

Obra:

"CONSTRUCCION DEL INTERCAMBIADOR EN ACCESO A SANTA ANA"

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

MEMORIA DE CÁLCULO

VIGA LONGITUDINAL

Índice de la Memoria de Cálculo de Viga Longitudinal

1. Análisis de Carga para el Tablero

- 1.1. Definición Geométrica
- 1.2. Definición de la Sobrecarga móvil

2. Análisis de carga

- 2.1. Cargas permanentes
- 2.2. Sobrecarga móvil

3. Tabla de Materiales

- 3.1. Pesos específicos
- 3.2. Módulos de Elasticidad
- 3.3. Resistencias
- 3.4. Tensiones tangenciales bajo carga de rotura

4. Cálculo de solicitaciones

- 4.1. Distribución uniforme de la sobrecarga móvil
- 4.2. Cálculo de solicitaciones

5. Características del Cable Medio de Postensado

- 5.1. Datos
- 5.2. Secciones típicas de verificación
- 5.3. Trazado del cable medio
- 5.4. Layout del cable medio
- 5.5. Cálculo de pérdida por fricción
- 5.6. Cálculo de fuerza a tiempo infinito

6. Verificación de Secciones

- 6.1. Cálculo de Sección 1
- 6.2. Cálculo de Sección 2
- 6.3. Cálculo de Sección 3
- 6.4. Cálculo de Sección 4
- 6.5. Cálculo de Sección 5

7. Verificación a Rotura en Estado Límite Último

7.1. Verificación del Acero Traccionado

Índice de la Memoria de Cálculo de Viga Longitudinal

8. Cálculo de pérdidas de postesado

- 8.1. Parámetros geométricos, condiciones de curado, tiempo de las cargas
- 8.2. Pérdida de postesado por retracción
- 8.3. Pérdida de postesado por fluencia lenta
- 8.4. Pérdida de postesado por relajación del acero
- 8.5. Pérdida de postesado combinada por retracción, fluencia lenta y relajación
- 8.6. Pérdidas por acortamiento elástico
- 8.7. Pérdidas totales de los items 7.2., 7.3., 7.4. (sin acortamiento elástico)

9. Verificación de Armadura Pasiva en Apoyo

- 9.1. Verificación de armadura pasiva en apoyo
- 9.2. Armadura lateral por arrancamiento del extremo de viga
- 9.3. Conectores de corte entre viga y losa

10. Verificación de las Vigas Transversales

- 10.1. Verificación de la Viga Transversal Extrema VT1
- 10.2. Verificación de la Viga Transversal Central VT2

11. Diagrama de envolventes de esfuerzos

- 11.1. Armaduras
- 11.2. Verificación cobertura de diagrama de corte
- 11.3. Verificación cobertura de diagrama de momento
- 11.4. Datos de Postesado
- 11.5. Materiales

12. Modelo Numérico. Distribución de Cargas y Sobrecargas.

- 12.1. Modelo Numérico del Tablero
- 12.2. Cargas Permanentes
- 12.3. Sobrecargas Moviles

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

1. Análisis de Carga para el Tablero

1.1. Definición Geométrica

Longitud de Vigas:	31,65 m
Longitud entre apoyos:	31,05 m
Ancho total del puente:	16,06 m
Distancia entre ejes de vigas:	2,30 m
Longitud del voladizo:	1,25 m
Ancho de calzada:	7,30 m
Ancho de vereda total:	4,38 m
Ancho de vereda de cálculo:	2,10 m
Espesor losa de calzada:	0,20 m
Espesor losa de vereda:	0,30 m
Espesor medio carpeta de rodamiento:	0,05 m
Cantidad de vigas postesadas:	7 Un
Peso propio de vigas postesada:	1,41 t/m
Ancho ala superior de viga postesada:	0,55 m
Altura total de viga postesada:	1,45 m
Longitud del macizado:	1,05 m
Longitud de la transición	0,55 m
Volumen de hormigón de una viga postesada:	17,83 m³
Peso Total de una viga postesada:	44,57 t

1.2. Definición de la Sobrecarga móvil

Aplanadora Tipo:	A-30
Cantidad de aplanadoras:	3
Rodillo delantero (Rd):	13 t
Rodillo trasero (Rt):	17 t
Multitud compacta en calzada:	0,559 t/m ²
Sobrecarga en vereda:	0,400 t/m ²
Coeficiente de impacto:	1,19
Coeficiente de reducción por cantidad de aplanadoras:	0,95

2. Análisis de carga

2.1. Cargas permanentes

Losa superior:	8,03 t/m
Vigas transversales centrales:	0,15 t/m
Carpeta de rodamiento:	0,88 t/m
Baranda metálica y Cordones:	0,98 t/m
Ductos debajo de tablero:	0,00 t/m
Vigas principales:	9,86 t/m
	$a = \frac{19.89 \text{ t/m}}{}$

2.2. Sobrecarga móvil

Rodillo trasero (Rt):	57,89 t
Rodillo delantero (Rd):	44,27 t
Sobrecarga distribuida tablero (zona de aplan.) (p1):	0,71 t/m
Sobrecarga distribuida en tablero (p2):	5,72 t/m

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

3. Tabla de Materiales

3.1. Pesos específicos

Hormigón para Vigas Postesadas H-35	2,50	t/m³
Hormigón Armado H-21	2,50	t/m³
Acero ADN-420	7,85	t/m³
Carpeta de Rodamiento	2,40	t/m³

3.2. Módulos de Elasticidad

MÓDULOS DE ELASTICIDAD

Módulo de elasticidad de la viga postesada	Ev:	3400000 t/m²
Módulo de elasticidad de la losa 2da Etapa	EI:	2750000 t/m²

VERIFICACIÓN DE SECCIONES

Ev/EI: 1,24

Módulo de elasticidad del Acero Postesado:	Es:	19500000 t/m ²
Relación de módulos:	Es/Ev:	5,73529
	_	2122222 1/22

Módulo de elasticidad del acero ADN-420 Ea: **21000000** t/m² Relación de módulos: Ea/Ev: 6,17647

3.3. Resistencias

RESISTENCIA

Resistencia del Hº de viga postesada:	$\sigma'_{bk} =$	350 kg/cm ²	H-35
Resistencia del Hº de losa 2° Etapa:	$\sigma'_{bk} =$	210 kg/cm ²	H-21
Resistencia del Hº momento de Tesado:	$\sigma'_{bm} =$	245 kg/cm ²	H-24,5

Tensión de rotura del A o de Postesado: $\beta'_{z} = 19000 \text{ kg/cm}^{2}$ Límite de fluencia del A o de Postesado $\beta'_{s} = 17000 \text{ kg/cm}^{2}$ Límite de fluencia del Acero ADN-420 $\beta'_{bk} = 4200 \text{ kg/cm}^{2}$

3.4. Tensiones tangenciales bajo carga de rotura

$\tau_{\rm rot}$:	19,0 kg/cm ²	rengion 50 Tabla 47
Δτ:	11,4 kg/cm ²	60% de los valores de la Tabla 47, rengión 50

τ_{rot} límite: **70,0** kg/cm² renglón 56 Tabla 47

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

4. Cálculo de solicitaciones

4.1. Distribución uniforme de la sobrecarga móvil

		Carga total por tablero	Carga unitaria por viga
4.1.1.	Peso propio de vigas principales:	9,86 t/m	1,41 t/m
4.1.2.	Peso propio de losa + viga transversal central:	8,18 t/m	1,17 t/m
4.1.3.	Sobrecarga permanente:	1.85 t/m	0.26 t/m

4.1.4. Sobrecarga Movil:

Sobrecarga en vereda:		0,400 t/m ²
Multitud compacta en calzada:		0,559 t/m ²
Aplanadora tipo: A-30	Cantidad:	3
Coeficiente de Impacto:		1,195
Coeficiente de reducción de aplanadoras:		0,95
Rodillo trasero reducido (Rt):		42,86 t
Rodillo delantero reducido (Rd):		29,24 t
Sobrecarga distribuida en tablero:		5,72 t/m ²
Longitud de cálculo de viga:		31,05 m

4.1.5. Momentos Flectores

Sección	Dist. [m]	M1 [tm]	M2 [tm]	M3 [tm]	M4 [tm]	Mtotal [tm]
Apoyo	0,00	0,0	0,0	0,0	0,0	0,0
1	1,00	21,2	17,6	4,0	21,8	64,5
2	3,88	74,2	61,6	14,0	76,5	226,3
3	7,76	127,3	105,6	23,9	130,6	387,4
4	11,64	159,1	132,0	29,9	162,5	483,5
5	15,53	169,7	140,8	31,9	172,1	514,5

4.1.6. Esfuerzo de Corte

Sección	Dist. [m]	Q1 [t]	Q2 [t]	Q3 [t]	Q4 [t]	Qtotal [t]
Apoyo	0,00	21,9	18,1	4,1	22,6	66,7
1	1,00	20,5	17,0	3,8	21,4	62,7
2	3,88	16,4	13,6	3,1	18,1	51,2
3	7,76	10,9	9,1	2,1	13,7	35,7
4	11,64	5,5	4,5	1,0	9,2	20,2
5	15,53	0,0	0,0	0,0	4,7	4,7

Referencias:

Q1, M1: Peso Propio de la viga postesadaQ2, M2: Carga permanente de la losa del tablero

Q3, M3: Sobrecarga permanente de vereda, cenefa y defensa

Q4, M4: Sobrecarga móvil s/Reglamento DNV

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

4.2. Cálculo de solicitaciones

Sobrecarga móvil asimétrica (s/Modelo Numérico)

		Carga total por tablero	Carga unitaria por viga	
4.2.1.	Peso propio de vigas principales:	9,86 t/m	1,41 t/m	
4.2.2.	Peso propio de losa + viga transversal central:	8,18 t/m	1,17 t/m	
4.2.3.	Sobrecarga permanente:	1.85 t/m	0.26 t/m	

4.2.4. Sobrecarga Movil:

Sobrecarga en vereda:		0,400 t/m ²
Multitud compacta en calzada:		0,559 t/m ²
Aplanadora tipo: A-30	Cantidad:	3
Coeficiente de Impacto:		1,195
Coeficiente de reducción de aplanadoras:		0,95
Rodillo trasero reducido (Rt):		42,86 t
Rodillo delantero reducido (Rd):		29,24 t
Sobrecarga distribuida en tablero:		5,72 t/m ²
Longitud de cálculo de viga:		31,05 m

4.2.5. Momentos Flectores

Sección	Dist. [m]	M1 [tm]	M2 [tm]	M3 [tm]	M4 [tm]	Mtotal [tm]
Apoyo	0,00	0,0	0,0	0,0	0,0	0,0
1	1,00	21,2	17,6	6,2	40,3	85,3
2	3,88	74,2	61,6	21,9	141,3	299,0
3	7,76	127,3	105,6	37,5	241,4	511,8
4	11,64	159,1	132,0	46,9	300,3	638,3
5	15,53	169,7	140,8	50,0	318,0	678,5

4.2.6. Esfuerzo de Corte

Sección	Dist. [m]	Q1 [t]	Q2 [t]	Q3 [t]	Q4 [t]	Qtotal [t]
Apoyo	0,00	21,9	18,1	6,6	39,0	85,6
1	1,00	20,5	17,0	6,2	37,0	80,6
2	3,88	16,4	13,6	5,0	31,3	66,3
3	7,76	10,9	9,1	3,3	23,6	46,9
4	11,64	5,5	4,5	1,7	15,9	27,6
5	15,53	0,0	0,0	0,0	8,2	8,2

Referencias:

Q1, M1: Peso Propio de la viga postesadaQ2, M2: Carga permanente de la losa del tablero

Q3, M3: Sobrecarga permanente de vereda, cenefa y defensa

Q4, M4: Sobrecarga móvil s/Reglamento DNV

Obra: "CONSTRUCCION DEL INTERCAMBIADOR EN ACCESO A SANTA ANA" PROVINCIA DE MISIONES INTERCAMBIADOR EN ACCESO A SANTA ANA

5. Características del Cable Medio de Postensado

5.1. Datos

Datos de parábola

LT [m]	LR [m]	Yo[m]	Ym [m]	f [%]	Lp [m]	р
31,650	0,0	0,700	0,100	5,0%	15,83	0,00240

5.2. Secciones típicas de verificación


Sección	X total	X parcial	Υ	α	Vn	Q
Seccion	[m]	[m]	[m]	[°]	[t]	[t]
Apoyo	0,300	0,300	0,677	4,26	612,9	45,6
1	1,100	1,100	0,619	4,04	611,4	43,1
2	3,956	3,956	0,438	3,26	605,9	34,4
3	7,913	7,913	0,250	2,17	598,2	22,7
4	11,869	11,869	0,138	1,09	590,5	11,2
5	15,825	15,825	0,100	0,00	582,8	0,0

5.3. Trazado del cable medio

X total	X parcial	Υ	α	Vn	Q
[m]	[m]	[m]	[°]	[t]	[t]
0,000	0,000	0,700	4,34	613,5	46,5
0,300	0,300	0,677	4,26	612,9	45,6
1,300	1,300	0,605	3,99	611,0	42,5
2,300	2,300	0,538	3,71	609,1	39,4
3,300	3,300	0,476	3,44	607,1	36,4
4,300	4,300	0,418	3,16	605,2	33,4
5,300	5,300	0,365	2,89	603,2	30,4
6,300	6,300	0,317	2,62	601,3	27,4
7,300	7,300	0,274	2,34	599,4	24,5
8,300	8,300	0,236	2,07	597,4	21,5
9,300	9,300	0,202	1,79	595,5	18,6
10,300	10,300	0,173	1,52	593,6	15,7
11,300	11,300	0,149	1,24	591,6	12,8
12,300	12,300	0,130	0,97	589,7	10,0
13,300	13,300	0,115	0,69	587,7	7,1
14,300	14,300	0,106	0,42	585,8	4,3
15,825	15,825	0,100	0,00	582,8	0,0

Obra: "CONSTRUCCION DEL INTERCAMBIADOR EN ACCESO A SANTA ANA" PROVINCIA DE MISIONES INTERCAMBIADOR EN ACCESO A SANTA ANA

5.4. Layout del cable medio

5.5. Cálculo de pérdida por fricción

Longitud 1/2 cable: LT/2 = 15,83 m

Desviación angular 1/2 cable: α = 4,34 ° 0,076 rad

Tipo de conducto: Vaina Flexible No Galvanizada Coeficiente de rozamiento del cable: $\mu = 0,25$ 1/rad Desviación angular parásita: k = 0,0066 rad/m

$$V_{x} = V_{o} e^{-\mu(x - kx)}$$

$$V_{xCL} / Vo = e^{-\mu(x - kL)}$$
0,96

Se adopta una pérdida por fricción del 5 % en el centro de la viga y se aplica una distribución lineal a partir del valor de tiro o fuerza de pretensado en el extremo de la viga a tiempo cero.

5.6. Cálculo de fuerza a tiempo infinito

Fuerza de tiro inicial, V_0 = 614 t Fuerza tiro inicial en centro viga, $V_{0,CL}$ = 583 t Pérdidas totales de postesado = 15,0 %

Fuerza de tiro a tiempo infinito, $V_{inf} = 495 t$

INTERCAMBIADOR EN ACCESO A SANTA ANA

6. VERIFICACIÓN DE SECCIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.1. Cálculo de Sección 1

Sección a 1,00 m del APOYO

6.1.1 Solicitación en Sección 1 de viga

6.1.1.1. Esfuerzo normal

	Npost	Npost	N1	N2	N3	N4	N5	N total
cción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
1	611,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0

6.1.1.2. Momentos Flectores

_	Mpost	Mpost	M1	M2	М3	M4	M5	M total
ción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]
1	55,7	0,0	21,2	17,6	6,2	40,3	0,0	85,3

6.1.1.3. Esfuerzo de corte

	Vpost	Vpost	Q1	Q2	Q3	Q4	Q5	Q total
Sección	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
. ,	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
1	-43,1	0,0	20,5	17,0	6,2	37,0	0,0	80,6

Nota 1: El corte de Postesado favorable es negativo (-)

Nota 2: Las solicitaciones de las sobrecargas se incrementan en un 5% debido al efecto de la distribución transversal de la sobrecarga móvil sobre el tablero.

