ANÁLISIS DE LOS MECANISMOS DE TRANSLOCACIÓN NUCLEAR EN EL PARÁSITO TEMPRANAMENTE DIVERGENTE

Giardia lamblia

Trabajo de tesis para optar al título de
Doctor en Ciencias Químicas

Lic. en Química Gonzalo Federico Mayol

Laboratorio de Microbiología e Inmunología
Instituto de Investigación Médica Mercedes y Martín Ferreyra
INIMEC-CONICET-UNC

Córdoba, Argentina – 2019
Directora de Tesis:
Dra. Andrea Silvana Rópolo

Comisión de Tesis:
Dra. Laura Cervi
Dra. María Gabriela Paraje
Dr. Víctor Gabriel Morón

Evaluador Externo:
Dr. Sergio Oscar Ángel

Comisión evaluadora de tesis

Dra. Laura Cervi. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. CIBICI-CONICET.

Dr. Víctor Gabriel Morón. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. CIBICI-CONICET.

Dr. Sergio Oscar Ángel. Escuela de Cienca y Tecnología, Universidad Nacional de San Martín. IIB-INTECH-CONICET
Índice

Comisión evaluadora ... i
Resumen ... v
Summary ... vi

Capítulo 1: Introducción general
1.1 Una breve reseña histórica y epistemológica 1
1.2 El origen eucariota y su devenir ... 2
1.3 Giardia lamblia como organismo tempranamente divergente ... 5
 1.3.1 Clasificación y diversificación .. 6
 1.3.2 Biología celular .. 8
 1.3.2.1 Trofozoíto ... 9
 1.3.2.2 Quiste .. 12
 1.3.3 Ciclo de vida .. 13
 1.3.3.1 Desenquistamiento .. 14
 1.3.3.2 Enquistamiento .. 14
1.4 Transporte nuclear .. 17
 1.4.1 Importación ... 18
 1.4.2 Exportación ... 21
 1.4.3 Reciclaje de mediadores .. 23
 1.4.4 Transporte en eucariotas de divergencia temprana 25

Hipótesis ... 27
Objetivos ... 27

Capítulo 2: Identificación y descripción de los importadores nucleares en G. lamblia
2.1 Introducción ... 29
 2.1.1 Genómica y el paradigma in silico 29
 2.2.2 El genoma de G. lamblia .. 30
2.2 Materiales y métodos .. 31
 2.2.1 Minería de Datos ... 31
 2.2.2 Reconstrucción filogenética 32
 2.2.3 Análisis estructurales ... 32
2.3 Resultados ... 33
 2.3.1 Importina β es una proteína codificada en el genoma de G. lamblia ... 33
 2.3.2 Importina β de G. lamblia tendría la estructura de sus homólogos en eucariotas superiores 35
 2.3.3 Importina α es una proteína codificada en el genoma de G. lamblia ... 40
 2.3.4 Importina α de G. lamblia tendría la estructura de sus homólogos en eucariotas superiores 42
2.4 Discusión ... 46
Capítulo 3: Estudios funcionales de los importadores nucleares en *G. lamblia*

3.1 Introducción ... 53
3.1.1 Arginina deiminasa .. 53
3.1.2 Rol biológico de Arginina deiminasa en *G. lamblia* 54
3.2 Materiales y métodos .. 55
3.2.1 Organismo y cultivo *in vitro* 55
3.2.1.1 Ensayo de crecimiento celular 55
3.2.1.2 Ensayos del proceso de enquistamiento 56
3.2.2 Amplificación y clonado de proteínas 57
3.2.2.1 Amplificación .. 57
3.2.2.2 Construcción de los vectores de expresión en *G. lamblia* .. 58
3.2.2.3 Corte del vector e inserto utilizando enzimas de restricción .. 58
3.2.2.4 Ligación del producto de corte 59
3.2.2.5 Preparación de bacterias competentes 59
3.2.2.6 Transformación de *Escherichia coli* 59
3.2.2.7 Chequeo de colonias por PCR 60
3.2.2.8 Purificación del plásmido 60
3.2.3 Transfección de trofozoítos de *G. lamblia* cepa WB/1267 60
3.2.4 Ensayos de Inmunofluorescencia 61
3.2.5 Ensayos de Inmunoblot .. 62
3.2.5.1 Electroforesis de proteínas en geles de poliacrilamida 62
3.2.5.2 Inmunotransferencia e inmunodetección 62
3.2.6 Purificación y análisis de ácidos nucleicos 63
3.2.6.1 Retro-transcripción por PCR 63
3.2.6.2 PCR en Tiempo Real ... 64
3.3 Resultados ... 65
3.3.1 La sobre-expresión de gIMPα y de gIMPβ no afecta el crecimiento de *G. lamblia* ... 65
3.3.2 Los mediadores gIMPα y gIMPβ intervienen en el proceso de enquistamiento de *G. lamblia* 67
3.3.3 La co-expresión de gIMPα y gIMPβ tiene un efecto sinérgico en el enquistamiento de *G. lamblia* .. 70
3.3.4 Arginina deiminasa co-localiza con los mediadores gIMPα y gIMPβ en el enquistamiento de *G. lamblia* 71
3.4 Discusión ... 73

Capítulo 4: Inhibición del transporte nuclear en *G. lamblia*

4.1 Introducción ... 77
4.1.1 Importazol ... 77
4.1.2 Ivermectina .. 78
4.2 Materiales y métodos .. 79
 4.2.1 Inhibidores .. 79
 4.2.2 Ensayo de crecimiento celular 79
 2.2.3 Ensayos de enquistamiento 79
4.3 Resultados ... 80
 4.3.1 Importazol afecta el crecimiento de G. lamblia sin producir muerte celular ... 80
 4.3.2 Importazol afecta el proceso de enquistamiento en G. lamblia disminuyendo la producción de quistes 81
 4.3.3 Ivermectina afecta el crecimiento de G. lamblia de manera dosis-dependiente .. 83
 4.3.4 Ivermectina afecta el proceso de enquistamiento de G. lamblia produciendo un arresto en los trofozoítos 85
 4.3.5 Importazol e Ivermectina inhiben la importación de proteínas nucleares en G. lamblia 86
4.4 Discusión ... 87
Capítulo 5: Conclusiones .. 93
Anexos
 Anexo I .. 97
 Anexo II ... 98
 Anexo III .. 99
 Anexo IV ... 100
Capítulo 6: Bibliografía
 6.1 Capítulo 1 ... 101
 6.2 Capítulo 2 ... 111
 6.3 Capítulo 3 ... 118
 6.4 Capítulo 4 ... 121
 6.5 Capítulo 5 ... 123
Resumen

Giardia lamblia es un organismo parásito tempranamente divergente en la línea de evolución de los eucariotas. Es el agente causante de giardiasis y en la actualidad, es el segundo microorganismo parásito encontrado en brotes transmitidos por aguas contaminadas a nivel nacional con una prevalencia de hasta un 30% para niños menores de 10 años. De acuerdo a su condición evolutiva de divergencia temprana, este microorganismo presenta una maquinaria celular simplificada y sin pérdida de funciones en relación a los eucariotas superiores. Tanto durante el crecimiento de este parásito, como en el proceso de diferenciación a quiste, distintas proteínas atraviesan la envoltura nuclear para localizarse dentro de los núcleos. Por lo cual, dicho transporte nuclear activo en *G. lamblia* estaría mediado por homólogos de las carioferinas descriptas en organismos menos divergentes en la evolución eucariota. De modo que identificar la presencia de transportadores nucleares específicos y analizar su rol funcional en la translocación nuclear de proteínas durante el ciclo de vida de *G. lamblia*, fue el objetivo principal de este trabajo de Tesis Doctoral. Con la integración de análisis *in silico* y técnicas de biología celular y molecular, se demostró la presencia de una Importina α y una Importina β en *G. lamblia*, que al ser sobre-expresadas muestran localización nuclear y perinuclear por ensayos de inmunofluorescencia en el estadío de trofozoíto. Durante el proceso de diferenciación a quiste de este parásito, dicha sobre-expresión de Importina α e Importina β induce un aumento en la expresión de los genes específicos del enquistamiento conjuntamente con una mayor producción de quistes. Por otro lado, el uso de distintos compuestos que interrumpen el transporte nuclear de proteínas, como el inhibidor de Importina β llamado Importazol y el inhibidor de Importinas α/β denominado Ivermectina, mostraron tener un efecto dosis dependiente sobre el crecimiento de *G. lamblia*. Además, estos inhibidores demostraron tener un efecto que varía con el tiempo de exposición de acuerdo a los distintos tiempos de inducido el proceso de enquistamiento, produciendo principalmente un arresto en el estadío de trofozoíto durante todo el proceso. El inhibidor del transporte nuclear Ivermectina, un antiparasitario de amplio espectro utilizado a nivel mundial y nacional contra infecciones por helmintos y en filariasis y escabiosis, presentó efectos totales sobre *G. lamblia*, bloqueando la producción de quistes a concentraciones que no afectan el crecimiento de este microorganismo. Incluso impide la localización nuclear de proteínas claves para este proceso, como es el caso de la enzima Arginina deiminasa,
favoreciendo su localización perinuclear. Tales resultados muestran la participación de las distintas importinas como mediadoras activas de la localización nuclear de proteínas en *G. lamblia*. A su vez, los efectos encontrados para Ivermectina sugieren que se podría utilizar este antiparasitario para el efectivo tratamiento de giardasis.
Summary

Giardia lamblia is an early-branching organism in the eukaryotic linage and a parasite that infects mammals causing a disease known as giardiasis. Nowadays, at Argentina *G. lamblia* is the second microorganism found in waterborne outbreaks with a prevalence up to 30% for 10 years-old children. Due to its divergence evolutionary condition earlier than higher eukaryotes, this microorganism presents simplified and functional conserved cellular mechanisms like nuclear-cytoplasmic shuttling, where particular proteins have been shown to localize inside the nuclei of this parasite on growth and during its differentiation into cyst. This fact suggests in *G. lamblia* the presence of an active transport of proteins through the nuclear envelope might be mediated by homologs of the karyopherins described for less divergent eukaryotes. Therefore, the aim of this doctoral thesis work was to identify the nuclear transporters and analyze their functional role in nuclear-cytoplasmic shuttling during *G. lamblia* life cycle. By means of computational biology analysis combined with cellular and molecular biology techniques, only one Importin α and one Importin β were found in *G. lamblia*. This proteins present nuclear and perinuclear localization by immunofluorescence assays in over-expressing trophozoites. In addition, over-expression of these importins induced an up-regulation in transcript levels of specific encystation genes on encysting cells as well as an increase in cyst production. When different compounds that disrupt nuclear transport were tested, like the Importin β inhibitor Importazole and the Importins α/β inhibitor Ivermectin, they showed effects on a dose-dependent manner over growth of *G. lamblia*. Indeed, the effect of these inhibitors during encystation according to the exposure time produces an arrest in the trophozoite stage. In fact, the usage of the nuclear import inhibitor Ivermectin, a worldwide prescribed antiparasitic to treat helminthes infections, filariasis and scabies, almost blocks cyst production at concentrations that have no impact on the growth of this parasite. Finally, Ivermectin abrogates nuclear localization of Arginine deiminase, a key protein during the encystation process, producing its accumulation in a perinuclear localization. These results led to considerate the importins are active mediators in the nuclear localization of proteins, meanwhile the effects found for Ivermectin suggest that this compound could be used to treat giardiasis.
Capítulo 1:
Introducción general

1.1 Una breve reseña histórica y epistemológica

En el afán por explicar el mundo que lo rodea, el ser humano ha interpretado la naturaleza en función de cómo se le presenta, es decir, de acuerdo a los fenómenos naturales. Pero para comprender los fenómenos, son necesarias palabras y los conceptos que se establecen en relación a sus significados. Así, el lenguaje juega un rol clave en el conocimiento, donde viejas palabras se re-significan o se crean nuevas cuyo significado categoriza aquello que está en el mundo exterior y, que de otra forma no podría ser percibido individualmente y dotado de existencia. Dicho de otra forma, no sabíamos de la existencia de los átomos hasta que esa palabra y su significado nos fueron enunciados por primera vez, cambiando nuestra concepción del mundo al aprehender dicho término. De este modo, la ciencia interpreta el mundo en función de las categorías que el lenguaje genera y el conocimiento se acumula en forma de enunciados. Para todo fenómeno natural habrán categorías que lo clasifiquen, como las que se utilizan al hablar de objetos inanimados y seres vivos, de plantas y animales, etc. Las primeras categorías rigurosas fueron establecidas por Aristóteles (siglo IV a. C.), quien al introducir los términos de género (lo universal y que no cambia) y especie (lo particular y diferente) clasificó gran variedad de animales y plantas. Para ello, consideró distintas características tanto a nivel superficial como anatómico, las cuales dieron emergencia a la posterior rama de la Filosofía Natural denominada Morfología.

Dos mil años más tarde, la Morfología junto a otras disciplinas naturales e ideas aristotélicas, fueron la base con la que Jean-Baptiste Lamarck (siglo XVIII) construyó su teoría de comunidad de descendencia. Al mismo tiempo, Carl Linné (siglo XVIII) fue el primero en clasificar los organismos y agrupar los géneros en familias, las familias en clases, las clases en filos y éstos en reinos, dando origen a la Taxonomía. En el siglo XIX, paralelamente Charles Darwin y Alfred Russel Wallace, recapitularon la comunidad de descendencia junto con la taxonomía y los postulados de selección natural (fuerza que lleva al cambio evolutivo) en su teoría de evolución biológica. Estos importantes avances se dieron contemporáneamente con el advenimiento de la Biología
Celular, especialidad impulsada por la creación del microscopio en el siglo XVII, una herramienta instrumental con la cual Robert Hook y Anton van Leeuwenhoek definieron por primera vez la célula y detallaron la presencia de vida microscópica\(^8,9\). En un siglo y medio, la mejora instrumental promovió la ampliación del conocimiento sobre la morfológica celular, generando categorías para las distintas estructuras internas de la célula denominadas organelas, como el núcleo, retículo endoplasmático, vesículas, etc. Luego, la caracterización química de material nuclear ácido y rico en fosfatos por parte de Friedrich Miescher (siglo XIX) y de su composición nitrogenada del premio Nobel Albrecht Kossel (siglos XIX-XX) dio origen a la Biología Molecular\(^10,11\).

Posteriormente, la teoría de *síntesis evolutiva moderna* recapituló la evolución biológica desde las perspectivas de la Biología Celular y Molecular\(^12\). Así, el ADN pasó a ser el hilo conector en la evolución, resultando clave para la reconstrucción filogénica, es decir, para poder establecer las conexiones vinculantes entre los distintos organismos y, en función de ella, establecer criterios de clasificación (taxonomía) de los organismos. Tal vez, de esta forma, se llegue así al organismo primigenio del cual evolucionaron todas las formas de vida que habitan el mundo en este tiempo.

1.2 El origen eucariota y su devenir

Actualmente, sobre la totalidad de organismos conocidos pueden aplicarse múltiples clasificadores para diferenciarlos unos de otros. En Biología Evolutiva, la principal caracterización, y tal vez la más radical y sostenida en el tiempo, se basa en la organización interna de los distintos componentes celulares. Esta clasificación divide a los organismos en dos “imperios”, el procariota y el eucariota, donde la diferencia específica recae en la compartimentalización de los distintos procesos celulares y sus estructuras\(^13,14\). Así emerge la definición de una estructura concebida como el sistema de endomembranas, rasgo distintivo como condición necesaria que caracteriza los organismos eucariotas. Este sistema es el conjunto de estructuras de membranas intracelulares dado por la *envoltura nuclear*, el *retículo endoplasmático* y el *aparato o complejo de Golgi*. La envoltura nuclear es una estructura de doble membrana que separa el material genético del resto de la célula y organiza dentro del núcleo los procesos de replicación y transcripción. Esta envoltura se conforma por una bicapa lipídica interna (cara nuclear) y una externa (cara citoplasmática), siendo la externa una prolongación del retículo endoplasmático\(^15\). Así, el contenido del lumen reticular se comparte con el espacio periplásmico de la envoltura nuclear. A su vez, las membranas interna y externa se unen en una estructura proteica
multimérica conocida como complejo de poro nuclear16. Y es a través de este poro que las distintas moléculas pueden o no, migrar en ambos sentidos de la dirección núcleo/citoplasma.

Se propone que el núcleo, y todos sus componentes funcionales y estructurales, emergen del último ancestro común eucariota (UACE), del cual todos los organismos eucariotas descienden17. La teoría de \textit{endosimbiosis}, tal vez la más plausible hasta el momento, sugiere que el UACE emerge de la interacción entre una α-protobacteria y una arquea ancestral. El postulado principal de la endosimbiosis sostiene que la arquea (anfitrión) habría incorporado en su citoplasma, por algún proceso endocítico, a la α-protobacteria (huésped). De aquí, la pregunta de cómo se originó el sistema de endomembranas, es respondida a partir de dos modelos, no del todo contrapuestos, pero sí excluyentes uno del otro. Sea cual fuere el modelo que mejor interprete los datos obtenidos, es claro que se necesita de más información de la disponible actualmente para elucidar, o aproximarse al menos, al conocimiento de un evento que sucedió millones de años atrás.

Si bien el UACE fue primitivo y aún se desconoce cómo emergió, fue la base estructural de distintos mecanismos celulares de vivencia en diversificación, y es allí donde la filogenia cobra relevancia. La reconstrucción filogenética de las especies y su interpretación global como \textit{el árbol de la vida}, permite ir hacia atrás (a las raíces) en la evolución, para poder acercarnos un poco más a ese primer eucariota. De los organismos que se conocen hasta el momento, aquellos que presentan un linaje más extenso en términos evolutivos son considerados los menos divergentes, es decir, se desprenden del árbol más tardíamente. Mientras que aquellos organismos que se separan del árbol más tempranamente, o que están más cerca de las raíces, son considerados los más divergentes. Así, en función de dicha divergencia, surge una segunda categorización paralela al binarismo de los imperios procariota-eucariota, que ordena todos los organismos en Dominios, de acuerdo al ARNr característico en cada uno y la composición lipídica de su membrana plasmática18. Estos dominios son tres, dos procariotas y uno eucariota, denominados \textit{Archaea, Bacteria} y \textit{Eukarya}, respectivamente; y con ellos toda la vida es recapitulada (Figura 1.1).

El dominio \textit{Eukarya} sintetiza los reinos conocidos, no tan antigamente, como Protista, Fungi, Plantae y Animalia, y los reclasifica en supergrupos llamados \textit{Excavata, SAR} (Stramenopiles, Alveolata y Rhizaria), \textit{Amoebozoa, Archaeplastida} y \textit{Opisthokonta}19. Cada uno de estos supergrupos presenta características propias tanto a nivel morfológico como genético, y se postula que el primero en divergir de este linaje eucariota es el \textit{Excavata}. Esta
hipótesis se dedujo a partir de la teoría de endosimbiosis que, por la ausencia de mitocondrias/peroxisomas en varios miembros de este supergrupo, se interpretó su divergencia como previa a la internalización del endosimbionte20,21. Esta sentencia era controvertial, ya que si bien no resultaba en una falacia, no consideraba la emergencia del núcleo que la endosimbiosis postulaba. Posteriormente, se demostró que la supuesta ausencia de mitocondrias/peroxisomas se debía a un problema de resolución microscópica, ya que por técnicas de microscopía electrónica, estos organismos presentaban organelas relacionadas a mitocondrias o MROS (del inglés \textit{mitochondrion-related organelles})22. Estas organelas, de acuerdo a su función, se denominaron \textit{mitosomes} o \textit{hidrogenosomas} y, a pesar de no contener material genético propio, localizaban en ellas proteínas mitocondriales codificadas en el genoma nuclear. Estos hallazgos fueron interpretados en el marco de la endosimbiosis como eventos de evolución reductiva, conservando estructuras mínimas con funciones particulares.
Posteriormente, *Excavata* retomó su lugar divergente en la filogenia, al mostrarse que tanto los supergrupos *Amoebozoa* y *Opisthokonta*, como SAR y *Archaeplastida*, pertenecían a taxones superiores llamados *Amorphea* y *Diaphoretickes*, respectivamente23,24 (Figura 1.1).

De acuerdo a lo mencionado anteriormente, los organismos *Excavata* resultan de interés evolutivo, ya que su morfología celular “simplificada” podría ayudar a comprender cómo ocurren procesos más complejos en eucariotas superiores. Además, los miembros más representativos de este supergrupo, como los del género *Trypanosoma, Leishmania, Trichomonas* y *Giardia*, son sumamente importantes por su relevancia médica a nivel mundial. Todos ellos son parásitos de diversos animales, incluido el ser humano, que generan severas patologías como la tripanosomiasis, leishmaniasis, tricomoniasis y giardiasis, al habitar distintos tejidos u órganos de su hospedador19,25. Así, comprender la biología de estos parásitos tanto a nivel celular como molecular, resulta imprescindible para encontrar blancos terapéuticos que puedan ser utilizados como estrategias contra dichas enfermedades.

1.3 *Giardia lamblia* como organismo tempranamente divergente

G. lamblia (sín. *Giardia duodenalis, Giardia intestinalis*) fue uno de los primeros organismos Excavata descriptos en 1681 por Anton van Leeuwenhoek, quien al analizar restos de sus propias heces al microscopio óptico, encontró algo que llamó “un pequeño animal” móvil26,27. La infección por este microorganismo se denomina *giardiasis* y es la principal causa de diarrea no viral no bacteriana a nivel mundial, por lo que en 2004 fue incorporada a la iniciativa de enfermedades desatendidas llevada a cabo por la Organización Mundial de la Salud28.

Entre las manifestaciones de una giardasis aguda se encuentran: deshidratación, pérdida de peso y dolor abdominal;29 mientras que en una infección crónica se puede desencadenar: anorexia y síndrome de colon irritable, fatiga crónica y malabsorción. Esta última puede provocar insuficiencia nutricional afectando el desarrollo físico e intelectual del hospedador30. En los últimos 10 años, ha sido el segundo microorganismo parásito encontrado en brotes transmitidos por aguas contaminadas tanto a nivel mundial31 como nacional32,33. Si bien *Giardia* es de distribución cosmopolita con una prevalencia de aproximadamente un 10%, en países en desarrollo este valor asciende hasta un 30% para niños menores de 10 años34-
36. Algunas especies de *Giardia* infectan solamente ciertos vertebrados, mientras que otras pueden infectar una amplia variedad de mamíferos confiriéndole un alto potencial zoonótico. Esta característica favorece enormemente su prevalencia, ya que tener una ruta de transmisión bidireccional animal-humano facilita la recurrencia de la infección. Es por ésto que surgió la necesidad de identificar y clasificar las distintas especies de *Giardia* para su diagnóstico tanto a nivel humano como animal.

1.3.1 Clasificación y diversificación

Como *Excavata*, organismos que se caracterizan por poseer un surco ventral (excavado) de alimentación y una estructura flagelar asociada a el/los núcleos (cariomastigonte), *Giardia* se ubica dentro de *Metamonada*, uno de los tres filos de este supergrupo (Figura 1.2). Los metamonados son organismos anaerobios o microaerófilos, pueden poseer un excavado de alimentación clásico, degenerado o carecer de éste directamente, presentan estructuras relacionadas a mitocondrias (mitosomas o hidrogenosomas) y la mayoría son flagelados, presentando comúnmente cuatro cinetosomas (cuerpos basales) por cinétida (flagelos). De este filo se desprenden tres clases de organismos: *Fornicata, Parabasalia* y *Preaxostyla*; en donde la primera se caracteriza por una asociación cinétida-núcleo de forma simple o de a pares (binucleados), con 2 o 4 cuerpos basales por cinétida y un excavado degenerado en citofaringe o sin él. A su vez, la clase *Fornicata* se divide en tres órdenes: *Diplomonadida, Retortamonadida* y organismos semejantes a *Carpediemonas* o CLOs (del inglés *Carpediemonas-like organisms*), siendo los diplomonadidos organismos que tienen por duplicado cuatro cuerpos basales flagelares por cinétida-núcleo y pueden presentar o no excavado. Este orden se separa en dos familias, *Hexamitinae y Giardiinae*, con la diferencia de que la primera posee excavado de alimentación y un codón alterativo para glutamina, mientras que la segunda, no. Así, el género *Giardia* corresponde al dominio *Eukarya*, supergrupo *Excavata*, filo *Metamonada*, clase *Fornicata*, orden *Diplomonadida* y familia *Giardiinae*.

Por otro lado, de acuerdo al organismo que *Giardia* parasite y en función de las diferencias morfológicas que presenta cada una, se han establecido distintos nombres para designar las especies que corresponden a este género. De este modo, se nombró *Giardia muris* a la especie que infecta roedores, *Giardia agilis* la que infecta anfibios, *G. lamblia* para mamíferos, etc.; como se muestra en la Tabla 1.1. Incluso, más allá de que *G. lamblia* presenta una morfología clara y discernible de las demás especies, se encontraron diferencias a nivel genético para distintas cepas, que se
El supergrupo Excavata se divide en tres filos: Metamonada, Discoba y los organismos del género Malawimonas. Solo se muestra las sub-clasificaciones de los metamonadidos. El final de cada taxón contiene el género de los organismos que lo componen, excepto para Giardia en donde además se muestran las especies. Por ser a modo ilustrativo, en esta representación los discobidos figuran como un clado colapsado (cuando no lo son) y la extensión de los taxones no contiene información sobre la tasa evolutiva ancestro-descendiente. (Adl et al., 2012)
definieron como grupos o ensamblajes genéticos37,42,43. De todos ellos (Tabla 1.1), los únicos que parasitan humanos son los ensamblajes A y B, siendo el ensamblaje B el que presenta una mayor prevalencia favoreciendo una condición crónica de la enfermedad44–46. A su vez, las infecciones por el ensamblaje A son las que presentan mayor porcentaje de la sintomatología clínica aguda, como casos de diarrea46,47. Además, para algunos de estos ensamblajes se han propuesto algunas subdivisiones de acuerdo a la intraindividualidad de algunos genes encontrada para distintos aislados del parásito, dando para el ensamblaje A las cepas WB y DH, para el ensamblaje B las cepas GS y GSb, y para el ensamblaje E la cepa P1545,48. También se ha demostrado que cada uno de estos ensamblajes presentan diferencias bioquímicas y biológicas que por ejemplo, les lleva a crecer y diferenciarse de forma distinta en cultivos \textit{in vitro}, por lo que conocer a fondo la biología de este parásito resulta necesario para comprender su patogenicidad29.

1.3.2 Biología celular

Como la mayoría de los parásitos unicelulares, \textit{Giardia} presenta distintos estadíos de vida bien discernibles morfológicamente29. Aquella forma bajo la cual este microorganismo se presenta con actividad vegetativa y replicativa, es decir con alta actividad metabólica, recibe el nombre de trofozoíto (Figura 1.3: Estadios de vida de \textit{G. lamblia}. Imágenes de microscopía electrónica de barrido para los estadíos de trofozoito vista dorsal (A) y ventral (B) y de quiste (C). Barras: 2 µm. (Midlej & Benchimol, 2008).
1.3A y B) y se encuentra en el interior del tracto intestinal de su hospedador49. Por otro lado, cuando se presenta bajo su forma encapsulada de baja actividad metabólica, recibe el nombre de quiste (Figura 1.3C), siendo sumamente resistente y encontrándose en las últimas porciones del intestino de su hospedador, en las heces y en aguas y alimentos contaminados50.

