m}$ Altura adoptada del orificio sumergido apoyado en la solera

adoptada

b_o = 1,00 m Ancho de c/orificio. Lado de c/cámara

U_o = 0,19 m/s Velocidad media de pasaje en operación normal

Resumen geométrico

L = 0,50 m Longitud interna de cámara de carga

B = 1,00 m Ancho interno de cámara de carga

a = 0,75 m Altura de pared de vertedero

H" = 1,00 m Altura de cámara de carga

 $h_0 = 0,15$ m Altura de orificio sumergido por el que ingresa el líquido a un floculador

b_o = 1,00 m Ancho de orificio sumergido por el que ingresa el líquido a un floculador

4.5.5. Floculadores de eje vertical

Se adopta un floculador por cámara, con un total de 2 cámaras por batería:

Cálculo 1° cámara:

 $g = 9,806 \text{ m/s}^2$ Aceleración de la gravedad

L = 2,50 m Longitud de la cámara

B = 2,50 m Ancho de la cámara

h = 2,00 mAltura de la cámara

H = h + a = 2,30 mAltura de la cámara más revancha

 $\mu = 0.001116 \text{ Pa*s}$ Viscosidad dinámica

 $\rho = 999.00 \text{ Kg/m}^3$ Densidad del agua a 16°C

 $V = 12,50 \text{ m}^3$ Volumen de la cámara

 $G = 70,00 \text{ s}^{-1}$ Gradiente de la 1º cámara (entre 10 y 70 s⁻¹)

 $P_1 = \mu^* V^* G^2 = 63,36 \text{ Watts}$ Potencia aplicada en máx. gradiente

 $\eta = 0.65$ Rendimiento conjunto motor

 $P = P_1 * 1.341 * 10^{-3} HP/w/\eta = 0,14 HP$ Motor eléctrico potencia nominal

 $P_{a1} = 0.30 \text{ HP}$ Adoptado

= 223,80 Watt

 $Z = P_a/P_1 = 3,274 > 2,8$ **VERIFICA**

Cálculo 2° cámara:

 $G = 40.00 \text{ s}^{-1}$ Gradiente de la 2º cámara

 $P_1 = \mu^* V^* G^2 = 22,32 \text{ Watts}$ Potencia aplicada en máx. gradiente

 $\eta = 0.65$ Rendimiento conjunto motor

 $P = P_1*1.341*10^{-3} HP/w/\eta = 0.05 HP$ Motor eléctrico potencia nominal

 $P_{a2} = 0.10 HP$ Adoptado

74,60 Watt

 $r_1 = 0.35 \text{ m}$

 $Z = P_a/P_1 = 3.342 > 2.8$ **VERIFICA**

Dimensiones floculador de paletas verticales

b = 0.10 mAncho paleta

Largo de paleta I = 1,60 m

Radio al eje de rotación $r_2 = 0.70 \text{ m}$ Radio al eje de rotación

 $r_3 = 1,05 \text{ m}$ Radio al eje de rotación

k = 0.25Relación entre la velocidad del agua y la de las

paletas

 $C_D = 1.10 + 0.02*(b/l+l/b) = 1,42$ Coeficiente de arrastre - Ecuación empírica válida para N^0 de Reynolds entre 10^3 y 10^6

$$G = 5*[\rho*g/(\mu*V)*(C_D(1-k)^3*n^3*b*l*(r_1^3+r_2^3+r_3^3))]^{0.5}$$

$$n = 1 / [(5^2 * \rho * g)^{(1/3)}] * \{P_1 / [C_D * (1-k)^3 * b * I * (r_1^3 + r_2^3 + r_3^3)]\}^{(1/3)}$$

n₁= 0,124 r.p.s. Velocidad de rotación de la 1º cámara

 $n_1 = 7,41 \text{ r.p.m.}$

n₂= 0,085 r.p.s. Velocidad de rotación de la 2º cámara

 $n_2 = 5,10 \text{ r.p.m.}$

Verificaciones:

Cantidad de Paletas = 6 un.

Área total de las paletas $Ap = 0.96 \text{ m}^2$

Área longitudinal de cámara Ac = 5,00 m²

Se verifica que el área total de las paletas sea menor a 0,2 veces el área longitudinal de la cámara $(0,96 < 5,00 \times 0,2)$.

r = 1,05 m Radio de giro de la última paleta

 $\omega = 0.815 \text{ m/s}$ Velocidad angular desarrollada

Se verifica que la velocidad angular de la última paleta sea menor a 1,20 m/s.

Resumen geométrico

L=	2,50	m	Longitud interna de cada cámara de floculador
B=	2,50	m	Ancho interno de cada cámara de floculador
h=	2,00	m	Altura de la cámara de floculador
H=	2,30	m	Altura de la cámara más revancha
P _{a1} =	0,30	HP	Potencia motor cámara N°1
P _{a2} =	0,10	HP	Potencia motor cámara N°2

4.5.6. Decantadores a placa plana inclinada

A continuación, se calcula un decantador del módulo siendo en total dos unidades.

Caudal a tratar

 $Q_{trat.} = 102,07 \text{ m}^3\text{/h}$ Caudal de diseño por decantador $Q_{trat.} = 2449,78 \text{ m}^3\text{/dia}$ Caudal de diseño por decantador $Q_{trat.} = 0,0284 \text{ m}^3\text{/s}$ Caudal de diseño por decantador

Características del agua

 $t^0 = 16^{\circ}$ C Temperatura media del agua.

V_{sc} = 0,00023 m/s Velocidad de sedimentación crítica para planta entre

1000 y 10000 m³/día sin adecuado control de

operación (entre 20 y 25 m³/m²*día)

v = 0,000001117 m²/s Viscosidad cinemática del agua a 16°C

Características de las placas

Material: P.V.C.

 $\begin{array}{ll} I=1,\!20 \text{ m} & \text{Largo de la placa adoptado} \\ b=2,\!50 \text{ m} & \text{Ancho de la placa adoptado} \\ e=3 \text{ mm} & \text{Espesor de la placa adoptado} \\ a=0,\!05 \text{ m} & \text{Separación entre placas adoptado} \\ \alpha=60^\circ & \text{Ángulo de inclinación de las placas} \end{array}$

 $\cos \alpha = 0,500$ $\sin \alpha = 0,866$

1)
$$Vo = \frac{Vsc}{Sc} * (sen + L * cos \alpha)$$

2)
$$Vo = \frac{Vsc}{Sc} * (sen \alpha + (L - 0.058*Re)*cos \alpha)$$

Con la ecuación 1) para un Vsc determinado, calculamos un valor de Vo aproximado. Con este valor de Vo se encuentra el Re y se reemplaza en la ecuación 2) para hallar un segundo valor aproximado de Vo. Con este nuevo valor se recalcula Re y se obtiene un nuevo valor de Vo, y así sucesivamente.

L = I/a Relación entre el largo de placa y la separación entre ellas

L = 24,0

Sc = 1 Constante según el tipo de decantador, para el caso de placas.