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.1.2. Propiedades Geométricas

Sección de Ho	rmigón	Sección Arma	Sección Aº de	Sección Aº de Postesado				
			Inferior	Superior		1° E	tapa	2° Etapa
h =	1,45 m	Fsp [cm²]:	16,08	16,08	Fsp [cm²]:	41,	45	0
b _{ALMA INF} =	0,55 m	esp [cm²]:	3,5	3,5	esp [cm]:	6	2	0
b _{ALMA SUP} =	0,55 m				Ductos [cm²]:	7	1	
h L _{TAB} =	0,20 m	Fsp [m²]:	0,0016	0,0016	Fsp [m²]:	0,00	041	
D _{ENTRE EJES} =	2,30 m	esp [m]:	0,04	0,04	esp [m]:	0,6	62	
b _{BASE INF} =	0,65 m							
b _{BASE SUP} =	0,80 m		0,55	*			n	Distancia al
b _{CABEZA SUP} =	0,55 m	* *		<u> </u>				borde inferior
b _{CABEZA INF} =	1,00 m	0,20			Cables en 1°	сара	42	61,9 cm
h _{BASE INF} =	0,20 m	0,15	<u> </u>		Cables en 2°	сара	0	12,0 cm
h _{BASE SUP} =	0,225 m		0,000		Cables en 3°	сара	0	18,0 cm
h _{CABEZA SUP} =	0,20 m				Cables en 4°	capa	0	24,0 cm
h _{CABEZA INF} =	0,15 m	1,45 0,675						
h _{ALMA} =	0,68 m		0,050 0,55		Secció	n de Po	ostesac	do Adoptada:
$\Delta b_{sup} =$	0,00 m		-			42 Co	rdones	s de Ø 1/2 "
$\Delta b_{inf} =$	0,05 m	0,225				42 00	uones	s de Ø 1/2
		 **				42 C	ordones	de Ø 1,27 cm
h3' =	0,39 m	0,20						
h3" =	0,15 m		0,65					
h4" =	0,00 m		*					

6.1.3. Propiedades Mecánicas

Propiedad	SECCIÓN SIMPLE	SECCIÓN SIMPLE HOMOGÉNEA	SECCIÓN COMPUESTA	SECCIÓN COMP, HOMOGÉNEA
Area [m²]:	0,87228	0,90856	1,25143	1,28772
Xg [m]:	0,71244	0,71066	0,96093	0,95267
lg [m⁴]:	0,16696	0,17506	0,35265	0,36370
h inf. viga [m]:	0,71244	0,71066	0,96093	0,95267
h secc. Post. [m]:	0,09296	0,09118	0,34144	0,33318
h sup. viga [m]:	0,73756	0,73934	0,48907	0,49733
h sup. losa [m]:			0,68907	0,69733
W inf. viga [m³]:	0,23435	0,24633	0,36699	0,38177
W secc. Post. [m ³]:	1,79612	1,91996	1,03283	1,09160
W sup. viga [m³]:	0,22637	0,23678	0,72105	0,73131
W sup. losa [m³]:			0,51177	0,52157
S1 [m³]:		0,16896		
S2 [m³]:				0,30073
S3 [m³]:				0,22224
z [m]:		1,233		1,500

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.1.4. Verificación de las Tensiones de Servicio

	Fuerza de Postesado Inicial:	611,39	t
Datos de Postesado	Fuerza de Postesado 2º Etapa:	0,0	t
Dates de l'estesade	Pérdidas de Postesado Etapa 1:	5,00	%
	Pérdidas de Postesado Etapa 2:	10,00	%

					Esta	dos de C	arga				
Tensiones en Viga Pretensada	Pret. Inicial (t=0) S.S.	Pret. Inicial (t=0) S.C.	Peso Propio Viga S.S.	Peso Propio Viga S.C.	Carga Perm. Losa S.S.	Carga Perm. Losa S.C.	Preten s. 2° Etapa S.C.	Carga Perm. Tabler o S.C.	Pérdid as V.C. Post. t=inf 10,0%	Sobrec . Móvil S.C.	Accion es de Coacci ón S.C.
	(1-a)	(1-b)	(2-a)	(2-b)	(3-a)	(3-b)	(4)	(5)	(6)	(7)	(8)
Tensión Sup. Losa		29,8		3,3		2,7	0,0	1,0	-0,7	6,3	
Tensión Inf. Losa		32,2		2,3		1,9	0,0	0,7	-1,6	4,5	
Tensión Sup. Viga	43,7	39,9	8,9	2,9	7,4	2,4	0,0	0,9	-2,0	5,5	
Tensión A° Postesado	70,2	52,6	-1,1	-1,9	-0,9	-1,6	0,0	-0,6	-7	-3,7	
Tensión Inf. Viga	89,9	62,1	-8,6	-5,5	-7,1	-4,6	0,0	-1,6	-10	-10,6	

Etapa 1: Postesado Ini Pérdidas de Postesado V.		eso Prop		ga								ensiones ssultantes [kg/cm²]	Control de nsiones g/cm2]	Verificación
Coeficiente de Aplicación	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Ten resu [kg	H-35 Te [k	Ne.
Tensión Sup. Viga	43,7	0,0	8,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	52,7	> -23,5	Verifica
Tensión A° Postesado	70,2	0,0	-1,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	69,1		
Tensión Inf. Viga	89,9	0,0	-8,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	81,3	< 170	Verifica

	Etapa 2: Postesado Inicial + Pérdidas Etapa 1 + Peso Propio de Viga + Carga Permanente Losa érdidas de Postesado V.S. = 5,00 %													
Pérdidas de Postesado V.S	didas de Postesado V.S. = 5,00 %													Verificación
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00] eu }_	H-35 Te [k	>
Tensión Sup. Viga	41,6	0,0	8,9	0,0	7,4	0,0	0,0	0,0	0,0	0,0	0,0	57,9	> -23,5	Verifica
Tensión A° Postesado	66,7	0,0	-1,1	0,0	-0,9	0,0	0,0	0,0	0,0	0,0	0,0	64,7		
Tensión Inf. Viga	85,4	0,0	-8,6	0,0	-7,1	0,0	0,0	0,0	0,0	0,0	0,0	69,7	< 170	Verifica

Etapa 3: Postesado Ini 2° Etapa	cial + Pé	erdidas l	Etapa 1 -	+ Peso F	Propio d	e Viga +	Carga I	Permane	ente Los	a + Post	tesado	sultantes ²]	ntrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									e E	Contr ies [k	Verificación
Pérdidas de Postesado V.0	idas de Postesado V.C. = 10,00 %													Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	0,00	0,00	0,00	0,00	Tensiones [kg/	H. Ten	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	> -20	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Tensión Sup. Viga	41,6	0,0	8,9	0,0	7,4	0,0	0,0	0,0	0,0	0,0	0,0	57,9	> -23,5	Verifica
Tensión A° Postesado	66,7	0,0	-1,1	0,0	-0,9	0,0	0,0	0,0	0,0	0,0	0,0	64,7		
Tensión Inf. Viga	85,4	0,0	-8,6	0,0	-7,1	0,0	0,0	0,0	0,0	0,0	0,0	69,7	< 170	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

Etapa 4: Post. Inicial + 2 + Sobrecarga Perma		s Etapa	1 + P.P.	de Viga	+ Carga	a Perm.	Losa + F	Post. 2°	Etapa +	Pérdida	s Etapa	ıltar	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									nsiones resu [kg/cm²]	Control nes [kg/c	Verificación
Pérdidas de Postesado V.0	idas de Postesado V.C. = 10,00 %													Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,00	0,00	Ten	H- Ten	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	-0,7	0,0	0,0	0,3	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	-1,6	0,0	0,0	-0,9		
Tensión Sup. Viga	41,6	0,0	8,9	0,0	7,4	0,0	0,0	0,9	-2,0	0,0	0,0	56,8	< 150	Verifica
Tensión A° Postesado	sión A° Postesado 66,7 0,0 -1,1 0,0 -0,9 0,0 0,0 -0,6 -6,6 0,0 0													
Tensión Inf. Viga	85,4	0,0	-8,6	0,0	-7,1	0,0	0,0	-1,6	-10,1	0,0	0,0	58,0	> -38	Verifica

Etapa 5: Post. Inicial + Sobrec. Perm. + 60% S		-		Viga + C	Carga Pe	rm. Los	a + Post	t. 2° Eta _l	oa + Pér	d. Etapa	2+	sultantes ²]	ntrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									nsiones res [kg/cm ²	4-35 Control	Verificación
Pérdidas de Postesado V.0	didas de Postesado V.C. = 10,00 %													Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,60	0,00	Ten	H	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	-0,7	3,8	0,0	4,0	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	-1,6	2,7	0,0	1,8		
Tensión Sup. Viga	41,6	0,0	8,9	0,0	7,4	0,0	0,0	0,9	-2,0	3,3	0,0	60,1	< 150	Verifica
Tensión A° Postesado	ensión A° Postesado 66,7 0,0 -1,1 0,0 -0,9 0,0 0,0 -0,6 -6,6 -2,2 0,0											55,3		
Tensión Inf. Viga												51,7	> -38	Verifica

Etapa 6: Post. Inicial + Sobrec. Perm. + 100%		-		Viga + C	Carga Pe	erm. Los	a + Post	. 2° Eta _l	oa + Pér	d. Etapa	2+	sultantes ²]	ntrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									e E	Conti	Verificación
Pérdidas de Postesado V.0	didas de Postesado V.C. = 10,00 %													Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	1,00	0,00	Tensiones [kg/	H- Tens	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	-0,7	6,3	0,0	6,5	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	-1,6	4,5	0,0	3,6		
Tensión Sup. Viga	41,6	0,0	8,9	0,0	7,4	0,0	0,0	0,9	-2,0	5,5	0,0	62,3	< 150	Verifica
Tensión A° Postesado	sión A° Postesado 66,7 0,0 -1,1 0,0 -0,9 0,0 0,0 -0,6 -6,6 -3,7 0													
Tensión Inf. Viga	85,4	0,0	-8,6	0,0	-7,1	0,0	0,0	-1,6	-10,1	-10,6	0,0	47,4	> -38	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.1.5. Verificación del Corte y Cálculo de Armadura Pasiva

Factor de corrección Eurocódigo/ 1,00

Etapa 1	l: Postesado l	nicial + Po	eso Propio de	Viga						
Verificad	ión de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	С	álculo de Arm	naduras Pa	asivas	
en S	Servicio	en	Rotura		Losa	Armad	lura Inferior	Armadura Superio		
$\tau_{xy} =$	-4,0 kg/cm ²	$\tau_{rot} =$	5,84 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t	
$\sigma_{x} =$	67,3 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²	
$\sigma_{l} =$	-0,2 kg/cm ²	Fe _{est} =	3,06 cm ² /m							
σ_{\parallel} =	67,5 kg/cm ²									

Etapa 2	2: Postesado I	nicial + P	érdidas Etapa	1 + Peso I	Propio de Viga	ı + Carga l	Permanente L	osa	
Verificad	ción de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	С	álculo de Arm	naduras P	asivas
en S	Servicio	en	Rotura	eninte	Losa	Armad	Armadura Inferior		ura Superior
$\tau_{xy} =$	-0,6 kg/cm ²	$\tau_{rot} =$	0,91 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	63,9 kg/cm ²	tg δ =	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²
$\sigma_{l} =$	0,0 kg/cm ²	Fe _{est} =	0,48 cm ² /m						
σ_{\parallel} =	63,9 kg/cm ²								

Etapa 3 Etapa	3: Postesado I	nicial + P	érdidas Etapa	1 + Peso	Propio de Viga	+ Carga	Permanente L	osa + Pos	tesado 2°	
Verificac	ión de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	С	álculo de Arm	aduras P	asivas	
en S	Servicio	en	Rotura		liase viga- Losa	Armad	lura Inferior	Armadura Superio		
$\tau_{xy} =$	-0,6 kg/cm ²	$\tau_{rot} =$	0,91 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t	
$\sigma_x =$	63,9 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²	
$\sigma_{l} =$	0,0 kg/cm ²	Fe _{est} =	0,48 cm ² /m							
$\sigma_{\text{II}} =$	63,9 kg/cm ²									

Etapa 4: Post. Inicial + Pérdidas Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérdidas Etapa 2 + Sobrecarga Permanente											
Verificación de Corte Verificación de Corte en Interfase Viga-											
en Servicio en Rotura			Rotura	eninte	Losa	Armad	ura Inferior	Armadura Superior			
$\tau_{xy} =$	-0,3 kg/cm ²	$\tau_{rot} =$	4,41 kg/cm ²	$\tau_{r int} =$	0,40 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t		
$\sigma_x =$	59,2 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,95 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²		
$\sigma_{l} =$	0,0 kg/cm ²	Fe _{est} =	2,31 cm ² /m								
σ_{\parallel} =	59,2 kg/cm ²										

INTERCAMBIADOR EN ACCESO A SANTA ANA

-	Etapa 5: Post. Inicial + Pérd. Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérd. Etapa 2 + Sobrec. Perm. + 60% Sobrecarga Móvil											
Verificación de Corte Verificación de Corte en Interfase Viga-												
en S	Servicio	en	Rotura		riase viga- Losa	Armad	ura Inferior	Super				
$\tau_{xy} =$	3,0 kg/cm ²	$\tau_{rot} =$	9,12 kg/cm ²	$\tau_{r int} =$	2,77 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t			
$\sigma_x =$	59,2 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	6,60 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²			
$\sigma_{l} =$	$\sigma_{l} = -0.2 \text{ kg/cm}^{2}$ $Fe_{est} = 4.78 \text{ cm}^{2}/\text{m}^{2}$											
σ_{\parallel} =	59,3 kg/cm ²											

Etapa 6: Post. Inicial + Pérd. Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérd. Etapa 2 + Sobrec. Perm. + 100% Sobrecarga Móvil											
Verificación de Corte Verificación de Corte en Interfase Viga-											
en Servicio en Rotura			Rotura	bii iiik	Losa	Armad	lura Inferior	Armadura Superio			
$\tau_{xy} =$	5,2 kg/cm ²	$\tau_{rot} =$	12,26 kg/cm ²	$\tau_{r int} =$	4,36 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t		
$\sigma_x =$	59,2 kg/cm ²	$tg \delta =$	0,40	$Fe_{int} =$	10,37 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²		
$\sigma_{l} =$	-0,5 kg/cm ²	Fe _{est} =	6,42 cm ² /m								
$\sigma_{\parallel} =$	59,6 kg/cm ²										

Armadura de Co	orte	En Interfase		Armadura Infer	ior	Armadura Superior		
Se adopta:	Ø 10 c/ 10,0	Se adopta:	Ø 10 c/ 10,0	Se adopta:	8 Ø 16	Se adopta:	8 Ø 16	
Adicional:	Ø 0 c/ 20	Adicional:	Ø 0 c/20					
(2	Estribos)	(2	Estribos)					
Fe _{est nec} =	6,42 cm ² /m	Fe _{est nec} =	10,37 cm ² /m	As _{nec} =	0,00 cm ²	As nec =	0,00 cm ²	
Fe _{est adop} =	15,71 cm ² /m	Fe _{est adop} =	15,71 cm ² /m	As _{adop} =	16,08 cm ²	As _{adop} =	16,08 cm ²	
	Verifica		Verifica		Verifica		Verifica	

Referencias:

- (+) Tensión de compresión
- (-) Tensión de tracción

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.2. Cálculo de Sección 2

Sección a 3,88 m del APOYO

6.2.1 Solicitación en Sección 2 de viga

6.2.1.1. Esfuerzo normal

	Npost	Npost	N1	N2	N3	N4	N5	N total
cción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
2	605,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0

6.2.1.2. Momentos Flectores

_	Mpost	Mpost	M1	M2	М3	M4	M5	M total
ción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]
2	148,6	0,0	74,2	61,6	21,9	141,3	0,0	299,0

6.2.1.3. Esfuerzo de corte

_	Vpost	Vpost	Q1	Q2	Q3	Q4	Q5	Q total
cción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
•	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
2	-34,4	0,0	16,4	13,6	5,0	31,3	0,0	66,3

Nota 1: El corte de Postesado favorable es negativo (-)

Nota 2: Las solicitaciones de las sobrecargas se incrementan en un 5% debido al efecto de la distribución transversal de la sobrecarga móvil sobre el tablero.