1.3.2.1 Trofozoíto

Los trofozoítos de \textit{Giardia} presentan una extensión variable tanto en su eje longitudinal como transversal, e incluso dicha extensión difiere de acuerdo a la especie43. Para \textit{G. lamblia}, sus dimensiones varían de 12 a 15 µm de largo y 6 a 8 µm de ancho; para \textit{G. muris} son unas micras menor, mientras que para \textit{G. agilis} su largo asciende a 20-30 µm y su ancho desciende a 4-5 µm. Así, la morfología celular de \textit{Giardia} resulta variable entre las especies, siendo periforme para \textit{G. lamblia}, más redondeada para \textit{G. muris} y más larga y estrecha en el caso de \textit{G. agilis}. Más allá de estas diferencias, pueden encontrarse en \textit{Giardia} diversas estructuras externas propias del género, todas ellas relacionadas a sistemas internos de microtúbulos. Como rasgo apomórfico, \textit{Giardia} cuenta con la presencia del denominado disco adhesivo en la zona ventral de la célula, el cual al contraerse genera una presión negativa que le permite fijarse a múltiples superficies51. Esta estructura es descripta como un arreglo de microtúbulos que emerge del surco ventral (excavado atrofiado) y recorre un sentido horario en el plano transversal (visto desde el lado ventral)52,53. Además, \textit{Giardia} presenta cuatro pares de flagelos que son nombrados según la región celular de la que emergen (Figura 1.4), y resultan así en: dos anteriores, dos posterolaterales, dos caudales y dos ventrales; siendo del surco ventral de donde surge este último par52–54.

![Figura 1.4: El trofozoíto. Diagrama que muestra la morfología de \textit{Giardia} en el estadío vegetativo. Pueden observarse los distintos pares de flagelos: anteriores (fA), posterolaterales (fPL), ventrales (fV) y caudales (fC). Además está representada la morfología celular según: los núcleos (N), los cuerpos basales (CB), el disco ventral (DV), el cuerpo medio (CM), la funis (F) y las vacuolas periféricas (PV).]
Con respecto a las estructuras celulares internas, *Giardia* presenta un sistema de endomembranas particular, ya que carece de un aparato de Golgi morfológicamente discernible29. La membrana que delimita cada uno de los núcleos se prolonga y conforma el retículo endoplasmático, el cual ocupa la mayor parte de la extensión citoplasmática de la célula55 e interviene, sumado a sus funciones clásicas, en el direccionamiento de proteínas56. De modo característico, *Giardia* presenta un sistema de vacuolas periféricas que se localizan próximas a la superficie de la membrana plasmática del lado citósólico de la misma57,58 (Figura 1.4). Dichas vacuolas han mostrado tener actividad lisosomal, como así también estar relacionadas con procesos endosomales y de endocitosis del parásito57,59–61. Además de estas organelas, se describió la presencia de mitosomas, pequeñas estructuras de doble membrana carentes de material genético propio62. Se demostró que en el genoma de *Giardia* se encontraban genes codificantes para proteínas mitocondriales clásicas, de síntesis de centros Fe-S y de transporte mitocondrial, y que éstos se correspondían con un pequeño proteoma mitosomal63–67.

Otra característica a destacar es el arreglo interno de microtúbulos, que da lugar a numerosas estructuras propias de éste y otros parásitos. Las proteínas principales que lo componen son alfa y beta tubulinas, conjuntamente con proteínas asociadas de carácter ácido presentes solo en *Giardia*, nombradas como alfa, beta, gamma y delta giardinas68. Se ha descrito también la presencia de actina, tanto a nivel génico (pero muy poco conservado) como a nivel proteico, presentando localización en estructuras que supondrían un arreglo de microfilamentos69. Los microtúbulos forman, además del citoesqueleto y el axostilo central, una serie de entramados en el centro de la célula denominados Cuerpos Medios70 (Figura 1.4). Se ha postulado que éstos participan en la progénesis del disco ventral, en la citocinesis y que además contribuirían en el proceso de flexión del extremo caudal de la célula, pero ninguna de estas aserciones ha sido del todo corroboradas. Aunque respecto a esa última función propuesta, se demostró que el extremo caudal de la célula presentaba una red paralela de microtúbulos orientados de forma perpendicular al axostilo caudal y los flagelos posterolaterales, estructura que se denominó Funis (o complejo caudal) y que se le atribuyó la función de contracción caudal71,72 (Figura 1.4).

Los flagelos también son ensamblajes microtubulares, los cuatro pares poseen una estructura de axonema (9+2) y solo el par caudal presenta filamentos de actina en forma de C53,68. Cada axonema tiene origen en un cinetosoma (cuerpo basal) y *Giardia* posee ocho en total, los cuales están
ubicados en la región anterior de la célula entre los dos núcleos54 (Figura 1.4). La asociación entre cuerpos basales y núcleo se denomina cariomastigonte, y se demostró en *Giardia* que cuerpos basales y membrana nuclear están conectados por microfilamentos de actina73.

Como se mencionó anteriormente, *Giardia* presenta un par de núcleos. Éstos se encuentran en paralelo con el eje longitudinal en la zona anterior de la célula y se ubican uno a cada lado del plano sagital (Figura 1.4). Ambos tienen morfología oval, aunque presentan algunas invaginaciones en la zona de contacto con los cuerpos basales73. Presentan una región de ARNr y cromatina condensada que está en contacto con el lado interno de la membrana nuclear, que se correspondería con una estructura nucleolar74,75. El genoma de *Giardia* se presenta en 5 cromosomas y la carga genómica de cada núcleo es diploide (2N), por lo que el trofozoíto resulta así tetraploide76,77. A pesar de que cada núcleo tiene la misma carga cromosómica y que ambos son transcripcionalmente activos, la envoltura nuclear presenta diferente cantidad de poros entre uno y el otro, lo que resultaría en una tasa transcripcional mayor en uno de los dos núcleos78,79. También se observó que la cantidad de poros de la envoltura nuclear varía de acuerdo a la fase del ciclo celular en la que se encuentre el trofozoíto, disminuyendo considerablemente en la cariocinesis, de lo cual se desprende que *Giardia* no experimenta una mitosis abierta. Actualmente hay dos postulados acerca del tipo de mitosis que ocurre en *Giardia*, por un lado hay evidencias a favor de la ocurrencia de una mitosis cerrada y otras a favor del desarrollo de una mitosis semi-cerrada$^{80–83}$. Pero independientemente de cuál de estos dos tipos suceda, tanto los cuerpos basales como el disco ventral están involucrados en la cariocinesis, formando el huso mitótico y participando de la fisión de los núcleos, respectivamente73,82. Otra diferencia remarcable entre los núcleos es que, tanto la replicación del material genético (fase S) como su posterior segregación (anafase) ocurren de forma desfasada en términos de sincronía inicio-final82,84.

Por otro lado, el metabolismo de *Giardia* en su condición de *Excavata* y como organismo anaerobio, no es tan complejo como el de eucariotas superiores. La principal vía de producción de energía es fermentativa, donde luego de la glucólisis, el piruvato generado puede ser llevado a acetato con la producción adicional de ATP, o a etanol con la recomposición del agente oxidante NAD. Toda la producción de ATP en *Giardia* ocurre a nivel de sustrato, pero no todo el ATP proviene de la glucólisis29. El piruvato también puede producirse a partir de los aminoácidos Ala o Asp, e incluso de Arg, ya que *Giardia* dispone de la vía arginina dehidrolasa clásica de bacterias, con lo cual...
puede llegar a producir hasta cuatro veces más ATP que con la glucólisis por molécula de sustrato\(^85\)-\(^87\). Excepto para Ala y Val, *Giardia* resulta auxótrofa para el resto de los aminoácidos, como así también para lípidos (colesterol y fosfolípidos) y bases nitrogenadas (purinas y pirimidinas), por lo que necesita tomar estas biomoléculas del medio extracelular y presenta así, vías de salvataje para todas ellas\(^29\),\(^88\)-\(^90\).

1.3.2.2 Quiste

Los quistes de *Giardia* son de morfología oval y tienen una extensión de 8-12 \(\mu\)m de largo y 7-10 \(\mu\)m de ancho. En su interior, los quistes contienen 4 núcleos de carga genómica 4N (4x4N), que dan lugar a una poliploidía de 16N en este estadio\(^77\). También presentan vacuolas periféricas, 8 axonemas flagelares con sus cuerpos basales, el axostilo caudal y fragmentos de retículo endoplasmático, cuerpos medios y disco ventral\(^91\)-\(^93\) (Figura 1.5). Los quistes están cubiertos por una pared compleja de 0.3-0.5 \(\mu\)m conformada por dos capas, la más externa (y extensa) está integrada por filamentos de glicoproteínas, mientras que la interna está compuesta por una doble bicapa lipídica con un espacio periplásmico\(^53\),\(^91\). La capa filamentosa impide el paso de grandes moléculas, mientras que la interna es de permeabilidad selectiva\(^29\). La red de glicoproteínas está formada por filamentos individuales de 7-20 nm de extensión y se encuentra constituida en aproximadamente un 60\% del peso seco por glúcidos y un 40\% por proteínas\(^91\),\(^94\). El glúcido predominante es GalNAc en uniones \(\beta(1\text{-}3)\), aunque también se ha detectado GlcNAc en un mínimo porcentaje\(^95\). Del contenido proteico, se determinaron mayoritariamente 4 proteínas integrales, denominadas proteínas de la pared quística 1, 2 y 3 (CWP1, 2 y 3) y proteína no variable de superficie con alto contenido en cisteína (HCNCp)\(^96\),\(^97\). Dichas proteínas no se encuentran en el estadío de trofozoíto pero son sintetizadas al comenzar la diferenciación a quiste\(^98\).
1.3.3 Ciclo de vida

De los dos estadíos previamente descriptos, *Giardia* presenta un ciclo de vida bidireccional entre ellos, mediados por distintos procesos de diferenciación celular (Figura 1.6). Cuando los quistes son ingeridos por el hospedador, las condiciones estomacales gatillan el proceso de *desenquistamiento*. Al llegar a las primeras porciones del yeyuno, los trofozoitos son liberados y se adhieren por el disco ventral al epitelio intestinal. Por la disponibilidad de nutrientes comienzan a replicarse y logran así, colonizar el tracto intestinal del hospedador. Aquellos trofozoitos que se desprenden del epitelio son arrastrados por el flujo intestinal y al llegar al íleon, las nuevas condiciones gatillan en ellos el proceso de *enquistamiento*. De este modo, los quistes producidos son eliminados con las heces y permanecen en latencia hasta ingresar a un nuevo hospedador.

![Figura 1.6: Ciclo biológico de *G. lamblia*. Los quistes (A) a través de un proceso de desenquistamiento (B) que comienza en el estómago, liberan los trofozoitos (C). Éstos, se duplican en el intestino delgado (principalmente en el yeyuno), y a medida que descienden comienzan a diferenciarse a quistes (enquistamiento) (D). Los quistes maduros son finalmente eliminados con las heces cerrando el ciclo vital del parásito. (Zamponi, 2016)](image-url)
1.3.3.1 Desenquistamiento

La diferenciación a trofozoïto es uno de los procesos menos estudiados en este parásito, por lo que aún se desconocen muchos de los mecanismos que tienen lugar en el desenquistamiento. Éste es un proceso rápido que sucede entre un tiempo de 15-30 min, cuando se lleva a cabo in vitro con un protocolo de dos pasos\(^{29,100}\). Se ha postulado que una disminución en el pH extracelular sería el primer estímulo que gatilla el desenquistamiento, produciendo una señal dependiente de Ca\(^{2+}\) por la activación de Calmodulina y una posterior cascada de señalización dependiente de quinasas con actividad de Proteína-quinasa A y 14-3-3 fosforilada\(^{101-104}\). También se ha observado que tanto la Fosfatasa Ácida como una Cisteína-proteasa homóloga a Catepsina B son liberadas desde las vacuolas periféricas hacia la región periplásmica, para comenzar con la degradación de la pared del quiste\(^{105,106}\). Además, esta actividad se vería reforzada por la acción de proteasas pancreáticas presentes en el medio extracelular\(^{100}\). Mientras se degrada la pared de este exozoïto temprano, se ensamblan todas las estructuras celulares típicas del trofozoïto (Figura 1.6B). A su vez, se duplican los 8 flagelos y los núcleos realizan el intercambio genético para luego migrar dos a cada lado del plano sagital\(^{107}\). Degradada la pared del quiste, se liberan dos exozoïtos tardíos, que presentan una poliploidía 8N (2x4N). Tales estadíos transitorios duplican sus estructuras de movilidad y luego de una cariocinesis y citocinesis, dan lugar a un total de cuatro trofozoïtos tetraploides en condiciones de colonizar el intestino\(^{77}\). Lo cual explicaría por qué un inóculo de 10 quistes es suficiente para que se origine la giardasis\(^{108}\).

1.3.3.2 Enquistamiento

La diferenciación a quiste consiste en una serie de cambios metabólicos y morfológicos que ocurren gradualmente en el trofozoïto y que lo preparan para una fase de latencia. A diferencia del desenquistamiento, el proceso inverso ha sido ampliamente estudiado, ya que fácilmente puede ser reproducido in vitro con medios de cultivo específicos para tal fin\(^{100,109}\). Aun así, debido a la complejidad del proceso, no todos los interrogantes han sido abordados o respondidos, pero a grandes rasgos, se puede dividir el enquistamiento en tres partes. La primera de ellas encierra el estímulo necesario para que el trofozoïto sea inducido a enquistar, tanto a nivel extrínseco (el qué del ambiente) como intrínseco (cómo es detectado), y las vías de señalización que se desencadenan frente a dicho estímulo. La segunda tiene en cuenta los cambios en regulación (positiva o negativa) de la expresión
génica que la señalización produce y cómo devienen en traducción de proteínas. Por último, la tercera, comprende la síntesis de los componentes de la pared y los cambios estructurales que se llevan a cabo en la célula para la formación de un quiste maduro (Figura 1.6D).

- **El estímulo y su señalización:** Se ha observado que la ausencia de colesterol era condición necesaria y suficiente para desencadenar el proceso de desenquistamiento110. Ésto se ha interpretado en términos de que en las últimas porciones del intestino el colesterol ha sido mayoritariamente absorbido (y consumido por el parásito para su crecimiento) además de estar atrapado en micelas por las sales biliares, disminuyendo así su disponibilidad. De qué manera *Giardia* percibe los niveles de colesterol *in vivo* aún se desconoce, pero *in vitro* está descripto que la captación de colesterol (presente en el medio de cultivo en forma de quilomicrones y LDL) está mediada por un receptor del tipo LRP (del inglés LDL receptor-related protein)111. También se ha postulado que la fluidez de la membrana se vería afectada por la disponibilidad de colesterol, y que esto produciría eventos de señalización intracelular112. Particularmente, las células inducidas a enquistar presentan una disminución de la población en fase G1 del ciclo celular a expensas de un aumento de la población en fase G2/M (células con ADN duplicado – 2x4N). Por lo que se ha propuesto que el estímulo de enquistamiento es procesado en alguno de los puntos de control de la fase G2 o M del ciclo de división celular77.

- **La regulación y expresión génica:** La señalización induce rápidamente una respuesta a nivel génico, donde ciertos genes aumentan su expresión y otros la disminuyen pero, lamentablemente, muchos de éstos codifican para “proteínas hipotéticas” cuyas funciones aún no han sido identificadas113,114. Entre los que se conocen, genes codificantes para proteínas nucleares como helicasas, endonucleasas, GTPasas y de síntesis de GMP, presentan una expresión aumentada a los 45 min de desencadenado el proceso. Luego de pocas horas, genes codificantes para proteínas como la proteína semejante a Myb (Myb), las que forman la pared del quiste (CWP1-3) y las que intervienen en la síntesis de GalNAc, aumentan su expresión. Se ha descripto que Myb es un factor de transcripción que se une a la región promotora de los genes *cwp1*, *cwp2*, *cwp3* y *g6pl* (glucosa-6-fosfato isomerasa) induciendo su expresión115,116. Posteriormente, los únicos genes cuya expresión se encuentra aumentada son los codificantes para proteínas modificadoras de histonas, como acetil-trasferasas, deacetilasa y metil-transferasas. De acuerdo a ésto, se ha descripto que las modificaciones epigenéticas como la metilación y deacetilación de histonas influyen positivamente en el proceso de
enquistamiento, aumentando la expresión de los genes cwps117,118. Contrariamente, la citrulinación de histonas tiene un impacto negativo en este proceso, disminuyendo la expresión de dichos genes119. Así, se ha postulado que la regulación del enquistamiento es un evento coordinado entre activación transcricional y accesibilidad al ADN.

\textbf{- Síntesis y cambios morfológicos:} Uno de los cambios más importantes involucra la biogénesis de vesículas específicas del enquistamiento o ESVs (del inglés \textit{encystation-specific vesicles}), las cuales contienen las proteínas que formarán la pared del quiste o CWPs (del inglés \textit{cyst wall proteins})112. Las CWPs sintetizadas se acumulan en los sitios de salida del retículo endoplasmático, una estructura que presenta toda la maquinaria necesaria para la formación de vesículas y su direccionamiento120,121. Una vez formadas las ESVs, su contenido sufre una serie de modificaciones postraduccionales que llevan a su maduración122. Así, las CWPs son entrelazadas por acción de proteínas Disulfuro-sintetasas, que además de catalizar la generación de puentes disulfuro, también presentan actividad transglutaminasa mediando la formación de uniones isopeptídicas entre las CWPs. Además, se produce el clivaje del extremo C-terminal de CWP2 por acción de una Cisteína-proteinasa y la fosforilación de CWP1 y 2 por una quinasa aún no identificada. La liberación del contenido de las ESVs es un proceso dependiente de Ca2+ mediado por una Proteína Granulo-específica con actividad de Calsecuestrina123. Cuando las CWPs llegan a la superficie, éstas se ensamblan con los polímeros de GalNAc, secretados y depositados en la membrana previamente, por acción de una CW-sintetasa124. Paralelamente, los núcleos se dividen (4x2N) y la célula vuelve a transitar la fase S y G2 (4x4N) del ciclo celular77. Por último, se produce un desensamblando parcial de sus estructuras internas, como el disco ventral, el cuerpo medio y los flagelos, quedando preparada para una cariocinesis y citocinesis, como ocurre en el desenquistamiento.

Sin lugar a dudas, el enquistamiento es un proceso de diferenciación extremadamente complejo, en el cual ocurren cambios a nivel metabólico y en todas las estructuras de la célula. Desprenderse de una visión mecánico-reduccionista resulta una tarea difícil, y plantear preguntas específicas devuelve interrogantes generales. Cómo se inicia el proceso de enquistamiento, y cómo finaliza, parecen involucrar una respuesta al mismo nivel. Y más allá que la primera sea por una causa extrínseca y la segunda por una intrínseca al organismo, ambas conllevan una señalización, un mensaje a los núcleos. Núcleos que pertenecen a un organismo tempranamente divergente en el linaje de evolución de aquella endosimbiosis.
Núcleos que demostraron no ser constantes durante la diferenciación, que presentan una cantidad de poros nucleares mucho menor que en trofozoítos y, que aun así, no dejan de tener alta actividad⁷⁹.

1.4 Transporte nuclear

En la actualidad, el conocimiento respecto al transporte de proteínas desde y hacia el núcleo ha surgido de estudios realizados en células de eucariotas superiores¹²⁵. Éste sucede a través de un canal denominado complejo de poro nuclear, una estructura discernible en la envoltura nuclear¹²⁶. Se ha demostrado que el poro nuclear presenta una simetría octagonal con respecto al eje normal al plano de la envoltura nuclear y especular con respecto al plano tangencial¹²⁷. Existen al menos 30 proteínas distintas que forman parte de este complejo, y reciben el nombre de nucleoporinas. Estas nucleoporinas presentan una masa molecular promedio de 100 kDa, que al ensamblarse forman un poro nuclear de aproximadamente 50 MDa para Saccharomyces cerevisiae y 120 MDa para Xenopus laevis¹²⁸,¹²⁹. El poro nuclear puede considerarse como un cilindro anclado a la doble membrana con valores de diámetro y longitud de 96 y 35 nm para S. cerevisiae y 145 y 80 nm para X. laevis. La organización funcional del complejo de poro nuclear presenta: un anillo octamérico externo con 8 microfilamentos libres al citoplasma, uno interno con sus microfilamentos hacia dentro del núcleo, y una serie de anillos intermedios con los microfilamentos libres hacia el interior del cilindro (Figura 1.7)¹³⁰. Estos microfilamentos corresponden al extremo N-terminal de algunas nucleoporinas, tienen una longitud de 50 nm y un diámetro de 2-3 nm, y en el caso de los anillos intermedios, se encuentran desordenados formando un “tamiz tubular”.

De este modo, los iones y biomoléculas pequeñas, es decir de masa menor a 40-50 kDa, pero principalmente de diámetro inferior a 9 nm, pueden atravesar el poro nuclear por difusión simple a favor del gradiente¹³¹. Sin embargo, moléculas que poseen dimensiones mayores a las mencionadas necesitan transportadores específicos para cambiar su localización. Estos transportadores pertenecen a la familia de proteínas denominada carioferinas,
donde aquellas que median el ingreso de proteínas al núcleo son conocidas como *importinas*, mientras que las que facilitan la salida al citoplasma fueron nombradas *exportinas*. Las carioferinas son reconocidas por las nucleoporinas citoplasmáticas para el ingreso o por las de la porción nucleoplasmática para el egreso. Este reconocimiento está mediado por la interacción entre la carioferina y regiones ricas en Phe y Gly (*GLFG* o *FXFG*) de los microfilamentos de las nucleoporinas, lo que le permite al transportador abrirse camino a través del poro y atravesar la envoltura nuclear.

Como sucede en casi todo direccionamiento celular, las proteínas que desempeñan su función en una localización particular, presentan un péptido señal o una secuencia de reconocimiento, para poder ser transportadas a su lugar de acción. Del mismo modo, las proteínas que cambian su localización entre el núcleo y el citoplasma, presentan señales de localización nuclear o NLSs (del inglés *nuclear localization signals*), señales de exportación nuclear o NESs (del inglés *nuclear export signals*) o ambas. Para la primera, la señal es denominada clásica si está compuesta por una (monopartita) o dos (bipartita) secuencias ricas en aminoácidos básicos (Arg y Lys) de la forma K(K/R)X(K/R). De lo contrario, si no presenta alto contenido de estos aminoácidos o no responde a dicha secuencia, es denominada no clásica. De modo similar, una proteína a exportar del núcleo presenta una señal rica en aminoácidos hidrofóbicos (Φ), comúnmente Leu, de la forma ΦX2-3ΦX2-3ΦXΦ. Además de estos tipos de señalizaciones, se ha definido una secuencia de señalización que participa tanto en la importación como en la exportación, denominada como M9, de naturaleza mixta entre NLS y NES.

Dependiendo del momento metabólico en el que se encuentre la célula, estas señales se pueden encontrar bajo el control de modificaciones postraduccionales que inducen o inhiben el direccionamiento. Así, modificaciones como la fosforilación y la sumoilación generan un cambio conformacional que exponen o enmascaran las distintas señales a ser reconocidas por los mediadores del transporte nuclear.

1.4.1 Importación

La importación clásica de proteínas se produce a través del reconocimiento de la señal de localización nuclear (NLS) de la proteína a ingresar al núcleo (cargo) por un primer mediador. Este primer mediador pertenece a una subfamilia de las carioferinas, denominadas *Importina alfa* (Imp-α). Las Imp-α son proteínas que presentan un tamaño variable entre 450-550 aminoácidos (48-60 kD), están compuestas por el dominio IBB (del inglés *importin beta binding*) en su extremo N-terminal y una repetición en
Introducción general

tándem de entre 10 y 12 dominios Armadillo (ARM), unidas estas repeticiones entre sí por un bucle flexible de estructura desordenada144,146. El dominio IBB es una estructura desordenada de extensión variable (40 aminoácidos promedio) rica en Arg y Lys, y se ha propuesto que imita la naturaleza NLS funcionando como estructura de auto-inhibición147. El dominio ARM es una estructura que está constituida por aproximadamente 40 aminoácidos, los cuales forman una terna de hélices-alfa (H1, H2, H3), dos más cortas y una más extensa, unidas entre sí por un número variable de aminoácidos146,148. La repetición consecutiva de los dominios ARM genera una estructura de solenoide alfa, donde las hélices cortas se encuentran expuestas al solvente mientras que las más largas forman la cara interna dando lugar al denominado surco de interacción. Este surco presenta una zona menor y otra zona mayor, que serían los sitios de interacción con NLSs mono y bipartitas, respectivamente144,149. En la forma libre de Importina α, el surco se encuentra interactuando con el propio IBB con una baja K_D, pero en presencia de una NLS (por quien tiene una mayor afinidad) el dominio IBB es desplazado. Se forma así un dímero cargo(NLS)/Impα con el extremo IBB libre para interactuar con su respectivo ligando147,150 (Figura 1.8A).

El segundo mediador que interviene en el transporte hacia el núcleo es un conjunto de proteínas denominado Importinas beta (Imp-β), que corresponden a la subfamilia de carioferinas beta de gran variabilidad funcional132,151. Estas proteínas presentan una longitud de 850-1100 aminoácidos (90-130 kDa), están compuestas por un dominio N-terminal o IBN (del inglés importin beta N-terminus), una repetición en tándem de entre 18 y 22 dominios HEAT unidos por un bucle flexible variable, y una región C-terminal de unión al complejo de poro nuclear132,152. El dominio IBN se encuentra conservado entre las carioferinas beta y forma parte de las múltiples interacciones en las que participa Importina β. El dominio HEAT consta de una cantidad de residuos que oscila entre 32 y 61 aminoácidos, los cuales forman una dupla de hélices-alfa (A y B) unidas entre sí por una cantidad variable de residuos comprendida entre 1 y 19 aminoácidos. La hélice B es más larga que la A en al menos una vuelta de hélice, al comparar las 3,5
a 8 vueltas que posee la hélice B y las 3 a 6 vueltas que presenta la hélice A. La sucesiva repetición del dominio HEAT adquiere una conformación de solenoide-alfa, en donde las hélices A constituyen la cara externa de la proteína, mientras que las hélices B la cara interna152,153. En esta estructura terciaria, el dominio IBN y las repeticiones HEAT 1-4 y 6-7 intervienen en la interacción con la forma unida a GTP de la proteína nuclear relacionada a Ras (RanGTP)153,154. A su vez, la 8va repetición HEAT presenta un bucle rico en aminoácidos ácidos, el cual es el principal ligando del dominio IBB de Importina \(\alpha\), mientras que las repeticiones más próximas (HEAT 7-11) se encargan de estabilizar dicha interacción152,155. Además, se ha propuesto que esta última interacción genera un trímero en el cual el extremo C-terminal de Imp-[\(\beta\)] ha sufrido un cambio conformacional que es el que le permite ser reconocido por el complejo de poro nuclear131,155,156 (Figura 1.8B).

Ocurrida la cascada de reconocimientos, el complejo ternario cargo(NLS)/Imp\(\alpha\)/Imp\(\beta\) atraviesa la envoltura nuclear al interaccionar con las repeticiones FG de los microfilamentos de las nucleoporinas (Figura 1.8C). Se ha propuesto que este proceso consta de dos pasos157,159: reconocimiento y translocación. El primero es considerado un paso rápido, por la unión del extremo C-terminal de Imp-[\(\beta\)] a la porción citoplasmática de las nucleoporinas, dependiente solamente de la difusión. El segundo es un paso lento y determinante de la cinética de translocación. Al realizar un análisis termodinámico de este paso se concluyó que la disminución entrópica por la restricción de los grados de libertad en el movimiento, es contrarrestada por la componente entálpica de las sucesivas interacciones con los motivos FG130. Una vez en la porción nucleoplásmica del poro, el complejo ternario es reconocido por RanGTP, que al interaccionar con la porción N-terminal de Imp-[\(\beta\)], produce la liberación del dímero cargo(NLS)/Imp\(\alpha\) (Figura 1.8D). Posteriormente, este último dímero será disociado por el reciclador de Imp-[\(\alpha\)] dejando libre al cargo para ejercer su actividad nuclear, mientras que el complejo Imp-[\(\beta\)]/RanGTP vuelve al citoplasma153.