Vo = 0,00298 m/s

Re = 133 < 250 Flujo Laminar

Vo = 0.00208 m/s

Vo (supuesto) m/seg	Re	Vo(obtenido) m/seg
0,00298	133	0,00208
0,00208	93	0,00235
0,00235	105	0,00227
0,00227	102	0,00230
0,00230	103	0,00229
0,00229	102	0,00229
0,00229	103	0,00229
0,00229	103	0,00229
0,00229	103	0,00229

Vo = 0,00229 m/s Velocidad de sedimentación media entre placas

Re = 103

Número de placas:

Sea N el número de canales

Entonces el número de placas es N + 1

$$N = \frac{Q}{b * Vo * a}$$

N = 99

N = 100 ud. Cantidad de canales

N+1 = 101 ud. Cantidad de placas adoptadas

Proyección horizontal de ocupación de Placas:

$$L = l * cos\alpha + \frac{[N * a + (N+1) * e]}{sen\alpha}$$

$$Lh = 6,72 m$$

Proyección vertical de ocupación de Placas:

$$Hp3 = l * sen\alpha$$

$$Hp3 = 1,04 \text{ m}$$

Geometría del decantador

Las dimensiones del decantador deben cumplir las siguientes relaciones:

 $2 \le Ld/Bd \le 6$

Adoptando una relación y tomando el ancho del decantador igual al ancho del floculador:

Ld/Bd = 2,70	Relación entre	largo y anch	no de c	lecantad	or
--------------	----------------	--------------	---------	----------	----

Ld = 6,75 m Largo de decantador Bd = 2,50 m Ancho de decantador

Resumen geométrico

α=	60,00	0	Inclinación placa respecto a la horizontal
a=	0,05	m	Separación entre placas
 =	1,20	m	Longitud de placa
b=	2,50	m	Ancho de placa
e=	3,00	mm	Espesor de Placas
n=	101,00	ud.	Cantidad de placas adoptadas
L=	6,72	m	Proyección Horizontal de ocupación de placas
Hp3=	1,04	m	Proyección Vertical de ocupación de placas
Bd=	2,50	m	Ancho de Sedimentador
Ld=	6,75	m	Largo de Sedimentador

4.5.7. Conductos de agua decantada

$Q = 0.0284 \text{ m}^3/\text{s}$	Caudal total en cada decantador
$q_r = 0.0025 \text{ m}^3/\text{s*m}$	Tasa de recolección a verificar según ENOHSa - Fund. Cap. VII
$L = Q/q_r = 11,34 \text{ m}$	Longitud de tuberías de recolección necesaria

N° = 4,00 ud. Se adoptan 4 cañerías

Lc = 3,00 m Longitud adoptada de cada cañería

L = 12,00 m Longitud de tuberías de recolección adoptada $q_r = Q/L = 0,0024 \text{ m}^3/\text{s}^*\text{m}$ Tasa de recolección menor a 2,5 l/s*m, verifica

Separación entre colectores

S = 0.83 m Separación entre colectores

S' = 0,42 m Separación entre colectores y muros

Se adopta cañería PVC clase 6 ø160 mm:

D = 0,1506 m Diámetro interno cañería ø160 mm clase 6

 $S_{cadopt} = 0.0178 \text{ m}^2$ Sección de paso cañería ø160 mm clase 6

sep = 0,20 m Separación entre agujeros

n = Lc/sep = 20,00 ud. Cantidad de agujeros por colector

Según ENOHSa, Criterios Básicos Cap. 5:

 $S_o = 0.462 * S_{cadopt} / n = 0.000411 \text{ m}^2$ Sección de cada orificio (según ENOHSa -

Fund. Cap. VII)

D_o = 0,023 m Diámetro del orificio

Caudal por orificio:

$$q_o = C_d * S_o * \sqrt{2 * g * h_o}$$

C_d = 0,61 Coeficiente de descarga según Azevedo Netto

 $h_o = 0.10 \text{ m}$ Tirante de agua adoptado sobre el orificio

 $q_o = 0,00035 \text{ m}^3/\text{s}$ Caudal por cada orificio

Volumen líquido (sobrenadante) sobre las placas Hp4

$$H_{p4} = \frac{S * q_r * L}{q_s * L' * B}$$
$$q_s = \left(\frac{Q}{L' * B}\right)$$

$$q_s = \left(\frac{1}{L' * B}\right)$$

 $q_r = q_0*1/sep = 0,00176 \text{ m}^3/s*m$ Tasa de recolección real

L' = 5,00 m Longitud ocupada por las placas

L = 12,00 m Longitud de tuberías de recolección

adoptada

B = 2,50 m Ancho interno de decantador

 $q_s = 0,0023 \text{ m}^3/\text{m}^2*\text{s}$ Carga hidráulica sobre zona de placas

 $H_{p4} = 0,620 \text{ m}$ Altura de agua necesaria desde la extremidad superior de las

placas y la generatriz superior del caño de recolección de agua

decantada.

Tirante de agua dentro de la cañería

 $h/D \le 0.75$

h = 0,103 m Tirante de agua dentro de cada cañería con pendiente de 0,4%.

h/D = 0,684 VERIFICA

Verificaciones

La separación entre caños de recolección debe ser inferior a dos veces la altura de agua sobre la extremidad superior de los conductos:

Como el diámetro de la cañería es de 0,16 m, adoptamos un H_{p4} igual a 0,75 m

S = 0,83 m Separación entre colectores

 $H_{p4} = 0,65 \text{ m}$ Altura de agua adoptada desde la extremidad superior de las

placas y la generatriz superior del caño de recolección de agua

decantada.

 $S \le 2 * H_{p4}$ VERIFICA

4.5.8. Tolva de barro de decantadores

X = 30,00 mg/l Partículas en suspensión

Y = 30,00 mg/l Cantidad coagulante agregado $N^{\circ} = 2,00$ Cantidad de Sedimentadores

T = 3,00 días Tiempo de Limpieza del Sedimentador

 μ = 95,00 % Porcentaje de humedad barro

 $\gamma = 1040,00 \text{ kg/m}^3$ Peso específico del barro

Cálculo:

P = (X+Y)*Q/N*1/1000

P = 146,99 kg/día Peso de barro diario

 $V = (P^*T)/((1-\mu)^*\gamma)$

 $V = 8,48 \text{ m}^3$ Volumen de la tolva

h = 0.50 m Altura Promedio

Adoptamos tres tolvas de barro, de manera de que sea más eficiente el desagote de las mismas:

h = 1,10 m Altura efectiva adoptada para las tres tolvas.

Las tres tolvas de barro tienen las siguientes dimensiones:

En zona inferior:

Ancho (a) = 0.70 m Área de zona inferior (b₂) = 0.49 m²

Largo (I) = 0.70 m

En zona superior:

Ancho (a) = 2,50 m Área de zona superior (b₁) = 5,625 m²

Largo (I) = 2,25 m

Por lo tanto, el volumen total de las tres tolvas es:

 $V = (1/3)^*h^*(b_1+b_2+(b_1*b_2)^{1/2})$

 $V_1 = V_2 = V_3 = 2,85 \text{ m}^3$ Volumen de la tolva (T₁), (T₂) y (T₃)

 $V_T = 8,55 \text{ m}^3$ Volumen total de tolvas de barro por sedimentador

Tenemos que para una tolva de base mayor de 2,25 m y base menor de 0,70 m con un ángulo de inclinación de la pared de la tolva de 55°

 $H_{p1} = 1,10 \text{ m}$

Las dimensiones adoptadas nos garantizan un volumen en las tolvas de barro que nos indica que deberán ser desagotadas cada 3 días, de todas maneras, se deberá verificar la frecuencia de limpieza según la operación y puesta a punto de la planta.