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.2.2. Propiedades Geométricas

Sección de Ho	rmigón	Sección Arma	dura Pasiva		Sección Aº de	Poste	sado	
			Inferior	Superior		1° E	tapa	2° Etapa
h =	1,45 m	Fsp [cm²]:	16,08	16,08	Fsp [cm²]:	41	,45	0
b _{ALMA INF} =	0,20 m	esp [cm²]:	3,5	3,5	esp [cm]:	4	4	0
b _{ALMA SUP} =	0,20 m				Ductos [cm²]:	7	1	
h L _{TAB} =	0,20 m	Fsp [m²]:	0,0016	0,0016	Fsp [m²]:	0,0	041	
D _{ENTRE EJES} =	2,30 m	esp [m]:	0,04	0,04	esp [m]:	0,	44	
b _{BASE INF} =	0,65 m							
b _{BASE SUP} =	0,65 m		0,55	#			n	Distancia al borde inferior
b _{CABEZA SUP} =	0,55 m	\	<u> </u>					
b _{CABEZA INF} =	0,65 m	0,20			Cables en 1°	capa	42	43,75 cm
h _{BASE INF} =	0,20 m	0,15	<u> </u>		Cables en 2°	capa	0	12,00 cm
h _{BASE SUP} =	0,23 m		0,175		Cables en 3°	capa	0	18,00 cm
h _{CABEZA SUP} =	0,20 m		*		Cables en 4°	capa	0	24,00 cm
h _{CABEZA INF} =	0,15 m	1,45 0,675						
$h_{ALMA} =$	0,68 m		0,225 0,20		Secció	n de Po	ostesac	lo Adoptada:
$\Delta b_{sup} =$	0,18 m		_]			42 Cc	rdones	s de Ø 1/2 "
$\Delta b_{inf} =$	0,23 m	0,225	· // `			42 00	nuones	3 GE D 1/2
						42 C	ordones	de Ø 1,27 cm
h3' =	0,42 m	0,20						
h3" =	0,08 m	* *	0,65					
h4" =	0,00 m		*	<u>_</u>				

6.2.3. Propiedades Mecánicas

Propiedad	SECCIÓN SIMPLE	SECCIÓN SIMPLE HOMOGÉNEA	SECCIÓN COMPUESTA	SECCIÓN COMP, HOMOGÉNEA
Area [m²]:	0,52728	0,56356	0,90643	0,94272
Xg [m]:	0,69058	0,68279	1,04136	1,02320
lg [m⁴]:	0,13273	0,14190	0,29835	0,31479
h inf. viga [m]:	0,69058	0,68279	1,04136	1,02320
h secc. Post. [m]:	0,25308	0,24529	0,60386	0,58570
h sup. viga [m]:	0,75942	0,76721	0,40864	0,42680
h sup. losa [m]:			0,60864	0,62680
W inf. viga [m³]:	0,19220	0,20782	0,28650	0,30765
W secc. Post. [m ³]:	0,52444	0,57850	0,49406	0,53746
W sup. viga [m³]:	0,17478	0,18495	0,73010	0,73755
W sup. losa [m³]:			0,49019	0,50222
S1 [m³]:		0,12380		
S2 [m³]:				0,24384
S3 [m³]:				0,19600
z [m]:		1,263		1,500

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.2.4. Verificación de las Tensiones de Servicio

	Fuerza de Postesado Inicial:	605,85 t
Datos de Postesado	Fuerza de Postesado 2º Etapa:	0,0 t
Dates de l'Ostesado	Pérdidas de Postesado Etapa 1:	5,00 %
	Pérdidas de Postesado Etapa 2:	10,00 %

		Fest Fest Calya Fieldi Dama La V C Cabras Las de											
Tensiones en Viga Pretensada	Pret. Inicial (t=0)	Inicial	Propio	Propio	Perm.	Perm.	s. 2°	Perm. Tabler	as V.C. Post.		es de Coacci		
	S.S. (1-a)	S.C. (1-b)	S.S. (2-a)	S.C. (2-b)	S.S. (3-a)	S.C. (3-b)	S.C. (4)	S.C. (5)	10,0% (6)	S.C. (7)	S.C. (8)		
Tensión Sup. Losa		28,0		12,0		9,9	0,0	3,5	0,5	22,8			
Tensión Inf. Losa		35,7		8,1		6,8	0,0	2,4	-1,3	15,5			
Tensión Sup. Viga	27,2	44,1	40,1	10,1	33,3	8,4	0,0	3,0	-1,6	19,2			
Tensión A° Postesado	133,2	91,9	-12,8	-13,8	-10,7	-11,5	0,0	-4,1	-13	-26,3			
Tensión Inf. Viga	179,0	112,6	-35,7	-24,1	-29,6	-20,0	0,0	-7,1	-18	-45,9			

Etapa 1: Postesado Inicial + Peso Propio de Viga Pérdidas de Postesado V.S. = 0,00 %											nsiones ultantes g/cm²]	Control de nsiones g/cm2]	Verificación	
Coeficiente de Aplicación	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Ten resu [kg	H-35 Te [k	Ver
Tensión Sup. Viga	27,2	0,0	40,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	67,3	> -23,5	Verifica
Tensión A° Postesado	133,2	0,0	-12,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	120,4		
Tensión Inf. Viga	179,0	0,0	-35,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	143,3	< 170	Verifica

	apa 2: Postesado Inicial + Pérdidas Etapa 1 + Peso Propio de Viga + Carga Permanente Losa idas de Postesado V.S. = 5,00 %													Verificación
Pérdidas de Postesado V.	S. =	5,00	%									Tensiones resultantes [kg/cm²]	35 (Ten [kg	/eri
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00		Ţ.	_
Tensión Sup. Viga	25,8	0,0	40,1	0,0	33,3	0,0	0,0	0,0	0,0	0,0	0,0	99,3	> -23,5	Verifica
Tensión A° Postesado	126,5	0,0	-12,8	0,0	-10,7	0,0	0,0	0,0	0,0	0,0	0,0	103,0		
Tensión Inf. Viga	170,1	0,0	-35,7	0,0	-29,6	0,0	0,0	0,0	0,0	0,0	0,0	104,7	< 170	Verifica

Etapa 3: Postesado Ini 2° Etapa	cial + Pé	erdidas l	Etapa 1 -	+ Peso F	Propio d	e Viga +	Carga I	Permane	ente Los	a + Post	esado	sultantes ²]	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									siones resu [kg/cm²]	Control ies [kg/c	Verificación
Pérdidas de Postesado V.0	lidas de Postesado V.C. = 10,00 %													Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	0,00	0,00	0,00	0,00	Tens	H. Ten	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	> -20	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Tensión Sup. Viga	25,8	0,0	40,1	0,0	33,3	0,0	0,0	0,0	0,0	0,0	0,0	99,3	> -23,5	Verifica
Tensión A° Postesado	126,5	0,0	-12,8	0,0	-10,7	0,0	0,0	0,0	0,0	0,0	0,0	103,0		
Tensión Inf. Viga	170,1	0,0	-35,7	0,0	-29,6	0,0	0,0	0,0	0,0	0,0	0,0	104,7	< 170	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

Etapa 4: Post. Inicial + 2 + Sobrecarga Perma		s Etapa	1 + P.P.	de Viga	+ Carga	a Perm.	Losa + F	Post. 2°	Etapa +	Pérdida	s Etapa	ultar -	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									nsiones resu [kg/cm²]	Control nes [kg/c	Verificación
Pérdidas de Postesado V.0	rdidas de Postesado V.C. = 10,00 %												H-35 ensior	Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,00	0,00	Ten	Te	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	3,5	0,5	0,0	0,0	4,0	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,4	-1,3	0,0	0,0	1,1		
Tensión Sup. Viga	25,8	0,0	40,1	0,0	33,3	0,0	0,0	3,0	-1,6	0,0	0,0	100,6	< 150	Verifica
Tensión A° Postesado	126,5	0,0	-12,8	0,0	-10,7	0,0	0,0	-4,1	-13,0	0,0	0,0	86,0		
Tensión Inf. Viga	170,1	0,0	-35,7	0,0	-29,6	0,0	0,0	-7,1	-18,0	0,0	0,0	79,6	> -38	Verifica

Etapa 5: Post. Inicial + Sobrec. Perm. + 60% S		•		Viga + C	Carga Pe	rm. Los	a + Post	t. 2° Eta _l	oa + Pér	d. Etapa	2+	sultantes ²]	ntrol de [kg/cm2]	ijón
Pérdidas de Postesado V.S	S. =	5,00	%									nsiones res [kg/cm ²	Sor	Verificación
Pérdidas de Postesado V.0	érdidas de Postesado V.C. = 10,00 %													Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,60	0,00	Ten	H-35 (Tension	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	3,5	0,5	13,7	0,0	17,7	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,4	-1,3	9,3	0,0	10,4		
Tensión Sup. Viga	25,8	0,0	40,1	0,0	33,3	0,0	0,0	3,0	-1,6	11,5	0,0	112,1	< 150	Verifica
Tensión A° Postesado	126,5	0,0	-12,8	0,0	-10,7	0,0	0,0	-4,1	-13,0	-15,8	0,0	70,2		
Tensión Inf. Viga	170,1	0,0	-35,7	0,0	-29,6	0,0	0,0	-7,1	-18,0	-27,6	0,0	52,1	> -38	Verifica

Etapa 6: Post. Inicial + Sobrec. Perm. + 100%		-		Viga + C	Carga Pe	erm. Los	a + Post	. 2° Eta _l	oa + Pér	d. Etapa	2+	sultantes ²]	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									9 E	Son	Verificación
rérdidas de Postesado V.C. = 10,00 %												sio	4-35 C	Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	1,00	0,00	Ten	H Ten	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	3,5	0,5	22,8	0,0	26,8	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,4	-1,3	15,5	0,0	16,6		
Tensión Sup. Viga	25,8	0,0	40,1	0,0	33,3	0,0	0,0	3,0	-1,6	19,2	0,0	119,8	< 160	Verifica
Tensión A° Postesado	126,5	0,0	-12,8	0,0	-10,7	0,0	0,0	-4,1	-13,0	-26,3	0,0	59,7		
Tensión Inf. Viga	170,1	0,0	-35,7	0,0	-29,6	0,0	0,0	-7,1	-18,0	-45,9	0,0	33,7	> -40	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.2.5. Verificación del Corte y Cálculo de Armadura Pasiva

Factor de corrección Eurocódigo/ 1,00

Etapa	1: Postesado I	nicial + P	eso Propio de	Viga					
Verificad	ción de Corte	Verifica	ción de Corte		cion de Corte erfase Viga-	С	álculo de Arm	naduras P	asivas
en	Servicio	en	Rotura		Losa	Armad	lura Inferior	Armadu	ıra Superior
$\tau_{xy} =$	-7,9 kg/cm ²	$\tau_{rot} =$	12,50 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_{x} =$	107,5 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²
$\sigma_l =$	-0,6 kg/cm ²	Fe _{est} =	2,38 cm ² /m						
σ_{\parallel} =	108,1 kg/cm ²								

Etapa :	2: Postesado I	nicial + Pe	érdidas Etapa	1 + Peso I	Propio de Viga	+ Carga I	Permanente Lo	osa		
Verificad	ción de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	C	álculo de Arm	aduras P	asivas	
en	Servicio	en	Rotura	en mie	Losa	Armad	ura Inferior	Armadura Superior		
$\tau_{xy} =$	-1,2 kg/cm ²	$\tau_{rot} =$	1,88 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t	
$\sigma_{x} =$	102,1 kg/cm ²	$tg \delta =$	0,40	$Fe_{int} =$	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²	
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,36 cm ² /m							
$\sigma_{\text{II}} =$	102,1 kg/cm ²									

Etapa Etapa	3: Postesado I	nicial + P	érdidas Etapa	1 + Peso	Propio de Viga	+ Carga	Permanente L	osa + Pos	tesado 2°
Verifica	ción de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	С	álculo de Arm	aduras P	asivas
en	Servicio	en	Rotura		liase viga- Losa	Armad	lura Inferior	Armadu	ıra Superior
$\tau_{xy} =$	-1,2 kg/cm ²	$\tau_{rot} =$	1,88 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	102,1 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²
$\sigma_{l} =$	0,0 kg/cm ²	Fe _{est} =	0,36 cm ² /m						
σ_{\parallel} =	102,1 kg/cm ²								

	4: Post. Inicial arga Permane		as Etapa 1 + P.	P. de Viga	a + Carga Pern	n. Losa +	Post. 2° Etapa	+ Pérdida	s Etapa 2 +			
Verificación de Corte Verificación de Corte en Interfase Viga-												
en :	Servicio	en	Rotura	Losa		Armadura Inferior		Armadura Superi				
$\tau_{xy} =$	-0,6 kg/cm ²	$\tau_{rot} =$	9,57 kg/cm ²	$\tau_{r int} =$	0,50 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t			
$\sigma_x =$	95,7 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,77 cm ² /m	sp _{inf} =	0,00 cm ²	Asp _{sup}	0,00 cm ²			
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	1,82 cm ² /m									
σ_{II} =	95,7 kg/cm ²											

INTERCAMBIADOR EN ACCESO A SANTA ANA

-	5: Post. Inicial ⊦ 60% Sobreca		Etapa 1 + P.P. d il	e Viga + (Carga Perm. Lo	osa + Pos	t. 2° Etapa + P	érd. Etapa	2 + Sobrec.
Verificac	ión de Corte	Verifica	ción de Corte		on de Corte rfase Viga-	С	álculo de Arm	aduras P	asivas
en S	Servicio	er	Rotura	eninte	liase viga- Losa	Armad	lura Inferior	Armadura Superior	
$\tau_{xy} =$	6,7 kg/cm ²	$\tau_{rot} =$	20,53 kg/cm ²	$\tau_{r int} =$	3,65 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	95,7 kg/cm ²	$tg \delta =$	0,44	$Fe_{int} =$	5,65 cm ² /m	sp _{inf} =	0,00 cm ²	Asp _{sup}	0,00 cm ²
$\sigma_{l} =$	-0,5 kg/cm ²	Fe _{est} =	4,35 cm ² /m						
$\sigma_{\text{II}} =$	96,2 kg/cm ²								

	6: Post. Inicial ⊦ 100% Sobred		Etapa 1 + P.P. d vil	e Viga + (Carga Perm. Lo	osa + Pos	t. 2° Etapa + P	érd. Etapa	2 + Sobrec.
Verificac	ión de Corte	Verifica	ción de Corte		on de Corte erfase Viga-	C	álculo de Arm	naduras P	asivas
en S	Servicio	er	Rotura	טוווונט	Losa	Armad	lura Inferior	Armadu	ıra Superior
$\tau_{xy} =$	11,5 kg/cm ²	$\tau_{rot} =$	27,83 kg/cm ²	$\tau_{r int} =$	5,75 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	95,7 kg/cm ²	$tg \delta =$	0,59	$Fe_{int} =$	8,89 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²
$\sigma_{l} =$	-1,4 kg/cm ²	Fe _{est} =	7,82 cm ² /m						
σ_{\parallel} =	97,1 kg/cm ²								

Armadura de C	orte	En Interfase		Armadu	a Inferior	Armaduı	ra Superior
Se adopta:	Ø 10 c/ 10,0	Se adopta:	Ø 10 c/ 10,0	Se adopta:	8 Ø 16	Se adopta:	8 Ø 16
Adicional:	Ø 0 c/ 20,0	Adicional:	Ø 0 c/ 20,0				
(2 Estribos)		(2	Estribos)				
Fe _{est nec} =	7,82 cm ² /m	Fe _{est nec} =	8,89 cm ² /m	As _{nec} =	0,00 cm ²	As nec =	0,00 cm ²
Fe _{est adop} =	15,71 _{cm²/m}	Fe _{est adop} =	15,71 cm²/m	As _{adop} =	16,08 cm ²	As _{adop} =	16,08 cm ²
	Verifica		Verifica		Verifica		Verifica

Referencias:

- (+) Tensión de compresión
- (-) Tensión de tracción

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.3. Cálculo de Sección 3

Sección a 7,76 m del APOYO

6.3.1 Solicitación en Sección 3 de viga

6.3.1.1. Esfuerzo normal

	_	Npost	Npost	N1	N2	N3	N4	N5	N total
	ción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
	Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	0,	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
Ī	3	598,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0

6.3.1.2. Momentos Flectores

_	Mpost	Mpost	M1	M2	М3	M4	M5	M total
ción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
0,	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]
3	256,4	0,0	127,3	105,6	37,5	241,4	0,0	511,8

6.3.1.3. Esfuerzo de corte

_	Vpost	Vpost	Q1	Q2	Q3	Q4	Q5	Q total
Sección	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Şec.	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
3	-22,7	0,0	10,9	9,1	3,3	23,6	0,0	46,9

Nota 1: El corte de Postesado favorable es negativo (-)

Nota 2: Las solicitaciones de las sobrecargas se incrementan en un 5% debido al efecto de la distribución transversal de la sobrecarga móvil sobre el tablero.