Últimamente, se describió otro tipo de transporte nuclear, al que se le llamó no clásico. En éste, no era necesaria Imp-[\(\alpha\)] como intermediaria entre el reconocimiento de la NLS e Imp-[\(\beta\)]159,160. De hecho, el tipo de NLS que
interviene en este transporte comúnmente es no clásico y es llevado a cabo por una parte de los parálogos redundantes de carioferinas beta.

1.4.2 Exportación

De modo similar a como ocurre con la importación, la exportación de proteínas al citoplasma comienza con el reconocimiento, por parte de un mediador, de una NES presente en el cargo. Estos mediadores son proteínas que pertenecen a la subfamilia de carioferinas beta, y se las llama Exportinas131, por lo que son muy similares en estructura a las Imp-\(\beta\), compartiendo desde su longitud hasta la organización de las repeticiones de los dominios HEAT. En una primera instancia, Exportina (Xpo) se une a RanGTP, lo que genera un cambio conformacional pasando de una estructura de solenoide-alfa abierta a una estructura cerrada de toroide161,162 (Figura 1.9A). En esta última, las porciones N- y C-terminal entran en contacto debido
a la proximidad que genera RanGTP en su interacción con las repeticiones HEAT 1-3 y 7-8. De este modo, se produce un cambio en la porción HEAT 8-16 de la proteína, lo que favorece la interacción entre la NES del cargo y dicha parte de la Xpo163,164 (Figura 1.9B). Una vez formado el complejo ternario cargo(NES)/Xpo/RanGTP en el nucleoplasma, las últimas repeticiones HEAT de la Xpo interactúan con los motivos FG de los microfilamentos de las nucleoporinas (Figura 1.9C). Y del mismo modo en que lo hacen las Imp-\(\beta\), por interacciones sucesivas con las nucleoporinas, el trímero atraviesa el complejo de poro nuclear para llegar al citoplasma.

Una vez fuera del núcleo, el complejo cargo(NES)/Xpo/RanGTP es reconocido por la Proteína activadora de RanGTP (RanGAP) presente en el citoplasma. Ésta hidroliza el GTP de la proteína Ran a GDP, por lo cual Xpo
pierde su afinidad con Ran, y al volver a su conformación solenoide, libera la proteína cargo de su interacción165,166 (Figura 1.9D). Al final del proceso, la Xpo libre regresa al núcleo mediante la interacción con el complejo de poro nuclear.

1.4.3 Reciclaje de mediadores

Así como sucede en los mecanismos descriptos anteriormente, existe un tipo particular de Exportina que media el retorno de Importina α al citoplasma167. Esta proteína, para distinguirla del resto, recibe el nombre de Transportina (primeramente conocida como CAS), y como todas las exportinas, pertenece a la subfamilia de las carioferinas beta. La Transportina (Trn) presenta las mismas características estructurales de las Imp-β y Xpo, tanto en masa y extensión como en la organización de las repeticiones

![Diagrama de la exportación de Importina α](image.png)

Figura 1.10: Mecanismo de restablecimiento citoplasmático de Importina α. Representación del proceso de exportación de Importina α al citoplasma. A) El mediador RanGTP reconoce Transportina (Trn) y genera un cambio conformacional en ésta. B) La importina es reconocida en su porción C-terminal por el complejo Trn/RanGTP. C) La porción C-terminal de Exportina es reconocida por las proteínas del complejo de poro nuclear, que median la translocación del complejo Impα/Trn/RanGTP al citoplasma. D) Una vez fuera, la proteína RanGAP hidroliza RanGTP a GDP, con lo cual se disocia RanGDP y Trn regresa a su configuración original liberando Impα en el citoplasma.
HEAT168. Además, de la misma forma como sucede con las Xpo, RanGTP tiene un rol activador sobre esta proteína, al unirse en una región equivalente a la descripta anteriormente169 (Figura 1.10A). Una vez activada, el complejo Trn/RanGTP reconoce la porción C-terminal de Importina α en el dímero cargo(NLS)/Impα y genera un cambio conformacional que culmina en la liberación del cargo y la formación del complejo ternario Impα/Trn/RanGTP (Figura 1.10B). Este trímero finalmente atraviesa el poro nuclear hacia el citoplasma, al interaccionar por medio de la porción C-terminal de la Trn con los microfilamentos de las nucleoporinas148,168 (Figura 1.10C).

Llegados al citoplasma, tanto el complejo Impβ/RanGTP como el complejo Impα/Trn/RanGTP son reconocidos por RanGAP que hidroliza sus RanGTP a RanGDP, liberando Imp-β o Imp-α y Trn, respectivamente (Figura 1.10D). Sucedido esto y produciéndose una acumulación de RanGDP en el citoplasma, esta proteína interacciona con el Factor 2 de transporte nuclear (NTF2) libre también en el citoplasma (Figura 1.11A). Dicha interacción forma el complejo binario RanGDP/NTF2, que además debe dimerizarse entre sus NTF2 para formar una interfaz que es reconocida por los motivos FG de las

![Figura 1.11: Mecanismo de reciclaje de adaptadores del transporte nuclear. Representación del proceso de recomposición nuclear de RanGTP. A) El mediador RanGDP es reconocido por el factor de translocación NTF2 y se genera un complejo tetramérico (RanGDP/NTF2). B) Este complejo es reconocido por las proteínas que forman el poro nuclear y transportado dentro del núcleo. C) Una vez dentro, la proteína RCC1 intercambia el GDP de Ran por GTP, con lo cual se disocia el complejo tetramérico y se libera RanGTP dentro del núcleo.](image-url)
nucleoporinas170,171 (Figura 1.11B). Una vez atravesado el poro nuclear, el complejo RanGDP/NTF2 es disociado por acción del Regulador de condensación cromosómica (RCC1) que presenta actividad de intercambio del nucleótido guanina (RanGEF)172. Así, se intercambia GDP por GTP de la proteína Ran, reponiéndose la disponibilidad nuclear de RanGTP para ingresar en los procesos ya mencionados de salida de Imp-β y activación de Xpo y Trn (Figura 1.11C).

1.4.4 Transporte en eucariotas de divergencia temprana

Si bien este mecanismo de transporte nuclear se encuentra descripto para varios organismos que van desde levaduras a plantas y vertebrados, su funcionamiento en eucariotas tempranamente divergentes es un campo muy poco explorado. Para ciertos parásitos, como \textit{Plasmodium}, \textit{Toxoplasma} y \textit{Cryptosporidium}, que son los organismos más representativos de la clase \textit{Apicomplexa} (supergrupo SAR, filo Alveolata), se han descrito varios homólogos de los intermediarios del transporte nuclear173.

En el caso de \textit{Plasmodium falciparum}, se han identificado solo dos genes correspondientes cada uno a Imp-α e Imp-β174. Para ambos, se ha demostrado su presencia tanto a nivel génico, por amplificación de ADN genómico, como a nivel transcripcional, por amplificación de ARN total. Incluso, al sobre-expresarlas en bacterias, se logró comprobar su interacción \textit{in vitro}. Para Imp-α de este parásito, se describió su interacción con la enzima Trimetil-guanosina sintasa (TGS) mediada por una NLS clásica175. Se demostró además, que esta Imp-α presenta alta afinidad por su cargo, debido a un dominio IBB incapaz de mediar la actividad de auto-inhibición clásica176. Sin embargo, este fenotipo nativo de alta afinidad puede ser revertido al de auto-inhibición si se muta una Ser del dominio IBB por una Lys conservada en eucariotas superiores. Hecho por el cual puede interpretarse este fenómeno de afinidad en términos de distancia evolutiva. Aparte de estos hallazgos, fueron identificados los factores RanGTP y RanGAP y proteínas accesorias, como la proteína que une Ran (RanBP) y RCC1177–180. Todas ellas fueron identificadas en productos de amplificación de ADN genómico y sus transcriptos hibridaban con sondas de ARN específicas. Cuando por expresión heteróloga se purificó la proteína Ran, se observó que ésta era capaz de unir GTP \textit{in vitro}. Y para el caso de RCC1, el suero de conejos inmunizados contra esta proteína mostró una marca nuclear sobre células salvajes de \textit{P. falciparum} en crecimiento.

Por otro lado, para \textit{Toxoplasma gondii} se ha descrito un homólogo para cada uno de los factores RCC1 y RanGTP181,182. Se ha probado \textit{in vitro} tanto
Capítulo 1

la interacción entre ellos como la capacidad de unir RanGTP, incluso la asociación de RCC1 a la cromatina del parásito y la complementación de una línea celular de mamíferos rcc1^{−/−}. Recientemente, también se ha identificado solo una proteína homóloga a Imp-α¹⁸³. Ésta interacciona con la proteína Histona acetil-transferasa GCN5 por medio de una NLS clásica. Incluso, esta Imp-α resultó ser necesaria para la translocación de GCN5 al núcleo.

Para el caso de Cryptosporidium parvum, solo han sido identificados los mediadores por medio de herramientas bioinformáticas sencillas¹⁷³, por lo que estudios in silico más extensivos resultan necesarios para tal fin.

Al enfocarse sobre los organismos pertenecientes al supergrupo Excavata, como lo es Giardia, hay muy pocos estudios realizados al respecto. Para este parásito, se ha descripto la presencia de RanGTP codificada en su genoma, mostrando incluso un alto porcentaje de similitud (teniendo en cuenta la distancia evolutiva) con su homólogo en humanos¹⁸⁴. Esta proteína, por expresión heteróloga, fue capaz de unir GTP y describió un patrón de localización nuclear al detectarse con un suero policlónico específico para ella. Adicionalmente, se demostró la localización nuclear de proteínas exógenas, solo cuando éstas eran sobre-expresadas en el parásito con una NLS clásica¹⁸⁵.

Hasta el momento, se han descripto solo dos proteínas que presentan NLSs clásicas e ingresan a los núcleos en G. lamblia. Una de ellas es la enzima Arginina deiminasa (ADI), que se encontraría citrulinando histonas en las últimas etapas del enquistamiento¹¹⁹. Se ha postulado que para ello, ADI ingresa a los núcleos, y que dicha localización depende de la presencia de una NLS clásica. Se ha demostrado además, que la importación de ADI es un proceso dependiente de su conjugación a la proteína SUMO. La otra proteína es Histona metil-transferasa 1 (HMT-1)¹¹⁷, una enzima que estaría involucrada en cambios epigenéticos durante el crecimiento y que regula positivamente el proceso de enquistamiento. Se ha postulado que HMT-1 ingresa a los núcleos para tal fin, presentando una NLS clásica. Así, se ha asumido que en Giardia existe un transporte nuclear activo dependiente de la presencia de NLSs en distintas proteínas cargo.
Hipótesis

Existen en *G. lamblia* proteínas homólogas a las carioferinas de eucariotas superiores que se encuentran conservadas evolutivamente y que forman parte del mecanismo activo de transporte nuclear de proteínas de este organismo tempranamente divergente en la evolución eucariota.

Objetivo

El objetivo general del presente trabajo de *Tesis Doctoral* es identificar en *G. lamblia* la presencia de transportadores nucleares específicos y analizar su rol funcional en la translocación nuclear de proteínas durante el ciclo de vida de este microorganismo.

Objetivos específicos

1- **Identificar y describir mediante estudios *in silico* las proteínas del transporte nuclear que están presentes en *G. lamblia***

 1.1 Analizar el genoma de *G. lamblia* en función de los datos disponibles de eucariotas superiores para la búsqueda de carioferinas alfa y beta involucradas en el transporte nuclear.
 1.2 Evaluar la relación estructura-función de las proteínas encontradas con las descriptas para eucariotas superiores.

2- **Estudio de la función de los importadores nucleares durante los procesos de crecimiento y enquistamiento en *G. lamblia***

 2.1 Evaluar el crecimiento de células transfectadas con cada uno de los importadores y analizar su localización celular en trofozoítos.
 2.2 Estudiar el proceso de enquistamiento de células transfectadas con cada uno de los importadores y analizar su localización celular durante la diferenciación a quiste.
 2.3 Analizar el efecto sinérgico de los importadores por medio de co-transfecciones estables sobre el crecimiento y enquistamiento.
 2.4 Evaluar el transporte nuclear de la enzima ADI durante el enquistamiento de células simple y co-transfectadas.

3- **Análisis de los efectos de inhibidores de importación nuclear durante el ciclo de vida de *G. lamblia***

 3.1 Evaluar los efectos de Importazol e Ivermectina sobre el crecimiento de trofozoítos salvajes de *G. lamblia*.
Capítulo 1

3.2 Analizar la eficacia de los inhibidores de importación nuclear sobre el proceso de diferenciación a quiste de células salvajes.
3.3 Estudiar la localización nuclear de proteínas en trofozoítos y células enquistamiento bajo los efectos de Importazol e Ivermectina.
Capítulo 2: Identificación y descripción de los importadores nucleares en *G. lamblia*

2.1 Introducción

Con la síntesis evolutiva moderna, hubo una expansión en la investigación de los procesos moleculares y en cómo éstos se relacionaban entre sí dentro del sistema biológico como entidad. Emerge así el conjunto actualmente conocido como ómicas, disciplinas que intentan sintetizar el conocimiento en un dado marco del paradigma central de la biología molecular.

2.1.1 Genómica y el paradigma *in silico*

Con el auge de la era de la secuenciación, se fue obteniendo la estructura primaria de distintos genes de diversos organismos de manera aislada. Se observó que los genes que menos variabilidad presentaban eran los que codificaban para ARN ribosomal (ARNr), por lo que resultaron ser los candidatos ideales para poder establecer las relaciones de evolución entre los distintos organismos\(^1,2\). Este postulado de reducir la evolución a un solo gen resultó ser bastante controvertido, por lo que fue necesario conocer completamente (o al menos en gran parte) el genoma de los organismos más representativos y, entre ellos, los que estaban propuestos como tempranamente divergentes. Para tal fin, fue necesario un desarrollo computacional que permitiese tanto la creación de herramientas para la reconstrucción de la secuencia de ADN de un cromosoma dado, como de modelos para establecer una estructura tridimensional a partir de un patrón de difracción de rayos x. Así, la programación y los modelos matemáticos comenzaron a ocupar ese lugar vacío al cual el empirismo no podía acceder, por las propias limitaciones de sus técnicas. De esta manera, los modelos computacionales comenzaron a validarse y a aportar información para interpretar procesos o mecanismos que hasta el momento eran inteligiblemente inaccesibles\(^3,4\). Resulta entonces un nuevo paradigma, incorporado en las prácticas científicas bajo la denominación *in silico*, que subyace a toda sistémica de las ómicas y a su información, interpretación y acumulamiento en las denominadas “bases de datos”.
2.1.2 El genoma de *G. lamblia*

Los primeros estudios genómicos de *Giardia* estuvieron enfocados en analizar su cariotipo y poder restablecer alguna relación entre ellos y las cepas infectivas de humanos\(^5\)–\(^8\). Posteriormente, se realizaron estudios que intentaron determinar la ploidía (carga cromosómica) celular y nuclear en *Giardia*, para poder así estudiar su ciclo celular\(^9\)–\(^12\). Luego, en 1998 se dio comienzo al proyecto de secuenciación genómica de *G. lamblia*, el cual en 2007 daría los primeros resultados obtenidos para la cepa WB (ATCC50803)\(^13\).

En la actualidad, la base de datos de *Giardia* o GDB (del inglés *Giardia data base*) contiene los genomas, y respectivos transcriptomas, de las cepas correspondientes a los ensamblajes a (WB y DH), b (GS y GSB) y e (P15), como así también de *Spironucleus salmonicida*, un diplomonadido de la familia *Hexamitinae*\(^14\). Como GDB, existen otras bases de datos que tienen disponibles los genomas de diferentes parásitos, y todas están nucleadas bajo el dominio EuPathDB\(^14,15\). Además, para todos los organismos conocidos, cada dato publicado sobre su genómica, transcriptómica y estructura-función de proteínas, es procesado y almacenado en la base de datos más relevante a nivel mundial: UniProt\(^16\).

Actualmente, se ha demostrado que el genoma haploide de *G. lamblia* es variable entre los ensamblajes, presentando una extensión de 10,7 y 11,7 Mpb para las cepas DH y WB respectivamente, y de 11 y 11,5 Mpb para las cepas GS y P15, respectivamente\(^17\)–\(^19\). Del proyecto de secuenciación se pudo observar a modo general que, el genoma de la especie *G. lamblia* es compacto en estructura y contenido, presenta pocos intrones y posee una maquinaria simplificada de replicación del ADN, de transcripción y procesamiento de ARN y de varias vías de señalización metabólica\(^18\).

De todas las cepas, la más estudiada ha sido la WB, cuyo genoma presenta un contenido CG de 49%, solo 4 intrones y al menos 6470 marcos de lectura abiertos (ORF)\(^19\). De estos ORFs, 4787 presentan evidencias a nivel transcripcional (74%), mientras que de los 1683 restantes, se han identificado 63 ARNt y 17 ARNr, dejando un remanente de 1603 ORFs que corresponderían, según lo propuesto, a pseudogenes. De los 4787 genes codificantes para proteínas hipotéticas, 1518 han sido identificados como homólogos a proteínas de otros organismos. De estos ~1500 homólogos, 44 mostraron tener inserciones de aminoácidos sin modificarse el marco de lectura\(^19\). Un hallazgo interesante reveló que, al compararse 54 homólogos presentes en una amplia variedad de organismos (desde otros parásitos, hongos, hasta mamíferos), *G. lamblia* junto a *P. falciparum* eran los
organismos que más inserciones de aminoácidos presentaban, siendo éstas 15 y 6, respectivamente. En el caso de *Giardia*, se encontró más de una inserción por proteína (1,5 promedio), con tamaños que escalaban desde 8 a 100 aminoácidos por inserción (20 promedio). Como se mencionó en el capítulo 1, tanto el ensamblaje A como el B de *G. lamblia*, son capaces de infectar humanos, y al comparar sus genomas se han obtenido diferencias significativas\(^{20}\). La cepa GS ha mostrado tener un contenido CG de 46,5% en regiones codificantes y un 37,8% en regiones intergénicas, con un total de 7 intrones\(^{20}\). Esta cepa presenta 4470 ORFs, de los cuales aproximadamente el 75 % es codificante y, del resto, 69 ORFs corresponden a ARNt. Comparando las regiones codificadoras de esta cepa con las de WB, se observó una identidad de secuencia entre 72-82% en nucleótidos y entre 64-92% en aminoácidos\(^{21}\). De tales diferencias, se encontraron 28 genes exclusivos de GS y 3 exclusivos de WB, sin tener en cuenta que cada cepa presenta un repertorio completamente distinto de proteínas variables de superficie.

2.2 Materiales y métodos

2.2.1 Minería de datos

En la base de datos UniProt (https://www.uniprot.org/), los términos “importin alpha” e “importin beta” fueron buscados bajo el criterio reviewed, descartando aquellas entradas que no hayan sido manualmente anotadas y revisadas por los curadores de UniProt\(^{21}\). Un paso adicional de curado fue requerido para eliminar resultados inespecíficos como “transportin” o “exportin”. Se recaudó un total de 48 y 34 secuencias para Imp-α e Imp-β respectivamente, correspondientes a distintos organismos con al menos un puntaje anotado de 3 puntos (evidencias a nivel experimental). Estas secuencias fueron usadas para crear un archivo de entrada para realizar un alineamiento múltiple de secuencias o MSA (del inglés *multiple sequence alignment*) en la versión en línea de MAFFT (http://mafft.cbrc.jp/alignment/server/) con los ajustes predeterminados\(^{22}\). El alineamiento resultante se curó a mano bajo criterio físico-químico de los aminoácidos y utilizado para crear un perfil HMM con toda la extensión de secuencia de dicho alineamiento\(^{23}\). Luego, como control de auto-consistencia, se descargó la base de datos completa de UniProt/SwissProt y fue escaneada por HMMer *search* con cada perfil, obteniendo sólo las secuencias correspondientes a Imp-α o Imp-β en los puntajes más altos en cada caso\(^{24}\).
Una vez corroborada la solidez de los perfiles HMM, se creó una base de datos propia con los proteomas disponibles en EuPathDB (https://eupathdb.org/eupathdb/)15 para los siguientes protozoarios representativos Excavata y Apicomplexa: C. parvum, P. falciparum, Toxoplasma gondii, Trichomonas vaginalis, Trypanosoma brucei, Trypanosoma cruzi, S. salmonicida y G. lamblia ensamblajes A, A2, B, B2 y E. Esta base de datos fue escaneada con los perfiles creados para Imp-α e Imp-β y con los perfiles disponibles en Pfam (https://pfam.xfam.org/) de los dominios IBB (PF01749) e IBN (PF03810)25. Así, se analizó además de la información fuente de cada secuencia, la presencia de dichos dominios (IBB e IBN) de importancia estructural, según sea el caso. De este modo, se cosecharon 15 secuencias para Imp-α y 14 para Imp-β que fueron adosadas a las obtenidas de UniProt en cada caso, y se construyó un nuevo MSA. Cada alineamiento fue curado a mano y procesado con BMGE con los siguientes ajustes: -matrix BLOSUM95, -entropy 0.9, -gap 0.20; excluyendo de este modo las regiones que aportan poca información para la reconstrucción filogenética26.

2.2.2 Reconstrucción filogenética

El análisis filogenético fue llevado a cabo bajo Máxima Verosimilitud o ML (del inglés Maximum Likelihood) con pruebas de relación de verosimilitud aproximada o aLRT (del inglés, approximate likelihood-ratio test) de 100 iteraciones con los ajustes por defecto27. El árbol filogenético fue agrupado en clados monofiléticos que contuvieran al menos el 10\% de las secuencias totales utilizadas para la reconstrucción. Dichos agrupamientos fueron analizados por la metodología propuesta por Pagnuco \textit{et al.} y por la versión en línea de SDPfox con un permiso de gaps máximos de 10\%, resultando en 4 grupos bien definidos bajo ambas metodologías para cada caso28,29. Para mejorar la visualización del árbol, la filogenia fue editada con iTOL30.

2.2.3 Análisis estructurales

Para analizar la estructura de las proteínas codificadas por los genes GL50803_16202 y GL50803_15106 de GDB para Imp-α e Imp-β respectivamente, se predijo la estructura 3D de cada una por tres servidores distintos: I-TASSER, Phyre2 y RaptorX31-34. Para la visualización de estas estructuras se usó el programa VMD, además de ser usado para realizar los alineamientos estructurales paralelamente a RaptorX35-39. Estos alineamientos 3D fueron llevados a cabo tanto para evaluar las estructuras
predichas entre sí, como para compararlas con las estructuras cristalográficas extraídas del banco de datos de proteínas o PDB (del inglés protein data bank). Estas estructuras tienen las siguientes entradas: 5H43, 1IAL y 1BK5 para Imp-\(\alpha\) de *Homo sapiens*, *Mus musculus* y *Saccharomyces cerevisiae* respectivamente, y 2P8Q, 1UKL y 2BKU para Imp-\(\beta\) de *H. sapiens*, *M. musculus* y *S. cerevisiae* respectivamente\(^{40-45}\). Aquellas estructuras predichas que alinearon con TM-Score más alto fueron conservadas para continuar el análisis\(^6\). De estas elegidas, fueron identificadas y cortadas 12 repeticiones ARM y 24 repeticiones HEAT según sea el caso, a las que se les realizó un MSA para evaluar intravariabilidad y conservación de cada dominio.

2.3 Resultados

Con la disponibilidad del genoma de *G. lamblia* y con la información tanto a nivel genómico como funcional para muchos eucariotas superiores, se procedió en una primer instancia, a realizar la búsqueda de los mediadores clásicos de importación del transporte nuclear. Al ingresar a GDB y realizar una búsqueda por nombre con la palabra “importin”, se encontró una proteína anotada bajo el nombre *Importin beta-3 subunit* y cuyo código de entrada para las distintas cepas era GL50803_15106 (WB), GL50581_1866 (GS) y GLP15_1361 (P15). Si bien *Giardia*, como se mencionó anteriormente, presenta una maquinaria simplificada de muchas vías metabólicas, no se puede descartar la posibilidad de que exista otra proteína candidata a Imp-\(\beta\) o una candidata a Imp-\(\alpha\) que no se encuentren anotadas.

2.3.1 Importina \(\beta\) es una proteína codificada en el genoma de *G. lamblia*

Al ser conocida la estructura de Imp-\(\beta\) de eucariotas superiores y estar descripto el dominio HEAT, se decidió realizar una búsqueda de secuencias por dominios sobre los distintos proteomas predichos de *Giardia*. El dominio HEAT no es exclusivo de las carioferinas \(\beta\), sino que también se encuentra presente en proteínas de otras familias, como es el caso de algunas quinasas\(^{47,48}\). Pero teniendo en cuenta que las carioferinas \(\beta\) además

<table>
<thead>
<tr>
<th>Genotipo</th>
<th>Cepa</th>
<th>Entrada en GDB</th>
<th>Nombre anotado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensamblaje A</td>
<td>WB</td>
<td>GL50803_15106</td>
<td>Subunidad de Importina beta 3</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>DHA2_15106</td>
<td>Familia de proteínas con repeticiones HEAT</td>
</tr>
<tr>
<td>Ensamblaje B</td>
<td>GS</td>
<td>GL50581_1866</td>
<td>Subunidad de Importina beta 3</td>
</tr>
<tr>
<td></td>
<td>GSB</td>
<td>GSB15106</td>
<td>Familia de proteínas con repeticiones HEAT</td>
</tr>
<tr>
<td>Ensamblaje E</td>
<td>P15</td>
<td>GLP15_1361</td>
<td>Subunidad de Importina beta 3</td>
</tr>
</tbody>
</table>
presentan el dominio IBN y una región de reconocimiento FG en su porción C-terminal, se consideró la secuencia completa de estas proteínas como molde de búsqueda. Se obtuvieron de UniProt las secuencias de Importina β para distintos organismos y con ellas se creó un perfil HMMer de secuencia completa, tal y como se describió en la sección anterior. Al escanear los proteomas de *Giardia* se cosechó solo una secuencia correspondiente a cada una de las cepas, como se muestra en la Tabla 2.1. De este modo, se obtuvieron las mismas secuencias que las encontradas en DGB para WB, GS y P15 anteriormente, mientras que se hallaron adicionalmente las candidatas para las cepas DH y GSb.

Para analizar la posible relación de estas proteínas de *Giardia* con las proteínas de eucariotas superiores, se realizó una reconstrucción filogenética para dichas secuencias de aminoácidos. Para adicionar al análisis la relación con otros parásitos, se cosecharon las proteínas hipotéticas para *C. parvum*, *P. falciparum*, *T. gondii*, *T. vaginalis*, *T. brucei*, *T. cruzi* y *S. salmonicida* de sus respectivos proteomas predichos (Tabla 2.2), de la misma forma como se hizo con *Giardia* anteriormente.