Se adopta un conducto de descarga de barro por tolva por sedimentador:

n_L= 3 ud Cantidad de descargadores

d _L =	0,1036	m	Diámetro cañería descarga adoptado
$a_L = \pi^* d_L^2 / 4 =$	0,0084	m^2	Sección de descarga de un conducto
$A_L=n_L*a_L=$	0,0253	m^2	Sección de descarga total
D _P =	0,1506	m	Diámetro cañería colectora de descarga
A _P =	0,0178	m^2	Sección cañería colectora de descarga
$t_d =$	8	min	Tiempo de descarga de las tolvas llenas
$t_d = Q_d = V_T/t_d =$	8 0,0022	min m³/seg	Tiempo de descarga de las tolvas llenas Caudal instantáneo de descarga por sedimentador
$Q_d = V_T/t_d =$	0,0022	m³/seg	Caudal instantáneo de descarga por sedimentador

Altura total del decantador

 $H = H_{p1} + H_{p2} + H_{p3} + H_{p4}$

 $H_{p1} = 1,10 \text{ m}$ Altura efectiva adoptada para las tres tolvas.

 $H_{p2} = 1,23 \text{ m}$ Distancia entre la extremidad superior de la tolva de barro y la

extremidad inferior de las placas

H_{p3} = 0,87 m Proyección Vertical de ocupación de placas

 $H_{p4} = 0.75 \text{ m}$ Altura de agua necesaria desde la extremidad superior de las placas y

la generatriz superior del caño de recolección de agua decantada

H = 4,00 m Altura Total Decantador

4.5.9. Filtros rápidos

Parámetros de diseño

$Q_t = 204,15 \text{ m}^3/\text{h}$	Caudal total a filtrar
$N_b = 2,00 \text{ ud}.$	Número de baterías adoptadas
$N_f = 2,00 \text{ ud}.$	Número de filtros por batería adoptada
$N_t = 4,00 \text{ ud}.$	Número total de filtros
$U_f = 150,00 \text{ m}^3/\text{ m}^2 * \text{día}$	Velocidad de filtración
$Q_f = 1224,89 \text{ m}^3/\text{dia}$	Caudal medio por filtro
$A_f = Q_f/U_f = 8,17 \text{ m}^2$	Área de cálculo de c/filtro
$A_f = 8,75 \text{ m}^2$	Área de filtro adoptada
$L_f = 2,50 \text{ m}$	Longitud adoptada de c/filtro

 $B_f = A_f/L_f = 3.27 \text{ m}$ Ancho de c/unidad

 $B_f = 3,50 \text{ m}$ Ancho de filtro adoptado

Características del medio filtrante

Tipo: Arena monogranular gruesa (Coef. de uniformidad menor a 1,2)

L_a = 0,90 m Espesor adoptado del manto de arena para este tipo de

arena

Cu = 1,20 Coeficiente de uniformidad adoptado (menor a 1,2)

 $T_e = T_{10} = 1,00 \text{ mm}$ Tamaño efectivo adoptado (entre 0,9 y 1,3 mm)

 $T_{90} = 1,60 \text{ mm}$ Abertura de tamiz por que pasa el 90% (en peso) del

material

T_{máx} = 1,68 mm Tamaño máximo adoptado (rango de tamaños: 0,84 a

1,68)

γ = 2,65 Kg/l Peso específico del grano de arena

C_e = 0,75 Coeficiente de esfericidad del grano de arena

po = 0,50 Porosidad adoptada del manto de arena

Características del manto sostén de grava

 $L_g = 0,15 \text{ m}$ Espesor del manto soporte

T = 0,84-2 mm Tamaño adoptado de la única capa (en este caso capa

arena torpedo)

Lavado solamente con agua

Para un manto de arena gruesa ($T_e = 1,0$ mm) como es el proyectado, se adopta como método más conveniente el lavado solo con agua.

Según Di Bernardo (Fundamentación ENHOSa Cap.7), se tiene:

Inyección únicamente de agua con una velocidad de $U_a = 0.80$ m/min. para un período adoptado de $t_1 = 7$ mín. ($U_a =$ entre 0.8 y 1 m/min; $t_1 =$ entre 7 y 10 min.)

Volumen requerido de agua en un lavado

 $U_{a1} = U_{amax} = 0.80 \text{ m/mín}$ Velocidad ascensional del agua

En consecuencia, para A_f = 8,75 m² de c/filtro

$t_1 = 7,00 \text{ min}$	Tiempo de lavado en la primera etapa
$V_{a1} = 49,00 \text{ m}^3$	Volumen de agua para la primera etapa del lavado en
cada filtro	
$V_a = V_{a1} = 49,00 \text{ m}^3$	Volumen de agua requerido para el lavado de cada
unidad	
$V_{Ta} = N_t * V_a = 196,00 \text{ m}^3$	Volumen de agua total requerido para el lavado de filtros
n = 1,00	Número de filtros lavados simultáneamente
$\rho = V_{ta}/Q_T = 4,00 \%$	Porcentaje de agua requerido por día para el lavado de
	la totalidad de los filtros respecto al volumen diario

Toberas filtrantes

 $N_t = 50 \text{ ud}.$ Número adoptado de toberas por m²

producido

 $N_T = 438$ ud. Número de toberas por filtro

 $Q_{tmáx} = U_{amáx} * A_f / N_T$

Q_{tmáx} = 0,016 m³/min Caudal máximo de pasaje de agua por cada tobera

 $Q_{tmáx} = 0.959 \text{ m}^3/\text{h}$ <1 (m³/h) VERIFICA

Se colocarán toberas especiales para lavado con agua y aire. El proveedor deberá suministrar las curvas de pérdidas de carga para las operaciones de lavado y filtración. Para una luz de 3,50 m. de la losa que forma el falso fondo del filtro donde se insertarán las toberas roscadas se estima un espesor de 0,20 m. Por lo tanto, las toberas tendrán una cola de 0,30 m. de longitud a fin de que 0,10 m. de las mismas quede en la cámara formada bajo el falso fondo del filtro.

4.5.10. Conducciones y comunicaciones de filtros rápidos

Ingreso del líquido a cada cañería desde la cámara de baterías de sedimentadores

Se adoptan dos conductos para comunicar la cámara de carga con la cámara alimentadora de los floculadores:

Qc = 102,07 m³/h Caudal de líquido en cada cañería

V = 0,50 m/s Velocidad adoptada del líquido en la cañería

 $A_n = 0,057 \text{ m}^2$ Área necesaria de cada cañería

 $D_n = 0,269 \text{ m}$ Diámetro necesario

D_a = 0,2966 m Diámetro adoptado (caño PVC clase 6 diámetro 315 mm)

 $A_a = 0,0691 \text{ m}^2$ Área real adoptada

V_a = 0,410 m/s Velocidad real del líquido

Calculo de pérdida de carga en un conducto

Pérdidas por fricción

 $J_{4.87} = 10,64 * Q^{1,85} * C^{-1,85} * D^{-4,8704}$

C = 140,00 Coeficiente de Williams Hazen

 $J_{4,87} = 0,000582 \text{ m/m}$ Pérdida de carga unitaria

 $L_1 = 3,00 \text{ m}$ Longitud equivalente

 $\Delta h_f = j^*L = 0,0017 \text{ m}$ Pérdida de carga en el tramo de longitud estimada que

comunica la cámara de agua sedimentada con cada unidad de

filtrado.