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.3.2. Propiedades Geométricas

Sección de Ho	rmigón	Sección Arm	adura Pasiva		Sección Aº de	Postes	sado	
			Inferior	Superior		1° E	tapa	2° Etapa
h =	1,45 m	Fsp [cm²]:	16,08	16,08	Fsp [cm²]:	41,	,45	0
b _{ALMA INF} =	0,20 m	esp [cm²]:	3,5	3,5	esp [cm]:	2	5	0
b _{ALMA SUP} =	0,20 m				Ductos [cm²]:	7	1	
h L _{TAB} =	0,20 m	Fsp [m²]:	0,0016	0,0016	Fsp [m²]:	0,00	041	
D _{ENTRE EJES} =	2,30 m	esp [m]:	0,04	0,04	esp [m]:	0,2	25	
b _{BASE INF} =	0,65 m							
b _{BASE SUP} =	0,65 m		0,55	*			n	Distancia al
b _{CABEZA SUP} =	0,55 m	*	\					borde inferior
b _{CABEZA INF} =	0,65 m	0,20			Cables en 1°	capa	42	25,00 cm
h _{BASE INF} =	0,20 m	0,15			Cables en 2°	capa	0	12,00 cm
h _{BASE SUP} =	0,23 m		0,175		Cables en 3°	сара	0	18,00 cm
h _{CABEZA SUP} =	0,20 m				Cables en 4°	сара	0	24,00 cm
h _{CABEZA INF} =	0,15 m	1,45 0,675						
h _{ALMA} =	0,68 m		0,225 0,20	1	Secció	n de Po	ostesac	lo Adoptada:
$\Delta b_{sup} =$	0,18 m		┾ │			42 Co	rdones	s de Ø 1/2 "
$\Delta b_{inf} =$	0,23 m	0,225] //			72 00	nuones	1/2
						42 C	ordones	de Ø 1,27 cm
h3' =	0,42 m	0,20	<u> </u>					
h3" =	0,08 m		0,65					
h4" =	0,00 m		*	*				

6.3.3. Propiedades Mecánicas

Propiedad	SECCIÓN SIMPLE	SECCIÓN SIMPLE HOMOGÉNEA	SECCIÓN COMPUESTA	SECCIÓN COMP, HOMOGÉNEA
Area [m²]:	0,52728	0,56356	0,90643	0,94272
Xg [m]:	0,69311	0,67862	1,04136	1,01930
lg [m⁴]:	0,13180	0,14348	0,29835	0,31978
h inf. viga [m]:	0,69311	0,67862	1,04136	1,01930
h secc. Post. [m]:	0,44311	0,42862	0,79136	0,76930
h sup. viga [m]:	0,75689	0,77138	0,40864	0,43070
h sup. losa [m]:			0,60864	0,63070
W inf. viga [m³]:	0,19016	0,21143	0,28650	0,31372
W secc. Post. [m ³]:	0,29744	0,33475	0,37700	0,41567
W sup. viga [m³]:	0,17413	0,18601	0,73010	0,74245
W sup. losa [m³]:			0,49019	0,50701
S1 [m³]:		0,12488		
S2 [m³]:				0,24603
S3 [m³]:				0,19745
z [m]:		1,263		1,500

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.3.4. Verificación de las Tensiones de Servicio

	Fuerza de Postesado Inicial:	598,18 t
Datos de Postesado	Fuerza de Postesado 2º Etapa:	0,0 t
Dates de l'estesade	Pérdidas de Postesado Etapa 1:	5,00 %
	Pérdidas de Postesado Etapa 2:	10,00 %

					Esta	dos de C	arga				
Tensiones en Viga Pretensada	Pret. Inicial (t=0)	Pret. Inicial (t=0)	Peso Propio Viga	Peso Propio Viga	Carga Perm. Losa	Carga Perm. Losa	Preten s. 2° Etapa	Carga Perm. Tabler o	Pérdid as V.C. Post. t=inf	Sobrec . Móvil	Accion es de Coacci ón
	S.S.	S.C. (1-b)	S.S. (2-a)	S.C. (2-b)	S.S. (3-a)	S.C. (3-b)	S.C.	S.C.	10,0%	S.C.	S.C.
	(1-a)	(1-0)	(2-a)	(2-0)	(3-a)	(3-0)	(4)	(5)	(6)	(7)	(8)
Tensión Sup. Losa		10,4		20,3		16,8	0,0	6,0	2,2	38,5	
Tensión Inf. Losa		23,4		13,9		11,5	0,0	4,1	-0,1	26,3	
Tensión Sup. Viga	-31,7	28,9	68,4	17,1	56,8	14,2	0,0	5,1	-0,1	32,5	
Tensión A° Postesado	182,7	125,1	-38,0	-30,6	-31,6	-25,4	0,0	-9,0	-17	-58,1	
Tensión Inf. Viga	227,4	145,2	-60,2	-40,6	-50,0	-33,7	0,0	-12,0	-21	-76,9	

Etapa 1: Postesado Ini	Etapa 1: Postesado Inicial + Peso Propio de Viga													Verificación
Pérdidas de Postesado V.S	S. =	0,00	%									Ten: resu [kg,	35 C Ten: [kg/	/erifi
Coeficiente de Aplicación	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		Ξ.	>
Tensión Sup. Viga	-31,7	0,0	68,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	36,7	> -23,5	Verifica
Tensión A° Postesado	182,7	0,0	-38,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	144,7		
Tensión Inf. Viga	227,4	0,0	-60,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	167,2	< 170	Verifica

	Etapa 2: Postesado Inicial + Pérdidas Etapa 1 + Peso Propio de Viga + Carga Permanente Losa Pérdidas de Postesado V S = 5,00 %													
Pérdidas de Postesado V.S	3. =	5,00	%									Tensiones resultantes [kg/cm²]	35 C Ten [kg	Verificación
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00		Ţ.	>
Tensión Sup. Viga	-30,1	0,0	68,4	0,0	56,8	0,0	0,0	0,0	0,0	0,0	0,0	95,1	> -23,5	Verifica
Tensión A° Postesado	173,6	0,0	-38,0	0,0	-31,6	0,0	0,0	0,0	0,0	0,0	0,0	104,0		
Tensión Inf. Viga	216,0	0,0	-60,2	0,0	-50,0	0,0	0,0	0,0	0,0	0,0	0,0	105,9	< 170	Verifica

Etapa 3: Postesado Ini 2° Etapa	Etapa 3: Postesado Inicial + Pérdidas Etapa 1 + Peso Propio de Viga + Carga Permanente Losa + Postesa 2° Etapa													
Pérdidas de Postesado V.S														
Pérdidas de Postesado V.0	rdidas de Postesado V.C. = 10,00 %													
Coeficiente de Aplicación														
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	> -20	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Tensión Sup. Viga	-30,1	0,0	68,4	0,0	56,8	0,0	0,0	0,0	0,0	0,0	0,0	95,1	> -23,5	Verifica
Tensión A° Postesado	173,6	0,0	-38,0	0,0	-31,6	0,0	0,0	0,0	0,0	0,0	0,0	104,0		
Tensión Inf. Viga	216,0	0,0	-60,2	0,0	-50,0	0,0	0,0	0,0	0,0	0,0	0,0	105,9	< 170	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

•	Etapa 4: Post. Inicial + Pérdidas Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérdidas Etapa 2 + Sobrecarga Permanente													
Pérdidas de Postesado V.S	rdidas de Postesado V.S. = 5,00 %													
Pérdidas de Postesado V.0	erdidas de Postesado V.C. = 10,00 %													Verificación
Coeficiente de Aplicación														
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	6,0	2,2	0,0	0,0	8,2	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	4,1	-0,1	0,0	0,0	4,0		
Tensión Sup. Viga	-30,1	0,0	68,4	0,0	56,8	0,0	0,0	5,1	-0,1	0,0	0,0	100,0	< 150	Verifica
Tensión A° Postesado	173,6	0,0	-38,0	0,0	-31,6	0,0	0,0	-9,0	-17,4	0,0	0,0	77,6		
Tensión Inf. Viga	216,0	0,0	-60,2	0,0	-50,0	0,0	0,0	-12,0	-21,0	0,0	0,0	72,9	> -38	Verifica

Etapa 5: Post. Inicial + Sobrec. Perm. + 60% S		•		Viga + C	Carga Pe	rm. Los	a + Post	t. 2° Eta _l	oa + Pér	d. Etapa	2+	nes resultantes kg/cm²]	Control de nes [kg/cm2]	Verificación
Pérdidas de Postesado V.S	didas de Postesado V.S. = 5,00 %													
Pérdidas de Postesado V.0	10.00													Ver
Coeficiente de Aplicación	eficiente de Aplicación 0,95 0,00 1,00 0,00 1,00 0,00 0,90 1,00 0,60 0,00													
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	6,0	2,2	23,1	0,0	31,3	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	4,1	-0,1	15,8	0,0	19,7		
Tensión Sup. Viga	-30,1	0,0	68,4	0,0	56,8	0,0	0,0	5,1	-0,1	19,5	0,0	119,5	< 150	Verifica
Tensión A° Postesado	173,6	0,0	-38,0	0,0	-31,6	0,0	0,0	-9,0	-17,4	-34,8	0,0	42,7		
Tensión Inf. Viga	216,0	0,0	-60,2	0,0	-50,0	0,0	0,0	-12,0	-21,0	-46,2	0,0	26,8	> -38	Verifica

Etapa 6: Post. Inicial + Sobrec. Perm. + 100%		-		Viga + C	Carga Pe	rm. Los	a + Posi	t. 2° Eta _l	oa + Pér	d. Etapa	2+	sultantes ²]	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	érdidas de Postesado V.S. = 5,00 %											ch C	Sor se	Verificación
Pérdidas de Postesado V.0	érdidas de Postesado V.C. = 10,00 %												H-35 (Ver
Coeficiente de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	1,00	0,00	Tensiones [kg/	H-3 Tensi	
Tensión Sup. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	6,0	2,2	38,5	0,0	46,7	< 100	Verifica
Tensión Inf. Losa	0,0	0,0	0,0	0,0	0,0	0,0	0,0	4,1	-0,1	26,3	0,0	30,3		
Tensión Sup. Viga	-30,1	0,0	68,4	0,0	56,8	0,0	0,0	5,1	-0,1	32,5	0,0	132,5	< 150	Verifica
Tensión A° Postesado	173,6	0,0	-38,0	0,0	-31,6	0,0	0,0	-9,0	-17,4	-58,1	0,0	19,5		
Tensión Inf. Viga	216,0	0,0	-60,2	0,0	-50,0	0,0	0,0	-12,0	-21,0	-76,9	0,0	-4,0	> -38	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.3.5. Verificación del Corte y Cálculo de Armadura Pasiva

Factor de corrección Eurocódigo/ 1,00

Etapa	1: Postesado I	nicial + Po	eso Propio de	Viga					
Verifica	ción de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	С	álculo de Arm	naduras P	asivas
en	Servicio	en	Rotura		Losa	Armad	lura Inferior	Armadura Superior	
$\tau_{xy} =$	-5,1 kg/cm ²	$\tau_{rot} =$	8,13 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_{x} =$	106,1 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²
$\sigma_l =$	-0,2 kg/cm ²	Fe _{est} =	1,55 cm ² /m						
σ_{\parallel} =	106,4 kg/cm ²								

Etapa :	Etapa 2: Postesado Inicial + Pérdidas Etapa 1 + Peso Propio de Viga + Carga Permanente Losa													
Verificad	ción de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	C	álculo de Arm	aduras P	asivas					
en	Servicio	en	Rotura	eninte	Losa	Armadura Inferior		Armadura Superio						
$\tau_{xy} =$	-0,7 kg/cm ²	$\tau_{rot} =$	1,07 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t					
$\sigma_{x} =$	100,8 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²					
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,20 cm ² /m											
σ _{II} =	100,8 kg/cm ²													

Etapa Etapa	. Northogona do Carta I												
Verifica	ción de Corte	Verificad	ción de Corte		cion de Corte erfase Viga-	С	álculo de Arm	naduras P	asivas				
en	Servicio	en	Rotura		Losa	Armad	lura Inferior	Armadu	ıra Superior				
$\tau_{xy} =$	-0,7 kg/cm ²	$\tau_{rot} =$	1,07 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t				
$\sigma_x =$	100,8 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²				
$\sigma_{l} =$	0,0 kg/cm ²	Fe _{est} =	0,20 cm ² /m										
σ_{\parallel} =	100,8 kg/cm ²												

	Etapa 4: Post. Inicial + Pérdidas Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérdidas Etapa 2 + Sobrecarga Permanente												
Verificación de Corte Verificación de Corte en Interfase Viga-													
en :	Servicio	en	Rotura	Losa		Armad	lura Inferior	Armadura Superior					
$\tau_{xy} =$	-0,3 kg/cm ²	$\tau_{rot} =$	6,50 kg/cm ²	$\tau_{r int} =$	0,33 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t				
$\sigma_x =$	94,5 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,52 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²				
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	1,24 cm ² /m										
σ_{\parallel} =	94,5 kg/cm ²												

INTERCAMBIADOR EN ACCESO A SANTA ANA

	Etapa 5: Post. Inicial + Pérd. Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérd. Etapa 2 + Sobrec. Perm. + 60% Sobrecarga Móvil												
Verificación de Corte Verificación de Corte en Interfase Viga-													
en :	en Servicio en Rotura			en interiase viga- Losa		Armad	lura Inferior	Armadura Superior					
$\tau_{xy} =$	5,2 kg/cm ²	$\tau_{rot} =$	14,76 kg/cm ²	$\tau_{r int} =$	2,69 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t				
$\sigma_x =$	94,5 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	4,16 cm ² /m	Asp _{inf} :	0,00 cm ²	Asp _{sup}	0,00 cm ²				
$\sigma_{l} =$	-0,3 kg/cm ²	Fe _{est} =	2,81 cm ² /m										
$\sigma_{\parallel} =$	94,8 kg/cm ²												

	Etapa 6: Post. Inicial + Pérd. Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérd. Etapa 2 + Sobrec. Perm. + 100% Sobrecarga Móvil													
Verificación de Corte Verificación de Corte en Interfase Viga-														
en S	en Servicio en Rotura				Losa	Armad	lura Inferior	Armadura Superior						
$\tau_{xy} =$	8,8 kg/cm ²	$\tau_{rot} =$	20,26 kg/cm ²	$\tau_{r int} =$	4,26 kg/cm ²	Za _{inf} =	0,56 t	Za _{sup} =	0,00 t					
$\sigma_x =$	94,5 kg/cm ²	$tg \delta =$	0,44	Fe _{int} =	6,59 cm ² /m	Asp _{inf} :	0,23 cm ²	Asp _{sup}	0,00 cm ²					
$\sigma_{l} =$	-0,8 kg/cm ²	Fe _{est} =	4,22 cm ² /m											
$\sigma_{II} =$	95,3 kg/cm ²													

Armadura de C	orte	En Interfase	_	Armadura Infer	ior	Armadura Supe	erior
Se adopta:	Ø 10 c/ 12,5	Se adopta:	Ø 10 c/ 12,5	Se adopta:	8 Ø 16	Se adopta:	8 Ø 16
Adicional:	Ø 0 c/ 25	Adicional:	Ø 0 c/ 25				
(2 Estribos)		(2	Estribos)				
Fe _{est nec} =	4,22 cm ² /m	Fe _{est nec} =	6,59 cm ² /m	As nec =	0,23 cm ²	As nec =	0,00 cm ²
Fe _{est adop} =	12,57 cm ² /m	Fe _{est adop} =	12,57 cm ² /m	As _{adop} =	16,08 cm ²	As _{adop} =	16,08 cm ²
	Verifica		Verifica		Verifica		Verific

Referencias:

- (+) Tensión de compresión
- (-) Tensión de tracción

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.4. Cálculo de Sección 4

Sección a 11,64 m del APOYO

6.4.1 Solicitación en Sección 4 de viga

6.4.1.1. Esfuerzo normal

١	Npost	Npost	N1	N2	N3	N4	N5	N total
ción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
0,	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
4	590,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0

6.4.1.2. Momentos Flectores

	Mpost	Mpost	M1	M2	М3	M4	M5	M total
ección	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]
4	318,1	0,0	159,1	132,0	46,9	300,3	0,0	638,3

6.4.1.3. Esfuerzo de corte

_	Vpost	Vpost	Q1	Q2	Q3	Q4	Q5	Q total
cción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
4	-11,2	0,0	5,5	4,5	1,7	15,9	0,0	27,6

Nota 1: El corte de Postesado favorable es negativo (-)

Nota 2: Las solicitaciones de las sobrecargas se incrementan en un 5% debido al efecto de la distribución transversal de la sobrecarga móvil sobre el tablero.