<table>
<thead>
<tr>
<th>Organismo</th>
<th>Cepa</th>
<th>Entrada de EuPath</th>
<th>Nombre anotado</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. parvum</td>
<td>Iowia II</td>
<td>cgd7_3030, cgd7_3440</td>
<td>Importina/carioferina, Proteína no caracterizada</td>
</tr>
<tr>
<td>P. falciparum</td>
<td>3D7</td>
<td>PF3D7_0524000</td>
<td>Carioferina beta</td>
</tr>
<tr>
<td>T. gondii</td>
<td>ME49</td>
<td>TGME49_229180, TGME49_295040, TGME49_231600</td>
<td>Proteína con repeticiones HEAT</td>
</tr>
<tr>
<td>T. brucei</td>
<td>DAL972</td>
<td>Tbg972.9.8490</td>
<td>Importina 1</td>
</tr>
<tr>
<td>T. cruzi</td>
<td>DM28c</td>
<td>TCDM_06677, TCDM_03362</td>
<td>Proteína hipotética, Proteína hipotética</td>
</tr>
<tr>
<td>T. vaginalis</td>
<td>G3</td>
<td>TVAG_163310</td>
<td>Proteína hipotética conservada</td>
</tr>
<tr>
<td>S. salmonicida</td>
<td>ATCC50377, SS50377_15117</td>
<td>Subunidad de importina beta-3</td>
<td></td>
</tr>
</tbody>
</table>

De la reconstrucción filogenética de las 48 secuencias totales, se evaluó el agrupamiento (*clustering*) de secuencias por divergencia, con los algoritmos HMMerCUTTer y SDPfox, como se describió en la sección anterior. Dicho análisis filogenético mostró cuatro agrupamientos monofiléticos que disminuyen en divergencia de acuerdo al sentido de las agujas del reloj (Figura 2.1). Adicionalmente, se sometieron estas secuencias a un escaneo para el dominio IBN, mostrando su presencia como puntos por fuera de la filogenia, mientras que los colores indican el tipo de organismos al que pertenece cada secuencia. De estos cuatro agrupamientos, los primeros dos son los más pequeños y contienen solo secuencias de vertebrados (excepto el primero que
Identificación y descripción de los importadores nucleares en *G. lamblia*

...presenta una secuencia de *S. cerevisiae*), mientras que los últimos dos son los más grandes y heterogéneos en relación a sus organismos (Tabla 2.3). Las secuencias correspondientes a *Giardia* se encuentran en el tercer clado (azul) junto a secuencias de otros organismos (Tabla 2.3), entre ellas las correspondientes a Importina β 5 de *H. sapiens* y *M. musculus* e Importina β 3 de *S. cerevisiae* y *S. pombe*49–86. Las secuencias de *Giardia*, al igual que las secuencias para el resto de los Excavata y Apicomplexa (Protozoa) resultaron negativas para el análisis de la presencia de IBN. Debido a que dicho perfil fue construido con proteínas de eucariotas superiores, existe la posibilidad que estos organismos por su condición de divergencia temprana, presenten protodomíni nos no detectables o que el dominio IBN sea el resultado de procesos evolutivos sucesivos. Por lo tanto, la ausencia de IBN no sería condición suficiente para eliminar estas secuencias candidatas.

2.3.2 Importina β de *G. lamblia* tendría la estructura de sus homólogos en eucariotas superiores

De los candidatos de Importina β para las distintas cepas de *G. lamblia*, se continuó el análisis con la correspondiente al aislado WB, ya que esta cepa es sobre la que datan más estudios y la más susceptible de manipular genéticamente. De aquí en adelante, y a menos que se explique lo contrario,
cada vez que se haga referencia a Importina β de *G. lamblia* (gIMPβ), será la encontrada para la cepa WB (GL50803_15106).

Con la información obtenida hasta el momento, y considerando los supuestos previamente planteados, se procedió a analizar la posible estructura secundaria de la secuencia candidata de *G. lamblia*. Al calcular la probabilidad que tiene cada aminoácido de presentar configuración de hélice-alfa, de lámina-beta o desordenada, se pueden apreciar regiones helicoidales que se repiten de a dos, generando un patrón en donde la segunda es más extensa que la primera (Figura 2.2). Este patrón es bastante similar al encontrado para el dominio HEAT de eucariotas superiores que, como en
Identificación y descripción de los importadores nucleares en *G. lamblia*

 Todas las carioferinas β, la longitud de cada hélice es variable como así también la longitud de los bucles que separan unas de otras. Así, si se corta cada patrón en las regiones desordenadas que los limitan, se obtienen 24 repeticiones HEAT (HEAT1-24) para esta proteína, con las que se puede evaluar la intravariabilidad del dominio realizando un alineamiento de...
múltiples secuencias (MSA). Debido a que no se pueden establecer patrones consenso en cuanto a identidad de aminoácidos para estas proteínas, se realizó una corrección manual sobre el MSA teniendo en cuenta la naturaleza fisicoquímica (similitud) de los aminoácidos\(^8\). Como resultado, con la categorización previamente establecida se puede observar la presencia de regiones conservadas con porcentajes de similitud de al menos 50% (columnas gris claro - minúsculas), de al menos 70% (columnas gris oscuro - mayúsculas) o 90% (columnas negras - mayúsculas). En la primera hélice (HA - rojo) para la mayoría de los casos, la estructura comienza con Pro y próximamente presenta un aminoácido alifático Z (siendo Z: Ile, Leu, Val) altamente conservado, siguiéndole una región hidrofóbica zzS/TzzZ continuada por Glu/Gln (Figura 2.3). Para el caso de la hélice más larga (HB - amarillo), ésta comienza con Ser o Thr (S/T) en la mayoría de las repeticiones, sigue próximamente un residuo alifático Z altamente conservado y una región intermedia alifática (ZxaZxxxZ), presentando cerca del final un aminoácido básico (Arg/Lys). Cabe destacar que las repeticiones HEAT8, 15, 17 y 18 en los bucles que conectan cada hélice del par, presentan una zona rica en aminoácidos ácidos (Glu/Asp - violeta).

Bajo el supuesto de preservación de la estructura-función por similitud, y teniendo en cuenta que los dominios HEAT en sus repeticiones forman motivos estructurales, se evaluó la configuración tridimensional de la repetición en tándem de estas hélices. Para ello, se predijo por tres servidores distintos la estructura 3D del candidato de *G. lamblia*. Se pudo observar que

Figura 2.3: Alineamiento múltiple de secuencias de los dominios HEAT de GL50803_15106. Se muestra en gris claro una conservación de aminoácidos de al menos un 50%, en gris oscuro una conservación de al menos 70% y en negro de al menos 90%. La longitud variable de este dominio permite la inserción de gaps con significado estructural. Las hélices HA y HB están representadas en recuadros de color rosa y amarillo, respectivamente. Las zonas ricas en aminoácidos ácidos están resaltadas en el recuadro violeta.
las tres predicciones presentaban una estructura terciaria de solenoide-α (Figura 2.4), y para tener un índice cuantitativo de ello, se realizó un alineamiento estructural entre ellas obteniendo un valor de TM-Score de 0,668 (Tabla 2.4 - valor entre paréntesis)⁴⁶. Luego de determinar una alta similitud conformacional entre las predicciones, a modo representativo para una de ellas, se analizó la repetición tridimensional de los dominios HEAT. Se encontró que la sucesión de hélices A (rojo) forman la cara externa de la proteína, mientras que las hélices B (amarillo) forman la cara interna, como sucede con las carioterinas β (Figura 2.5).

Para poder realizar una comparación estructural con las proteínas de eucariotas superiores, de PDB se tomaron tres estructuras cristalográficas de Imp-β, cada una correspondiente a los eucariotas superiores, *H. sapiens*, *M. musculus*, *S. cerevisiae*, de códigos: 2P8Q, 1UKL y 2BKU, respectivamente⁴⁰,⁴¹,⁸¹. Entre ellas se realizó un alineamiento estructural para analizar su variabilidad estructural, obteniendo un valor de TM-Score igual a 0,781 a usar como referencia. Al comparar las estructuras predichas con las cristalográficas, no se observó una dupla en particular que se alinee mejor con respecto a las otras y que además corresponda con un servidor específico. Los mejores valores resultan en 0,729, 0,640 y 0,679 para la comparación con*

<table>
<thead>
<tr>
<th></th>
<th>hsa1F59</th>
<th>mmu1UKL</th>
<th>sce2BKU</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-TASSER</td>
<td>0,706</td>
<td>0,64</td>
<td>0,642</td>
</tr>
<tr>
<td>Phyre2</td>
<td>0,709</td>
<td>0,62</td>
<td>0,679</td>
</tr>
<tr>
<td>RaptorX</td>
<td>0,729</td>
<td>0,631</td>
<td>0,653</td>
</tr>
</tbody>
</table>

Tabla 2.4: Valores de TM-Score de los alineamientos 3D

![Figura 2.4: Estructura 3D predicha para la proteína codificada por el gen 50803_15106.](image) En la imagen se muestra la rotación sobre el eje z a distintos grados para la misma estructura. En dicha predicción se puede observar la configuración de súper-hélice. El extremo superior azul corresponde al N-terminal y el extremo inferior rojo corresponde al extremo C-terminal.
su homólogo putativo de humano, ratón y levaduras, respectivamente. Estos valores son similares respecto al de referencia y en todos los casos son mayores a 0,6 (Tabla 2.4 y Figura 2.5D). De acuerdo a estos valores, se puede decir que las estructuras predichas para el gen candidato a Importina β presentan alta similitud estructural con las importinas de estos eucariotas superiores. En conjunto, estos resultados aportan evidencias a favor de considerar el gen GL50803_15106 como un homólogo de Imp-β.

Figura 2.5: Estructura 3D predicha del candidato a Importina β. A) Repetición en tándem de las hélices HA (rojo) y HB (amarillo) del dominio HEAT. Las hélices HA conforman la superficie externa de la proteína, mientras que la superficie interna está dada por las hélices HB. B) Visión superior paralela al eje z. C) Visión ortogonal al eje z. Las letras N y C hacen referencia a los extremos N- y C-terminal, respectivamente. D) Alineamiento estructural entre Imp-β de S. cerevisiae (violeta) y la candidata de G. lamblia (cian).

2.3.3 Importina α es una proteína codificada en el genoma de G. lamblia

De acuerdo a los resultados de la búsqueda anterior en GDB, solo se encontraron proteínas correspondientes a Imp-β. Dicho resultado podría corresponderse con dos supuestos, ambos posibles pero excluyentes uno del otro. El primer supuesto (S₁) interpreta la ausencia de Importina α en un marco de transporte nuclear no clásico, el cual es mediado solamente por carioferinas β. Mientras que el segundo supuesto (S₂) considera la ausencia de Importina α como un falso negativo en el proceso de anotado de proteínas de dicha base de datos. Si S₂ es verdadero, se anula S₁ en pos de un mecanismo de importación clásico; si S₂ es falso, se justifica la verdad de S₁ en pos de un mecanismo de importación no clásico.

Para esclarecer dicha situación, se aplicó la misma metodología de búsqueda realizada para Imp-β, que demostró ser efectiva y específica. Así,
se obtuvieron de UniProt las secuencias de Importina α para distintos organismos y con ellas se creó un perfil HMMer de secuencia completa. Al escanear los proteomas de *Giardia* se cosechó solo una secuencia correspondiente a cada una de las cepas, como se muestra en la Tabla 2.5. Del mismo modo, se escanearon los proteomas predichos para distintos microorganismos parásitos, entre los cuales se encontraban *P. falciparum* y *T. gondii*, con el fin de cosechar como control sus importinas α descriptas (Tabla 2.6).

<table>
<thead>
<tr>
<th>Genotipo</th>
<th>Cepa</th>
<th>Entrada en GDB</th>
<th>Nombre anotado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensamblaje A</td>
<td>WB</td>
<td>GL50803_16202</td>
<td>Proteína del aparato central del axonema</td>
</tr>
<tr>
<td></td>
<td>DH</td>
<td>DHA2_16202</td>
<td>Proteína del aparato central del axonema</td>
</tr>
<tr>
<td>Ensamblaje B</td>
<td>GS</td>
<td>GL50581_3967</td>
<td>Proteína del aparato central del axonema</td>
</tr>
<tr>
<td></td>
<td>GSb</td>
<td>GSB_16202</td>
<td>Proteína del aparato central del axonema</td>
</tr>
<tr>
<td>Ensamblaje E</td>
<td>P15</td>
<td>GLP15_2563</td>
<td>Proteína del aparato central del axonema</td>
</tr>
</tbody>
</table>

Junto con las secuencias extraídas de UniProt para gr* G. lamblia* candidatas a Importina α, se llevó a cabo la reconstrucción filogenética de importinas α y candidatos, evaluando el *clustering*, como se mencionó anteriormente. Adicionalmente, se sometieron estas secuencias a un escaneo para el dominio IBB (PF01749). En la figura 2.6 se puede observar la presencia de dicho dominio como puntos por fuera de la filogenia, mientras que el arco externo indica el tipo de organismos al que pertenece cada secuencia. El análisis filogenético mostró cuatro agrupamientos monofiléticos que disminuyen en divergencia, en sentido horario (Figura 2.6). El primer agrupamiento corresponde solo a secuencias de organismos de supergrupo Excavata y SAR (protozoa), y ninguna presenta aparentemente el dominio IBB. El segundo agrupamiento contiene exclusivamente secuencias de plantas y el tercero solo de vertebrados. Mientras que el cuarto agrupamiento contiene, de modo heterogéneo, secuencias de organismos correspondientes al filo metazoa. Se}

<table>
<thead>
<tr>
<th>Organismo</th>
<th>Cepa</th>
<th>Entrada de EuPath</th>
<th>Nombre anotado</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. parvum</td>
<td>Iowa II</td>
<td>cgd7_3260</td>
<td>Proteína con dominios SWIB/MDM2</td>
</tr>
<tr>
<td>P. falciparum</td>
<td>3D7</td>
<td>PF3D7_0812400</td>
<td>Carioferina alfa</td>
</tr>
<tr>
<td>T. gondii</td>
<td>ME49</td>
<td>TGME49_252290</td>
<td>Importina alfa (putativa)</td>
</tr>
<tr>
<td>T. brucei</td>
<td>DAL972</td>
<td>Tbg972.1.1580, Tbg972.6.2400</td>
<td>Proteína de transporte de e- (putativa), Componente del complejo γ-tubulina</td>
</tr>
<tr>
<td>T. cruzi</td>
<td>DM28c</td>
<td>TCDM_09750, TCDM_01484</td>
<td>Proteína del aparato central del axonema, Importina alfa</td>
</tr>
<tr>
<td>T. vaginalis</td>
<td>G3</td>
<td>TVAG_475630, TVAG_055310</td>
<td>Subunidad de importina alfa-1B (putativa), Subunidad de importina alfa-2 (putativa)</td>
</tr>
<tr>
<td>S. salmonicida</td>
<td>ATCC50377, SS50377_10027</td>
<td>Proteína del aparato central del axonema</td>
<td></td>
</tr>
</tbody>
</table>
observa además un clado monofilético, que si bien no cumple con la condición de contener al menos un 10% de las secuencias totales (seis en este caso), contiene cinco secuencias y corresponde solo a hongos (fungi). Las secuencias correspondientes a Giardia se encuentran en el primer clado (azul) junto a secuencias de T. cruzi, T. brucei y las de T. vaginalis y S. salmonicida (Tabla 2.7). Y si bien estas secuencias no presentarían el dominio IBB, como se consideró anteriormente, ésto puede deberse a que exista una estructura mínima en las proteínas de estos organismos tempranamente divergentes que cumpla con dicha función, o que esta estructura sea adquirida por los eucariotas superiores como producto de la evolución. Motivo por el cual, la ausencia de IBN no sería condición suficiente para eliminar estas secuencias como posibles Imp-α.

2.3.4 Importina α de G. lamblia tendría la estructura de sus homólogos en eucariotas superiores

De los candidatos a Imp-α de las distintas cepas de G. lamblia, se eligió el gen GL50803_16202 de la cepa WB (gIMPα) para realizar los estudios subsiguientes. Así, el análisis de la posible estructura secundaria de gIMPα mostró un patrón de regiones helicoidales que se repiten de a tres, en donde una de ellas es más extensa y está flanqueada por dos secuencias más cortas (Figura 2.7). Este patrón es similar al encontrado para el dominio ARM de
Identificación y descripción de los importadores nucleares en *G. lamblia*

Unas proteínas eucariotas superiores y en el cual tanto la longitud de cada hélice como la longitud de los bucles que separan unas de otras es variable, por lo que la identidad de aminoácidos disminuye en estas proteínas. Del mismo modo como se procedió con Imp-β, se cortó cada patrón en las regiones desordenadas que los limitaban, obteniendo 12 repeticiones ARM (ARM1-12) que, luego de alinearlas, el MSA obtenido se corrigió manualmente por...

<table>
<thead>
<tr>
<th>ID</th>
<th>Organismo</th>
<th>EuPath/UniProt</th>
<th>Anotado como</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>tva055310</td>
<td>T. vaginalis</td>
<td>TVAG_055310</td>
<td>Importina alfa subunidad 2</td>
<td>2.</td>
</tr>
<tr>
<td>tva475630</td>
<td>T. vaginalis</td>
<td>TVAG_475630</td>
<td>Importina alfa subunidad 1B</td>
<td>1B.</td>
</tr>
<tr>
<td>tbl.1580</td>
<td>T. brucei</td>
<td>Tbg972.1.1580</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
<tr>
<td>tcr09750</td>
<td>T. cruzi</td>
<td>TCDM_09750</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
<tr>
<td>ssp10027</td>
<td>S. salmonicida</td>
<td>SS50377_10027</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
<tr>
<td>glae2563</td>
<td>G. lamblia P15</td>
<td>GLP15_2563</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
<tr>
<td>ggsb16202</td>
<td>G. lamblia GsB</td>
<td>GSb_16202</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
<tr>
<td>ggs3967</td>
<td>G. lamblia GS</td>
<td>GL50581_3967</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
<tr>
<td>gdha16202</td>
<td>G. lamblia DH</td>
<td>DHA2_16202</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
<tr>
<td>gwb16202</td>
<td>G. lamblia WB</td>
<td>GL50803_16202</td>
<td>Proteína del aparato central del axo.</td>
<td>1.</td>
</tr>
</tbody>
</table>

Tabla 2.7 - Información de las secuencias por clado de la filogenia de importinas α

<table>
<thead>
<tr>
<th>Clado 1</th>
<th>Clado 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Organismo</td>
<td>EuPath/UniProt</td>
</tr>
<tr>
<td>Clado 1</td>
<td>Clado 2</td>
</tr>
<tr>
<td>tva055310</td>
<td>T. vaginalis</td>
</tr>
<tr>
<td>tva475630</td>
<td>T. vaginalis</td>
</tr>
<tr>
<td>tbl.1580</td>
<td>T. brucei</td>
</tr>
<tr>
<td>tcr09750</td>
<td>T. cruzi</td>
</tr>
<tr>
<td>ssp10027</td>
<td>S. salmonicida</td>
</tr>
<tr>
<td>glae2563</td>
<td>G. lamblia P15</td>
</tr>
<tr>
<td>ggsb16202</td>
<td>G. lamblia GsB</td>
</tr>
<tr>
<td>ggs3967</td>
<td>G. lamblia GS</td>
</tr>
<tr>
<td>gdha16202</td>
<td>G. lamblia DH</td>
</tr>
<tr>
<td>gwb16202</td>
<td>G. lamblia WB</td>
</tr>
</tbody>
</table>

* Aseveración manual inferida por similitud de secuencias (UniProt)
similitud (Figura 2.8). En la primera hélice (H1- rojo) para la mayoría de los casos, la estructura comienza con Ala seguida por un aminoácido alifático Z altamente conservado luego de dos residuos cualesquiera (AxxZ), además de tener un extremo final no polar (ZZxxZ). Para el caso de la hélice más larga (H2 - amarillo), ésta comienza con un aminoácido polar, cargado o no, J (siendo J: Glu, Asp, Gln, Asn, Lys, Arg), con una zona media de polaridad dual (ZJ) y un extremo heterogéneo con S/T al final (ZxxZaJhS/T). La última hélice (H3 - color verde) es la más corta y en la que predominan aminoácidos alifáticos y algunos de naturaleza ácida dispersos de la forma ZAQ/ExZZd (Figura 2.8).

Con la información obtenida, se realizó una comparación estructural con las importinas α de otros organismos, para lo cual, primero se predijo la estructura 3D de la proteína candidata de G. lamblia por los tres servidores previamente utilizados. En las tres predicciones se observó el mismo plegamiento, que configura una estructura terciaria de solenoide-α, como se muestra en la Figura 2.9.
Identificación y descripción de los importadores nucleares en *G. lamblia*

Paralelamente, de PDB se tomaron estructuras cristalográficas de Imp-α, correspondiente a *H. sapiens, M. musculus, S. cerevisiae*, con códigos: 5H43, 1IAL y 1BK5, respectivamente\(^{42-44}\). Entre ellas, mediante un alineamiento estructural, se evaluó la probabilidad que tienen de presentar la misma conformación, obteniendo un valor de al menos 95% para ello, reflejado por un TM-Score de 0,938 (Tabla 2.8 - valor entre paréntesis). Al hacer lo mismo con las estructuras predichas para *Giardia*, para compararlas entre sí, éstas presentaron un puntaje TM-Score de 0,777, lo que se corresponde con una probabilidad de igual conformación del 90%. Luego, al comparar las estructuras predichas con las cristalográficas, se obtuvieron valores de TM-Score muy cercanos al valor de referencia de las cristalográficas.

![Alineamiento múltiple de secuencias de los dominios ARM de GL50803_16202. Se muestra en gris claro una conservación de aminoácidos de al menos un 50%, en gris oscuro una conservación de al menos 70% y en negro de al menos 90%. La longitud variable de este dominio permite la inserción de gaps con significado estructural. Las hélices H1, H2 y H3 están representadas en recuadros de color rosa, amarillo y verde, respectivamente.](image1)

![Estructura 3D predicha para la proteína codificada por el gen 50803_16202. En la imagen se muestra la rotación sobre el eje z a distintos grados para la misma estructura. En dicha predicción se puede observar la configuración de súper-hélice. El extremo superior azul corresponde al N-terminal y el extremo inferior rojo corresponde al extremo C-terminal.](image2)
Capítulo 2

para cada una en particular. Así, el puntaje para la estructura predicha por el servidor Phyre2 fue de 0,940; 0,919 y 0,949 al alinearla con su homólogo putativo de humano, ratón y levaduras, respectivamente. Esta estructura se utilizó para analizar la repetición tridimensional de los dominios ARM. Se encontró que la sucesión de hélices H1 y H3 (rojo y verde) forman la cara externa de la proteína, mientras que las hélices H2 (amarillo) forman la cara interna, además del surco necesario para el reconocimiento de NLSs de las Imp-α (Figura 2.10).

<table>
<thead>
<tr>
<th>Tabla 2.8: Valores de TM-Score de los alineamientos 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa5H43</td>
</tr>
<tr>
<td>I-TASSER</td>
</tr>
<tr>
<td>Phyre2</td>
</tr>
<tr>
<td>RaptorX</td>
</tr>
<tr>
<td>(0,777)</td>
</tr>
</tbody>
</table>

Figura 2.10: Estructura 3D predicha del candidato a Importina α. A) Repetición en tándem de las hélices H1 (rojo), H2 (amarillo) y H3 (verde) del dominio HEAT. Las hélices H1 y H3 conforman la superficie externa de la proteína, mientras que la superficie interna está dada por las hélices H2. B) Visión superior paralela al eje z. C) Visión ortogonal al eje z. Las letras N y C hacen referencia a los extremos N- y C-terminal, respectivamente. D) Alineamiento estructural entre Imp-α de S. cerevisiae (violeta) y la candidata de G. lamblia (cian).

2.4 Discusión

A pesar del amplio conocimiento que se dispone sobre el núcleo y sus componentes para eucariotas superiores, pocos son los estudios desarrollados sobre la evolución de ellos o su presencia en eucariotas inferiores115,116. Aun así, se ha postulado que la maquinaria de transporte nuclear proviene del
Identificación y descripción de los importadores nucleares en *G. lamblia*

UACE, tanto la familia de proteínas perteneciente a las nucleoporinas como a las carioferinas.

La mayoría de los estudios evolutivos fueron realizados sobre carioferinas β (importinas β, exportinas y transportinas)\(^8\),\(^\text{117,118}\). En dichos estudios se adoptaron dos perspectivas distintas: analizar la divergencia entre los homólogos de la misma proteína (por ejemplo, Importina β1) para los distintos organismos; o analizar la divergencia de todos los parálogos para el mismo organismo y compararla entre ellos. Ambas perspectivas concluyen que las carioferinas β son proteínas con bajo porcentaje de identidad (%Id) entre ellas, con valores entre 25 y 33% para importinas β y 20-50% para exportinas y transportinas. Esta información permite ampliar el criterio de homología por identidad, ya que los organismos más divergentes, como *Giardia*, presentan comúnmente valores de identidad de secuencia con sus homólogos por debajo del 50%\(^\text{119}\). Debido a que ampliar el margen de identidad disminuye la especificidad, cualquier búsqueda debe ser lo más precisa posible. La estrategia de utilizar un perfil de secuencia completa para la búsqueda de Importina β mostró ser eficaz para tal fin, ya que con ella se logró cosechar una sola proteína coincidiendo con los criterios de anotación de GDB. La Imp-β encontrada para *G. lamblia* en el proceso de búsqueda, presentó un puntaje de 175,9/964 (18%Id) y una probabilidad de error (E-value) de 1,7x10\(^{-49}\). En contraste, las proteínas inespecíficas de dicha búsqueda presentaron valores menores a 5%Id y errores al menos 37 órdenes de magnitud más grandes (Anexo I). Esta búsqueda fue específica, además, de proteínas que ya se encuentran descriptas para *P. falciparum* (PF3D7_0524000) o propuestas para *T. gondii* y *C. parvum*, TGME49_295040 y cgdt\(_3\)_3030, respectivamente\(^\text{70,120}\).

De la reconstrucción filogenética, el análisis de agrupamiento resaltó que las proteínas de *G. lamblia* se encontraban en el mismo clado monofilético que las Importina β3 de *S. cerevisiae*, *S. pombe*, *H. sapiens* y *M. musculus* (llamada también en estos dos mamíferos Importina 5). Esto sugiere que dicho *clustering* se corresponde con una relación funcional, ya que la divergencia de la filogenia está dada más por miembros de familia que por relación taxonómica entre los organismos. Además, esta hipótesis de conservación funcional está sustentada por los resultados obtenidos de los análisis estructurales. Éstos han demostrado que gIMPβ presenta 24 dominios HEAT, cuatro más que el promedio de importinas β (18-22 HEAT), lo cual puede ser interpretado en términos de inserción, algo común que sucede en *Giardia* como se mencionó anteriormente. Los dominios HEAT de gIMPβ presentan la configuración binaria de hélices-α (HA y HB), donde también la
Capítulo 2

más corta conforma la superficie externa de la proteína, mientras la más extensa, la interna. Todas estas características estructurales resultan compartidas con las de importinás β de eucariotas superiores. Incluso la estructura tridimensional que gIMPβ presentaría, ya que demostró tener un 90% de probabilidades de poseer la conformación de Imp-β. Estructura que además es robusta, al ser predicha por tres servidores distintos, donde cada uno infiere su configuración por diferentes estrategias, presentando resultados similares. Recientemente, estudios simples in silico realizados sobre Entamoeba histolytica (organismo del supergrupo Amoebozoa) han demostrado también una relación funcional entre la Imp-β propuesta para este organismo y las de eucariotas superiores121.

Por otro lado, O’Reilly et al., de sus estudios evolutivos, han propuesto que los distintos parálogos de carioferinas β (importinás β, exportinás y transportinás) provienen del UACE por eventos de duplicación en éste, y que dicha expansión paráloga también dio origen al repertorio de importinás β, exportinás y transportinás87. Los mismos estudios sugieren, además, que la ausencia de parálogos de cada una de estas familias en eucariotas tempranamente divergentes se debe a eventos evolutivos reductivos de pérdida secundaria. Esto ayudaría a interpretar los resultados descriptos de una única versión de Imp-β en G. lamblia. De los análisis de secuencia realizados, se observó que gIMPβ, al igual que las secuencias pertenecientes a su mismo grupo filogenético, no presenta el dominio IBN. Éste solo se encuentra en las secuencias que corresponden a H. sapiens y M. musculus, lo que aporta evidencias a favor de considerar que dicho dominio es producto de eventos evolutivos de aumento de afinidad por RanGTP. Hipótesis considerada a partir de la información reportada, que propone que el dominio IBN media las interacciones más determinantes con RanGTP en carioferinas β de organismos superiores, aunque no la totalidad de ellas, ya que los primeros dominios HEAT se encuentran estabilizando dicha unión122,123. De hecho, la ausencia del dominio IBN también se ha reportado para el candidato a Imp-β de E. histolytica.