Pérdidas por Singularidades

 $h_s = \sum K^*(v2/2g) = 0,013 \text{ m}$ Perdida por singularidades

Singularidad K

Embocadura 0,50

Desembocadura 1,00

 h_T = 0,015 m Perdida de carga total

h_T= 0,03 m Perdida de carga total adoptada

Cañería de agua filtrada de cada filtro

 $Q_1 = q_0/N^0$ caños colectores = 0,014 m³/s

 N^0 de colectores = 1

D = 0,2033 m Diámetro adoptado, igual al de ingreso - Aº DN 8"

 $U_1=4*Q_1/(\pi*D^2)=0,44 \text{ m/s}$ Velocidad media de pasaje

Cañería colectora de agua filtrada, ubicado en la galería de conductos

 $Q = Q_f = 0,057 \text{ m}^3/\text{s}$ Caudal filtrado

D = 0,3048 m Diámetro adoptado del conducto sumergido - Aº DN 12"

 $U = 4*Q/(\pi*D^2) = 0.78 \text{ m/s}$ Velocidad media de escurrimiento

Pérdidas por fricción

 $J_{4,87} = 10,64*Q^{1,85*}C^{-1,85*}D^{-4,8704}$

C = 150,00 Coeficiente de Williams Hazen

 $J_{4,87} = 0,001616 \text{ m/m}$ Pérdida de carga unitaria

L = 11,00 m Longitud equivalente

 $\Delta h = j^*L = 0.018 \text{ m}$ Pérdida de carga en el tramo de longitud estimada que

comunica ambas cámaras.

Pérdidas por Singularidades

 $h_s = \sum K^*(v2/2g) = 0,092 \text{ m}$ Perdida por singularidades

Singularidad K

Codo a 90° (1) 1,00

Válvula Mariposa - Esclusa (2) 1,00

Tee flujo pasante (2) 1,00

 $h_T = 0,110 \text{ m}$ Perdida de carga total

 $h_T = 0.12 \text{ m}$ Perdida de carga total adoptada

Canaletas colectoras del agua de lavado

 $N_c = 2,00$ Número de canaletas adoptadas por filtro

 $q_c = U_{am\acute{a}x} * A_f / N_c = 3,50 \text{ m}^3 / \text{min}$ Caudal de diseño por canaleta, para

velocidad máxima de lavado = 0.8 (m³/min)

 $q_c = 0.058 \text{ m}^3/\text{s}$

 $h_{máx} = (q_c/(1.3*b_c))^{2/3} = 0.28 \text{ m}$ Altura líquida máxima para un ancho bc =

0,30 m

 $H_c = 0.38 \text{ m}$ Altura total de la canaleta (incluye revancha

 $0,10 \, m)$

 $H = H_c + e + E^*h_a = 0,70 \text{ m}$ Altura entre el borde de las canaletas de

lavado y la superficie del lecho de arena

e = 0,05 m Espesor de la solera de las canaletas

E= 0,30 m Expansión adoptada del lecho de arena de

espesor h_a = 0.90 m (máximo 30%)

 $S_c = (B_f-2b_c-4e)/2 = 0.85 \text{ m}$ Separación libre entre canaletas colocadas

longitudinalmente

 $S_0/2 = 0.43 \text{ m}$ Separación libre entre canaletas y los

muros longitudinales de cada unidad

 $B_f = 2,50 \text{ m}$ Ancho de cada unidad

Conducto distribuidor de agua para el lavado de los filtros

Conducto para el lavado de un filtro:

 $Q_L = U_{amáx} * A_f = 0,117 \text{ m}^3/\text{s}$ Caudal de lavado para el lavado de una unidad

U_p = 3,60 m/s Velocidad de escurrimiento (Azevedo Netto y Richter)

 $A_p = Q_L/U_p = 0.032 \text{ m}^2$ Área de pasaje del conducto

D = 0,2031 m Diámetro del conducto que arranca desde el bombeo

D = 0,2033 m Se adopta diámetro comercial: Aº DN 8"

 $A_1 = A_p = 0,032 \text{ m}$ Área del conducto requerido en cada unidad

 $D_1 = 0,2031 \text{ m}$ Diámetro de cada entrada

 $D_1 = 0.2033 \text{ m}$ Se adopta diámetro comercial: Aº DN 8"

Se adoptará este diámetro para la cañería colectora de agua filtrada y de retrolavado.

Canales colectores de agua del lavado de los filtros

Conducen el agua sucia del lavado:

U_d = 1,60 m/s Velocidad adoptada según Azevedo Netto

 $Q_d = Q_L = 0,117 \text{ m}^3/\text{s}$ Caudal de diseño de los canales

receptores, considerando el lavado de una

unidad

b = 0.30 m Ancho adoptado de cada uno de los

canales colectores

 $h = Q_d/(b^*U_d) = 0,243 \text{ m}$ Altura líquida de escurrimiento

 $R_H = A/P = b^*h/(2h+b) = 0.093 \text{ m}$ Radio hidráulico

 $I = (n^*U_d/R_H^{2/3})^2 = 0,0103 \text{ m/m}$ Pendiente de la solera del canal

 $\Delta h = L^*i = 0,0361 \text{ m}$ Desnivel del tramo de longitud: L= 3,50 m

Conducción de intercomunicación entre cámaras exteriores colectoras del caudal de los canales de agua sucia del lavado de los módulos y de derivación hacia el tanque compensador

 $Q_D = Q_d = 0,117 \text{ m}^3/\text{s}$ Caudal del lavado de una unidad

D_D = 0,2966 m Diámetro interno adoptado (PVC DN = 315

mm - Clase 4)

 $Z_2 = n^*Q_i/(D^{8/3}*i^{1/2}) = 0,330$ Coeficiente tablas Woodward Posey para Z_1

= h/D = 0.89

 $i = (n*Q_D/(D_D^{8/3}*Z_2))^2 = 0,009 \text{ m/m}$ Pendiente del conducto

 $\Delta h = L_D * i_D = 0,11 \text{ m}$ Desnivel del tramo: $L_D = 12 \text{ m}$

Conducto exterior que deriva el caudal total filtrado de la batería a la cisterna de almacenamiento

 $Q_{\pi} = Q_{T} = 0.057 \text{ m}^{3}/\text{s}$ Caudal de diseño

 $D_{\pi} = 0,1882 \text{ m}$ Diámetro interno del conducto adoptado (PVC

DN=200mm-Clase 6)

 $Z_2 = Q_1 * n/(D_1 * i^{1/2}) = 0,330$ Coeficiente de las tablas de Woodward-Posey

para $Z_1 = h/D = 0.89$

n = 0,011 Coeficiente de fricción de Manning

 $i_{\pi} = (Q_{T}*n/(D_{\pi}^{8/3}*Z_{2}))^{2} = 0.026$

 $L_1 = 10,00 \text{ m}$ Longitud del tramo

 $\Delta h_i = i_1 L_1 = 0.26 \text{ m}$

4.5.11. Residuos generados en los procesos de la planta de potabilización

Residuos generados en los procesos de la planta de potabilización

Datos:

 $Q_t = 204,15 \text{ m}^3/\text{h}$ Caudal de agua potabilizada

p₁ = 3 % Porcentaje de caudal total depositado en las tolvas

s/pruebas de lab.

 $p_2 = 20 \%$ Porcentaje de sólidos húmedos del caudal de residuos

aportados al concentrador

 $c_1 = 10 \text{ Kg SS/m}^3$ Concentración de sólidos en el caudal Q_1 , se adopta 1%

En las tolvas de los sedimentadores de placas planas inclinadas:

 $Q_1 = p_1 * Q_t = 146,99 \text{ m}^3/d$ Caudal de barro de las tolvas de los

sedimentadores derivados a concentradores de

barros

 $P_1 = c_1 * Q_1 = 1469,87 \text{ KgSS/d}$

Peso de sólidos suspendidos en el residuo de los

sedimentadores

 $P_L = E * P_1 = 1322,88 \text{ KgSS/d}$ Peso de sólidos que se envía a los filtros

deshidratadores, para eficiencia de sedimentación

E = 90%

En el concentrador de barros:

 $Q_2 = 29,40 \text{ m}^3/\text{d}$ Caudal de barros derivado a filtros de bandas

 $Q_{2e} = Q_1 - Q_2 = 117,59 \text{ m}^3/d$ Caudal del líquido clarificado efluente de los

concentradores.