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.4.2. Propiedades Geométricas

Sección de Hor	migón	Sección Arma	dura Pasiva		Sección Aº de	Postes	sado	
			Inferior	Superior		1° E	tapa	2° Etapa
h =	1,45 m	Fsp [cm ²]:	16,08	16,08	Fsp [cm²]:	41.	,45	0
b _{ALMA INF} =	0,20 m	esp [cm²]:	3,5	3,5	esp [cm]:	1	4	0
b _{ALMA SUP} =	0,20 m				Ductos [cm²]:	7	1	
h L _{TAB} =	0,20 m	Fsp [m²]:	0,0016	0,0016	Fsp [m²]:	0,0	041	
D _{ENTRE EJES} =	2,30 m	esp [m]:	0,04	0,04	esp [m]:	0,	14	
b _{BASE INF} =	0,65 m							
b _{BASE SUP} =	0,65 m		0,55				n	Distancia al
b _{CABEZA SUP} =	0,55 m	1 * *	•—-	_				borde inferior
b _{CABEZA INF} =	0,65 m	0,20			Cables en 1° ca	ра	42	13,75 cm
h _{BASE INF} =	0,20 m	0,15			Cables en 2° ca	ра	0	12,00 cm
h _{BASE SUP} =	0,23 m		0,175		Cables en 3° ca	ра	0	18,00 cm
h _{CABEZA SUP} =	0,20 m		* 		Cables en 4° ca	ра	0	24,00 cm
h _{CABEZA INF} =	0,15 m	1,45 0,675						
$h_{ALMA} =$	0,68 m		0,225 0,20		Secció	n de Po	ostesac	lo Adoptada:
$\Delta b_{sup} =$	0,18 m		$- \mid \ \ \mid \ \mid \ $			42 Co	rdones	s de Ø 1/2 "
$\Delta b_{inf} =$	0,23 m	0,225				42 00	nuones	3 GE D 1/2
						42 C	ordones	de Ø 1,27 cm
h3' =	0,42 m	0,20						
h3" =	0,08 m		0,65					
h4" =	0,00 m		*	*				

6.4.3. Propiedades Mecánicas

Propiedad	SECCIÓN SIMPLE	SECCIÓN SIMPLE HOMOGÉNEA	SECCIÓN COMPUESTA	SECCIÓN COMP, HOMOGÉNEA
Area [m ²]:	0,52728	0,56356	0,90643	0,94272
Xg [m]:	0,69462	0,67612	1,04136	1,01695
lg [m ⁴]:	0,13100	0,14484	0,29835	0,32342
h inf. viga [m]:	0,69462	0,67612	1,04136	1,01695
h secc. Post. [m]:	0,55712	0,53862	0,90386	0,87945
h sup. viga [m]:	0,75538	0,77388	0,40864	0,43305
h sup. losa [m]:			0,60864	0,63305
W inf. viga [m³]:	0,18859	0,21423	0,28650	0,31803
W secc. Post. [m³]:	0,23514	0,26892	0,33008	0,36775
W sup. viga [m³]:	0,17343	0,18717	0,73010	0,74684
W sup. losa [m³]:			0,49019	0,51089
S1 [m³]:	_	0,12552		
S2 [m ³]:				0,24735
S3 [m ³]:				0,19832
z [m]:		1,263		1,500

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.4.4. Verificación de las Tensiones de Servicio

	Fuerza de Postesado Inicial:	590,51 t
Datos de Postesado	Fuerza de Postesado 2º Etapa:	0,0 t
Datos de l'Ostesado	Pérdidas de Postesado Etapa 1:	5,00 %
	Pérdidas de Postesado Etapa 2:	10,00 %

					Esta	dos de C	arga				
Tensiones en Viga Postesada	Post. Inicial (t=0) S.S.	Post. Inicial (t=0) S.C.	Peso Propio Viga S.S.	Peso Propio Viga S.C.	Carga Perm. Losa S.S.	Carga Perm. Losa S.C.	Post. 2° Etapa S.C.	Carga Perm. Tab.	Pérd. V.C. Post. t=inf 10,0%	Sobr. Móvil S.C.	Accion es de Coacci ón S.C.
	(1-a)	(1-b)	(2-a)	(2-b)	(3-a)	(3-b)	(4)	(5)	(6)	(7)	(8)
Tensión Sup. Losa		0		25		21	0	7	3	48	
Tensión Inf. Losa		16		17		14	0	5	1	33	
Tensión Sup. Viga	-65	20	85	21	71	18	0	6	1	40	
Tensión A° Postesado	223	149	-59	-43	-49	-36	0	-13	-20	-82	
Tensión Inf. Viga	253	163	-74	-50	-62	-42	0	-15	-23	-94	

Etapa 1: Postesado Inio		so Prop	•	ga								insiones sultantes cg/cm²]	Control de insiones (g/cm2]	Verificación
Coef. de Aplicación	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Te res [k	H-35 Te [k	Vel
Tensión Sup. Viga	-65	0	85	0	0	0	0	0	0	0	0	20	> -23,5	Verifica
Tensión A° Postesado	223	0	-59	0	0	0	0	0	0	0	0	164		
Tensión Inf. Viga	253	0	-74	0	0	0	0	0	0	0	0	179,0	< 170	Verifica

·	Etapa 2: Postesado Inicial + Pérdidas Etapa 1 + Peso Propio de Viga + Carga Permanente Losa Pérdidas de Postesado V.S. = 5,00 %													
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	Tensiones resultantes [kg/cm²]	H-3	Verificación
Tensión Sup. Viga	-62	0	85	0	71	0	0	0	0	0	0	94	> -23,5	Verifica
Tensión A° Postesado	212	0	-59	0	-49	0	0	0	0	0	0	104		
Tensión Inf. Viga													< 170	Verifica

Etapa 3: Postesado Inic 2º Etapa	cial + Pé	rdidas E	Etapa 1 +	- Peso P	ropio de	e Viga +	Carga P	ermane	nte Losa	+ Poste	esado	resultantes m²]	trol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									nsiones resu [kg/cm²]	1-35 Control nsiones [kg/c	Verificación
Pérdidas de Postesado V.0														Ver
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	0,00	0,00	0,00	0,00	Ten	H Ter	
Tensión Sup. Losa	0	0	0	0	0	0	0	0	0	0	0	0,0	> -20	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	0	0	0	0	0,0		
Tensión Sup. Viga	-62	0	85	0	71	0	0	0	0	0	0	94	> -23,5	Verifica
Tensión A° Postesado	212	0	-59	0	-49	0	0	0	0	0	0	104		
Tensión Inf. Viga	241	0	-74	0	-62	0	0	0	0	0	0	105	< 170	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

Etapa 4: Post. Inicial + 2 + Sobrecarga Permai		s Etapa	1 + P.P.	de Viga	+ Carga	Perm. I	₋osa + P	ost. 2° E	tapa + F	Pérdidas	Etapa	resultantes :m²]	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									siones resu [kg/cm²]	Control nes [kg/	/erificación
Pérdidas de Postesado V.0	idas de Postesado V.C. = 10,00 %													Ver
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,00	0,00	Ten	H-35 Tensio	
Tensión Sup. Losa	0	0	0	0	0	0	0	7	3	0	0	11	< 100	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	5	1	0	0	6		
Tensión Sup. Viga	-62	0	85	0	71	0	0	6	1	0	0	101	< 150	Verifica
Tensión A° Postesado	212	0	-59	0	-49	0	0	-13	-20	0	0	71		
Tensión Inf. Viga	241	0	-74	0	-62	0	0	-15	-23	0	0	67	> -38	Verifica

Etapa 5: Post. Inicial + Sobrec. Perm. + 60% S		•		Viga + C	arga Pe	rm. Losa	a + Post	. 2° Etap	a + Pérd	. Etapa	2 +	nes resultantes [kg/cm²]	control de es [kg/cm2]	ión
Pérdidas de Postesado V.S														
Pérdidas de Postesado V.0	idas de Postesado V.C. = 10,00 %													Verificación
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,60	0,00	Tensi	H-35 Tensio	
Tensión Sup. Losa	0	0	0	0	0	0	0	7	3	29	0	39	< 100	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	5	1	20	0	25		
Tensión Sup. Viga	-62	0	85	0	71	0	0	6	1	24	0	125	< 150	Verifica
Tensión A° Postesado	212	0	-59	0	-49	0	0	-13	-20	-49	0	22		
Tensión Inf. Viga	241	0	-74	0	-62	0	0	-15	-23	-57	0	11	> -38	Verifica

Etapa 6: Post. Inicial + Sobrec. Perm. + 100%		-		Viga + C	arga Pe	rm. Losa	a + Post.	. 2° Etap	a + Pérd	. Etapa	2 +	ultantes ²]	ntrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									nes resu [kg/cm²]	Contr nes [k	Verificación
Pérdidas de Postesado V.0														
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	1,00	0,00	Tensiones [kg/	H-35 Tensior	
Tensión Sup. Losa	0	0	0	0	0	0	0	7	3	48	0	58	< 100	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	5	1	33	0	38		
Tensión Sup. Viga	-62	0	85	0	71	0	0	6	1	40	0	141	< 150	Verifica
Tensión A° Postesado	212	0	-59	0	-49	0	0	-13	-20	-82	0	-11		
Tensión Inf. Viga	241	0	-74	0	-62	0	0	-15	-23	-94	0	-27	> -38	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.4.5. Verificación del Corte y Cálculo de Armadura Pasiva

Factor de corrección Eurocódigo/Cirsoc = 1,00

Etapa	1: Postesado I	nicial + Pe	eso Propio de \	/iga					
Verificaci	ón de Corte en	Verificaci	ón de Corte en	Verificaci	ón de Corte en		Cálculo de Arn	naduras Pa	sivas
S	Servicio	F	Rotura	Interfas	se Viga-Losa	Armad	dura Inferior	Armadı	ura Superior
$\tau_{xy} =$	-2,5 kg/cm ²	$\tau_{rot} =$	3,97 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	104,8 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_l =$	-0,1 kg/cm ²	Fe _{est} =	0,76 cm ² /m						
$\sigma_{\text{II}} =$	104,8 kg/cm ²								

Etapa 2	2: Postesado I	nicial + P	érdidas Etapa 1	l + Peso F	Propio de Viga	+ Carga F	Permanente Lo	osa	
Verificacio	ón de Corte en	Verificaci	ón de Corte en	Verificaci	ón de Corte en		Cálculo de Arr	naduras Pa	sivas
S	ervicio	į	Rotura	Interfas	se Viga-Losa	Armad	dura Inferior	Armad	ura Superior
$\tau_{xy} =$	-0,3 kg/cm ²	$\tau_{rot} =$	0,44 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	99,5 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,08 cm ² /m						
$\sigma_{\text{II}} =$	99,5 kg/cm ²								

Etapa 3 Etapa	3: Postesado I	nicial + Pe	érdidas Etapa 1	l + Peso F	Propio de Viga	+ Carga F	Permanente Lo	sa + Poste	esado 2°
Verificació	ón de Corte en	Verificaci	ón de Corte en	Verificaci	ón de Corte en		Cálculo de Arm	naduras Pa	sivas
Se	ervicio	I	Rotura	Interfas	se Viga-Losa	Armad	dura Inferior	Armadı	ura Superior
$\tau_{xy} =$	-0,3 kg/cm ²	$\tau_{rot} =$	0,44 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	99,5 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,08 cm ² /m						
σ _{II} =	99,5 kg/cm ²								

-	Etapa 4: Post. Inicial + Pérdidas Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérdidas Etapa 2 + Sobrecarga Permanente								
Verificació	ón de Corte en	Verificaci	ón de Corte en	Verificaci	ón de Corte en		Cálculo de Arm	naduras Pa	sivas
Se	ervicio	F	Rotura	Interfase Viga-Losa		Armadura Inferior		Armadura Superior	
$\tau_{xy} =$	-0,1 kg/cm ²	$\tau_{rot} =$	3,31 kg/cm ²	$\tau_{r int} =$	0,17 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	93,3 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,26 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_{l} =$	0,0 kg/cm ²	Fe _{est} =	0,63 cm ² /m						
$\sigma_{\text{II}} =$	93,3 kg/cm ²								

INTERCAMBIADOR EN ACCESO A SANTA ANA

Etapa 5: Post. Inicial + Pérd. Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérd. Etapa 2 + Sobrec. Perm. + 60% Sobrecarga Móvil									
Verificació	ón de Corte en	Verificaci	ón de Corte en	Verificaci	ón de Corte en		Cálculo de Arn	naduras Pa	sivas
S	ervicio	ı	Rotura	Interfase Viga-Losa		Armadura Inferior		Armadura Superior	
$\tau_{xy} =$	3,6 kg/cm ²	$\tau_{rot} =$	8,87 kg/cm ²	$\tau_{r int} =$	1,74 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	93,3 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	2,70 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_{l} =$	-0,1 kg/cm ²	0,1 kg/cm ² $Fe_{est} = 1,69 \text{ cm}^2/\text{m}$							
σ _{II} =	93,4 kg/cm ²								

	Etapa 6: Post. Inicial + Pérd. Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérd. Etapa 2 + Sobrec. Perm. + 100% Sobrecarga Móvil									
Verificacio	Verificación de Corte en Verificación de Corte en Verificación de Corte en Cálculo de Armaduras Pasivas									
S	Servicio		Rotura	Interfas	Interfase Viga-Losa		Armadura Inferior		ura Superior	
$\tau_{xy} =$	6,0 kg/cm ²	$\tau_{rot} =$	12,58 kg/cm ²	$\tau_{r int} =$	2,79 kg/cm ²	Za _{inf} =	20,56 t	Za _{sup} =	0,00 t	
$\sigma_x =$	93,3 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	4,32 cm ² /m	Asp _{inf} =	8,57 cm ²	Asp _{sup} =	0,00 cm ²	
$\sigma_{l} =$	-0,4 kg/cm ²	Fe _{est} =	2,40 cm ² /m							
$\sigma_{\text{II}} =$	$\sigma_{\parallel} = 93.7 \text{ kg/cm}^2$									

Armadura de Corte		En Interfase		Armadura Infe	erior	Armadura Superior	
Se adopta:	Ø 10 c/ 15	Se adopta:	Ø 10 c/ 15	Se adopta:	8 Ø 16	Se adopta:	8 Ø 16
Adicional:	Ø 0 c/ 30	Adicional:	Ø 0 c/30				
(2	Estribos)	(2	Estribos)				
Fe _{est nec} =	2,40 cm ² /m	Fe _{est nec} =	4,32 cm ² /m	As _{nec} =	8,57 cm ²	As _{nec} =	0,00 cm ²
Fe _{est adop} =	10,47 cm ² /m	Fe _{est adop} =	10,47 cm ² /m	As _{adop} =	16,08 cm ²	As _{adop} =	16,08 cm ²
	Verifica		Verifica		Verifica		Verifica

Referencias:

- (+) Tensión de compresión
- (-) Tensión de tracción

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.5. Cálculo de Sección 5

Sección a 15,53 m del APOYO

6.5.1 Solicitación en Sección 5 de viga

6.5.1.1. Esfuerzo normal

_	Npost	Npost	N1	N2	N3	N4	N5	N total
ción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
5	582,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0

6.5.1.2. Momentos Flectores

	Mpost	Mpost	M1	M2	M3	M4	M5	M total
ección	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]	[tm]
5	335,3	0,0	169,7	140,8	50,0	318,0	0,0	678,5

6.5.1.3. Esfuerzo de corte

_	Vpost	Vpost	Q1	Q2	Q3	Q4	Q5	Q total
cción	Postesado	Postesado	Peso	Peso	Cargas	Sobrecarga	Retracción	Cargas
Sec	Inicial	2° Etapa	Propio	Losa	Permanentes	Móvil	Losa	Exteriores
•	[t]	[t]	[t]	[t]	[t]	[t]	[t]	[t]
5	0,0	0,0	0,0	0,0	0,0	8,2	0,0	8,2

Nota 1: El corte de Postesado favorable es negativo (-)

Nota 2: Las solicitaciones de las sobrecargas se incrementan en un 5% debido al efecto de la distribución transversal de la sobrecarga móvil sobre el tablero.