En este trabajo de Tesis Doctoral, la estrategia de utilizar un perfil de secuencia completa para la búsqueda de Imp-α nuevamente mostró ser eficaz. Se logró cosechar una sola proteína, gIMPα, que en el proceso de búsqueda, presentó un puntaje de 105,1/530 (19,8 %Id) y una probabilidad de error de 6,1x10^-30. En contraste, las proteínas inespecíficas de dicha búsqueda presentaron valores menores a 6,9 %Id y errores al menos 21 órdenes de magnitud más grandes (Anexo II). Incluso, con esta estrategia fueron cosechadas Imp-α de otros organismos que ya se encuentran descriptas
funcionalmente para *P. falciparum* (PF3D7_0812400) y *T. gondii* (TGME49_252290) o propuestas, como el caso de cgd7_3260 de *C. parvum*\(^{70,120,124}\). Así como con gIMP\(\beta\), solo una secuencia de Imp-\(\alpha\) fue encontrada para *G. lamblia*, lo que se puede interpretar también como reducción evolutiva. De hecho, para *E. histolytica* también se ha identificado solo una secuencia candidata a Imp-\(\alpha\)\(^{121}\). Además, en concordancia con estos hallazgos, estudios realizados por Gul et al. demostraron que mientras más temprana es la divergencia de los organismos, menor es la expansión paráloga de importinas \(\alpha\)^{125}.

La reconstrucción filogenética inferida para para las importinas \(\alpha\) de los parásitos representativos y de eucariotas superiores demostró una relación taxonómica entre las secuencias, ya que su divergencia coincide con el linaje evolutivo de los organismos. El análisis por *clustering* localizó la secuencia de *G. lamblia* y de los demás representantes Excavata, en el primer grupo divergente, que es además el único carente del dominio IBB. La divergencia del resto de los clados monofiléticos disminuye en orden evolutivo, mostrando grupos solo de plantas, hongos, uno de animales y otro solo de vertebrados. Estos resultados son similares a los publicados por Gwairgi y Ghildyal para *E. histolytica*, donde su filogenia, aunque no incorpora a *Giardia*, también refleja una relación taxonómica\(^{121}\). Particularmente, la reconstrucción filogenética aquí presentada muestra un pequeño grupo polifilético de secuencias que corresponden a organismos representativos del supergrupo SAR y que poseen el dominio IBB. Dicho grupo se encuentra entre el primer y segundo clado monofilético (contiguo al de *Giardia*) y está constituido por las secuencias de *P. falciparum*, *T. gondii* y *C. parvum*. De ellas, se encuentra caracterizada la secuencia de *Plasmodium*, la cual presenta un dominio IBB sin actividad auto-inhibitoria, por lo que se postuló que su no funcionalidad correspondería con un mecanismo simplificado característico de los organismos parásitos\(^{126}\). Incluso, Gul et al. identificaron secuencias de Imp-\(\alpha\) que no presentan el dominio IBB en especies del género *Drosophila* y para *C. elegans*, a las que denominaron Imp-\(\alpha\)0 por su relación evolutiva ancestral\(^{125}\). Ésto aporta evidencias a favor de una adquisición evolutiva del dominio IBB, como interpretación de la ausencia de éste en gIMP\(\alpha\).

De los estudios estructurales, se ha observado que gIMP\(\alpha\) presenta 12 dominios ARM, lo que coincide con el máximo encontrado para importinas \(\alpha\) (10-12 ARM), como se mencionó en el capítulo anterior. Los dominios ARM de gIMP\(\alpha\) presentan la configuración ternaria de hélices-\(\alpha\) (H1, H2 y H3), donde también las más cortas conforman la superficie externa de la proteína, mientras que la interna está constituida por la repetición de la más extensa.
De hecho, cuando se analizó la intra-variabilidad de los dominios ARM, se observó una conservación de residuos hidrofóbicos, que de acuerdo con lo descrito por Gul et al., mediarían las interacciones que estabilizan la repetición en tándem. Todas estas características estructurales resultan compartidas con las de importinas α de eucariotas superiores. Incluso la estructura tridimensional que gIMPα presentaría demostró tener un 95 % de probabilidades de poseer la conformación de importinas α.

Si bien Mans et al. han informado que hay 4 carioferinas en G. lamblia, los resultados obtenidos en este trabajo de Tesis Doctoral demuestran la presencia de un solo gen codificante para Imp-α y uno para Imp-β. Aunque si se tiene en cuenta la familia de carioferinas β, aún quedan por identificar homólogos correspondientes a Exportina o Transportina.

De forma preliminar, se realizó una búsqueda por BLAST con las secuencias de H. sapiens para Xpo1 (O14980) y Xpo2/Cse (P55060) revelando la presencia de dos candidatos, uno para Exportina y otro para Transportina, respectivamente. El candidato de G. lamblia a Exportina, presenta una identidad del 22% con similitud del 49%, y una probabilidad de error de 8x10⁻¹⁰ (Anexo III). Está codificado por el gen GL50803_93278, se encuentra anotado como Proteína hipotética y su secuencia muestra regiones que coinciden con repeticiones en tándem y el dominio IBN. Además, una estructura predicha para esta secuencia muestra un alineamiento estructural que se condice con la estructura de Exportina de S. cerevisiae (Figura 2.11A).

Figura 2.11: Alineamiento estructural de los candidatos a Exportina y Transportina de G. lamblia. En las imágenes se muestra la secuencia para el gen de G. lamblia en cian y de S. cerevisiae en violeta. (A) Estructura predicha para el gen 50803_93278 y la estructura cristalográfica 3VYC. (B) Estructura predicha para el gen 50803_17110 y la estructura cristalográfica 123H.
Por otro lado, el candidato a Transportina de *G. lamblia* presenta una identidad del 19% con una similitud del 40%, y un E-value de 8×10^{-2} (Anexo IV). Está codificado por el gen GL50803_17110, se encuentra anotado como Proteína hipotética y su extremo N-terminal coincidiría con un dominio IBN, además de presentar regiones con repeticiones en tándem. Cuando se predice la estructura tridimensional y se la alinea con la Transportina de *S. cerevisiae*, las estructuras resultan similares (Figura 2.11B).

Por otro lado, estas secuencias también fueron obtenidas al utilizar la versión de STRING con homólogos de *G. lamblia* adaptada por nuestro grupo. Este servidor establece una red de proteínas en función del interactoma para los distintos organismos. Para *G. lamblia*, al unir las interacciones entre Importina α e Importina β sin y con hasta dos intermediarios, se obtuvieron distintos homólogos propuestos. Entre ellos, se encuentran los adaptadores RanGTP, NTF2 y RanBP y los mediadores Exportina y Transportina (Cse), como se muestra a continuación (círculos verdes).
De este modo, tales resultados preliminares apuntan a la presencia de dos carioferinas β más, correspondientes a gXPO y gTRN, coincidiendo con las 4 encontradas por Mans et al. Además, esto se correspondería con la hipótesis de pérdida secundaria y la ausencia de expansión paráloga, por la que *G. lamblia* solo presenta una versión de cada mediador. Si bien estos resultados son preliminares y deben confirmarse con análisis más exhaustivos, como búsqueda por secuencia con cada carioferina β y evaluación de las relaciones estructura-función, son un buen comienzo en la identificación de los mediadores de exportación nuclear en *G. lamblia*.
Capítulo 3:
Estudios funcionales de los importadores nucleares en *G. lamblia*

3.1 Introducción

Como se mencionó en el capítulo 1, se postula que en *Giardia* existe un transporte activo de proteínas a los núcleos. Tal proceso, como fenómeno, puede ser estudiado mediante el cambio de localización de proteínas, ya que éstas son el blanco de dicho transporte y evidencian el estado inicial y final de la translocación. Para este parásito, una de las proteínas que presenta localización nuclear temporal, es la enzima Arginina deiminasa. Además, esta enzima es clave para la sobrevida de parásito, de acuerdo a la variedad y funcionalidad de los procesos en los que interviene.

3.1.1 Arginina deiminasa

A partir de datos genómicos y funcionales, se ha caracterizado una amplia cantidad de proteínas como una superfamilia de *enzimas que modifican grupos guanidino* (GME) de L-Arg, que nuclea diversas familias como ciertas metil-transferasas, amidino-transferasas, amino-hidrolasas y deiminasas\(^1,2\). De estas últimas, la deiminación (o citrulinación) es la reacción que convierte, por hidrólisis, L-Arg en L-Citrulina e ión amonio. En esta reacción, la inmina del grupo guanidina es desplazada por el agua, la cual forma finalmente un grupo carbonilo en dicha posición\(^3\). Esta hidrólisis puede ser catalizada tanto sobre L-Arg libre por enzimas ADIs, como sobre residuos L-Arg presentes en proteínas por *Peptidil-arginina deiminasas* (PADs). Una de las vías metabólicas en las que interviene la familia de ADIs es *Arginina dehidrolasa*, una vía que, como se mencionó anteriormente, se encuentra conservada evolutivamente entre bacterias, archeas y eucariotas inferiores\(^4,5\). *Giardia* posee una versión de ADI que en la cepa WB está codificada por el gen GL50803_112103, y cuyo producto presenta una masa molecular de 64,13 kDa. Se ha descripto que, a pesar de presentar dos inserciones de aminoácidos en su extremo C-terminal, esta enzima presenta un sitio activo altamente conservado\(^6\). Este sitio está compuesto por los residuos Cys424, His280 y Glu226, que estabilizarían la interacción con el sustrato (Figura 3.1). Además, los aminoácidos que conforman el bolsillo catalítico, como Phe172 y los pares Asp175/Asp182 y
Arg194/Arg285, promueven el ataque nucleofílico del agua y la estabilización del estado de transición. La arquitectura del sitio activo y la disposición de los residuos en ADI serían similares a los de las PADs, por lo que se propuso también la posibilidad de que esta enzima pueda actuar sobre Arg de proteínas.

3.1.2 Rol biológico de Arginina deiminasa en *G. lamblia*

La principal vía de producción de energía en *Giardia* ocurre mediante el metabolismo de L-Arg por la vía arginina dehidrolasa \(^7\)–\(^9\). Además, ADI es liberada al medio extracelular y tanto por el consumo de L-Arg como por la producción de Amoníaco, está relacionada con una disminución de la síntesis de especies reactivas de Nitrógeno y una reducción en la proliferación de las células del epitelio intestinal \(^10\)–\(^13\). A su vez, el consumo de este aminoácido está relacionado con una modulación de la respuesta inmune por parte de las células dendríticas \(^14\),\(^15\). Incluso, *G. lamblia* presenta una tasa de internalización de L-Arg entre 10-20 veces mayor que las células epiteliales, lo que favorece los efectos previamente mencionados \(^16\).

Otro proceso clave que ocurre en *G. lamblia*, es el descripto como *variación antigénica*. Éste permite al parásito evitar el reconocimiento antigénico al cambiar sus proteínas variables de superficie o VSPs (del inglés, *variant-specific surface proteins*) por otra de su amplio repertorio \(^17\)–\(^19\). Estas proteínas presentan un extremo N-terminal variable con alto contenido de Cys (*CXXC*), una región transmembrana y un extremo C-terminal citosólico con cinco aminoácidos (*CRGKA*) altamente conservados entre ellas. Se ha demostrado que ADI interactúa con las VSPs, catalizando la citrulinación de la Arg presente en su extremo C-terminal \(^20\). Además, se demostró que ADI, que
presenta una localización citoplasmática durante el crecimiento del parásito, ingresa a los núcleos durante las últimas etapas del proceso de enquistamiento. Dicho ingreso es promovido por la sumoilación de esta enzima y se ha postulado que la presencia nuclear de ADI está relacionada con la citrulina de histonas, ya que células enquistantes mostraron una marca nuclear positiva para citrulina. Incluso, cuando esta proteína es sobre-expresada, su ingreso a los núcleos regula negativamente la expresión de genes específicos del enquistamiento. Por lo que se ha propuesto que ADI al ser sumoilada ingresa a los núcleos en las últimas etapas del enquistamiento, promoviendo la finalización de dicho proceso.

Considerando que la masa molecular de ADI es de 64,1 kDa y que al ser sobre-expresada dicho valor aumenta a ~85 kDa, su pasaje a través de la envoltura nuclear necesitaría de transportadores específicos de la importación nuclear.

3.2 Materiales y métodos

3.2.1 Organismo y cultivo in vitro

Los trofozoítos de *G. lamblia* se adquirieron en American Type Culture Collection (ATCC 50582) y son provenientes de la cepa WB, clon 1267. Para cultivarlos axénicamente se utilizó medio TYI-S-33 (pH 7) suplementado con 10% v/v de suero bovino adulto y 5% p/v de bilis bovina (medio completo de crecimiento). Todos los cultivos se realizaron en tubos de borosilicato con tapa a rosca (Eurotubo®, Deltalab), que se completaron con un volumen total de 14 mL con medio completo de crecimiento y con 100 µL de trofozoítos de *Giardia*. Se colocaron los tubos dentro de gradillas que se orientaron inclinadas en ángulos de aproximadamente 45° dentro de una estufa de cultivo a 37 ºC. Luego de 30 min comienza a observarse adhesión de los trofozoítos a las paredes del tubo a través de su disco ventral. De este modo, y de manera similar a lo que ocurre in vivo, se produce la división de las células obteniéndose a las 48 h una monocapa de trofozoítos en etapas de crecimiento. La inclinación de las gradillas permite lograr una mayor adhesión de los trofozoítos a las paredes del tubo.

3.2.1.1 Ensayo de crecimiento celular

Los trofozoítos fueron despegados de las paredes de los tubos mediante enfriamiento a 4 °C en medio durante 15 min y luego recuperados por centrífugación a 1455 xg por 15 min a 4 °C. Resuspendidos en PBS (del inglés phosphate buffer saline) se contaron en cámara de Neubauer y a cada tubo de una cantidad total (determinada por cada cepa, por tiempo y por triplicado)
se les adicionó el volumen correspondiente que contuviese 5×10^5 células. Luego se incubaron a 37 ºC y a cada tiempo evaluado las células fueron cosechadas como se mencionó anteriormente. Las células fueron contadas en cámara de Neubauer en presencia de Azul de Tripán 0,01% p/v, para distinguir tanto las vivas como las muertas. La relación de crecimiento final se calculó como el valor de células vivas a un dado tiempo, dividido por la cantidad de células iniciales (5×10^5). Para el porcentaje de células vivas y muertas, estos valores correspondientes a cada tiempo se los dividió por el total de células (vivas + muertas).

3.2.1.2 Ensayos del proceso de enquistamiento

El proceso de enquistamiento in vitro se llevó a cabo en dos etapas. En la primera, se descartó el medio de crecimiento de los trofozoítos cultivados hasta confluencia durante 24 h y los tubos, conteniendo trofozoítos adheridos a su pared, se completaron con medio de pre-enquistamiento o PE (medio completo de crecimiento sin bilis bovina). Luego de 48 horas, el medio de PE fue reemplazado por medio de enquistamiento o E, que posee una concentración de bilis porcina de 0,45% p/v, y de ácido láctico al 0,01% p/v, cambiándose el pH del medio a 7,8 25. Este cambio de medio induce la diferenciación de trofozoítos a quistes, los cuales pierden la capacidad de adherencia y permanecen libres en el medio de enquistamiento. El periodo de enquistamiento para los experimentos realizados fue de un total de 48 h en incubación a 37 ºC.

Producción de quistes

Para recolectar los quistes, a cada tiempo de evaluación se centrifugaron los tubos a 1455 xg durante 15 min, sin el previo enfriamiento de los mismos. Se los resuspendió en PBS y se los contó en cámara de Neubauer. La producción de quistes fue expresada como relación de quistes, calculada como la cantidad total de quistes en el volumen total del tubo a un tiempo dado, dividida por la cantidad de trofozoítos justo luego de cambiar el medio de PE por el de E (tiempo cero). Cada punto, inclusive el tiempo cero, para cada ensayo fue realizado por triplicado.

Evaluación de estadíos

Para evaluar los estadíos, los quistes fueron recolectados junto con las células pegadas, es decir, se enfriaron los tubos por 15 min para luego ser centrifugados 1455 xg por 15 min a 4 ºC. Se resuspendieron en medio-PBS 1% v/v para realizar ensayos de inmunofluorescencia (IF) y contar las células en los distintos estadíos por campo para una dada condición y tiempo de evaluación.
Genes específicos del enquistamiento

Para evaluar la expresión de los genes específicos de enquistamiento, para cada tiempo y condición, dos tubos de 14 mL en monocapa con una cantidad aproximada de 5x10^7 células, fueron enfriados por 15 min y centrífugados a 1455 xg por 15 min a 4 °C. Luego se les descartó estrictamente todo el medio y se resuspendieron en Trizol (Invitrogen Corporation, Carlsbad, CA, US) para posteriores tratamientos de retrotranscripción (RT) y PCR en tiempo real (qPCR).

3.2.2 Amplificación y clonado de proteínas

3.2.2.1 Amplificación

Las secuencias de cada proteína fueron obtenidas como se describe en la sección MyM del capítulo anterior. El ADN genómico de *Giardia* fue utilizado como templado para amplificar, mediante la reacción en cadena de la polimerasa o PCR (del inglés polymerase chain reaction), la secuencia codificante de cada gen de interés considerando que este parásito carece de intrones. Se diseñaron manualmente cebadores o *primers* para cada gen (Tabla 3.1), a los fines de permitir el clonado de los fragmentos de interés en un vector específico para *G. lamblia*. Se subraya en cada *primer* la secuencia reconocida por cada enzima de restricción utilizada. Todos los *primers* fueron sintetizados por Invitrogen (Invitrogen Corporation, Carlsbad, CA, US) y almacenados a -20 °C. Las diluciones se realizaron en agua DEPC (agua tratada con Dietil-pirocarbonato).

<table>
<thead>
<tr>
<th>Cebadores</th>
<th>Secuencia (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPA_Fw</td>
<td>CATTGGGGCCGCAAATCTGCGTTGCGTAGCG</td>
</tr>
<tr>
<td>IMPA_Rv</td>
<td>CATTGGATATCCTTGATCAGATCGAGCATATTTC</td>
</tr>
<tr>
<td>IMPB_Fw</td>
<td>CATTGGGCGCCGGAATCCTGCACGAGCTTACATCT</td>
</tr>
<tr>
<td>IMPB_Rv</td>
<td>CATTGGGGCGGCTCACTGCGACACGCACACAGCACGTAACAAAA</td>
</tr>
</tbody>
</table>

Fw: sentido. **Rv**: anti-sentido. **GGGGCC**: secuencia reconocida por ApaI. **GATATC**: secuencia reconocida por EcoRV. **GGCGCCGC**: secuencia reconocida por AscI. **GCGGCCGC**: secuencia reconocida por NotI.

La amplificación por PCR se llevó a cabo empleando la enzima *Taq platinium High Fidelity* (Invitrogen Corporation, Carlsbad, CA, US) de acuerdo a las siguientes condiciones de reacción: 2 min a 94 °C, 30 ciclos de [30 s a 94 °C, 30 s a 55 °C y 2 min a 72 °C] y luego 10 min a 72 °C para la extensión final. El análisis de los productos de PCR se realizó sembrando 5 μL del producto de reacción en geles de agarosa. Éstos fueron preparados en solución tampón TAE (Tris-Acetato 0,04 M, EDTA 1 mM, pH 8) al 1,2% de
agarosa y con el agregado de SYBR® Safe DNA Stain (Invitrogen Corporation, Carlsbad, CA, US) para el teñido de las bandas. Las muestras fueron sembradas con solución de siembra (Azul de bromofenol 0,09% p/v, Xileno Cianol FF 0,09% v/v, Glicerol 60% v/v). Las electroforesis fueron realizadas en la misma solución TAE durante 40 min a 100 V y finalmente se visualizaron mediante la exposición a Safe Image™ Blue-Light Transiluminator (Invitrogen). Los productos de PCR se purificaron mediante el empleo de un ensayo comercial Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI, US).

3.2.2.2 Construcción de los vectores de expresión en *G. lamblia*

Para expresar constitutivamente las proteínas gIMPα y gIMPβ se utilizaron los vectores de expresión pTubV5-Ct.pac y pTubHA-Nt.pac, respectivamente. Estos plásmidos permiten la expresión constitutiva y estable de genes en trofozoítos de *G. lamblia* gracias a la presencia del promotor de Tubulina y a la selección con el antibiótico puromicina, respectivamente. El cassette de puromicina se encuentra bajo el control del promotor endógeno no regulado de *gdh*. Las proteínas se expresan fusionadas a 3 repeticiones en tándem de la etiqueta V5 (GKIPNPLLGLDST) en el extremo C-terminal para pTubV5-Ct.pac o la proteína hemaglutinina (HA) del subtipo H3 del virus influenza (YPYDVPDYA) en su extremo N-terminal antes del codón de terminación TAA (pTubHA-Nt.pac). El plásmido pTubV5-Ct.pac posee el gen de la VSPH7 de la cepa GS de *G. lamblia* que puede ser removido con las endonucleasas *NcoI/ApaI* y *EcoRV* (Invitrogen) posibilitando el clonado de otros genes en dicho vector. En cambio, el plásmido pTubHA-Nt.pac posee un sitio de múltiple clonado que puede ser cortado con una variada cantidad de endonucleasas. El clonado de marco de lectura abierto o ORF (del inglés open reading frame) de cada una de las proteínas en los vectores permite expresarlas constitutivamente para su posterior localización subcelular en trofozoítos de *G. lamblia*26–28.

3.2.2.3 Corte del vector e inserto utilizando enzimas de restricción

El marco de lectura abierto que codifica para cada gen de interés fue clonado en el vector de expresión correspondiente, según cada caso. Para el vector pTubV5-Ct.pac y el fragmento de 1509 pb de *impα* fueron incubados cada uno, con *ApaI/EcoRV* por 2 h a 37 °C (corte) y luego 10 min a 70 °C (inactivación). Para el vector pTubHA-Nt.pac y el inserto de 3456 pb para *impβ* fueron incubados cada uno, primero con la enzima *AscI* por 2 h a 25 °C (corte) y 10 min a 70 °C (inactivación de la enzima) y luego con la enzima *NotI*, por
Estudios funcionales de los importadores nucleares en *G. lamblia*

2 h a 37 °C (corte) y 10 min a 70 °C (inactivación de la enzima). Se adicionó además los reactivos comerciales BSA 10X y Buffer 3 para todos los casos. Todas las enzimas de restricción utilizadas pertenecen a New England, Biolabs. Los productos de restricción se chequearon en gel de agarosa al 1% como se detalla más arriba y el vector se purificó a partir del gel mediante el empleo del ensayo comercial *Wizard SV Gel and PCR Clean-Up System* (Promega, Madison, WI, US).

3.2.2.4 Ligación del producto de corte

Los insertos y vectores se ligaron en una relación 4:1 respectivamente mediante la incubación con la enzima T4 DNA Ligasa (Fermentans) por 16 h a 16 °C, seguido de 10 min a 70 °C para inactivar la enzima.

3.2.2.5 Preparación de bacterias competentes

Bacterias *Escherichia coli* (Top10) fueron crecidas en 5 mL de LB/Tetraciclina estéril (Peptona 1% p/v, extracto de levadura 0,5% p/v, Tetraciclina (Tet) 15 mg/mL en 100 mL de agua destilada) a 37 °C en agitación toda la noche. Luego 1 mL de este cultivo fue empleado para inocular 250 mL de LB/Tet (15 μg/mL) y cultivado en *Erlenmeyer* a 18 °C en agitación hasta alcanzar una densidad óptica (OD) aproximadamente de 0,6. Cuando se alcanzó este valor, las bacterias se incubaron 10 min en hielo. Posteriormente, se centrífugaron a 2095 xg por 10 min a 4 °C y se resuspendió el precipitado en 80 mL de buffer TB frío (Pipes 10 mM, MnCl₂ 55 mM, CaCl₂·2H₂O 15 mM, KCl 150 mM, pH 7). Las bacterias se incubaron nuevamente 10 min en hielo y se centrífagaron a 2095 xg por 10 min a 4 °C. El precipitado se resuspendió en 20 mL de buffer TB frío y se agregaron 1,5 mL de dimetilsulfóxido (DMSO) de forma cuidadosa para evitar toxicidad en las células (concentración final 7% v/v). Luego, las bacterias se fraccionaron en alícuotas de 200 μL en tubos estériles, congelándose en N₂ líquido y manteniéndose a -70 °C.

3.2.2.6 Transformación de *E. coli*

Las bacterias Top10 competentes se transformaron con el vector conteniendo el gen de interés, mediante shock térmico: 15 min a 4 °C, 30 s a 42 °C y 2 min a 4 °C. Luego, se adicionó 1 mL de LB y se dejó en agitación durante 1 h a 37 °C. Después de centrífugar a 2851 xg durante 5 min, se retiró el sobrenadante y el precipitado se resuspendió en 200 μL de LB. Finalmente, las bacterias transformadas se plaquearon en LB-ampicilina (25 mg/mL)-agar 1,2% p/v y se incubaron toda la noche u ON (del inglés *over night*, 16 h) en estufa a 37 °C.
3.2.2.7 Chequeo de colonias por PCR

Las colonias obtenidas luego de la transformación se chequearon mediante PCR utilizando la enzima Taqpol (Invitrogen), empleando primers específicos de cada gen de interés o del vector utilizado, y en las mismas condiciones de reacción detalladas anteriormente para la PCR del inserto. De igual manera, el análisis de los productos de PCR se llevó a cabo mediante corridas electroforéticas en geles de agarosa al 1%. Las colonias positivas se crecieron en LB líquido con Ampicilina (25 mg/mL) y se cultivaron ON en agitación a 37 ºC.

3.2.2.8 Purificación del plásmido

Los cultivos de bacterias incubados ON fueron centrífugados a 3500 xg por 10 min a 20ºC y se purificaron utilizando un ensayo comercial Wizard Plus SV Minipreps DNA Purification System (Promega, Madison, WI, US). Las secuencias de todos los constructos se enviaron para su secuenciación a la compañía Macrogen (http://www.macrogen.com) y corroborar de esta forma el correcto ORF.

3.2.3 Transfección de trofozoítos de G. lamblia cepa WB/1267

Para cada una de las transfecciones se partió de trofozoítos crecidos en monocapa. Las células fueron enfriadas y centrífugadas a 1455 xg por 15 min a 4 ºC, el sobrenadante se descartó y el precipitado se resuspendió en 360 µL de medio completo adicionando 40 µL de plásmido de concentración 1,5 µg/µL. La transfección se realizó mediante electroporación (Electro Square Porator™ ECM 830) aplicando 1 pulso de 14 ms a 350 V, 725 Ω y 1000 µF en una cubeta de 4 mm. Seguidamente, la muestra fue incubada en hielo durante 10 min y luego trasvasadas a un tubo de vidrio de 8 mL conteniendo medio completo y los antibióticos Piperacilina (500 µg/mL, Sigma-Aldrich, St. Louis, MO, US) y Moxalactam (333 µg/mL, Sigma-Aldrich, St. Louis, MO, US). Luego de cultivar ON los trofozoítos a 37 ºC, se agregó Puromicina (10 µg/mL) (Invivogen, San Diego, CA, US) para seleccionar aquellas células que estuvieran transfectadas. La expresión de las proteínas de interés se visualizó por IF.