 $P_2 = P_L = 1322,88 \text{ KgSS/d}$ Peso de sólidos correspondiente al caudal Q_2

 $c_2 = P_2 / Q_2 = 45 \text{ KgSS/d}$ Concentración del caudal Q2

En la torta producida por los filtros banda:

C_T = 18 % Concentración de sólidos, se adopta.

 $C_T = 180 \text{ KgSS/m}^3$

 $V_T = P_2 / C_T = 73,49 \text{ m}^3/\text{día}$ Volumen diario producido de torta húmeda con una

concentración del 20%.

En el lavado de filtros, se considera el lavado diario de dos unidades:

 $Q_4 = t_1 * q_{L1} * N_f * A_f$ Caudal medio diario de lavado diario de la batería

de filtros

 $Q_4 = 98 \text{ m}^3/\text{dia}$

Donde:

 $p_4 = Q_4 / Q_t = 0.02$ Porcentaje de Agua de Lavado

 $t_1 = 7,00 \text{ min}$ Tiempo de lavado en la primera etapa

 $T = t_1 = 7,00 \text{ min}$ Tiempo total de lavado

 $q_{L1} = 0.80 \text{ m}^3/\text{m}^2 \text{ min}$ Velocidad de lavado en cada etapa

N_f = 2,00 Número de filtros de la batería

 $A_f = 8,75 \text{ m}^2$ Área de cada filtro

Caudal diario derivado al tanque compensador:

$$Q_L = Q_4 + Q_2 = 127,40 \text{ m}^3/\text{dia}$$
 Caudal diario almacenado

Tanque Compensador

Se adopta para su diseño un volumen adecuado para recibir los lodos depositados en las tolvas de los decantadores de placas paralelas inclinadas junto con el agua de lavado de los filtros rápidos de manera que este último ingrese progresivamente a los módulos concentradores de barros. A se vez, debe poder almacenar el volumen contenido en una línea de producción en caso de ser necesario un vaciado de la misma.

$V_{1F} = 12,50 \text{ m}^3$	Volumen 1º cámara de floculadores
$V_{2F} = 12,50 \text{ m}^3$	Volumen 2º cámara de floculadores
$V_D = 57,53 \text{ m}^3$	Volumen decantador de placas planas
$V_T = 82,53 \text{ m}^3$	Volumen total de una línea de producción
$V_L = 49,00 \text{ m}^3$	Volumen requerido por el lavado de una unidad de filtros

Se adopta un tanque compensador de dimensiones: $8m \times 8m \times 1,5m$ (volumen = 96 m^3).

Concentradores de barros

$N_s = 1,00$	Número de unidades.
$Q_1 = Q_{C20} = 244,99 \text{ m}^3/\text{d} = 10,21 \text{ m}^3/\text{hs}$	Caudal medio diario en cada unidad
$T_s = 3,00 \text{ hs}$	Permanencia adoptada
$C_{sh} = U_s = 20,00 \text{ m}^3/\text{m}^{2*}\text{d}$	Carga hidráulica superficial media =
	velocidad media de sedimentación,
	valor adecuado establecido en
	normas para Q_{C20} , $x = 4 \text{ KgSSTA/m}^3$
	y factor de corrección de vertedero
	1.5.

$V = 30,62 \text{ m}^3$	Volumen
$As = 12,25 \text{ m}^2$	Área necesaria en planta
H = 2,50 m	Altura del concentrador
D = 3.95 m	Diámetro. Se adopta: 4,00 m

P = 12,57 m Perímetro del concentrador

qm = 0,23 l/s.m Caudal vertido por metro lineal < 2,15 l/s.m. Verifica

Canal de evacuación:

qc = 1,42 l/s Caudal en el canal

ve = 0.5 m/s Velocidad de escurrimiento A = 0.003 m² Área necesaria del canal

b = 0,30 m Ancho adoptado h = 0,20 m Altura adoptada $A = 0,06 \text{ m}^2$ Área adoptada

Filtros de bandas

Según el balance de masas de los residuos producidos en los procesos de la planta tenemos que el caudal enviado a los filtros deshidratadores de bandas será de 29,40 m³/día.

 $Q2 = 29,40 \text{ m}^3/d = 1,225 \text{ m}^3/h$ Caudal de barros derivado a filtros de

bandas

Considerando este caudal se opta por un modelo cuyas especificaciones son las siguientes:

Ancho de banda: 60 cm

Área de filtrado efectivo: 3,3 m²

Caudal: $0.5 - 4 \text{ m}^3/\text{h}$

Peso: 700 kg

Potencia: 0,5 kW

Medidas: 2 m x 1,37 m x 1,65 m (L x W x H)

4.6. CAÑERÍA DE IMPULSIÓN DE AGUA TRATADA

4.6.1. Esquemas y Planillas de Cálculo

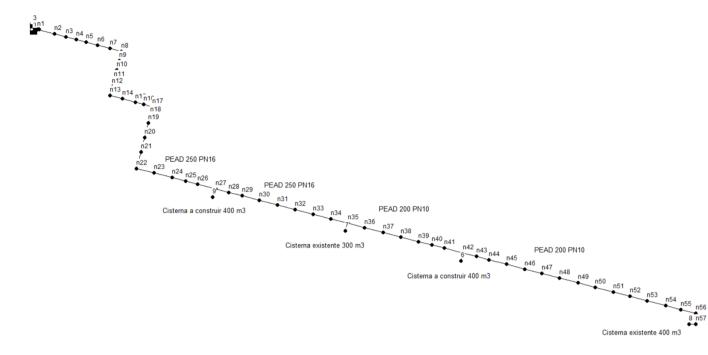
Se realiza la simulación Hidráulica de la cañería de impulsión de agua potable que abastecerá a las cuatro (4) cisternas, dos (2) existentes y dos (2) a construir, ubicadas en la localidad de Villa Ciudad Parque.

Esta impulsión se realiza desde la cisterna ubicada en el predio de la Planta Potabilizadora.

La cañería a emplear será de P.E.A.D. clase 16 de 250 mm hasta la segunda derivación que es la cisterna existente de 300 m3 y P.E.A.D. clase 10 de 200 mm a partir de la segunda derivación hasta el final de la impulsión. Las uniones serán por electrofusión.

La cañería se alojará en las calles y la tapada mínima será de 1,00 m y 1,20 m en zonas afectadas por el tránsito vehicular.

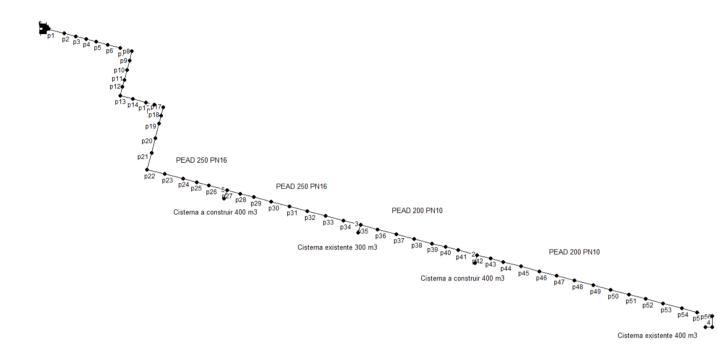
Se estimó el caudal a impulsar desde la cisterna de la planta, mediante la determinación de la proyección poblacional a 20 años, cuyo caudal de diseño resultó Q=204,15 m³/hr y a 10 años un caudal de diseño de Q=91,73 m3/hs.