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.5.2. Propiedades Geométricas

Sección de Ho	rmigón	Sección Arma	Sección Armadura Pasiva				Sección Aº de Postesado			
			Inferior	Superior		1° E	tapa	2° Etapa		
h =	1,45 m	Fsp [cm²]:	16,08	16,08	Fsp [cm²]:	41.	,45	0		
b _{ALMA INF} =	0,20 m	esp [cm²]:	3,5	3,5	esp [cm]:	1	0	0		
b _{ALMA SUP} =	0,20 m				Ductos [cm²]:	7	1			
h L _{TAB} =	0,20 m	Fsp [m²]:	0,0016	0,0016	Fsp [m²]:	0,0	041	ļ		
D _{ENTRE EJES} =	2,30 m	esp [m]:	0,04	0,04	esp [m]:	0,	10			
b _{BASE INF} =	0,65 m									
b _{BASE SUP} =	0,65 m		0,55				n	Distancia al		
b _{CABEZA SUP} =	0,55 m	*	<u> </u>				n	borde inferior		
b _{CABEZA INF} =	0,65 m	0,20			Cables en 1° ca	ра	42	10,00 cm		
h _{BASE INF} =	0,20 m	0,15			Cables en 2° ca	ра	0	12,00 cm		
h _{BASE SUP} =	0,23 m		φ,175		Cables en 3° ca	ра	0	18,00 cm		
h _{CABEZA SUP} =	0,20 m				Cables en 4° ca	ра	0	24,00 cm		
h _{CABEZA INF} =	0,15 m	1,45 0,675								
h _{ALMA} =	0,68 m		0,225 0,20		Sección de Po	ostesad	lo Adop	otada:		
$\Delta b_{sup} =$	0,18 m	,	\vdash \mid \mid \mid			42 Ca	rdones	s de Ø 1/2 "		
$\Delta b_{inf} =$	0,23 m	0,225				72 00	nuones	5 GC 90 1/2		
		`				42 C	ordones	de Ø 1,27 cm		
h3' =	0,42 m	0,20								
h3" =	0,08 m		0,65							
h4" =	0,00 m		*							

6.5.3. Propiedades Mecánicas

Propiedad	SECCIÓN SIMPLE	SECCIÓN SIMPLE HOMOGÉNEA	SECCIÓN COMPUESTA	SECCIÓN COMP. HOMOGÉNEA
Area [m²]:	0,52728	0,56356	0,90643	0,94272
Xg [m]:	0,69513	0,67528	1,04136	1,01617
lg [m⁴]:	0,13069	0,14537	0,29835	0,32474
h inf. viga [m]:	0,69513	0,67528	1,04136	1,01617
h secc. Post. [m]:	0,59513	0,57528	0,94136	0,91617
h sup. viga [m]:	0,75487	0,77472	0,40864	0,43383
h sup. losa [m]:			0,60864	0,63383
W inf. viga [m³]:	0,18801	0,21527	0,28650	0,31957
W secc. Post. [m ³]:	0,21961	0,25269	0,31693	0,35445
W sup. viga [m³]:	0,17314	0,18764	0,73010	0,74854
W sup. losa [m³]:			0,49019	0,51234
S1 [m³]:		0,12574		
S2 [m³]:				0,24779
S3 [m³]:				0,19862
z [m]:		1,263		1,500

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.5.4. Verificación de las Tensiones de Servicio

	Fuerza de Postesado Inicial:	582,84 t
Datos de Postesado	Fuerza de Postesado 2º Etapa:	0,0 t
Datos de l'Ostesado	Pérdidas de Postesado Etapa 1:	5,00 %
	Pérdidas de Postesado Etapa 2:	10,00 %

					Esta	dos de C	arga				
Tensiones en Viga Postesada	Post. Inicial (t=0) S.S.	Post. Inicial (t=0) S.C.	Peso Propio Viga S.S.	Peso Propio Viga S.C.	Carga Perm. Losa S.S.	Carga Perm. Losa S.C.	Post. 2° Etapa S.C.	Carga Perm. Tab.	Pérd. V.C. Post. t=inf	Sobr. Móvil S.C.	Accion es de Coacci ón S.C.
	(1-a)	(1-b)	(2-a)	(2-b)	(3-a)	(3-b)	(4)	(5)	(6)	(7)	(8)
Tensión Sup. Losa		-3		27		22	0	8	3	50	
Tensión Inf. Losa		14		18		15	0	5	1	34	
Tensión Sup. Viga	-75	17	90	23	75	19	0	7	1	42	
Tensión A° Postesado	236	156	-67	-48	-56	-40	0	-14	-21	-90	
Tensión Inf. Viga	259	167	-79	-53	-65	-44	0	-16	-23	-100	

Etapa 1: Postesado Inio		so Prop	,	ga								ensiones sultantes [kg/cm²]	Control de ensiones kg/cm2]	Verificación
Coef. de Aplicación	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Ter resi [k	н-35 Т• []	Ve
Tensión Sup. Viga	-75	0	90	0	0	0	0	0	0	0	0	15	> -23,5	Verifica
Tensión A° Postesado	236	0	-67	0	0	0	0	0	0	0	0	169		
Tensión Inf. Viga	259	0	-79	0	0	0	0	0	0	0	0	179	< 170	Verifica

Etapa 2: Postesado Ini Pérdidas de Postesado V.		erdidas E 5,00	•	- Peso P	ropio de	e Viga +	Carga P	ermane	nte Losa	l		Tensiones esultantes [kg/cm²]	5 Control de ensiones [kg/cm2]	Verificación
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	בי	H-3	>
Tensión Sup. Viga	-72	0	90	0	75	0	0	0	0	0	0	94	> -23,5	Verifica
Tensión A° Postesado	224	0	-67	0	-56	0	0	0	0	0	0	101		
Tensión Inf. Viga	246	0	-79	0	-65	0	0	0	0	0	0	102	< 170	Verifica

Etapa 3: Postesado Inio 2° Etapa	cial + Pé	rdidas E	tapa 1 +	- Peso P	ropio de	e Viga +	Carga P	ermane	nte Losa	+ Poste	esado	sultantes ²]	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									nes resu [kg/cm²]	Control nes [kg/c	Verificación
Pérdidas de Postesado V.0	das de Postesado V.C. = 10,00 %												H-35 ensior	Ver
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	0,00	0,00	0,00	0,00	Tensiones [kg/	⊥ e	
Tensión Sup. Losa	0	0	0	0	0	0	0	0	0	0	0	0,0	> -20	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	0	0	0	0	0,0		
Tensión Sup. Viga	-72	0	90	0	75	0	0	0	0	0	0	94	> -23,5	Verifica
Tensión A° Postesado	224	0	-67	0	-56	0	0	0	0	0	0	101		
Tensión Inf. Viga	246	0	-79	0	-65	0	0	0	0	0	0	102	< 170	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

Etapa 4: Post. Inicial + 2 + Sobrecarga Permar		s Etapa	1 + P.P.	de Viga	+ Carga	Perm. I	₋osa + P	ost. 2° E	tapa + F	Pérdidas	Etapa	sultantes ^{[2}]	trol de kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									cm Cm	Contes [Verificación
Pérdidas de Postesado V.0	D. =	10,00	%									Tensiones [kg/	H-35 (ension	Ver
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,00	0,00	Ten	н Те	
Tensión Sup. Losa	0	0	0	0	0	0	0	8	3	0	0	11	< 100	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	5	1	0	0	6		
Tensión Sup. Viga	-72	0	90	0	75	0	0	7	1	0	0	102	< 150	Verifica
Tensión A° Postesado	224	0	-67	0	-56	0	0	-14	-21	0	0	66		
Tensión Inf. Viga	246	0	-79	0	-65	0	0	-16	-23	0	0	63	> -38	Verifica

Etapa 5: Post. Inicial + Sobrec. Perm. + 60% S		•		Viga + C	arga Pe	rm. Losa	a + Post	. 2° Etap	a + Pérd	I. Etapa	2 +	nes resultantes [kg/cm²]	itrol de [kg/cm2]	ión
Pérdidas de Postesado V.S													Cor	Verificación
Pérdidas de Postesado V.0	C. =	10,00	%									Sio	4-35 nsio	\ \
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	0,60	0,00	Ten	Te	
Tensión Sup. Losa	0	0	0	0	0	0	0	8	3	30	0	41	< 100	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	5	1	21	0	27		
Tensión Sup. Viga	-72	0	90	0	75	0	0	7	1	25	0	127	< 150	Verifica
Tensión A° Postesado	224	0	-67	0	-56	0	0	-14	-21	-54	0	12		
Tensión Inf. Viga	246	0	-79	0	-65	0	0	-16	-23	-60	0	4	> -38	Verifica

Etapa 6: Post. Inicial + Sobrec. Perm. + 100%		-		Viga + C	arga Pe	rm. Losa	+ Post	. 2° Etap	a + Pérd	. Etapa	2 +	sultantes ²]	ntrol de : [kg/cm2]	ión
Pérdidas de Postesado V.S	S. =	5,00	%									nes resu [kg/cm²]	Conti	Verificación
Pérdidas de Postesado V.0	didas de Postesado V.C. = 10,00 %													Veri
Coef. de Aplicación	0,95	0,00	1,00	0,00	1,00	0,00	0,90	1,00	1,00	1,00	0,00	Tensiones [kg/v	H-35 Tensio	
Tensión Sup. Losa	0	0	0	0	0	0	0	8	3	50	0	62	< 100	Verifica
Tensión Inf. Losa	0	0	0	0	0	0	0	5	1	34	0	41		
Tensión Sup. Viga	-72	0	90	0	75	0	0	7	1	42	0	144	< 150	Verifica
Tensión A° Postesado	224	0	-67	0	-56	0	0	-14	-21	-90	0	-24		
Tensión Inf. Viga	246	0	-79	0	-65	0	0	-16	-23	-100	0	-36	> -38	Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

6.5.5. Verificación del Corte y Cálculo de Armadura Pasiva

Factor de corrección Eurocódigo/Cirsoc =

1,00)
------	---

Etapa	1: Postesado I	nicial + Pe	eso Propio de \	/iga					
Verificaci	ón de Corte en	Verificaci	ón de Corte en	Verifica	ción de Corte		Cálculo de Arn	naduras Pa	sivas
5	Servicio	F	Rotura	Interfas	se Viga-Losa	Armad	dura Inferior	Armadı	ura Superior
$\tau_{xy} =$	0,0 kg/cm ²	$\tau_{rot} =$	0,00 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	103,4 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	$0.00 \text{ cm}^2/\text{m}$	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,00 cm ² /m						
$\sigma_{\text{II}} =$	103,4 kg/cm ²								

Etapa 2	2: Postesado I	nicial + Pé	érdidas Etapa 1	l + Peso P	Propio de Viga	+ Carga F	ermanente Lo	sa	
Verificació	ón de Corte en	Verificaci	ón de Corte en	Verifica	ción de Corte		Cálculo de Arm	naduras Pa	sivas
Se	ervicio	F	Rotura	Interfas	e Viga-Losa	Armad	dura Inferior	Armadı	ura Superior
$\tau_{xy} =$	0,0 kg/cm ²	$\tau_{rot} =$	0,00 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	98,3 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,00 cm ² /m						
σ _{II} =	98,3 kg/cm ²								

Etapa 3 Etapa	: Postesado I	nicial + Pé	érdidas Etapa 1	l + Peso F	Propio de Viga	+ Carga F	Permanente Lo	sa + Poste	esado 2°
Verificació	n de Corte en	Verificaci	ón de Corte en	Verifica	ción de Corte		Cálculo de Arm	naduras Pa	sivas
Se	ervicio	F	Rotura	Interfas	se Viga-Losa	Armad	dura Inferior	Armadı	ura Superior
$\tau_{xy} =$	0,0 kg/cm ²	$\tau_{rot} =$	0,00 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t
$\sigma_x =$	98,3 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,00 cm ² /m						
$\sigma_{\text{II}} =$	98,3 kg/cm ²								

	Etapa 4: Post. Inicial + Pérdidas Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérdidas Etapa 2 + Sobrecarga Permanente									
Verificació	ón de Corte en	Verificaci	ón de Corte en	Verifica	ción de Corte		Cálculo de Arm	aduras Pa	sivas	
Servicio Rotura				Interfas	se Viga-Losa	Armad	dura Inferior	Armadura Superior		
$\tau_{xy} =$	0,0 kg/cm ²	$\tau_{rot} =$	0,00 kg/cm ²	$\tau_{r int} =$	0,00 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t	
$\sigma_x =$	92,1 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	0,00 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²	
$\sigma_l =$	0,0 kg/cm ²	Fe _{est} =	0,00 cm ² /m							
$\sigma_{II} =$	92,1 kg/cm ²									

INTERCAMBIADOR EN ACCESO A SANTA ANA

-	Etapa 5: Post. Inicial + Pérd. Etapa 1 + P.P. de Viga + Carga Perm. Losa + Post. 2° Etapa + Pérd. Etapa 2 + Sobrec. Perm. + 60% Sobrecarga Móvil									
Verificació	ón de Corte en	Verificaci	ón de Corte en	Verifica	ción de Corte		Cálculo de Arm	naduras Pa	sivas	
S	ervicio	I	Rotura	Interfas	se Viga-Losa	Armad	dura Inferior	Armad	ura Superior	
$\tau_{xy} =$	1,9 kg/cm ²	$\tau_{rot} =$	2,87 kg/cm ²	$\tau_{r int} =$	0,81 kg/cm ²	Za _{inf} =	0,00 t	Za _{sup} =	0,00 t	
$\sigma_x =$	92,1 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	1,25 cm ² /m	Asp _{inf} =	0,00 cm ²	Asp _{sup} =	0,00 cm ²	
$\sigma_{l} =$	0,0 kg/cm ²	Fe _{est} =	0,55 cm ² /m							
$\sigma_{II} =$	92,1 kg/cm ²									