Para realizar las co-transfecciones, se procedió de la misma forma, solo que en lugar de partir de trofozoítos salvajes se partió de trofozoítos transgénicos de una de las importinas y se lo transfeció con el plásmido de la otra. Células transgénicas gIMPα se las electroporó con el plásmido conteniendo gIMPβ, y viceversa.
3.2.4 Ensayos de IF

Los trofozoítos se lavaron con PBSm (PBS + medio de crecimiento al 1%, pH 7,4) y se les permitió durante 30 min la adherencia a portaobjetos previamente tratados con poli-L-lisina (Sigma-Aldrich, St. Louis, MO, US) a 37 ºC en cámara húmeda. Después de la fijación con formaldehído al 4%, las células se lavaron y se bloquearon con PBS conteniendo 10% v/v de suero normal de cabra (Gibco®, Life Technologies, Carlsbad, CA, US) y Tritón X-100 (Sigma-Aldrich, St. Louis, MO, US) al 0,1% v/v. A continuación, las células fueron incubadas con anticuerpos (Acs) específicos anti-V5, anti-HA o anti-ADI (Tabla 3.2) diluidos en solución de Ac (PBS conteniendo 3% v/v de suero normal de cabra y Tritón-X100 al 0,1% v/v), a 37 ºC en cámara húmeda durante 1 hora. Luego de lavar dos veces con PBS, se incubaron con Ac secundario (anticuerpo de cabra anti-ratón) conjugado a Alexa 488, Alexa 546, FITC o Texas red diluidos en solución de Ac, por 1 h a 37 ºC en cámara húmeda. Posteriormente a lavar dos veces con PBS, para los casos en que fue necesario, se utilizó el Ac anti-CWP1. Para visualizar los núcleos de las células se utilizó el colorante de ADN DAPI (del inglés 4′,6-diamidino-2-phenylindole) (Invitrogen Corporation, Carlsbad CA, US) diluido en PBS a una concentración de 1 μg/mL, incubado durante 1 min. Por último, las preparaciones se lavaron y se montaron en medio de montaje Vectashield (Vector Laboratories, Burlingame, CA, US).

La marcación fluorescente se visualizó a través de un microscopio confocal de exploración láser (MCEL) Olympus FV1000 motorizado (Olympus UK Ltd, Reino Unido), utilizando objetivos de inmersión en aceite (NA 1,32) 63X o 100X. Los fluorocromos se excitaron usando un láser de argón a 488 nm y un láser de criptón a 568 nm y a 610 nm. DAPI se visualizó mediante excitación con luz ultravioleta utilizando un láser de argón 364 nm. Las

<table>
<thead>
<tr>
<th>Tabla 3.2: Anticuerpos utilizados en los ensayos de IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticuerpo</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Anti-V5</td>
</tr>
<tr>
<td>Anti-HA</td>
</tr>
<tr>
<td>Anti-ADI</td>
</tr>
<tr>
<td>AlexaFluor-488</td>
</tr>
<tr>
<td>AlexaFluor-546</td>
</tr>
<tr>
<td>FITC</td>
</tr>
<tr>
<td>Texas Red 586</td>
</tr>
<tr>
<td>Anti-V5 650</td>
</tr>
<tr>
<td>Anti-HA FITC</td>
</tr>
<tr>
<td>Anti-CWP1 FITC</td>
</tr>
</tbody>
</table>
Hendiduras de detección fueron configuradas para reducir al mínimo cualquier cruce de señal entre los canales. Las imágenes de contraste diferencial de interferencia o DIC (del inglés differential interference contrast) se recogieron simultáneamente con las imágenes de fluorescencia. Finalmente, las imágenes fueron procesadas utilizando los programas ImageJ y Adobe Photoshop 6.0 (Adobe Systems).

Para los análisis cuantitativos, las imágenes fueron expuestas y procesadas idénticamente. Al menos 200-400 células que expresaron cada tipo de proteínas fueron examinadas. Los datos fueron estadísticamente evaluados utilizando test de Student.

3.2.5 Ensayos de inmunoblot

Para detectar la expresión de los genes transflectados y co-transfectados, trofozoítos de las cepas gIMPα, gIMPβ y gIMPα/β fueron cosechados en PBS con inhibidor de proteasas al 2% p/v (Hoffmann-La Roche, Basilea, Suiza) y lisados por ultrasonido con 15 pulsos de 10 s y 30% amplitud con intermitencia de 2 s (Vibra-Cell, Sonics and Materials Inc, CT, US). La cantidad total de proteínas fue determinada utilizando el ensayo comercial Qubit® Protein Assay Kit (Molecular Probes, Eugene, OR, US).

3.2.5.1 Electroforesis de proteínas en geles de poliacrilamida

Se utilizaron 10 µg de proteínas totales de lisados de parásitos en solución amortiguadora de muestra o SAM (Tris-HCl 0,5 M pH= 6,8, SDS 10% p/v, azul de Bromofenol 0,5% p/v y glicerol 20% v/v) en presencia o ausencia de β-mercaptoetanol 5 mM, y se hirvieron por 10 min29. La separación de las proteínas se realizó en geles de Bis-Tris al 12% o 15%. La electroforesis fue realizada utilizando el sistema BioRad Mini-Protean II, a potencial constante de 200 V.

3.2.5.2 Inmunotransferencia e inmunodetección

La transferencia de proteínas desde los geles a membranas de nitrocelulosa (Amersham Hybond™ ECL™, Little Chalfont, UK) se realizó a corriente constante de 250 mA, por 2 h a 4 °C (Trans-Blot® SD, Bio-Rad) en tampón Tris 20 mM, glicina 150 mM y metanol al 20% v/v30. Finalizada la transferencia, las membranas fueron bloqueadas con 5 % de leche en polvo con bajo contenido graso (Molico, Nestle®) y Tween 20 al 0,1% v/v (Sigma-Aldrich, St. Louis, MO, US), en tampón TBS (del inglés Tris buffered saline) (25 mM Tris, 150 mM NaCl) por 1h en agitación, a temperatura ambiente. Posteriormente, las membranas fueron incubadas con Acs de ratón IgG
específicos anti-HA o anti-V5 (Tabla 3.3) diluidos en solución de Ac (leche 1% p/v y Tween 20 al 0,1% v/v en TBS), durante 1 h a temperatura ambiente. Luego de tres lavados con TBS-Tween 20 0,05% v/v, las membranas fueron incubadas con anticuerpo secundario marcado con la enzima peroxidasa de rabano o HRP (del inglés Horseradish peroxidase) diluido en solución de Ac, por 1 h a temperatura ambiente. Luego de ese tiempo, las membranas fueron lavadas en TBS-Tween 20 al 0,05% v/v para la posterior detección.

Las proteínas se visualizaron por autoradiografía con el sustrato quimioluminiscente SuperSignal West Pico (Pierce, Thermo Fisher Scientific Inc., Rockford, IL, US.). Brevemente, 24 μL de luminol, 1,25 mM y 4 μL de ácido cumárico 200 μM (Sigma-Aldrich, St. Louis, MO, US) fueron agregados a la solución tampón Tris-HCl 100mM pH 8,6 e, inmediatamente antes de incorporar a la membrana, se añadieron 3 μL de peróxido de hidrógeno al 30% v/v. Después de 1 min de incubación en oscuridad, la membrana escurrida fue cubierta con una lámina de plástico y una película de fotografía Agfa Ortho CP-G Plus (AGFA) fue expuesta entre 5-15 min en un cassette para autoradiografía. Finalmente, la película fue revelada entre 3 a 5 min hasta la aparición de bandas, fijada y lavada con agua. Los controles incluyeron la omisión del Ac primario y ensayos con células no transfectadas.

| Tabla 3.3: Anticuerpos utilizados en los ensayos de IF |
|---------------------------------|-----------------|-----------------|-----------------|
| Anticuerpo | Procedencia | Dilución | Casa Comercial |
| Anti-V5 | Monoclonal de ratón | 1:800 | Sigma (St Louis, MO, US) |
| Anti-HA | Monoclonal de ratón | 1:1000 | Sigma (St Louis, MO, US) |
| Anti-mIgs HRP | Policlonal de cordero | 1:1000 | DakoCytomation |

3.2.6 Purificación y análisis de ácidos nucleicos

El ARN total fue extraído a partir de trofozoítos y quistes, de acuerdo a lo informado31. Para ello, el ARN se aisló usando el reactivo Trizol (Invitrogen Corporation, Carlsbad CA, US) y una segunda purificación se realizó utilizando el sistema de aislamiento de ARN total SV (Promega, Madison, WI, US).

El ADN genómico fue purificado siguiendo el protocolo de extracción con fenol y precipitación con alcohol isopropílico32.

3.2.6.1 Retro-transcripción por PCR

El ARN total de las células de la cepa salvaje (wt) y de las que sobre-expresan gIMPα y gIMPβ fue extraído, purificado y se lo retro-transcribió usando el ensayo de RT-PCR de un solo paso (Qiagen, Valencia, CA, US) como se describió anteriormente33. El ARN se diluyó en serie, a partir de 20 ng hasta
Capítulo 3

0,2 ng por reacción, en un volumen final de 50 μL. La reacción de transcripción reversa fue realizada a 50 ºC por 30 min seguido por la inactivación de la enzima a 95 ºC por 15 min, obteniendo finalmente el ADNc.

3.2.6.2 PCR en Tiempo Real

El ARN extraído fue tratado con ADNasa (Promega, Madison, WI, US) previo a la síntesis de ADNc con la enzima Transcriptase Reversa RevertAid™ (Fermentas). Los ADNc fueron utilizados para el análisis de la expresión de genes utilizando la mezcla PCR SYBR Green Master Mix para qPCR (Invitrogen Life Technologies, Carlsbad, USA), ADNc de simple cadena (100 ng), y primers en una concentración de 800 nM, en un volumen de reacción de 20 μL. Los primers se diseñaron para la detección de los genes 18s, cwp1, cwp2, cwp3 y myb-2 como se muestra en la tabla 3.4. Todos los cebadores fueron sintetizados por Invitrogen (Invitrogen Corporation, Carlsbad, CA, US) y almacenados a -20 ºC. Las diluciones se realizaron en agua DEPC.

Tabla 3.4: Secuencias de primers utilizados en el ensayo de qPCR

<table>
<thead>
<tr>
<th>Cebadores</th>
<th>Secuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>18s_real_F</td>
<td>AAGACCGCCTCGTCAATAA</td>
</tr>
<tr>
<td>18s_real_R</td>
<td>GTTTACGGCCGGAATACG</td>
</tr>
<tr>
<td>cwp1_real_F</td>
<td>AACGCTCTCACAGGCTCCAT</td>
</tr>
<tr>
<td>cwp1_real_R</td>
<td>AGGTGGAGCTCCTTGAGAAATTG</td>
</tr>
<tr>
<td>cwp2_real_F</td>
<td>TAGGCTGCTTCCCACTTTTGAG</td>
</tr>
<tr>
<td>cwp2_real_R</td>
<td>CGGGCCCGCAAGGT</td>
</tr>
<tr>
<td>cwp3_real_F</td>
<td>GCAAATTGGATGCCAAACAA</td>
</tr>
<tr>
<td>cwp3_real_R</td>
<td>GACTCCGATCCAGTCGCAGTA</td>
</tr>
<tr>
<td>myb2_real_F</td>
<td>TCCCTAATGACGCCAAACG</td>
</tr>
<tr>
<td>myb2_real_R</td>
<td>AGCAGCGCAGAGGCAAGT</td>
</tr>
</tbody>
</table>

Las corridas se realizaron en un sistema 7500 estándar (Applied Biosystems, USA). Las condiciones de qPCR fueron: 2 min a 50 ºC, 10 min a 95 ºC y 40 ciclos de [95 ºC por 15 s y 60 ºC por 1 min]. La expresión génica fue normalizada utilizando el gen 18s como gen de referencia, y calculada utilizando el método ΔΔCt con la condición wt como segundo normalizador. El análisis estadístico de los datos se llevó a cabo utilizando el programa GraphPad Prism (GraphPad Software, Inc.). La significancia estadística se delimitó en valor p < 0,05. Los datos se representan como media ± EEM.
3.3 Resultados

En función de la identificación y descripción in silico de las importinas para *G. lamblia*, se prosiguió con la evaluación de su localización e impacto funcional en células en crecimiento y durante la diferenciación a quiste.

3.3.1 La sobre-expresión de gIMPα y de gIMPβ no afecta el crecimiento de *G. lamblia*

A fin de evaluar el rol de gIMPα y de gIMPβ, se buscó obtener transfecciones estables que sobre-expresaran cada una de estas proteínas. Para ello, se diseñaron primers específicos de acuerdo a las secuencias de nucleótidos encontradas en GDB y se amplificaron los genes *gimpα* (1509 pb) y *gimpβ* (3456 pb) desde material genómico, como se describió anteriormente (Figura 3.2). Sus productos de amplificación se clonaron dentro de los vectores de expresión pTubApa-V5Ct.pac y pTub-HANt.pac. El primero de estos vectores permite la expresión de proteínas con una etiqueta V5 en el extremo C-terminal, mientras que el segundo lo hace con una etiqueta HA en el extremo N-terminal. Se utilizó el vector pTubApa-V5Ct.pac para expresar gIMPα debido a la posible presencia de un dominio IBB no conservado en el extremo N-terminal, como se ha tratado previamente. Paralelamente, el vector pTub-HANt.pac se seleccionó para gIMPβ ya que su presencia no interrumpiría de forma total el reconocimiento a RanGTP si hubiese un dominio IBN no conservado en el extremo C-terminal. Una vez secuenciados los constructos gIMPα-V5 y gIMPβ-HA, se transfecionaron trofozoítos de la cepa WB1267 con dichos plásmidos.

Habiendo obtenido las transfecciones estables, se realizaron ensayos de inmunoblot para identificar la expresión de las importinas y de IF para analizar la localización celular de estas proteínas, de acuerdo a lo detallado previamente. Como se muestra en la figura 3.3, se pudo confirmar la

Figura 3.2: Amplificación de los genes *gimpα* y *gimpβ*. Producto de amplificación por PCR desde ADN genómico y corrido en gel de agarosa. Los carriles centrales corresponden al marcador de peso molecular (kpb), el carril izquierdo al gen *gimpα* (1,5 kpb) y el derecho al gen *gimpβ* (3,4 kpb).
expresión de las importinas por inmunodetección de sus etiquetas, evidenciando las bandas correspondientes a los pesos moleculares predichos de 54,2 kDa para gIMP\(\alpha\) (panel izquierdo) y de 127,7 kDa para gIMP\(\beta\) (panel derecho).

En los ensayos de IF, como puede observarse en la figura 3.4, gIMP\(\alpha\) mostró tener una localización tanto nuclear y perinuclear predominantemente,
como citosólica y en membrana plasmática en menor medida (panel izquierdo). A su vez, gIMPβ presentó una localización perinuclear principalmente, frente a una marca reticular y citoplasmática en menor proporción (panel derecho). Así, ambas proteínas se localizan dentro del trofozoito de *G. lamblia* en patrones que se corresponden con los compartimentos subcelulares en los que se encuentra esta familia de proteínas.

Para determinar si la sobre-expresión de estas importinas tiene algún impacto sobre el estadío de trofozoito de *G. lamblia*, se realizaron curvas de crecimiento en comparación a la cepa wt. Como control adicional, se utilizaron células transfectadas con los correspondientes vectores vacíos. Al evaluar la cantidad de células a distintos puntos de tiempo durante 48 horas, tanto para gIMPα como para gIMPβ, no se observaron diferencias significativas en la tasa de crecimiento con respecto a los controles (Figura 3.5). Se puede considerar entonces que la sobre-expresión de estas proteínas no tendría un impacto negativo durante el crecimiento de *G. lamblia*, sin influir además, en la morfología celular.

![Figura 3.5: Crecimiento de células transgénicas gIMPα y gIMPβ. Curvas de crecimiento durante 48 horas de trofozoitos wt y transfectados con el vector vacío (pTub) y el vector conteniendo gimpα (A) o gimpβ (B). Los valores de las abscisas están normalizados a la cantidad inicial de células y se expresan como (media ± EEM). Estadística realizada a un valor p < 0,05](image)

3.3.2 Los mediadores gIMPα y gIMPβ intervienen en el proceso de enquistamiento de *G. lamblia*

Se ha descripto que durante el proceso de enquistamiento, distintas proteínas se localizan dentro de los núcleos, por lo que las importinas de *G. lamblia* deberían estar interviniendo de alguna manera. Para evaluar esto, se analizó la producción de quistes en células transgénicas y wt durante un periodo de 48 horas, utilizando el protocolo de enquistamiento de dos pasos.
Tanto para las células que sobre-expresan gIMP\(\alpha\) como gIMP\(\beta\), se observó hacia tiempos finales del estudio un aumento significativo en la cantidad de quistes con respecto al control (Figura 3.6).

![Gráfica 3.6: Enquistamiento de células transgénicas gIMP\(\alpha\) y gIMP\(\beta\). Producción de quistes normalizada a la cantidad de trofozoítos iniciales para distintos tiempos de inducido el proceso de enquistamiento en células transgénicas gIMP\(\alpha\) (A) y gIMP\(\beta\) (B). Los valores se expresan como (media ± EEM), * p < 0,05 con respecto al control para ese tiempo.](image)

Para interpretar en detalle la influencia de las importinas en el proceso de enquistamiento, se cuantificó por qPCR la expresión en el tiempo de los genes específicos del enquistamiento (cwp1-3 y myb) para los distintos tipos de células. Como se muestra en la figura 3.7, para células que sobre-expresan gIMP\(\alpha\) el factor de transcripción Myb mostró un aumento significativo de su transcripción, de aproximadamente 1,5 veces en relación a las cepa wt a tiempos tempranos (12 horas post-inducción), relación que disminuye a la

![Gráfica 3.7: Expresión relativa de los genes específicos del enquistamiento en células transgénicas gIMP\(\alpha\). Se muestra la cuantificación por qPCR de la expresión de cwp1-3 y myb2 a distintos tiempos de inducido el proceso de enquistamiento, relativa al gen endógeno 18S y normalizada a la expresión de dichos genes en células wt (\(\Delta\Delta C_t\)). La línea de puntos a valor 1 representa dicha normalización, los valores se expresan como (media ± EEM). * p < 0,05 con respecto al valor de normalización (wt).](image)
mitad a hacia las 24 horas. Para los genes que codifican las distintas CWPs, la expresión relativa de cwp1 y cwp2 muestra, a tiempos tempranos, valores de aproximadamente 35 y 3,5 veces la expresión de las células wt, respectivamente; mientras que no hay diferencias significativas en el perfil de expresión relativa para cwp3. Cabe resaltar además, que en los tiempos estudiados cwp1 no recupera sus niveles de expresión basales, siendo su expresión relativa 5 veces mayor al estadío de trofozoito.

En células que sobre-expresan gIMPβ, el factor de transcripción Myb mostró un aumento significativo de su expresión en aproximadamente 2,5 veces con respecto a las células wt a tiempos tempranos de inducción (12 y 24 horas), relación que disminuye a valores por debajo de la unidad hacia tiempos finales de la evaluación (48 horas post-inducción) (Figura 3.8). Para los genes que codifican las distintas CWPs, su expresión relativa muestra un aumento importante a tiempos tempranos con valores de aproximadamente 70, 25 y 4 veces la expresión en células wt para cwp1, cwp2 y cwp3, respectivamente. Luego, en tiempos de evaluación tardíos, dicha expresión decae a valores cercanos a los que se encuentra para las células wt, o por debajo de éste. Es notable que los valores de expresión de los genes específicos del enquistamiento para las células transgénicas gIMPβ, mostraron valores que llegan a duplicar los encontrados para las células que sobre-expresan gIMPα.

De acuerdo con lo observado previamente, puede inferirse que tanto Imp-α como Imp-β intervienen en el proceso de enquistamiento en G. lamblia.

Figura 3.8: Expresión relativa de los genes específicos del enquistamiento en células transgénicas gIMPβ. Se muestra la cuantificación por qPCR de la expresión de cwp1-3 y myb2 a distintos tiempos de inducido el proceso de enquistamiento, relativa al gen endógeno 18S y normalizada a la expresión de dichos genes en células wt (ΔΔCt). La línea de puntos a valor 1 representa dicha normalización, los valores se expresan como (media ± EEM). * p < 0,05 con respecto al valor de normalización (wt).
3.3.3 La co-expresión de gIMPα y gIMPβ tiene un efecto sinérgico en el enquistamiento de G. lamblia

De acuerdo a los hallazgos encontrados para cada una de las importinas durante el enquistamiento, se decidió evaluar dicho efecto en células que sobre-expresaran conjuntamente las dos proteínas. Para ello se realizaron co-transfecciones de acuerdo a lo descripto en MyM, y una vez obtenidas las transgénicas estables (gIMPα/β) se las indujo a enquistar. Se contabilizó la producción de quistes cada 12 horas durante un periodo total de 48 horas para células transgénicas y wt, observándose un aumento significativo en dicha cantidad de quistes a partir de las 36 horas post-inducción (Figura 3.9A). Debido a que el proceso de enquistamiento no es un evento sincronizado, en ensayos de IF puede observarse tanto trofozoítos que aún no han ingresado a este proceso (T) como células que se encuentran en distintos estadíos de enquistamiento (E). Dichos estadíos pueden ser células en enquistamiento temprano (E1), con poca cantidad de ESVs y de pequeño tamaño que contienen CWPs, y células en enquistamiento tardío (E2), con alta cantidad de ESVs y de gran tamaño. En las células co-transfectadas, hacia las 36 y 48 horas de inducido el proceso se observa un predominio significativo de E2 para las células que sobre-expresan gIMPα/β (Figura 3.9B y C), correlacionándose con un aumento en la producción de quistes.

Figura 3.9: Enquistamiento en células transgénicas gIMPα/β. A) Producción de quistes normalizada a la cantidad de trofozoítos iniciales para distintos tiempos de inducido el proceso de enquistamiento. Los valores se expresan como (media ± EEM), * p < 0,05 con respecto al control para ese tiempo. B) Porcentaje de células en los distintos estadíos de enquistamiento a 36 (B) y 48 (C) horas de inducido el enquistamiento. Donde las barras gris claro T corresponden a trofozoítos, las gris E1 a células enquistantes tempranas y las gris oscuro E2 a células enquistantes tardías. Los valores se expresan como (media ± EEM), * p < 0,05 con respecto al control wt (barra negra).
3.3.4 Arginina deiminasa co-localiza con los mediadores gIMPα y gIMPβ en el enquistamiento de *G. lamblia*

 Debido a que se conoce que ADI transloca a los núcleos en las últimas etapas del enquistamiento y que para ello necesitaría de los transportadores específicos de la importación nuclear, se analizó la localización conjunta de esta enzima con gIMPα y gIMPβ.

Figura 3.10: Localización de Importinas alfa y beta durante el proceso de enquistamiento. Se muestran fotografías por MCEL de ensayos de IF sobre células transgénicas gIMPα/β que muestran la localización de gIMPα (rojo) e gIMPβ (verde) a 0, 12, 24, 36 y 48 horas post-inducción (h.p.i.) del proceso de enquistamiento. Barra, 5 μM. Núcleos teñidos con DAPI.
En una primera instancia, se evaluó la localización de los mediadores de la importación nuclear en las células co-transfectadas (gIMPα/β). Para ello se realizaron ensayos de IF con anticuerpos contra las etiquetas de cada proteína sobre-expresada a distintos tiempos de enquistamiento. Se observó para cada importina una localización perinuclear a tiempos tempranos, que luego que cambia a una ubicación nuclear entre las 24 y las 36 horas de inducido el enquistamiento (Figura 3.10). Posteriormente, se evaluó el transporte nuclear de ADI y su localización conjunta con gIMPα y gIMPβ durante en este proceso.

Así, en ensayos de IF sobre células co-transfectadas gIMPα/β, se utilizó un anticuerpo policlonal contra ADI, para poder de este modo detectar la versión nativa de dicha proteína. Por una parte, se analizó la localización de ADI y gIMPα a distintos tiempos de inducido el proceso de enquistamiento. Se puedo observar que a tiempos tempranos (12 horas), ADI mostraba una localización citoplasmática, mientras que gIMPα una localización perinuclear (Figura 3.11). Asimismo, cuando se toman tiempos tardíos de enquistamiento (36 horas), se encuentra que ambas proteínas cambian su localización previa a una localización nuclear.

Por otra parte, pero del mismo modo, se analizó la localización de ADI y gIMPβ. Tal como muestra la figura 3.12, a las 12 horas de haberse inducido el proceso de enquistamiento, ADI presenta una localización citoplasmática mientras que gIMPβ una localización nuclear y perinuclear, principalmente. Pero cuando se analizan tiempos mayores (36 horas) se observa una localización conjunta dentro de los núcleos.

Estas observaciones sugieren que ADI estaría utilizando ambos mediadores de la importación para ingresar a los núcleos de *G. lamblia*.
3.4 Discusión

Múltiples estudios sobre los distintos mecanismos biológicos en Giardia han sido llevados a cabo mediante la transfección de plásmidos, tanto para la sobre-expresión de proteínas como para regular negativamente la expresión de diferentes genes en este organismo34. Estas dos metodologías permiten inferir, aunque con limitaciones, el fenómeno en cuestión mediante el exceso o supresión de una de las partes del sistema global.

Se ha observado que la sobre-expresión de cada una de las importinas en G. lamblia no afecta la tasa de crecimiento de este organismo. Si bien se ha descripto en eucariotas superiores que estos mediadores intervienen en la translocación de señales de inducción y de control del ciclo celular, el mayor regulador de la división celular es la disponibilidad energética$^{35–37}$. Incluso, para las importinas se han descripto funciones no relacionadas al transporte nuclear, en donde intervienen en el ensamblaje del huso mitótico, en la reestructuración de la envoltura nuclear de mitosis abierta, la formación de los cinetocoros hacia los centrosomas, en la segregación cromosómica, entre otras$^{35,38–41}$. Si se considerase que las importinas de G. lamblia intervienen en estas funciones no relacionadas al transporte, su participación no tendría injerencia en la velocidad en que se desarrolla el ciclo celular. Así, la condición de sobre-expresión de importinas no necesariamente implica un aumento en la tasa de crecimiento normal en trofozoitos transgénicos gIMPα y gIMPβ.

La sobre-expresión de las importinas de G. lamblia ha mostrado una localización subcelular esperada de acuerdo con lo descripto en otras células, observándose que gIMPβ se encuentra mayoritariamente en la región perinuclear mientras que gIMPα localiza principalmente en los núcleos42,43.

Figura 3.12: Localización de ADI y gIMPβ durante el enquistamiento de trofozoitos transgénicos gIMPα/β. Fotografías por MCEL de ensayos de IF que muestran la localización de ADI (rojo) e importina β (verde) a 12 y 36 horas post-inducido el proceso de enquistamiento (h.p.i.). Barra, 5 μM.
Esta localización diferenciada podría deberse a que Imp-α necesita ser reconocida por otra proteína (transportina) para poder regresar al citoplasma. Por lo cual, depende de la disponibilidad de este último mediador, y que en condiciones de expresión constitutiva, gIMPα saturaría dicho sistema de exportación. En contraste, las carioferinas β sólo necesitan interactuar con RanGTP, molécula que se encuentra en altas concentraciones dentro del núcleo y no resultaría limitante para su regreso al citoplasma. De esta manera, gIMPβ al ingresar al núcleo interactuaría con RanGTP, disociándose el complejo de importación y activándose su translocación al citoplasma. Cabe destacar que la localización de estas dos importinas de *G. lamblia* no varía al ser sobre-expresadas conjuntamente, manteniéndose similar en trofozoítos pero localizándose principalmente en los núcleos a tiempos intermedios de inducido el proceso de enquistamiento. Lo que coincide también con la localización de ADI.