Se prevé la colocación de dos bombas centrifugas trabajando en paralelo para los primeros 10 años y luego para los 20 años.

Para cubrir el consumo proyectado al año 2030 se estima un bombeo apto para cubrir entre las dos bombas un caudal de $Q = 91,73 \text{ m}^3/\text{h}$ y una H = 115 m.c.a. mientras que para el año 2040 se estiman dos bombas en paralelo capaces de cubrir una demanda de $Q = 204,15 \text{ m}^3/\text{h}$ y una H = 140 m.c.a.

4.6.2. Desarrollo del cálculo

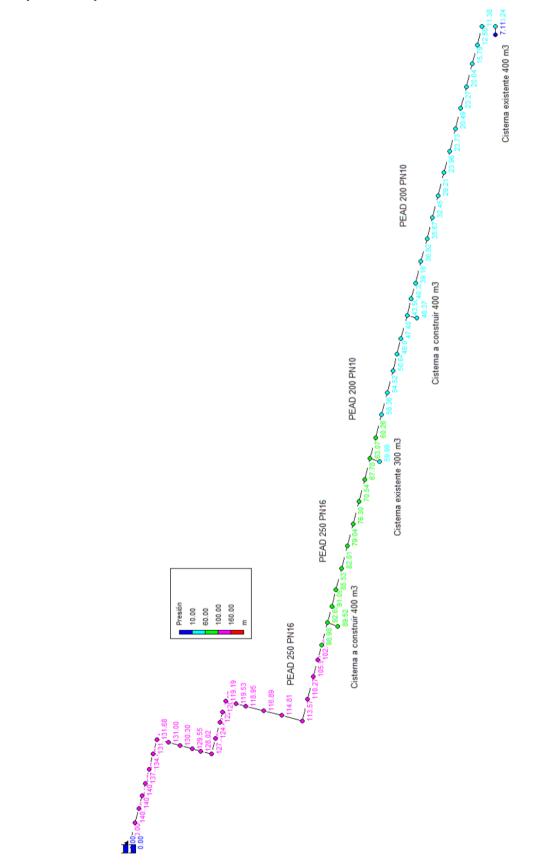
Se modeló la impulsión utilizando el programa EPANET, con el criterio de Hazen-Williams para estimar las pérdidas, obteniendo los siguientes resultados y esquema:


Esquema de nudos

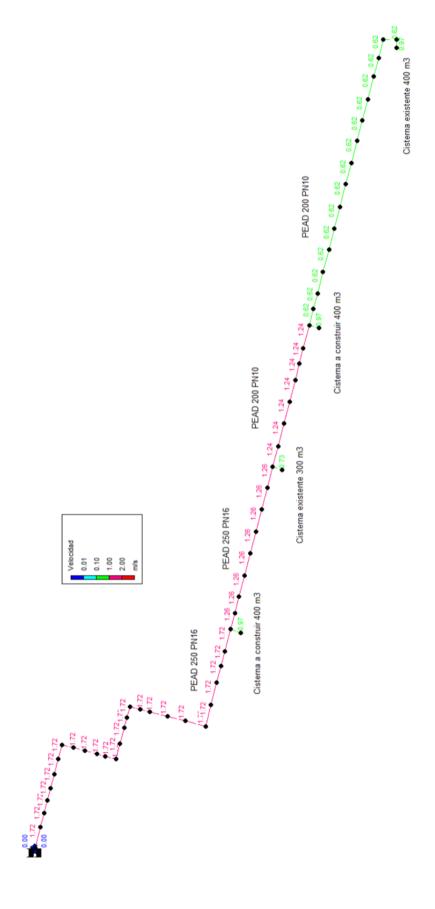
Estado de los Nudos de la Red							
ID Nudo	Cota	Demanda	Altura	Presión			
ID Nudo	m	m3/hr	m	m			
Conexión n1	787	0	917,08	130,08			
Conexión n2	785	0	916,19	131,19			
Conexión n3	784	0	915,62	131,62			
Conexión n4	784	0	915,1	131,1			
Conexión n5	786	0	914,58	128,58			
Conexión n6	788	0	914,01	126,01			
Conexión n7	790	0	913,38	123,38			
Conexión n8	789	0	912,79	123,79			
Conexión n9	789	0	912,33	123,33			
Conexión n10	789	0	911,86	122,86			
Conexión n11	789	0	911,35	122,35			
Conexión n12	790	0	910,99	120,99			
Conexión n13	790	0	910,55	120,55			
Conexión n14	792	0	909,91	117,91			
Conexión n15	793	0	909,25	116,25			
Conexión n16	794	0	908,85	114,85			
Conexión n17	795	0	908,38	113,38			
Conexión n18	794	0	907,94	113,94			
Conexión n19	794	0	907,55	113,55			
Conexión n20	795	0	906,82	111,82			
Conexión n21	796	0	906,09	110,09			
Conexión n22	796	0	905,25	109,25			

Conexión n23	798	0	904,36	106,36
Conexión n24	801	0	903,45	102,45
Conexión n25	803	0	902,75	99,75
Conexión n26	806	0	902,13	96,13
Conexión n27	811	0	901,23	90,23
Conexión n28	812	0	900,85	88,85
Conexión n29	817	0	900,47	83,47
Conexión n30	819	0	899,98	80,98
Conexión n31	822	0	899,46	77,46
Conexión n32	824	0	898,95	74,95
Conexión n33	829	0	898,44	69,44
Conexión n34	831	0	897,93	66,93
Conexión n35	835	0	897,44	62,44
Conexión n36	837	0	896,89	59,89
Conexión n37	838	0	896,28	58,28
Conexión n38	841	0	895,71	54,71
Conexión n39	844	0	895,11	51,11
Conexión n40	845	0	894,68	49,68
Conexión n41	846	0	894,27	48,27
Conexión n42	849	0	893,66	44,66
Conexión n43	852	0	893,54	41,54
Conexión n44	853	0	893,43	40,43
Conexión n45	855	0	893,26	38,26
Conexión n46	856	0	893,1	37,1
Conexión n47	859	0	892,94	33,94
Conexión n48	862	0	892,78	30,78
Conexión n49	867	0	892,61	25,61
Conexión n50	867	0	892,46	25,46
Conexión n51	870	0	892,29	22,29
Conexión n52	867	0	892,14	25,14
Conexión n53	870	0	891,98	21,98
Conexión n54	874	0	891,82	17,82
Conexión n55	877	0	891,68	14,68
Conexión n56	878	0	891,54	13,54
Conexión n57	879	0	891,44	12,44
Conexión 6	852	54,44	893,57	41,57
Conexión 7	838	40,83	897,39	59,39
Conexión 8	882	54,44	891,35	9,35
Conexión 9	814	54,44	901,14	87,14