	6: Post. Inicial ⊦ 100% Sobred		tapa 1 + P.P. de il	e Viga + C	arga Perm. Lo	sa + Pos	t. 2° Etapa + P	érd. Etapa	2 + Sobrec.
Verificacio	ón de Corte en	Verificaci	ón de Corte en	Verifica	ción de Corte		Cálculo de Arr	naduras Pa	sivas
S	ervicio	ı	Rotura	Interfas	se Viga-Losa	Arma	dura Inferior	Armad	ura Superior
$\tau_{xy} =$	3,1 kg/cm ²	$\tau_{rot} =$	4,78 kg/cm ²	$\tau_{r int} =$	1,35 kg/cm ²	Za _{inf} =	34,04 t	Za _{sup} =	0,00 t
$\sigma_{x} =$	92,1 kg/cm ²	$tg \delta =$	0,40	Fe _{int} =	2,09 cm ² /m	Asp _{inf} =	14,18 cm ²	Asp _{sup} =	0,00 cm ²
$\sigma_{l} =$	-0,1 kg/cm ²	Fe _{est} =	0,91 cm ² /m						
$\sigma_{II} =$	92,2 kg/cm ²								

Armadura de	Corte	En Interfase		Armadura Info	erior	Armadura Su	perior
Se adopta:	Ø 10 c/ 25	Se adopta:	Ø 10 c/ 25	Se adopta:	8 Ø 16	Se adopta:	8 Ø 16
Adicional:	Ø 0 c/ 50	Adicional:	Ø 0 c/50				
(2	Estribos)	(2	Estribos)				
Fe _{est nec} =	0,91 cm ² /m	Fe _{est nec} =	2,09 cm ² /m	As nec =	14,18 cm ²	As _{nec} =	0,00 cm ²
Fe _{est adop} =	6,28 cm ² /m	Fe _{est adop} =	6,28 cm ² /m	As _{adop} =	16,08 cm ²	As _{adop} =	16,08 cm ²
	Verifica		Verifica		Verifica		Verifica

Referencias:

- (+) Tensión de compresión
- (-) Tensión de tracción

INTERCAMBIADOR EN ACCESO A SANTA ANA

7. VERIFICACION A ROTURA ESTADO LIMITE ULTIMO

INTERCAMBIADOR EN ACCESO A SANTA ANA

7. Verificación a Rotura en Estado Límite Último

7.1. Verificación del Acero Traccionado

```
7.1.1. Sección 5
```

```
A° Postesado
                 42 Ø 1/2 "= 42 × 0,987 cm<sup>2</sup> × 17,0 t/m<sup>2</sup> × 1,45 = 1021,8 tm
A° Inferior Pasiva 8 Ø 16 = 8 x 2,011 cm^2 x 4,2 t/m^2 x 1,52 = 102,3 tm
A° Superior Pasiva 8 Ø 16 = 8 x 2,011 cm<sup>2</sup> x 4,2 t/m<sup>2</sup> x 1,32 = 88,8 tm
                                                                M_{RESISTENTE} = 1213,0 \text{ tm}
                                                                M_{SOLICITANTE} = 678,5 \text{ tm}
                                                                Coef. Seg. = 1,79 > 1,75 Verifica
```

7.1.2. Sección 4

```
A° Postesado
                  42 Ø 1/2 " = 42 x 0,987 cm<sup>2</sup> x 17,0 t/m<sup>2</sup> x 1,41 = 995,4 tm
A° Inferior Pasiva 8 Ø 16 = 8 x 2,011 cm<sup>2</sup> x 4,2 t/m<sup>2</sup> x 1,52 = 102,3 tm
A° Superior Pasiva 8 Ø 16 = 8 x 2,011 cm<sup>2</sup> x 4,2 t/m<sup>2</sup> x 1,32 = 88,8 tm
                                                                    M_{RESISTENTE} = 1186,6 \text{ tm}
                                                                    M_{SOLICITANTE} = 638,3 \text{ tm}
```

Coef. Seg. = 1,86 > 1,75 Verifica

7.1.3. Sección 3

A° Postesado	42 Ø	1/2	" = 4	12 :	×	0,987 cm ²	×	17,0 t/m ²	×	1,30	=	916,1 tm	
A° Inferior Pasiva	8 Ø	16	=	8 ;	×	2,011 cm ²	×	4,2 t/m ²	×	1,52	=	102,3 tm	
A° Superior Pasiva	8 Ø	16	=	8 :	×	2,011 cm ²	×	4,2 t/m ²	×	1,32	=	88,8 tm	
								М	RESI	STENTE	=	1107,3 tm	
								Ms	SOLIC	CITANTE	=	511,8 tm	

Coef. Seg. = 2,16 > 1,75 Verifica

7.1.4. Sección 2

A° Postesado	42 Ø	1/2	" = 42	×	0,987 cm ²	×	17,0 t/m ²	×	1,11 =	784,0 tm	
A° Inferior Pasiva	8 Ø	16	= 8	×	2,011 cm ²	×	4,2 t/m ²	×	1,52 =	102,3 tm	
A° Superior Pasiva	8 Ø	16	= 8	×	2,011 cm ²	×	4,2 t/m ²	×	1,32 =	88,8 tm	
							Mi	RESI	STENTE =	975,2 tm	
							Mo		TANTE =	299.0 tm	

Coef. Seg. = 3,26 > 1,75 Verifica

7.1.5. Sección 1

A° Postesado	42 Ø	1/2	" =	42	×	0,987 cm ²	×	17,0 t/m ² ×	0,93	=	655,7 tm	
A° Inferior Pasiva	8 Ø	16	=	8	×	2,011 cm ²	×	4,2 t/m ² ×	1,52	=	102,3 tm	
A° Superior Pasiva	8 Ø	16	=	8	×	2,011 cm ²	×	4,2 t/m ² ×	1,32	= _	88,8 tm	
								M_{RE}	SISTENTE	=	846,9 tm	
								M_{SOI}	LICITANTE	=	85,3 tm	

Coef. Seg. = **9,93** > 1,75 **Verifica**

7.1.6. Sección Apoyo

A° Postesado	42 Ø	1/2	" = 42	×	0,987 cm ²	×	17,0 t/m ²	×	0,87	=	614,9 tm	
A° Inferior Pasiva	8 Ø	16	= 8	×	2,011 cm ²	×	4,2 t/m ²	×	1,52	=	102,3 tm	
A° Superior Pasiva	8 Ø	16	= 4	×	2,011 cm ²	×	4,2 t/m ²	×	1,32	=	44,4 tm	
							M	RESI	STENTE	=	761,7 tm	

M_{SOLICITANTE} = 85,3 tm

Coef. Seg. = **8,93** > 1,75 **Verifica**

INTERCAMBIADOR EN ACCESO A SANTA ANA

8. ESTIMACION DE LAS PERDIDAS DEL PRETENSADO

INTERCAMBIADOR EN ACCESO A SANTA ANA

8. Cálculo de pérdidas de postesado

Se determinan las pérdidas de postesado de acuerdo al CIRSOC 201.

8.1. Parámetros geométricos, condiciones de curado, tiempo de las cargas

Tiempo de curado:

Resistencia del Hº al finalizar el curado:

Edad del Hº al aplicar el postesado:

Edad efectiva del Hº al aplicar el postesado:

Edad efectiva del Hº al hormigonar la losa:

Temperatura media del Hº en servicio:

10 horas

Similar H-24 al aplicar el postesado

20 días

60 días

Temperatura media del Hº en servicio:

0 °C

Espesor ficticio de viga:

$$d_{ef} = k_{ef} \times 2 \times A / \mu$$

Donde:

A = sección de hormigónμ = perímetro expuesto al aire

	Sección Simple	Sección Compuesta
$A [m^2]$	0,527	0,906
μ [m]	4,53	8,43
2 × A / μ [m]	0,233	0,215
K _{ef}	1,5	1,5
d _{ef} [m]	0,349	0,323
d _{ef adoptado para cálculo} [m]		0,34

Sección Perímetro

Tabla 46, Estructura en general al aire libre

8.2. Pérdida de postesado por retracción

$$\varepsilon_{s,t} = \varepsilon_{s,0} (k_{s,t} - k_{s,t0})$$

Donde:

 $\varepsilon_{s,0}$ = valor básico de la retracción (Tabla 46, columna 4)

k_s = función de tiempo de la retracción, según la figura 61

t = edad efectiva del hormigón

t₀ = edad efectiva del H° a partir de donde se considera la retracción en las pérdidas

del CIRSOC 201, Tabla 46 y Figura 61:

$\varepsilon_{s,0}$ =	-0,00032 m/m	Tabla 46, Estructura en general al aire libre
$t_0 =$	20 días	Edad efectiva del hormigón al aplicar el postesado
t ₁ =	60 días	Edad del hormigón al momento de hormigonar la losa
$k_{s,t0} =$	0,16	Fig. 61
$k_{s,t1} =$	0,24	Fig. 61
$k_{\text{s,tinf}} =$	0,89	Fig. 61

INTERCAMBIADOR EN ACCESO A SANTA ANA

Cálculo de la deformación por retracción

 $\begin{array}{ll} \epsilon_{\text{s,t1}} = & -0,000026 \text{ m/m} \\ \epsilon_{\text{s,tinf}} = & -0,000234 \text{ m/m} \end{array}$

Cálculo de la pérdida de postesado por retracción

 $\Delta \sigma_{s,t1} = \text{Es} \times \epsilon_{s,t1} =$ -50 kg/cm $\Delta \sigma_{s,tinf} = \text{Es} \times \epsilon_{s,tinf} =$ -456 kg/cm

8.3. Pérdida de postesado por fluencia lenta

$$\varepsilon_{k,t} = \sigma_b / E_b x \phi_t$$

$$\varphi_t = \varphi_{f0} (k_{f,t} - k_{f,t0}) + 0.40 k_{v,(t-t0)}$$

Donde:

σ_{bm}= tensión media en el hormigón (pp+perm) correspondiente a la fibra ubicada en el baricentro de las armaduras postesadas

 E_b = módulo de elasticidad del H^o a 28 días = 340000 kg/cm² (H-35)

 ϕ_t = factor de fluencia

 ϕ_{f0} = coeficiente de fluencia básico según Tabla 46, columna 3

k_f = función tiempo de fluencia según Figura 59

 k_v = coeficiente que tiene en cuenta la variación del acortamiento elástico diferido en función del tiempo según la Figura 60

t = edad efectiva del hormigón para el tiempo "t"

 t_0 = edad efectiva del hormigón al aplicar el postesado

Cálculo de la tensión media del hormigón "ob"

Tensiones en la fibra media del paquete de cables de postesado para cargas permanentes

	Sección central [kg/cm²]	Sección extrema [kg/cm²]	Tensión media [kg/cm²]
$\sigma_{b,t0}$	105,67	51,78	78,73
$\sigma_{b,tinf}$	46,19	42,53	44,36
$\sigma_{b,tmedio}$	75,93	47,16	61,54

A tiempo cero (Etapa 1) A tiempo infinito (Etapa 4)

 $\sigma_{\rm b} = 61,54 \text{ kg/cm}^2$

del CIRSOC 201, Tabla 46 y Figuras 59 y 60:

 $\begin{array}{lll} \phi_{f0} = & \textbf{2,00} & \text{Tabla 46, Estrucutra en general al aire libre} \\ k_{f,t0} = & \textbf{0,50} & \text{Fig. 59} \\ k_{f,t1} = & \textbf{0,70} & \text{Fig. 59} \\ k_{f,tinf} = & \textbf{1,45} & \text{Fig. 59} \\ k_{v,(t1-t0)} = & \textbf{0,54} & \text{Fig. 60} \\ k_{v,(tinf,t0)} = & \textbf{1,00} & \text{Fig. 60} \end{array}$

INTERCAMBIADOR EN ACCESO A SANTA ANA

Cálculo de los coeficientes de fluencia

 $\phi_{t1} = 0,62$ $\phi_{tinf} = 2,30$

Cálculo de la deformación por fluencia

 $\begin{array}{lll} \epsilon_{k,t1} = & -0,000112 & \text{m/m} \\ \epsilon_{k,tinf} = & -0,000416 & \text{m/m} \end{array}$

Cálculo de la pérdida de postesado por fluencia

 $\Delta\sigma_{k,t1} = E_s \times \epsilon_{k,t1} = -217 \text{ kg/cm}^2$ $\Delta\sigma_{k,tinf} = E_s \times \epsilon_{k,tinf} = -812 \text{ kg/cm}^2$

8.4. Pérdida de postesado por relajación del acero

Acortamiento elástico $A^0P^0=$ 600 kg/cm² Pérdida de tensión por acortamiento elástico Tensión inicial del $A^0P^0=$ 14060 kg/cm² Tensión media acero post. - acort. Elástico % tensión de rotura = 74 % 19000 kg/cm² tensión de rotura Relajación del acero $t_0=$ 0,6 % del acero de postesado Relajación del acero $t_{inf}=$ 2,4 % Manual de Acindar para Acero Postesado "BR"

Cálculo de la pérdida por relajación:

 $\Delta \sigma_{z,t1} = -90 \text{ kg/cm}^2$ $\Delta \sigma_{z,tinf} = -337 \text{ kg/cm}^2$

8.5. Pérdida de postesado combinada por retracción, fluencia lenta y relajación

Se considera un coeficiente de reducción de 0.90 por simultaneidad de los tres fenómenos

 t_1 t_{inf} -45 kg/cm² -410 kg/cm² Retracción $\Delta \sigma_s =$ Fluencia -196 kg/cm² -731 kg/cm² $\Delta \sigma_k =$ -304 kg/cm² Relajación $\Delta \sigma_z =$ -81 kg/cm² -1444 kg/cm² Sub-total $\Delta \sigma =$ -322 kg/cm²

INTERCAMBIADOR EN ACCESO A SANTA ANA

8.6. Pérdidas por acortamiento elástico

$$\Delta \sigma_{a,t0} = E_s \times \epsilon_{b,t0} = n \sigma_{b,t0}$$

Donde:

n = relación de módulos al aplicar el postesado

 $\sigma_{b,t0}$ = tensión en el hormigón correspondiente a la fibra ubicada en el baricentro de las armaduras postesadas al tiempo de aplicar el tesado

m = número de cables de postesados

 $E_s = 1950000 \text{ kg/cm}^2$

 $E_{b,t0} = \qquad \textbf{355000} \text{ kg/cm}^{2} \qquad \textbf{H-24,5 al aplicar el postesado}$

n = 5,5

 $\sigma_{b,t0}$ = 79 kg/cm²

Cálculo de la pérdida de postesado por acortamiento elástico

 $\Delta \sigma_{\rm a,t0} = 432 \ \rm kg/cm^2$ Adoptado = 600 kg/cm²

8.7. Pérdidas totales de los items 7.2., 7.3., 7.4. (sin acortamiento elástico)

g/cm²
g/cm²
6
6
7

Pérdidas de postesado totales = 15,0 %

INTERCAMBIADOR EN ACCESO A SANTA ANA

9. ARMADURAS PASIVAS COMPLEMENTARIAS

INTERCAMBIADOR EN ACCESO A SANTA ANA

9. Verificación de Armadura Pasiva en Apoyo

9.1. Verificación de armadura pasiva en apoyo

Esfuerzo de Corte en apoyo = 85,6 t

$$Fe_{1} = \frac{V \times v}{\beta_{s}} \times \frac{v}{h} = 0,40$$

$$Fe_{1} = \frac{85,60 \times 1,75}{4,2 \text{ t/cm}^{2}} \times 0,40 = 14,27 \text{ cm}^{2}$$

$$Se \text{ adopta:} \qquad 8 \text{ L Ø 16} = 16,08 \text{ cm}^{2}$$

+ 3 horquillas Ø 20 = $\frac{18,85 \text{ cm}^2}{34,93 \text{ cm}^2}$ Verifica

9.2. Armadura lateral por arrancamiento del extremo de viga

$$T = 0.20 \times V = 17.1 \text{ t}$$

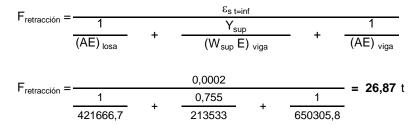
$$Fe_2 = (V/\mu + T) \times v/\beta_s$$

$$Fe_2 = (85.6/1.4 + 17.12) \times 1.75/4.2 = 32.61 \text{ cm}^2$$

$$Se \text{ adopta:} \qquad 8 \text{ L Ø } 16 = 16.08 \text{ cm}^2$$

$$+ 3 \text{ horquillas Ø } 20 = \frac{18.85 \text{ cm}^2}{34.93 \text{ cm}^2} \text{ Verifica}$$