Como se mencionó anteriormente, está descripto que ADI se localiza dentro de los núcleos durante el enquistamiento, interviene regulando negativamente la expresión de genes específicos de este proceso para finalizar con la formación de quistes y que, al ser sobre-expresada, genera una menor producción de éstos. Estos antecedentes sugieren que la entrada de ADI a los núcleos por la sobre-expresión de las importinas favorecería una terminación prematura del enquistamiento con una producción menor de quistes. Sin embargo, ésto no fue observado, ya que la sobre-expresión individual o conjunta de gIMPα y gIMPβ produce el efecto opuesto, una mayor cantidad de quistes. A pesar de ello, los hallazgos encontrados no resultan contradictorios si se reconoce que la translocación nuclear de ADI no es el único evento determinante del enquistamiento. Resulta lógico entonces considerar que la señalización que gatilla la diferenciación a quiste requiera de la importación nuclear para producir la expresión génica necesaria que se ha observado para *cwp1-3*, *myb* y *g6p*45,46. Por lo que un aumento de translocación nuclear originada por una mayor cantidad de importinas, favorecería este proceso y se correlacionaría con el aumento de quistes observados. De hecho, para células transgénicas gIMPα/β, el aumento en la cantidad de quistes producidos hacia las 36 y 48 horas se condice con el mayor porcentaje de células en el estadío de enquistamiento tardío (E2). Ésto también se corresponde con la disminución del estadío temprano (E1) observada las 36 horas. Además, el aumento encontrado en la expresión de los genes codificantes para las CWPs justificaría el aumento de células conteniendo más ESVs (E2) y la mayor producción de quistes.
Todas estas evidencias apuntan a que tanto gIMP₁ como gIMP₂ tienen un rol activo en el proceso de enquistamiento de *G. lamblia*. Y que cuando son sobre-expresadas conjuntamente este efecto se ve aumentado posiblemente por el sinergismo de no encontrarse saturados ninguno de estos dos mediadores.
Capítulo 3
Capítulo 4: Inhibición del transporte nuclear en *G. lamblia*

4.1 Introducción

Otra metodología utilizada para el análisis del transporte nuclear, es su inhibición mediante el uso de moléculas específicas. Hasta el momento, existe una variedad de compuestos descritos como inhibidores del transporte nuclear, ya sea porque afectan la configuración espacial de las carioferinas o porque se posicionan en zonas claves de la superficie de interacción proteína-proteína. Estos compuestos son sintéticos y derivan tanto de otros ya conocidos, como de interacciones evaluadas *in silico*. Entre los más descritos y utilizados se encuentran Importazol (IPZ) e Ivermectina (IVM) para la inhibición de la importación, mientras que Leptomicina B y sus derivados inhiben la exportación nuclear1.

4.1.1 Importazol

Este inhibidor es una molécula que ha sido originalmente encontrada por búsqueda virtual (*virtual screening*). IPZ es una molécula heterocíclica pequeña y presenta dobles enlaces conjugados que le confirieren aromaticidad a sus anillos. Característica por la cual este compuesto presenta naturaleza hidrofóbica, resultando ser permeable a la membrana plasmática de las células. Su actividad como inhibidor reversible se ha demostrado sobre la interrupción de la unión de Imp-β y RanGTP, lo que afectaría de forma directa el reciclado de esta carioferina2–4.

Debido a los múltiples procesos celulares en los que intervienen las carioferinas, se ha observado que IPZ afecta indirectamente de manera dosis dependiente el ensamblaje y tamaño del huso mitótico, como así también el alineamiento de los cromosomas y su segregación2,5. Y es en relación a estos procesos que se ha estudiado su actividad como potencial fármaco antitumoral. IPZ ha demostrado ser efectivo en un modelo de cáncer de próstata que presenta alta expresión de las proteínas del complejo de poro
nuclear, en el cual impide el transporte nuclear de proteínas dependiente de Imp-β y reduce la proliferación celular y su tumorigenicidad6,7. Incluso, su acción promueve la sobrevida de un modelo murino \textit{in vivo} cuando es administrado conjuntamente a otras drogas antitumorales. Además, se ha encontrado que la inhibición en la importación de DDX6, una helicasa de ARN productora de miARN de progresión tumoral, tiene un efecto indirecto como supresor del crecimiento de células cancerígenas8.

\subsection*{4.1.2 Ivermectina}

Las lactonas son compuestos que se han utilizado para tratar infecciones de diferentes microorganismos, y han sido modificadas para generar nuevas moléculas que amplíen su espectro de acción. Entre estos compuestos se encuentran las lactonas macrocíclicas, moléculas de gran tamaño con diversos sustituyentes que dieron lugar a la familia de las avermectinas9. Las avermectinas son drogas que últimamente se utilizan tanto en humanos como en animales domésticos y de interés ganadero10. IVM o Avermectina B1a pertenece a esta familia, es comercializada bajo el nombre de IVOMEC® y se prescribe para tratar una amplia gama de infecciones parasitarias tanto a nivel nacional como mundial. Está indicada para tratar escabiosis, pediculosis, oncocercosis, infecciones filarias y de parásitos gastrointestinales nematodos como \textit{Strongyloides stercoralis}, \textit{Enterobius vermicularis}, \textit{Trichuris trichiura} y \textit{Ancylostoma duodenale}11–13. Ivermectina es una molécula de naturaleza hidrofóbica, que presenta un pico de concentración plasmática a pocas horas de ser administrada y, que luego de ser transportada al hígado es principalmente eliminada con las heces10,14–19.

Recientemente se ha demostrado la actividad de IVM como un inhibidor del transporte nuclear mediado por Imp-α/Imp-β, donde al interrumpir la interacción entre estas dos proteínas actúa inhibiendo de forma reversible el ingreso de proteínas al núcleo20. Como la mayoría de los inhibidores del transporte nuclear, también se evaluó la actividad de IVM como fármaco antitumoral. Fue descrito que regula positivamente la expresión de canales Cl- produciendo muerte celular osmótica, y que inhibe la importación de DDX6,
otra helicasa de ARN productora de miARN asociada a la progresión tumoral, interviniendo indirectamente en el crecimiento de este tipo de células21. Además, se observó que para altas concentraciones de esta droga (del orden de 100 \(\mu\)M) se producen efectos sobre en el crecimiento celular, que van desde un retardo en la progresión del ciclo de división hasta una inhibición total del crecimiento22.

4.2 Materiales y métodos

4.2.1 Inhibidores

Los compuestos Importazol e Ivermectina (Sigma-Aldrich, St. Louis, MO, US) fueron disueltos en DMSO (Sigma-Aldrich, St. Louis, MO, US) de acuerdo a su solubilidad máxima para formar soluciones madre de concentración 40 y 25 mM, respectivamente.

4.2.2 Ensayo de crecimiento celular

Las curvas de crecimiento fueron realizadas con la cepa \(wt\) en crecimiento en tubos de borosilicato con tapa a rosca (Eurotube®, Deltalab) de capacidad 8 mL y como se detalló en el capítulo anterior. En el caso de IPZ, a tiempo inicial se adicionó al medio de crecimiento el volumen necesario de la solución madre para obtener concentraciones finales de 20 y 40 \(\mu\)M, y un volumen de DMSO de acuerdo al máximo utilizado (0,1\% v/v) como condición control. Para el caso de IVM, a tiempo inicial se adicionó el volumen necesario de la solución madre para generar concentraciones de 25 y 50 \(\mu\)M, 60 y 80 \(\mu\)M y 100 y 250 \(\mu\)M con iguales volúmenes de DMSO para la condición control, obteniendo concentraciones de este último de 0,1\%, 0,32\% y 1\% v/v respectivamente.

4.2.3 Ensayos de enquistamiento

El proceso de enquistamiento \textit{in vitro} fue realizado como se detalló en el capítulo anterior. Para ello se utilizó la cepa \(wt\) y se la expuso a concentraciones de IPZ de 20 y 40 mM y de IVM de 60 y 80 mM. Los diferentes inhibidores se agregaron a distintos tiempos luego de inducido el proceso (descarte del medio de PE y agregado del medio de E) como se muestra en la figura 4.1. Resultan así 5 grupos: i) 48 horas en presencia del inhibidor; ii) últimas 36 horas de enquistamiento con el inhibidor; iii) últimas 24 horas de enquistamiento con el compuesto; iv) últimas 12 horas de enquistamiento con la droga; y v) grupo control, con tratamiento con DMSO durante 48 horas de enquistamiento.
Posteriormente, las muestras fueron procesadas para realizar ensayos de IF y determinar la producción de quistes y los distintos estadíos de enquistamiento, como se describió en el capítulo anterior. La localización de ADI fue evaluada de forma similar a los distintos estadíos de enquistamiento, tomando campos al azar y contabilizando la cantidad de células con marca nuclear, perinuclear y citoplasmática de esta enzima en cada uno de ellos para las diferentes condiciones.

4.3 Resultados

De acuerdo a la funcionalidad observada para las importinas en *G. lamblia*, se continuó con dicho análisis mediante el uso de inhibidores clásicos del transporte nuclear en células en crecimiento y durante la diferenciación a quiste de este parásito.

4.3.1 Importazol afecta el crecimiento de *G. lamblia* sin producir muerte celular

A fin de evaluar el efecto de Importazol sobre *G. lamblia*, se realizaron ensayos de crecimiento celular para dos concentraciones distintas de esta droga sobre trofozoítos *wt*, como se especificó anteriormente. Estas concentraciones fueron de 40 μM, de acuerdo a lo informado en distintos estudios, y una dosis menor correspondiente a 20 μM. Debido a que IPZ es una molécula muy poco soluble en agua y que el solvente utilizado para disolverla fue DMSO, el control utilizado en este ensayo fueron células con la adición de DMSO al medio de crecimiento. De los valores obtenidos para este ensayo, se puede observar una disminución significativa en la tasa de crecimiento para ambas concentraciones utilizadas con respecto a las células crecidas en ausencia de inhibidor (Figura 4.2A). Incluso, entre las concentraciones de 20 y 40 μM de IPZ no se observan diferencias significativas.
Inhibición del transporte nuclear en *G. lamblia*

en la tasa de crecimiento a tiempos cortos y medios, pero a tiempos más prolongados este valor aumenta significativamente en las células que están expuesta a la menor concentración del inhibidor. Cabe destacar que durante los ensayos de crecimiento, se observó durante la exposición a IPZ una mayor cantidad de pares de trofozoítos por concluir su fisión binaria.

Este hallazgo de la disminución del crecimiento en células expuestas a IPZ puede interpretarse tanto en términos de un aumento en la muerte celular como el caso de un retardo en el ciclo de división celular, eventos excluyentes uno del otro. Para elucidar este fenómeno, en ensayos de crecimiento celular bajo las mismas condiciones previas, se evaluó la presencia de células muertas y vivas para cada intervalo de tiempo. Como se muestra en la Figura 4.2B, no se observaron diferencias significativas entre ninguna condición para ninguno de los tiempos evaluados, manteniéndose valores que oscilan entre un 5-10% para células muertas y entre un 90-95% para células vivas. Este resultado presenta evidencias a favor de la hipótesis de un retardo en el crecimiento, excluyendo la de un aumento en la muerte celular. Por lo que se puede aseverar que dichas concentraciones de IPZ afectan el crecimiento de *G. lamblia* aletargando dicho proceso sin ocasionar muerte celular en los tiempos evaluados.

4.3.2 Importazol afecta el proceso de enquistamiento en *G. lamblia* disminuyendo la producción de quistes

Para evaluar el efecto de este inhibidor sobre el proceso de enquistamiento, se trabajó con las dos concentraciones ya definidas y la condición control con DMSO como en los ensayos de crecimiento celular. Como se muestra en la Figura 4.3A, para ambas concentraciones de IPZ se puede
observar una diferencia en la producción de quistes a medida que aumenta el tiempo que pasan las células en presencia de dicho inhibidor. Para el caso de la concentración más alta (40 μM) esta disminución se vuelve significativa a las 24 horas de exposición. Luego, hacia tiempos mayores la producción de quistes se vuelve mínima, donde un 10% de las células inducidas a enquistar logran diferenciarse, en comparación con un 50% observado para la condición control. Algo similar ocurre para la concentración de IPZ de 20 μM, donde la disminución se vuelve significativa a las 36 horas de exposición con un mínimo en la producción de quistes en los tratamientos de 48 horas de exposición.

Para evaluar si la acción de IPZ afecta el avance del proceso de enquistamiento, se analizó para cada tratamiento el porcentaje de células en los distintos estadíos (trofozoítos, E1 y E2) como se describió en el capítulo anterior. Se observó para ambas concentraciones del inhibidor que, a medida que aumenta el tiempo de exposición, hay una leve disminución en el porcentaje correspondiente al estadío temprano E1 y una disminución más...
Inhibición del transporte nuclear en *G. lamblia*

La inhibición del transporte nuclear marcada para el estadío tardío E2 (Figura 4.3B y C). Así, esta diferencia es compensada por un aumento en el porcentaje de células que no ingresan al proceso de enquistamiento, manteniéndose en el estadío de trofozoítico (T).

De esta forma IPZ, como inhibidor de Imp-β, estaría interviniendo en el mecanismo de importación nuclear el cual es necesario para que se desencadene el proceso de enquistamiento en *G. lamblia*.

4.3.3 Ivermectina afecta el crecimiento de *G. lamblia* de manera dosis-dependiente

A fin de ampliar los conocimientos sobre el proceso de importación nuclear en el que intervenga Imp-α en *G. lamblia*, se evaluó el efecto de IVM sobre trofozoítos *wt* en crecimiento, como inhibidor del transporte nuclear mediado por Imp-α/Imp-β. Como las concentraciones utilizadas en los trabajos publicados variaban en un amplio espectro, se decidieron probar concentraciones de este inhibidor comprendidas entre 25 y 250 μM. Las concentraciones más bajas que se probaron fueron de 25 y 50 μM, y como se muestra en la figura 4.4, no se observaron diferencias significativas con respecto a las células sin IVM (DMSO). Las concentraciones más altas que se evaluaron fueron de 100 y 250 μM, concentraciones con las cuales se observa una drástica disminución en el crecimiento de los trofozoítos, incluso por debajo de la cantidad de células iniciales (Figura 4.5A). Cuando se analizó la viabilidad a cada tiempo evaluado, se observó que esta disminución se debía a una marcada muerte celular. El tiempo de vida media de las células disminuía conforme mayor era la concentración de IVM, resultado de aproximadamente 18 horas para 100 μM y de 12 horas para 250 μM de concentración de este compuesto (Figura 4.5B y C).

Considerando los resultados obtenidos, se decidió utilizar concentraciones intermedias de IVM (60 y 80 μM). Se observó que las células tratadas con la menor concentración de la droga no mostraban diferencias
significativas en el crecimiento con respecto al control (Figura 4.6A). En contraste, las células tratadas con la concentración de 80 μM mostraron tener una tasa de crecimiento significativamente menor que la condición control a tiempos mayores de las 36 horas. Para analizar si esta disminución se debía a la muerte celular, como se observó a altas concentraciones de IVM, se evaluó la presencia de células muertas y vivas para cada intervalo de tiempo. Como se muestra en la Figura 4.6B, no se observaron diferencias significativas entre ninguna condición para ninguno de los tiempos evaluados, manteniéndose valores entre 0-10% para células muertas y entre 90-100% para células vivas.

Figura 4.6: Crecimiento celular a concentraciones intermedias de Ivermectina. A) Curva de crecimiento de trofozoitos wt normalizada a la cantidad inicial de células, utilizando concentraciones de 60 y 80 μM de IVM. Control: DMSO 0,32%. * p < 0,05 con respecto al control para [IVM] = 80 μM. B) Porcentaje de células vivas (formas llenas) y muertas (formas vacías) a cada tiempo del análisis de crecimiento. En ambos gráficos los valores se expresan como (media ± EEM).
De estos resultados de desprenden evidencias para afirmar que la concentración de IVM de 80 μM produce un retardo en el crecimiento de trofozoítos de *G. lamblia* sin afectar la viabilidad celular. Y si bien que concentraciones menores no presentan efectos sobre el crecimiento, concentraciones de IVM mayores producirían muerte celular durante el estadío vegetativo de este parásito, un hallazgo interesante para considerar este compuesto como un posible fármaco antiparasitario para el parásito *G. lamblia*.

4.3.4 Ivermectina afecta el proceso de enquistamiento de *G. lamblia* produciendo un arresto en los trofozoítos

Para analizar el efecto de IVM sobre el proceso de enquistamiento y su relación con Imp-α de *G. lamblia*, se evaluó la producción de quistes bajo el mismo diseño experimental explicado anteriormente y ejemplificado en la Figura 4.1. Se pudo observar que las dos concentraciones intermedias de IVM, tanto aquella que no influía en el crecimiento de *G. lamblia* (60 μM) como la que sí lo hacía (80 μM), mostraban una reducción significativa sobre la producción de quistes a medida que aumentaba el tiempo en presencia del inhibidor (Figura 4.7A). Resulta interesante destacar que a las 48 horas con 60 μM de IVM, la producción de quistes se reduce a valores cercanos a cero (0,27%), un efecto mucho más marcado que el obtenido con IPZ. De modo particular, para la mayor concentración de IVM (80 μM) prácticamente no se observaron quistes al final de la evaluación.

Para ahondar más en el proceso de cómo IVM afecta la producción de quistes, se evaluó la presencia de células en los distintos estadíos de enquistamiento. Como muestran las figuras 4.7B y C para ambas concentraciones de este compuesto, a medida que las células enquistantes permanecen más tiempo expuestas al inhibidor, no sólo el porcentaje de células en el estadío 2 disminuye drásticamente a valores cercanos a cero, sino que las células que se encuentran en E1 también disminuyen en porcentaje. Además, mientras estos estadíos disminuyen, el porcentaje de células correspondientes al estadío de trofozoíto (T) aumenta significativamente a valores que superan el 90% de las células totales.

Así, de estos resultados se observa que IVM, un inhibidor del transporte nuclear mediado por el complejo Imp-α/Imp-β tiene un efecto drástico sobre el proceso de enquistamiento de *G. lamblia*. Bajo este tratamiento, las células experimentan un arresto en el estadío de trofozoíto, sin poder ingresar en el proceso de enquistamiento.
4.3.5 Importazol e Ivermectina inhiben la importación de proteínas nucleares en *G. lamblia*

Como se ha descrito en el capítulo anterior, la enzima ADI es importada a los núcleos en las últimas etapas del proceso de enquistamiento. Al analizar su localización durante este proceso, y considerando que el enquistamiento no es un evento sincronizado, se pueden observar tres patrones bien definidos: citoplasmático; perinuclear (sobre la envoltura nuclear) y nuclear (co-localizando con DAPI)\(^2\).

Considerando que ADI utilizaría los importadores nucleares, se evaluó si el ingreso a los núcleos era susceptible al efecto de los inhibidores. Para ello, se realizaron ensayos de IF sobre células *wt* inducidas a enquistar y tratadas con concentraciones de 20 \(\mu M\) de IPZ o 60 \(\mu M\) de IVM, de acuerdo al diseño experimental previamente descripto (Figura 4.1). Se observó que bajo el tratamiento con IPZ, el porcentaje de células que muestran una localización...
nuclear de ADI disminuía conforme aumentaba el tiempo de exposición al inhibidor (Figura 4.8A). Cabe destacar que estas variaciones se compensan entre ellas, ya que el porcentaje de localización citoplasmática de ADI fluctúa muy poco a lo largo del estudio (aproximadamente 70%). Paralelamente, al analizar la actividad de IVM se observó que este inhibidor producía un efecto aún más marcado que el encontrado con IPZ. Como se muestra en la figura 4.8B, prácticamente no se observaron células con localización nuclear de ADI para tiempos de exposición de 36 y 48 horas. Además, para estos tiempos el porcentaje de células con localización citoplasmática disminuye considerablemente a expensas de un aumento en la localización perinuclear de esta enzima.

Estos resultados indican, de forma indirecta, que la enzima ADI utiliza el transporte nuclear mediado por importinas para ingresar a los núcleos de *G. lamblia*.

Figura 4.8: Análisis de la localización de ADI durante el proceso de enquistamiento en exposición a Importazol e Ivermectina. Porcentaje de células con distinta localización de ADI para una concentración de IPZ de 20 μM (A) y de IVM 60 μM (B). Las barras de color rojo corresponden a una marca citoplasmática de ADI, las naranja corresponden a una marca perinuclear de ADI y las amarillo a una marca nuclear. En ambos gráficos los valores se expresan como (media ± EEM). En A, * y ** p < 0,05 con respecto al control para la localización nuclear y perinuclear, respectivamente. En B, # p < 0,05 para todas las localizaciones de cada tiempo con respecto a su localización control. El panel inferior izquierdo contiene las referencias junto a imágenes de MCEL ilustrativas donde se puede apreciar la marca de ADI con un Ac monoclonal en pixeles negros evidenciando su localización nuclear (derecha) y perinuclear (izquierda) a un aumento de 60x.

4.3 Discusión

El uso de inhibidores para el estudio de mecanismos moleculares es una herramienta ampliamente utilizada para elucidar el funcionamiento de las
distintas partes de un sistema biológico. Su efecto resultaría equivalente a la ausencia de proteínas obtenidas por silenciamiento génico. Así, los inhibidores del trasporte nuclear producirían efectos similares a la ausencia de los importadores sobre los que actúan.

Al considerar que IPZ inhibe el transporte nuclear mediado por Imp-β al interrumpir la interacción con RanGTP, este compuesto permite evaluar de manera indirecta la función de gIMPβ. Para analizar el efecto de IPZ sobre el desarrollo del ciclo celular, se adicionó dicha droga al comienzo del estudio, analizando posteriormente la viabilidad celular. Este inhibidor a las concentraciones utilizadas, demostró producir un retardo en el crecimiento de G. lamblia, sin inducir muerte celular. Estos resultados, adicionalmente al aumento de células en proceso de fisión, pueden interpretarse en términos de que IPZ posiblemente esté alterando el ciclo de división celular. Este retardo puede explicarse de dos maneras. Por un lado, podría estar relacionado a que varias proteínas, entre ellas las ciclinas, dependen de los transportadores nucleares para cumplir su función en cada una de las fases del ciclo de división celular1,24,25. Por el otro, está descripto que IPZ afecta los procesos no relacionados al transporte nuclear en los que interviene Imp-β, alterando la formación del huso mitótico y la segregación cromosómica2,5. De todos modos, análisis más exhaustivos son necesarios para elucidar específicamente cuáles de estos mecanismos estaría interviniendo en el efecto que IPZ ejerce sobre el crecimiento de G. lamblia.

Durante el proceso de enquistamiento, IPZ mostró tener un importante efecto sobre la producción de quistes evaluada a las 48 horas de tratamiento, donde se observó una reducción de cuatro veces en relación a la cantidad de quistes producidos sin inhibidor. Al analizar el avance de este proceso con la identificación de los distintos estados de enquistamiento, se observa que la mayoría de las células permanecen en el estado de trofozoito. Lo cual puede entenderse de acuerdo a que IPZ actuaría principalmente sobre las señales que inducen el enquistamiento. Sin embargo, un porcentaje de células logra concluir el proceso de enquistamiento, lo que podría deberse a varias razones. Una de ellas entendería este hallazgo como un efecto dependiente de la dosis, donde las concentraciones de la droga son insuficientes para generar una inhibición total. La segunda considera en G. lamblia un mecanismo de importación nuclear independiente de Imp-β (lo cual no ha sido descripto hasta el momento). La tercera posibilidad considera los efectos parciales de IPZ como una baja afinidad (pero no nula) de RanGTP por gIMPβ. De acuerdo a lo descripto para eucariontas superiores, se demostró que en presencia de este inhibidor, Importina β1 se une a RanGTP en menor proporción2. Esta
interacción con RanGTP ocurre por medio del dominio IBN y de las primeras 7 repeticiones HEAT (primeros 340 aminoácidos), siendo el dominio IBN el que presenta las interacciones más importantes con RanGTP26,27. Debido a que gIMP\(\beta\) carece del dominio IBN (o al menos como se encuentra en eucariotas superiores), su interacción con RanGTP podría estar mediada por sus primeras repeticiones HEAT. Para analizar la posible interacción entre IPZ y gIMP\(\beta\) se realizaron ensayos de encastrado (docking) y se observó que este inhibidor interaccionaría con la porción N-terminal de gIMP\(\beta\), principalmente con las repeticiones HEAT3 y 4 como se muestra en la figura 4.9. Este resultado, a pesar de ser preliminar, conjuntamente con lo descripto para Importina\(\beta\)\(1\), aporta evidencias a favor de que el efecto parcial de IPZ en \textit{G. lamblia} correspondería a una relación de afinidad entre este inhibidor y gIMP\(\beta\).

Por otro lado, el mecanismo inhibitorio de IVM no se encuentra tan ampliamente descrito como el de IPZ, pero se ha demostrado que impide el transporte nuclear mediado por el complejo Importina\(\alpha\)/Importina\(\beta\)\(1\). En \textit{G. lamblia}, IVM mostró tener efecto tanto sobre células en crecimiento como durante el proceso de enquistamiento de este parásito.

Figura 4.9: Análisis de interacción entre Importazol y gIMP\(\beta\). Ensayos de docking muestran los probables sitios de interacción de Importazol con distintos resíduos de las hélices HB de la repetición HEAT3 y HA de la repetición HEAT4 (hélices azules). Las interacciones más importantes son hidrofóbicas e involucran a los aminoácidos Pro83, Val86, His87, Met90, Phe132 y Pro133.
Al evaluar diferentes concentraciones de IVM sobre trofozoítos de *G. lamblia*, se observaron distintos efectos de acuerdo a las dosis utilizadas. Así, bajas concentraciones (25 y 50 μM) no mostraron tener influencia sobre la tasa de crecimiento, mientras que dosis altas (100 y 250 μM) demostraron tener un efecto negativo en el crecimiento, induciendo la muerte de trofozoítos. Estos estudios se correlacionan con lo observado para la línea celular CHOK122. Al analizar el crecimiento a concentraciones intermedias de IVM, se observó que para 60 μM no se afectaba la tasa de crecimiento, mientras que para 80 μM sí se observaba una leve, pero significativa reducción. Independientemente de estos hallazgos obtenidos, la viabilidad celular para estas dos concentraciones no presentó diferencias significativas con respecto al crecimiento celular sin inhibidor. Al analizar *in silico* la interacción entre IVM y gIMPβ, se obtuvo de ensayos preliminares de *docking* que la constante de inhibición (Ki) proteína-ligando correspondía a 80,42 μM, coincidiendo en orden y valor con la concentración que no afecta la viabilidad, pero que reduce el crecimiento de *G. lamblia*. De este modo, se puede concluir que IVM presenta una actividad sobre el crecimiento de *G. lamblia* que es función de su concentración, induciendo muerte celular para valores mayores a 100 μM.

Al evaluar el efecto de IVM sobre el enquistamiento, se observó una profunda afección de este proceso, en el cual las células quedan arrestadas en el estadío de trofozoito. De modo interesante, la concentración de IVM que no tendría efecto alguno aparente sobre trofozoítos en crecimiento (60 μM), sí tiene un efecto total durante el enquistamiento. Se ha postulado que Imp-α también presenta actividad sobre procesos nucleares no relacionados al transporte, como formación del huso mitótico, polimerización de la lámina nuclear y ensamblaje de la envoltura nuclear28. Este último sólo ocurre en mitosis abierta, por lo que no sería candidato a considerar en *G. lamblia*, mientras que la dinámica de polimerización de la lámina nuclear sí es necesaria en todo tipo de mitosis. De todos modos, si la interrupción de estos procesos ocurriese, no se manifiesta durante el crecimiento de trofozoítos para la concentración de 60 μM. Observación que induce a rechazar estos procesos no relacionados al trasporte nuclear como causas del efecto de IVM en el enquistamiento. Así, la interrupción que esta droga genera sobre el transporte nuclear mediado por Imp-α/Imp-β en condiciones nativas se correlacionaría con la regulación positiva del proceso de enquistamiento ocasionada por la sobre-expresión conjunta de gIMPα y gIMPβ. De este modo, podría afirmarse que IVM, al igual que sobre los homólogos de importinas de eucariotas superiores, intervendría en el transporte nuclear de *G. lamblia* mediado por el
Inhibición del transporte nuclear en *G. lamblia*

El complejo gIMPα/gIMPβ afecta tanto el crecimiento como el proceso de enquistamiento.