Esquema de cañerías


Estado de las Tuberías de la Red									
Tubería	Long.	Ø	Rugosidad	Caudal m³/h	Veloc.	Perdida Unitaria m/km	Factor de Fricción	Nudo Inicial	Nudo Final
p1	104,30	204,60	140,00	204,15	1,72	12,64	0,02	n1	n2
p2	66,46	204,60	140,00	204,15	1,72	12,64	0,02	n2	n3
p3	60,75	204,60	140,00	204,15	1,72	12,64	0,02	n3	n4
p4	59,95	204,60	140,00	204,15	1,72	12,64	0,02	n4	n5
p5	66,51	204,60	140,00	204,15	1,72	12,64	0,02	n5	n6
p6	73,65	204,60	140,00	204,15	1,72	12,64	0,02	n6	n7
p7	68,49	204,60	140,00	204,15	1,72	12,64	0,02	n7	n8
p8	53,91	204,60	140,00	204,15	1,72	12,64	0,02	n8	n9
p9	54,82	204,60	140,00	204,15	1,72	12,64	0,02	n9	n10
p10	59,53	204,60	140,00	204,15	1,72	12,64	0,02	n10	n11
p11	41,75	204,60	140,00	204,15	1,72	12,64	0,02	n11	n12
p12	50,93	204,60	140,00	204,15	1,72	12,64	0,02	n12	n13
p13	74,98	204,60	140,00	204,15	1,72	12,64	0,02	n13	n14
p14	76,39	204,60	140,00	204,15	1,72	12,64	0,02	n14	n15
p15	47,27	204,60	140,00	204,15	1,72	12,64	0,02	n15	n16
p16	53,99	204,60	140,00	204,15	1,72	12,64	0,02	n16	n17
p17	51,85	204,60	140,00	204,15	1,72	12,64	0,02	n17	n18
p18	45,82	204,60	140,00	204,15	1,72	12,64	0,02	n18	n19
p19	83,95	204,60	140,00	204,15	1,72	12,64	0,02	n19	n20
p20	85,53	204,60	140,00	204,15	1,72	12,64	0,02	n20	n21

p21	98,44	204,60	140,00	204,15	1,72	12,64	0,02	n21	n22
p22	102,90	204,60	140,00	204,15	1,72	12,64	0,02	n22	n23
p23	106,30	204,60	140,00	204,15	1,72	12,64	0,02	n23	n24
p24	81,94	204,60	140,00	204,15	1,72	12,64	0,02	n24	n25
p25	71,36	204,60	140,00	204,15	1,72	12,64	0,02	n25	n26
p26	105,50	204,60	140,00	204,15	1,72	12,64	0,02	n26	n27
p27	78,74	204,60	140,00	149,71	1,26	7,12	0,02	n27	n28
p28	79,26	204,60	140,00	149,71	1,26	7,12	0,02	n28	n29
p29	100,70	204,60	140,00	149,71	1,26	7,12	0,02	n29	n30
p30	107,90	204,60	140,00	149,71	1,26	7,12	0,02	n30	n31
p31	104,20	204,60	140,00	149,71	1,26	7,12	0,02	n31	n32
p32	106,20	204,60	140,00	149,71	1,26	7,12	0,02	n32	n33
p33	106,80	204,60	140,00	149,71	1,26	7,12	0,02	n33	n34
p34	100,10	204,60	140,00	149,71	1,26	7,12	0,02	n34	n35
p35	99,70	176,20	140,00	108,88	1,24	8,17	0,02	n35	n36
p36	109,20	176,20	140,00	108,88	1,24	8,17	0,02	n36	n37
p37	103,40	176,20	140,00	108,88	1,24	8,17	0,02	n37	n38
p38	107,30	176,20	140,00	108,88	1,24	8,17	0,02	n38	n39
p39	77,91	176,20	140,00	108,88	1,24	8,17	0,02	n39	n40
p40	73,94	176,20	140,00	108,88	1,24	8,17	0,02	n40	n41
p41	109,90	176,20	140,00	108,88	1,24	8,17	0,02	n41	n42
p42	80,19	176,20	140,00	54,44	0,62	2,26	0,02	n42	n43
p43	73,04	176,20	140,00	54,44	0,62	2,26	0,02	n43	n44
p44	104,90	176,20	140,00	54,44	0,62	2,26	0,02	n44	n45
p45	108,50	176,20	140,00	54,44	0,62	2,26	0,02	n45	n46
p46	101,00	176,20	140,00	54,44	0,62	2,26	0,02	n46	n47
p47	104,50	176,20	140,00	54,44	0,62	2,26	0,02	n47	n48
p48	109,90	176,20	140,00	54,44	0,62	2,26	0,02	n48	n49
p49	102,40	176,20	140,00	54,44	0,62	2,26	0,02	n49	n50
p50	105,90	176,20	140,00	54,44	0,62	2,26	0,02	n50	n51
p51	98,62	176,20	140,00	54,44	0,62	2,26	0,02	n51	n52
p52	102,10	176,20	140,00	54,44	0,62	2,26	0,02	n52	n53
p53	110,00	176,20	140,00	54,44	0,62	2,26	0,02	n53	n54
p54	89,98	176,20	140,00	54,44	0,62	2,26	0,02	n54	n55
p55	87,55	176,20	140,00	54,44	0,62	2,26	0,02	n55	n56
p56	64,01	176,20	140,00	54,44	0,62	2,26	0,02	n56	n57
2	20,00	141,00	140,00	-54,44	0,97	6,70	0,02	n42	6
3	20,00	141,00	140,00	-40,83	0,73	3,93	0,02	n35	7
4	20,00	141,00	140,00	-54,44	0,97	6,70	0,02	n57	8
5	20,00	141,00	140,00	-54,44	0,97	6,70	0,02	n27	9


Para los cálculos se adoptó un caudal de 102,075 m³/h a impulsar por cada bomba centrifuga, garantizando presión positiva en la última cisterna a abastecer y cumpliendo con las velocidades limites aconsejadas de la cañería utilizada, para no permitir erosión en las tuberías.

A continuación, se muestra la imagen de la Modelación de la Red.

Esquema de presiones de la red

Esquema de velocidades de la red

4.6.1. Válvulas de aire y Cámaras de desagüe y limpieza

Las mismas irán ubicadas según corresponda a lo largo de la traza de la cañería, colocándose las válvulas de aire o venteo en los puntos altos de la conducción donde se acumula el aire naturalmente y puede llegar a provocar una obstrucción o perdida de eficiencia en la impulsión, y las cámaras de desagüe y limpieza en los puntos más bajos de la misma con el fin, como su nombre lo indica, de realizar el vaciado del líquido en su interior y cualquier suciedad presente.

Su ubicación particular se detalla en los planos adjuntos como ANEXO I: Planos.

4.6.2. Cálculo de Sobrepresiones sobre cañería de impulsión

Se presenta el cálculo de las sobrepresiones que se presentarán en el primer tramo de la cañería de impulsión de agua tratada (tramo más solicitado), el cual será de P.E.A.D. diámetro 250 mm clase 16 y de una longitud de 1790,00 metros lineales.

Datos de la conducción:

Material =	P.V.C.	
D_{ext} (m)=	0,250	
$D_{int}(m)=$	0,2046	Diámetro interior de la conducción
Espesor (m)=	0,0227	
$\varepsilon (N/m^2) =$	2200000000	Módulo de compresibilidad del Agua.
Longitud (m) =	1800,00	
$E (N/m^2) =$	1370000000	Módulo de Elasticidad del material de la conducción.

Datos de la instalación:

H _g (m.c.a.)=	21,67	
H_m (m.c.a.)=	38,64	Altura manométrica de la instalación
$Q (m^3/s) =$	0,04537	
v (m/s)=	1,37986	Velocidad del Agua en la instalación
i (%)=	1,20	Pendiente media de la instalación
ρ (Kg/m ³) =	1000	Peso específico del fluido
$g (m/s^2) =$	9,81	
$\gamma (N/m^3) =$	9810	

Frecuencia de propagación de la Onda de Presión:

$$Tc = \frac{2 x L}{c} \qquad c = \frac{\sqrt{\frac{\varepsilon}{\gamma}}}{\sqrt{1 + \frac{\varepsilon x D_{ext}}{e x E}}}$$

c (m/s) = 109,61 Celeridad de la conducción Tc (s) = 32,84 Frecuencia de propagación de la onda de presión

Tiempo de parada del agua (fórmula de Mendiluce):

$$T = C + \frac{K x L x v}{g x Hm}$$

Longitud Crítica:

$$Lc = \frac{c x T}{2}$$

Coeficientes de ajuste determinados experimentalmente:

L (m)	K
< 500	2
≈ 500	1,75
500 < L < 1500	1,5
≈ 1500	1,25
> 1500	1

i	С
< 20%	1
≈ 25%	0,8
≈ 30%	0,6
≈ 40%	0,4
> 50%	0

K = 1

C = 1

$$T (seg) = 7,552$$

Cierre brusco

$$Lc (m) = 413.90$$

Instalación Larga

Si T < Tc; La Sobrepresión ΔP, se obtiene aplicando la Fórmula de ALLIEVI

Allievi
$$\Delta P = \frac{c \, x \, v}{g}$$

Si T > Tc; La Sobrepresión ΔP, se obtiene aplicando la Fórmula de MICHAUD

$$Michaud \Delta P = \frac{2 x L x v}{g x T}$$

$$\Delta P = 15,42 \text{ m.c.a.}$$

Debido a que el resultado en estudio fue un tiempo de maniobra de Cierre Brusco e instalación Larga, "La Presión Máxima se establecerá en forma constante en toda la cañería y a partir de la longitud crítica, comenzará a decrecer en forma proporcional hasta anularse antes de la descarga".

Por lo que analizaremos en la sección inmediatamente después a la Longitud Crítica, donde se presenta la presión máxima según el modelado hidráulico.

Como la Longitud Crítica se presenta a los 413,90 metros desde el punto de descarga, analizaremos el punto posterior ubicado a los 468 m al cual corresponde una presión de trabajo de P= 113,57 m.c.a. según lo calculado con el software EPANET.

De donde:

$$P + \Delta P = 113,57 + 15,42 = 128,99 \text{ m.c.a.}$$
 VERIFICA

Siendo los 160 m.c.a la presión resistida por la clase del material de la conducción (P.E.A.D. C16 DN 250 mm), con este análisis comprobamos que la instalación no sufrirá inconveniente alguno durante el desarrollo de su función).

CAPÍTULO 5: CONCLUSIONES

5.1. GENERALES

Se trata de una obra de beneficio social, dispuesta a cubrir la demanda de agua potable de la población de la localidad de Villa Ciudad Parque Los Reartes, tanto en cantidad como en calidad, considerando el crecimiento poblacional hasta el año 2040.

La disponibilidad de agua de manera regular, permitirá un crecimiento y consolidación más ordenados de la mancha urbana, y además cambios positivos o desarrollos en ciertos ámbitos sociales y actividades económicas. Se otorgará en cierta medida bienestar y una mejor calidad de vida a los habitantes de la localidad.

La ejecución de dos cisternas nuevas, que pasarán a sumarse a las dos ya existentes en la localidad, garantizará una reserva de agua potable suficiente para abastecer a la comunidad en caso de cualquier contingencia, debida a la detención del funcionamiento de la planta potabilizadora u de otro tipo.

El hecho de tratarse de una toma de tipo subálvea permite el aprovechamiento del recurso incluso en épocas en las cuales el escurrimiento superficial es escaso o nulo debido al poco aporte de lluvias, permitiendo así una provisión de manera más regular del servicio.

En cuanto a la modelación en EPANET, se puede decir que la misma resulta una herramienta muy útil para estudiar el comportamiento de sistemas de impulsión y redes de agua potable. Ya que es de fácil manejo y los resultados se pueden apreciar de manera rápida y muy comprensible.

5.2. PARTICULARES

La ejecución de esta práctica supervisada resultó ser una experiencia enriquecedora, ya que brindó la oportunidad de ser partícipe de un grupo de trabajo. Además de utilizar y profundizar los conceptos adquiridos en la facultad, se realizaron visitas a distintos establecimientos, tanto públicos como privados, se conversó con profesionales afines al tema y otras tareas que forman parte de la inserción laboral en el campo de la ingeniería.

Permitió, además, conocer más sobre la metodología del proceso licitatorio en la Obra Pública en la provincia de Córdoba y enfrentar problemas e inconvenientes del ejercicio profesional.

Desde el punto de vista académico, se logró aplicar los conocimientos adquiridos en varias cátedras (Ing. Sanitaria, Topografía, Geotecnia, entre otras) en el ámbito laboral. Es decir, en un contexto con mayor variabilidad e incertidumbre que el que se tiene cuando se realizan trabajos prácticos académicos.

Finalmente, se comprendió, a lo largo del desarrollo del presente trabajo, la importancia que juega la tarea del ingeniero civil en el bienestar de la sociedad. Por lo cual resulta primordial capacitarse permanentemente para poder así desarrollar una actividad profesional que satisfaga las necesidades de nuestra sociedad.

BIBLIOGRAFÍA

- Ente Nacional de Obras Hídricas de Saneamiento (ENOHSa) Criterios básicos. Argentina, 2001.
- Ente Nacional de Obras Hídricas de Saneamiento (ENOHSa) Fundamentos. Argentina, 2001.
- Ente Nacional de Obras Hídricas de Saneamiento (ENOHSa) Proyectos típicos. Argentina, 2001.
- Ente Nacional de Obras Hídricas de Saneamiento (ENOHSa) Planos tipo. Argentina, 2001.
- Manual de Hidraulica. J. M. de Azevedo Netto y Carlos A. Richter, 1998.
- Tratamento de agua: tecnologia atualizada. J. M. de Azevedo Netto y Carlos A. Richter, 1991.
- Manual de Usuario EPANET VERSION 2.0.

ANEXO I: PLANOS

ÍNDICE DE PLANOS:

Plano N°	Descripción	Ноја
1	Planimetría general de ubicación	A2
2	Detalle de toma subálvea	A2
3	Casilla de comandos	A4
4	Planialtimetría Impulsión de Agua Cruda	A1
5	Planimetría Planta Potabilizadora	A0
6	Cámara rompe carga	A4
7	Floculadores y Decantadores	A1
8	Filtros rápidos	A2
9	Cisterna de almacenamiento	A1
10	Detalles de cisterna de almacenamiento	A2
11	Tanque compensador	А3
12	Concentradores de barros	A2
13	Detalles de concentradores de barros	A2
14	Sala de filtros de bandas	A2
15	Perfiles hidráulicos	A1
16	Casilla de impulsión de agua potable	A2
17	Casilla de retrolavado y cloración	A2
18	Casa química	A2
19	Planialtimetría Desagüe de Planta Potabilizadora	A1
20	Planialtimetría Impulsión de Agua Potable - Prog.: 0 a 2.350 m	A1
21	Planialtimetría Impulsión de Agua Potable - Prog.: 2.350 a 4.753 m	A1
22	Detalle cámara de desagüe	A4
23	Detalle válvula de aire	A4
24	Válvula esclusa con brasero	A4
25	Válvula esclusa con cámara	А3
26	Detalle cerco perimetral	А3