Uno de los detalles más importantes sobre IVM, es que es un compuesto utilizado actualmente a nivel mundial para tratar distintas parasitosis en humanos y animales de interés agropecuario. Las presentaciones comerciales de IVM incluyen tabletas de dosis única y lociones de uso tópico. Las dosis orales de esta droga presentan una farmacocinética de absorción intestinal con concentraciones plasmáticas de 62 μM, donde viaja conjugada a lipoproteínas y luego de atravesar el hígado, es excretada con las sales biliares. Esto resulta interesante ya que es el intestino delgado donde *G. lamblia* coloniza, y donde estaría directamente expuesta a concentraciones de IVM, al menos, mayores a 60 μM. Además, este parásito para su crecimiento necesita de colesterol, el cual incorpora por medio de las sales biliares y de las lipoproteínas presentes en el medio extracelular. Estas características hacen de IVM una droga prometedora para tratar la giardasis, de cuya eficacia restaría evaluarla in vivo con modelos de infección.

Luego de haber identificado el efecto de cada inhibidor sobre *G. lamblia* y su relevancia durante el proceso de enquistamiento, se evaluó su actividad sobre el sistema de transporte nuclear, discutido para ADI en el capítulo anterior. IPZ demostró tener un marcado efecto en la localización de ADI, donde la cantidad de células con marca nuclear de esta enzima se reduce a expensas de un aumento en la región perinuclear. Esta localización perinuclear coincide con los resultados publicados por Soderholm et al. para otras proteínas nucleares de eucariotas superiores en presencia de dicho inhibidor. Además, la disminución nuclear de ADI no es total, lo cual es consistente con los efectos parciales de IPZ obtenidos durante el proceso de enquistamiento. Y si bien al impedir la localización nuclear de esta enzima (al bloquear su sumoilación o mutar su NLS) se obtiene una mayor producción de quistes, al inhibir el transporte nuclear mediado por gIMPβ (favoreciendo la acumulación perinuclear de ADI) no se obtienen los mismos resultados. Este hallazgo, obtenido con IPZ, puede entenderse bajo los mismos términos del arresto en el estadío del trofozoíto, donde las señales no estarían pudiendo ingresar a los núcleos para gatillar el proceso de enquistamiento.

A diferencia de lo observado con IPZ, IVM mostró reducir a valores casi nulos el porcentaje de células con localización nuclear de ADI. Hallazgos que se condicen con lo reportado para la inhibición del transporte nuclear en eucariotas superiores, incluso con los publicados para *P. falciparum*, aunque los efectos en este otro parásito se evidencian a concentraciones de IVM de 10 μM. Además, dichos resultados concuerdan con los efectos totales de
IVM encontrados sobre el proceso de enquistamiento, observados como un arresto en el estadio de trofozoito. De modo interesante, dicho inhibidor produjo una disminución de la localización citoplasmática de ADI a expensas de un aumento considerable en la región perinuclear y conforme aumentaba el tiempo de exposición a la droga. De acuerdo a lo reportado por Vranych et al., el ingreso de ADI a los núcleos estaría mediado por su sumoilación, al exponerse la NLS presente en dicha enzima23. Esto favorecería su reconocimiento por parte de gIMP\textsubscript{α}, lo cual al inhibirse el transporte nuclear mediado por esta importina produciría la acumulación de ADI en la región perinuclear. Y si bien podría entenderse la disminución citoplasmática de esta enzima en presencia de IVM como un aumento de su sumoilación en respuesta a la ausencia de su función nuclear, análisis más exhaustivos son necesarios para confirmar dicha hipótesis.

Así, estos resultados se corresponden con lo descripto anteriormente, aportando de forma indirecta evidencias a favor de un transporte nuclear en G. lamblia mediado por gIMP\textsubscript{α} y gIMP\textsubscript{β} y susceptible de ser interrumpido por inhibidores clásicos de la importación nuclear. Lo aquí discutido propone que ADI utilizaría la maquinaria de transporte nuclear, y si bien ensayos de interacción son necesarios, estos resultados son evidencias a favor de la participación de gIMP\textsubscript{α} y gIMP\textsubscript{β} en este mecanismo.
Capítulo 5: Conclusiones

Muchos han sido los intentos por elucidar el origen de la vida, y durante bastante tiempo la evolución se posicionó sobre un paradigma de diversificación por expansión. Sin embargo, Evolución, entendida en un sentido más amplio, contempla también todo lo contrario a lo considerado hasta el momento, los cambios reductivos. La reducción, como pérdida de complejidad secundaria (redundancia), se observa en organismos unicelulares, principalmente en aquellos que mantienen algún tipo de simbiosis con organismos pluricelulares. Más allá de la pérdida de genes, ésto no necesariamente conlleva la pérdida de función, sino más bien a una disminución de la redundancia estructural. Y para los organismos parásitos, ésto es interpretado como un ahorro energético direccionado a la adaptabilidad.

En *G. lamblia*, un organismo parásito tempranamente divergente, no se encuentra la excepción a tal consideración, ya que se ha demostrado para múltiples genes, la implicancia de sus proteínas en diversas rutas metabólicas. De hecho, el genoma de *G. lamblia* también presenta una baja expansión paráloga, es decir poca redundancia génica, la cual compensa aumentando la diversidad funcional de sus proteínas. Un claro ejemplo es la enzima ADI, la cual interviene en diversas rutas metabólicas y actúa como ADI y PAD. Para eucariotas superiores, la redundancia funcional de las carioferinas está dada por el amplio repertorio Imp-αs, Imp-βs, Exportinas y Transportinas que reconocen distintos tipos de cargos. Los resultados expuestos en este trabajo de Tesis Doctoral para las carioferinas de *G. lamblia* son los primeros en describir el mecanismo de transporte nuclear activo en este parásito. Se ha logrado identificar la presencia de una única proteína de cada tipo de mediador de la translocación nuclear en el genoma de este parásito, lo que concuerda con una pérdida secundaria por reducción de la expansión paráloga y su condición de divergencia temprana. Asimismo, se ha demostrado la funcionalidad de las proteínas mediadoras de la importación nuclear en *G. lamblia*, y su participación tanto en el crecimiento de trofozoítos como en el proceso de diferenciación a quiste. Para este último proceso, se demostró que ADI utiliza los mediadores de la importación para translocar a los núcleos en las últimas etapas del enquistamiento de este parásito. Y que además, dicho transporte es interrumpido por la acción de inhibidores clásicos.
de la importación nuclear, como IPZ e IVM. Por lo cual, se propone el siguiente modelo de importación nuclear de ADI durante el enquistamiento de G. lamblia:

En esta representación, ADI, una vez sumoilada expondría su señal de localización nuclear (NLS) permitiendo ser reconocida por Imp-α de Giardia (gIMPα). Así, este dímero sería reconocido por Imp-β de Giardia (gIMPβ) translocando posteriormente dentro de los núcleos como complejo ADI/gIMPα/gIMPβ. Una vez dentro, RanGTP produciría la disociación de este trímero, liberando a ADI dentro de los núcleos para ejercer su función. En este último paso intervendría IPZ, impidiendo la interacción de gIMPβ con RanGTP, sin liberarse ADI y localizándose el complejo ternario en las proximidades del poro nuclear. Si bien el mecanismo de inhibición de IVM se desconoce, los resultados obtenidos de la disminución de localización citoplasmática de ADI en presencia de este inhibidor, se pueden interpretar como una mayor interacción ADI/gIMPs y su retención en el poro nuclear sin translocación

IVM ha demostrado ser un compuesto de actividad altamente versátil. En sus comienzos fue utilizado como antiparasitario y su funcionalidad como tal se encuentra ampliamente descripta contra distintos organismos10,11.
Últimamente se demostró su actividad como inhibidor de la importación nuclear, base a partir de la cual diversos análisis como potencial antitumoral fueron realizados12,13.

Los estudios llevados a cabo en este trabajo de \textit{Tesis Doctoral} para analizar la actividad inhibitoria de IVM representan los primeros realizados sobre \textit{G. lamblia}. Los interesantes hallazgos aquí obtenidos para IVM resultan prometedores para considerar este inhibidor como una droga giardicida. En una primera instancia, la farmacocinética de este compuesto resulta clave para su utilización, ya que es absorbido en el intestino y excretado también por éste luego de su metabolización en el hígado10,14,15. Además de ya estar testado y ser es un medicamento aprobado para ser utilizado tanto en humanos como animales domésticos y animales de interés agropecuario.

En este trabajo de \textit{Tesis Doctoral}, utilizando concentraciones similares a las que son recomendadas para el tratamiento de otras enfermedades parasitarias, se observó que IVM afecta directamente el crecimiento de \textit{G. lamblia} promoviendo la muerte celular, y a su vez inhibiendo la producción de quistes. La realización de ensayos \textit{in vivo} para corroborar estos resultados serían el paso siguiente para plantear un posible tratamiento con IVM contra la giardiasis.
Anexos

Anexo 1

<table>
<thead>
<tr>
<th>E-value</th>
<th>Score</th>
<th>Bias</th>
<th>E-value</th>
<th>Score</th>
<th>Bias</th>
<th>expN</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2e-58</td>
<td>174.0</td>
<td>8.9</td>
<td>1.7e-50</td>
<td>173.6</td>
<td>8.9</td>
<td>1.2</td>
<td>DMA2_15196</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
<tr>
<td>1.9e-50</td>
<td>173.4</td>
<td>5.6</td>
<td>1.9e-50</td>
<td>173.4</td>
<td>5.6</td>
<td>1.6</td>
<td>GLS0581_1866</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>1.9e-50</td>
<td>173.4</td>
<td>5.6</td>
<td>1.9e-50</td>
<td>173.4</td>
<td>5.6</td>
<td>1.6</td>
<td>GB_B_15106</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GB}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-value</th>
<th>Score</th>
<th>Bias</th>
<th>E-value</th>
<th>Score</th>
<th>Bias</th>
<th>expN</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5e-13</td>
<td>49.4</td>
<td>2.3</td>
<td>6.0e-29</td>
<td>17.2</td>
<td>0.0</td>
<td>3.3</td>
<td>GLS0581_1324</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>2.9e-12</td>
<td>47.0</td>
<td>3.4</td>
<td>6.0e-39</td>
<td>16.8</td>
<td>0.0</td>
<td>3.3</td>
<td>GLP15_5011</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate PIP}</td>
</tr>
<tr>
<td>5.5e-13</td>
<td>46.1</td>
<td>3.2</td>
<td>6.0e-31</td>
<td>15.8</td>
<td>0.0</td>
<td>3.3</td>
<td>GLS0885_7439</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
<tr>
<td>2.3e-05</td>
<td>24.2</td>
<td>2.2</td>
<td>6.0e-28</td>
<td>17.3</td>
<td>0.0</td>
<td>3.3</td>
<td>GLP15_545</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate PIP}</td>
</tr>
<tr>
<td>3.9e-05</td>
<td>23.4</td>
<td>0.2</td>
<td>3.9e-05</td>
<td>23.4</td>
<td>0.2</td>
<td>3.1</td>
<td>GLP15_4429</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate PIP}</td>
</tr>
<tr>
<td>5.0e-05</td>
<td>23.1</td>
<td>0.1</td>
<td>5.0e-05</td>
<td>23.1</td>
<td>0.1</td>
<td>3.4</td>
<td>GLS0581_2992</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>3.2e-05</td>
<td>22.8</td>
<td>1.0</td>
<td>0.0e+00</td>
<td>13.4</td>
<td>0.0</td>
<td>3.1</td>
<td>GLS0581_4235</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>6.2e-05</td>
<td>22.8</td>
<td>1.0</td>
<td>0.0e+00</td>
<td>13.4</td>
<td>0.0</td>
<td>3.1</td>
<td>GLS0581_4235</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>0.00011</td>
<td>22.0</td>
<td>1.5</td>
<td>0.082</td>
<td>12.4</td>
<td>0.3</td>
<td>2.3</td>
<td>GLS0581_2218</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>0.00011</td>
<td>22.0</td>
<td>1.5</td>
<td>0.082</td>
<td>12.4</td>
<td>0.3</td>
<td>2.3</td>
<td>GLS0581_2218</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>0.00024</td>
<td>20.8</td>
<td>4.4</td>
<td>0.044</td>
<td>13.3</td>
<td>0.4</td>
<td>3.2</td>
<td>GLS0581_2967</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>0.00024</td>
<td>20.8</td>
<td>4.4</td>
<td>0.044</td>
<td>13.3</td>
<td>0.4</td>
<td>3.2</td>
<td>GLS0581_2967</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage B Isolate GS}</td>
</tr>
<tr>
<td>0.00024</td>
<td>20.6</td>
<td>0.3</td>
<td>0.00028</td>
<td>20.6</td>
<td>0.3</td>
<td>2.9</td>
<td>DMA2_14704</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
<tr>
<td>0.00035</td>
<td>20.3</td>
<td>4.3</td>
<td>0.044</td>
<td>13.3</td>
<td>0.4</td>
<td>3.2</td>
<td>GLP15_2560</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate PIP}</td>
</tr>
<tr>
<td>0.00042</td>
<td>20.0</td>
<td>0.4</td>
<td>0.112</td>
<td>12.0</td>
<td>0.1</td>
<td>2.2</td>
<td>GLS0885_15418</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
<tr>
<td>0.0013</td>
<td>18.4</td>
<td>3.4</td>
<td>0.0013</td>
<td>18.4</td>
<td>3.4</td>
<td>2.9</td>
<td>GLS0885_14790</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
<tr>
<td>0.0017</td>
<td>18.0</td>
<td>0.6</td>
<td>0.36</td>
<td>10.3</td>
<td>0.1</td>
<td>2.2</td>
<td>DMA2_14518</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
<tr>
<td>0.0031</td>
<td>17.0</td>
<td>0.7</td>
<td>0.24</td>
<td>10.9</td>
<td>0.0</td>
<td>3.2</td>
<td>GLS0883_07315</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
<tr>
<td>0.0044</td>
<td>16.6</td>
<td>4.8</td>
<td>0.24</td>
<td>10.9</td>
<td>0.0</td>
<td>3.2</td>
<td>DMA2_0735</td>
<td>\text{organism=G. \textit{clarmia}} \text{Assemblage A Isolate DM}</td>
</tr>
</tbody>
</table>

Inclusión threshold
Anexos

Anexo 2

<table>
<thead>
<tr>
<th>E-value</th>
<th>score</th>
<th>blas</th>
<th>E-value</th>
<th>score</th>
<th>blas</th>
<th>exp</th>
<th>N</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4e-31</td>
<td>108.3</td>
<td>4.5</td>
<td>1.9e-24</td>
<td>87.0</td>
<td>1.7</td>
<td>2.5</td>
<td>2</td>
<td>GLP15_2563</td>
<td>organism=Giardia_Amplifying_E_isolate_P5</td>
</tr>
<tr>
<td>6.1e-30</td>
<td>105.1</td>
<td>5.2</td>
<td>3.4e-24</td>
<td>86.1</td>
<td>1.9</td>
<td>2.5</td>
<td>2</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>6.1e-30</td>
<td>105.1</td>
<td>5.2</td>
<td>3.4e-24</td>
<td>86.1</td>
<td>1.9</td>
<td>2.5</td>
<td>2</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>6.7e-30</td>
<td>104.9</td>
<td>5.1</td>
<td>2.3e-24</td>
<td>86.7</td>
<td>1.8</td>
<td>2.5</td>
<td>2</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>1.3e-30</td>
<td>38.6</td>
<td>0.6</td>
<td>2.3e-09</td>
<td>37.2</td>
<td>0.6</td>
<td>1.3</td>
<td>1</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>1.3e-30</td>
<td>38.6</td>
<td>0.6</td>
<td>2.3e-09</td>
<td>37.2</td>
<td>0.6</td>
<td>1.3</td>
<td>1</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>2.9e-09</td>
<td>36.6</td>
<td>0.6</td>
<td>1.9e-08</td>
<td>34.9</td>
<td>0.6</td>
<td>1.7</td>
<td>2</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>2.9e-09</td>
<td>36.6</td>
<td>0.6</td>
<td>1.9e-08</td>
<td>34.9</td>
<td>0.6</td>
<td>1.7</td>
<td>2</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>2.9e-09</td>
<td>36.6</td>
<td>0.6</td>
<td>1.9e-08</td>
<td>34.9</td>
<td>0.6</td>
<td>1.7</td>
<td>2</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>1.3e-09</td>
<td>36.6</td>
<td>0.6</td>
<td>1.9e-08</td>
<td>34.9</td>
<td>0.6</td>
<td>1.7</td>
<td>2</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>9.3e-09</td>
<td>35.2</td>
<td>0.6</td>
<td>1.8e-08</td>
<td>32.4</td>
<td>0.6</td>
<td>1.4</td>
<td>1</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>1.3e-07</td>
<td>31.4</td>
<td>1.1</td>
<td>6.7e-06</td>
<td>25.0</td>
<td>0.1</td>
<td>3.5</td>
<td>4</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>1.4e-07</td>
<td>31.3</td>
<td>1.1</td>
<td>7.4e-06</td>
<td>25.6</td>
<td>0.1</td>
<td>3.5</td>
<td>4</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>1.4e-07</td>
<td>31.3</td>
<td>1.1</td>
<td>6.8e-06</td>
<td>25.7</td>
<td>0.1</td>
<td>3.5</td>
<td>4</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>6.8e-07</td>
<td>29.1</td>
<td>1.6</td>
<td>2.7e-05</td>
<td>23.8</td>
<td>0.1</td>
<td>3.5</td>
<td>4</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>6.8e-07</td>
<td>29.1</td>
<td>1.6</td>
<td>2.7e-05</td>
<td>23.8</td>
<td>0.1</td>
<td>3.5</td>
<td>4</td>
<td>GLP581_3967</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
</tr>
<tr>
<td>0.00201</td>
<td>20.8</td>
<td>0.3</td>
<td>7.7</td>
<td>0.3</td>
<td>3.1</td>
<td>3</td>
<td>GLP581_2218</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
<td></td>
</tr>
<tr>
<td>0.00201</td>
<td>20.8</td>
<td>0.3</td>
<td>7.7</td>
<td>0.3</td>
<td>3.1</td>
<td>3</td>
<td>GLP581_2218</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
<td></td>
</tr>
<tr>
<td>0.00201</td>
<td>20.8</td>
<td>0.3</td>
<td>7.7</td>
<td>0.3</td>
<td>3.1</td>
<td>3</td>
<td>GLP581_2218</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
<td></td>
</tr>
<tr>
<td>0.00216</td>
<td>17.9</td>
<td>0.5</td>
<td>5.3</td>
<td>0.2</td>
<td>3.1</td>
<td>3</td>
<td>GLP581_3485</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
<td></td>
</tr>
<tr>
<td>0.00201</td>
<td>15.8</td>
<td>0.3</td>
<td>12</td>
<td>0.3</td>
<td>3.1</td>
<td>3</td>
<td>GLP581_3485</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
<td></td>
</tr>
<tr>
<td>0.0094</td>
<td>15.4</td>
<td>0.2</td>
<td>14.9</td>
<td>0.1</td>
<td>3.0</td>
<td>3</td>
<td>GLP581_3485</td>
<td>organism=Giardia_Amplifying_E_isolate_GS</td>
<td></td>
</tr>
</tbody>
</table>

Inclusion threshold:

0.01	15.2	12.4	0.013	14.9	0.1	4.6	6
0.015	14.7	0.6	0.072	12.4	0.8	2.0	2
0.016	14.6	0.4	0.087	12.2	0.8	2.0	2
0.054	12.9	0.5	0.73	9.1	0.6	2.6	3
0.054	12.9	0.5	0.73	9.1	0.6	2.6	3
0.086	12.2	0.5	0.12	11.7	0.6	1.4	2
0.13	11.6	0.3	0.21	10.9	0.6	1.4	2
0.2	11.8	0.3	0.28	10.5	0.6	1.5	2

98
Anexos

Anexo 3

BLASTP 2.2.28+

Database:
- GastrointestinalisAssemblyxWAnnotatedProteins
- GastrointestinalisAssemblyxADAnnotatedProteins
- GastrointestinalisAssemblyxRGSAnnotatedProteins
- GastrointestinalisAssemblyxPGLSAnnotatedProteins
- GastrointestinalisAssemblyxEPISSAnnotatedProteins

30,449 sequences; 15,633,529 total letters

Query: MySeq1

Length=1071

<table>
<thead>
<tr>
<th>Score</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.1</td>
<td>3e-10</td>
</tr>
<tr>
<td>65.1</td>
<td>2e-10</td>
</tr>
<tr>
<td>65.1</td>
<td>2e-10</td>
</tr>
<tr>
<td>63.5</td>
<td>8e-10</td>
</tr>
<tr>
<td>63.5</td>
<td>8e-10</td>
</tr>
</tbody>
</table>

> GLS0883_93278_t26.1_p1 | transcript=GLS0883_93278_t26.1 | gene=GLS0883_93278 | organism=Giardia_Asembleage_A_isolate_WB | gene_product=hypothetical protein | transcript_product=hypothetical protein | location=GLS0883_93278 | sequence=Chromosome | SO=protein_coding | is_pseudo=False |

Length=1055

Score = 63.5 bits (15), Expect = 8e-10, Method: Compositional matrix adjust. Identities = 41/184 (22%), Positives = 68/184 (46%), Gaps = 6/184 (3%)

Query 405: RROLYLPMFKVRLLMVRRAMKPEELVLYVENDQGQVREFNMOTOSILNVKMRETLVLVL

Sbjct 453: RMELYTDFTAVQRTFIGNPPPIEPLYLVDQEVNMGKRELEDKSNFLMTKMTTGE

Query 465: THDVLVDTERNTTEKLNQNYTENGSMKNLVLCA16SIGAMHEDEEKFRLVTVYKL

Sbjct 513: TRA--IKTSVAKDDLLS--SKQFQFAYKMSLPAVMSKHSSG--LIITTTNKH

Query 525: LGKCEKROKQKONAIASSNHYTVGYQRFHELHVKFLTVNKLKEPFMETHGQVDNA

Sbjct 567: VODSILYSVETCHLICAS6ILICCSOPLTVOTKESIIFLVILNKHFLFTSPKNEHLQENS

Query 585: CDF SFBB

Sbjct 627: VRCF 630

Score = 52.4 bits (124), Expect = 2e-06, Method: Compositional matrix adjust. Identities = 36/148 (24%), Positives = 68/148 (46%), Gaps = 10/148 (7%)

Query 16: LLDFSXKLDINLLDNVKNCLTH6-EGAQORHMAEVLTHKHEPDATNRVYDFLTSQMPNN

Sbjct 4: LLDFSXKLDINLLDNVKNCLTH6-EGAQORHMAEVLTHKHEPDATNRVYDFLTSQMPNN

Query 75: TSYGVLGULEVVRKTRKAILPRNOCGIYKIIYVGLITIKTSROPTCJEKXYVGTGKL

Sbjct 64: TSYGVLGULEVVRKTRKAILPRNOCGIYKIIYVGLITIKTSROPTCJEKXYVGTGKL

Query 132: MILVQLIGEMWPNNPKTDFISDV6GRS+I

Sbjct 123: ----IAYLYPPSYSTFLSDLVLSMRT 145
Anexos

Anexo 4

BLASTP 2.2.28+

Database:
- GtntellisAssemblageAnnotatedProteins;
- GtntellisAssemblageEGAnnotatedProteins;
- GtntellisAssemblageEG65AnnotatedProteins;
- GtntellisAssemblageEPl5AnnotatedProteins;

30,449 sequences; 15,633,529 total letters

Query= MySeq1
Length=491

<table>
<thead>
<tr>
<th>Score</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.4</td>
<td>0.059</td>
</tr>
<tr>
<td>37.4</td>
<td>0.059</td>
</tr>
<tr>
<td>37.0</td>
<td>0.060</td>
</tr>
<tr>
<td>36.6</td>
<td>0.11</td>
</tr>
<tr>
<td>33.5</td>
<td>0.91</td>
</tr>
</tbody>
</table>

> GL50803_17110-1726_1-p1 | transcript=GL50803_17110-1726_1 | gene=GL50803_17110-1726_1 | organism=Giardia Assemblage A isolate 409 | gene_product=hypothetical protein | transcript_product=hypothetical protein | location=GL50803:122955-123015 | protein_length=681 | sequence=chromosome | protein=coding | is_pseudo=False

Length=981

Score = 37.0 bits (86); Exact = 6.000, Method: Compositional matrix adjust. Identities = 81/499 (19%), Positives = 99/499 (20%), Gaps = 61/499 (12%)

Query 13 EYLK1LTDPPPAKIRPPPAKFLQFEPQNYYNNDLL-LELQDSOIVIVKACLVTKNRYK
Sbjct 7 ELLGTLTDPPSV--GDAQLKKGPCFMAMLYSPMDSNDEDRTVYLYFQIR

Query 12 RNARWTEPNKCEGRVIAKAKIVWYLMXSIPGOKJLHSAISIGEDFP-OKPDL
Sbjct 6 RP---LSHEKSYLMEFSS--LLLLCFCTLPKMIQVXDDCVLTMNLYGCKLPL

Query 11 LITENNRF0GSDHIVNGVLTRASLFLFVRFKRYHEFSDKNLYXEVKLK
Sbjct 11 LLINGAALKLRKSGTSLISILISLTTMMPCYTVASIDGRASFIAYQSFHLSYFCLS

Query 10 --SALAPLNLNKLTIHEL----------S ThANADASKLRLFSLSL-LISKFLFSLN
D AL + T EL C + A I + G L S L +
Sbjct 10 LLIOITAKLKSIGSTSESSLISLLLLTTMTMPYTVASIDGRASFIAYQSFHLSYFCLS

Query 9 HNMPFLPPPL...6MWNHFMHTTLDNKLTDQDDEEAGLLELQKQONANNLQ
Sbjct 9 DFLP + D T EL D + A I + G L S L +

Query 8 FLQFLPPEEFQ---MTMWNPFLPPL...6MWNHFMHTTLDNKLTDQDDEEAGLLELQKQONANNLQ
Sbjct 8 DFLP + D T EL D + A I + G L S L +

Query 7 KYTHFPEFQYPRVTAIMMLNVLTTGFOEVKTVLTVNPLN---------DPLASVCFRPYKINYL
Sbjct 7 DFLP + D T EL D + A I + G L S L +

Query 6 ELEHMLIAITLDDCMNYAVYTEMTF--NMLTDLFLHMFFAELESQY-...IYANA
Sbjct 6 DFLP + D T EL D + A I + G L S L +

Query 5 NLTSIECKIYVMFPEFAFRAEEDAFONSEISYIPRDLGSGSITTRAAE-LVRLC
Sbjct 5 DFLP + D T EL D + A I + G L S L +

Query 4 PLMN---------GVIFSALRALTSAFSAEDEEESEYHVCGILLSG-6TSRSMACEILRTVCR
Sbjct 4 DFLP + D T EL D + A I + G L S L +

100
Capítulo 6:
Bibliografía

6.1 Capítulo 1

2. Fuente JA. de la. La biología en la Antigüedad y la Edad Media. (Universidad de Salamanca, 2002).
8. Hooke R. Micrographia: Or, some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. (Science Heritage, 1667).
9. Antony van Leeuwenhoek and his “Little Animals”: being some account of the aather of protozooology and bacteriology and his multifarious discoveries in these disciplines. Nature 130, 679 (1932).

Bibliografía

6.2 Capítulo 2

6.3 Capítulo 3

6.4 Capítulo 4

22. Molinari, G., Soloneski, S., Reigosa, M. A. & Larramendy, M. L. In vitro genotoxic and cytotoxic effects of ivermectin and its formulation ivomec® on Chinese...

6.5 Capítulo 5