9.3. Conectores de corte entre viga y losa


9.3.1. Retracción diferencial de la losa del tablero

Retracción diferencial de la losa con respecto a la viga

$$\begin{split} \epsilon_{s \; t=inf} &= \; 0,0002 \\ E_{losa \; t=inf} &= \; 1/3 \; x \; 2.75 \; x \; 10^6 \; t/m^2 = \\ E_{viga \; t=inf} &= \; 1/3 \; x \; 3.70 \; x \; 10^6 \; t/m^2 = \\ &= \; 1233333 \; t/m^2 \end{split}$$
 Area de losa = 0,460 m² (Losa colaborante) Area de viga = 0,527 m² (Viga simple)
$$W_{sup} \; viga = \; 0,173 \; m^3 \; (Viga \; simple) \\ Y_{sup} \; viga = \; 0,755 \; m \; (Viga \; simple) \end{split}$$

INTERCAMBIADOR EN ACCESO A SANTA ANA

Fuerza de corte a nivel de interfase viga-losa

9.3.2. Efectos térmicos

Diferencia de temperatura entre viga y losa

Fuerza de corte a nivel de interfase viga-losa

$$F_{\text{retracción}} = \frac{\alpha \times \Delta T}{\frac{1}{(AE)_{losa}}} + \frac{Y_{sup}}{(W_{sup} E)_{viga}} + \frac{1}{(AE)_{viga}}$$

$$F_{\text{retracción}} = \frac{0,00005}{\frac{1}{1265000}} + \frac{0,755}{588660} + \frac{1}{1792735} = 19,01 \text{ t}$$

INTERCAMBIADOR EN ACCESO A SANTA ANA

9.3.4. Armadura de interfase por efectos de flexión y coacción

Longitud de transferencia $L_t = 10,35 \text{ m}$

Fe interfase (por coacción) =
$$\frac{45,87 \text{ t} \times 1,75}{10.35 \text{ m} \times 4.2 \text{ t/cm}^2}$$
 = 1,85 cm²/m

Fe _{interfase} (por co	$pacción) = \frac{10,35 \text{ m} \times 4,2}{10,35 \text{ m} \times 4,2}$	t/cm ² = 1,85 cm ² /m	
	Sección 1	Sección 2	Sección 3
Fe interfase (por coacción) =	1,85 cm ² /m	1,85 cm ² /m	1,85 cm ² /m
Fe interfase (por flexión) =	10,37 cm ² /m	8,89 cm ² /m	6,59 cm ² /m
Fe interfase (total)=	12,22 cm²/m	10,74 cm ² /m	8,43 cm ² /m
Armadura de Estribos =	15,71 cm ² /m	15,71 cm ² /m	12,57 cm ² /m
	1 Ø 10 c/ 10	1 Ø 10 c/ 10	1 Ø 10 c/ 12,5
Armadura Adicional =	0,0 cm ² /m	0,0 cm ² /m	0,0 cm ² /m
Fe interfase adoptada =	15,71 cm²/m Verifica	15,71 cm²/m Verifica	12,57 cm²/m Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

10. VERIFICACION DE LAS VIGAS TRANSVERSALES

INTERCAMBIADOR EN ACCESO A SANTA ANA

10.1. Viga Transversal Extrema

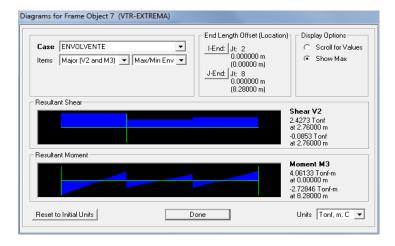
10.1.1. Datos de Materiales y Geometría

Hormigón: H-21

 $\beta_r = 1750 \text{ t/m}^2$

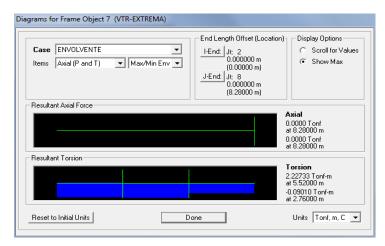
a) Plano Horizontal b) Plano Vertical Ancho d = 1,20 m Ancho b = **0,30** m Altura b = 0.30 m Altura d = **1,20** m Recubrimiento = 0,03 m Coef. Seg. = 1,75 $M_{pos} = 0,00$ tm (Cara Lateral) $M_{pos} = 3,00$ tm (Cara Inferior) M_{neq} = **0,00** tm (Cara Lateral) $M_{neg} = 2,51$ tm (Cara Superior) $Q_{max} = 0,00 t$ (Corte Horizontal) $Q_{max} = 2,10 t$ (Corte Vertical)

Acero: ADN-420


 $N_{min} = 0,00 t$

 $\beta_r = 42000 \text{ t/m}^2$

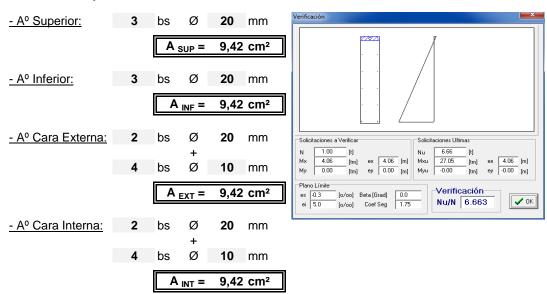
10.1.2. Esfuerzos Resultantes (Salidas de Software)


 $N_{max} = 0,00 t$

- Envolvente de Momento Flector y Esfuerzo de Corte (Plano Vertical)

INTERCAMBIADOR EN ACCESO A SANTA ANA

- Envolvente de Esfuerzo Normal y Momento Torsor



10.1.3. Verificación a Corte

10.1.4. Verificación a Flexo-Tracción Oblicua

Armadura Mín. Cara Traccionada: 9,03 cm²
Armadura Mín. por Cara: 2,46 cm²

Armadura Adoptada:

INTERCAMBIADOR EN ACCESO A SANTA ANA

10.1.5. Armadura de Torsión

Torsor,
$$Mt_{m\acute{a}x} =$$
 1,00 tm

 $b_k = 1,14 \text{ m}$

 $d_k = 0.24 \text{ m}$

 $A_k = 0.27 \text{ m}^2$

 $t_T = 0.05 \text{ m}$

 $\tau_t = 3,81 \text{ kg/cm}^2$

 $A_e = 0.76 \text{ cm}^2/\text{m}$

 $AI = 0.76 \text{ cm}^2/\text{m}$

10.1.6. Verificación del Corte Total

$$\tau_0 + \tau_t =$$

45,1

234,0 $\tau_{adm} = 1.3 \ \tau_{02} =$

t/m²

t/m²

⇒ Verifica

10.1.7. Detalle de Armaduras Longitudinales Adicionales por Torsión

Armadura Longitudinal Superior

 $F_{longT} x b_m = 0,87 cm^2$

- A^o Superior:

0 bs Ø **20** mm Ft $SUP = 0.00 \text{ cm}^2$

Tensiones de referencia H-21:

 $\tau_{012} = 75,0 \text{ t/m}^2$

 $\tau_{02} = 180,0 \text{ t/m}^2$

 $\tau_{03} = 300,0 \text{ t/m}^2$

Armadura Longitudinal Inferior

 $F_{longT} x b_m = 0.87 cm^2$

- Aº Inferior: **0** bs Ø **20** mm

0,00 cm² Ft _{INF} =

Armadura Longitudinal Cara Externa

 $F_{lonaT} x d_m = 0.18 cm^2$

- Aº Cara Externa: **0** bs Ø

10 mm

Ft $EXT = 0.00 \text{ cm}^2$

Armadura Longitudinal Cara Interna

 $F_{longT} \times d_m = 0,18 \text{ cm}^2$

- Aº Cara Interna: **0** bs Ø **10** mm

 $Ft_{INT} = 0.00 \text{ cm}^2$

INTERCAMBIADOR EN ACCESO A SANTA ANA

10.1.8. Armadura Total de Estribos (Corte + Torsión)

a) Plano Horizontal

Sección Mín. de Estribos = 12,0 cm²/m

Sección de Estribos Necesaria:

 $F_{estQ} + 2 \times F_{estT} =$

1,5 cm²/m

Sección de Estribos Adoptada: 15.71 cm²

- Estribos: Ø 10 mm

c/ **15** cm Ramas 2

Ganchos Ø 10 mm c/ **30** cm Ramas 2

Verifica

b) Plano Vertical

Sección Mín. de Estribos =

3,8 cm²/m

Sección de Estribos Necesaria:

 $F_{estQ} + 2 \times F_{estT} =$

1,9 cm²/m

Sección de Estribos Adoptada: 10,47 cm²

Ramas

- Estribos:

Ø 10 mm c/ **15** cm Ramas 2

> Ø mm c/ 15 cm

Verifica

10.1.9. Verificación de la fisuración

Ancho fisura admisible v_m =

Diámetro de la armadura, Ø =

Cuantía de armadura F_{zw} =

Coeficiente K_B = Ancho de viga b = Altura zona traccionada d =

Armadura mínima =

Armadura adoptada =

0.2 mm

20 mm

0,94 Fig. 2.20, pp 31, Tomo IV, Leonhardt

0,65

0,30 m

0,18 m 5,08 cm²

9,42 cm² Verifica

10.1.10. Transmisión del corte por fricción entre la VT y la VP lateral (Según Código ACI)

Corte: $V_{ult} = (Vu^2 + (Mu/d)^2)^{1/2} =$

Aº Long pasante, A_{vf} =

Coef. fricción, µ =

Coeficiente φ =

Resistencia Corte, V_d =

4,44 t

(Coef. 1.75 Sob. Móvil)

9,42 cm²

1,0 Hormigón 2da etapa contra hormigón endurecido con rugosidad intencional

0,85 Rugosidad intencional

33,65 t

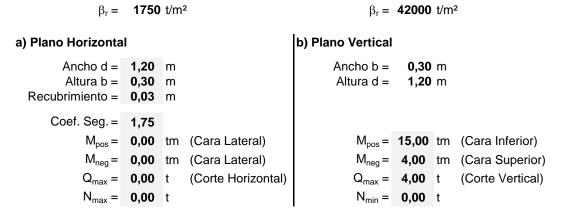
Verifica

INTERCAMBIADOR EN ACCESO A SANTA ANA

10.1.11. Esquema de Armadura de Viga Transversal Extrema

Cara Interna
Cara Externa
Cara Bas Ø20mm
Cara Externa
Abs Ø10mm
Abs Ø10mm

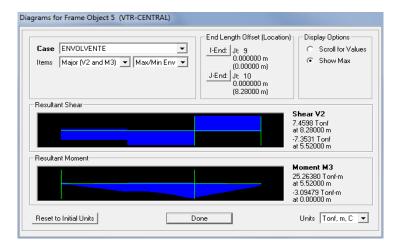
Estribos Horizontales: Ø10mm c/ 15cm (2 Ramas)


Estribos Verticales: Ø10mm c/ 15cm (2 Ramas)

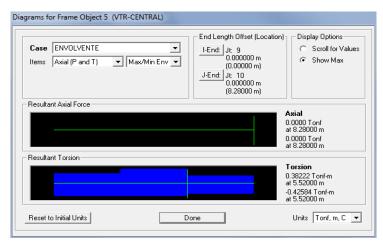
INTERCAMBIADOR EN ACCESO A SANTA ANA

10.2. Viga Transversal Central

10.2.1. Datos de Materiales y Geometría


Hormigón: H-21

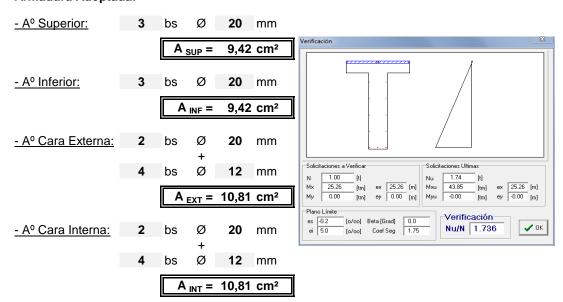
Acero: ADN-420


10.2.2. Esfuerzos Resultantes (Salidas de Software)

- Envolvente de Momento Flector y Esfuerzo de Corte (Plano Vertical)

INTERCAMBIADOR EN ACCESO A SANTA ANA

- Envolvente de Esfuerzo Normal y Momento Torsor



10.2.3. Verificación a Corte

10.2.4. Verificación a Flexo-Tracción Oblicua

Armadura Mín. Cara Traccionada: 9,03 cm²
Armadura Mín. por Cara: 2,46 cm²

Armadura Adoptada:

INTERCAMBIADOR EN ACCESO A SANTA ANA

10.2.5. Armadura de Torsión

Torsor,
$$Mt_{m\acute{a}x} = \begin{tabular}{ll} \b$$

 $d_k = 0.24 \text{ m}$

 $A_k = 0.27 \text{ m}^2$

 $t_T = 0.05 \text{ m}$

 $\tau_t = 1,64 \text{ kg/cm}^2$ $A_e = 0,33 \text{ cm}^2/\text{m}$

 $AI = 0,33 \text{ cm}^2/\text{m}$

Tensiones de referencia H-21:

 $\tau_{012} = 75,00 \text{ t/m}^2$

 $\tau_{02} = 180,00 \text{ t/m}^2$

 $\tau_{03} = 300,00 \text{ t/m}^2$

10.2.6. Verificación del Corte Total

$$\tau_0 + \tau_t =$$

29,8 234,0

t/m²

 $\tau_{adm} = 1.3 \ \tau_{02} =$

t/m² ⇒ Verifica

10.2.7. Detalle de Armaduras Longitudinales Adicionales por Torsión

Armadura Longitudinal Superior

 $F_{longT} x b_m = 0,37 cm^2$

- Aº Superior: **0** bs Ø **20** mm

Ft $SUP = 0.00 \text{ cm}^2$

Armadura Longitudinal Inferior

 $F_{longT} x b_m = 0,37 cm^2$

- Aº Inferior: **0** bs Ø **20** mm

 $Ft_{INF} = 0.00 \text{ cm}^2$

Armadura Longitudinal Cara Externa

 $F_{longT} x d_m = 0.08 cm^2$

- Aº Cara Externa: **0** bs Ø **12** mm

Ft _{EXT} = 0,00 cm²

Armadura Longitudinal Cara Interna

 $F_{longT} x d_m = 0,08 cm^2$

- A^o Cara Interna: 0 bs \emptyset 12 mm Ft _{INT} = 0,00 cm²

INTERCAMBIADOR EN ACCESO A SANTA ANA

10.2.8. Armadura Total de Estribos (Corte + Torsión)

a) Plano Horizontal b) Plano Vertical

Sección Mín. de Estribos = 12,0 cm²/m | Sección Mín. de Estribos = 3,8 cm²/m

Sección de Estribos Necesaria: Sección de Estribos Necesaria:

 $F_{estQ} + 2 x F_{estT} =$ 0,7 cm²/m $F_{estQ} + 2 x F_{estT} =$ 1,3 cm²/m

Sección de Estribos Adoptada: 15,71 cm² Sección de Estribos Adoptada: 10,47 cm²

Ramas

10.2.9. Verificación de la fisuración

Ancho fisura admisible $v_m = 0,2 \text{ mm}$ Diámetro de la armadura, $\emptyset = 20 \text{ mm}$

Cuantía de armadura F_{zw} = **0,94** Fig. 2.20, pp 31, Tomo IV, Leonhardt

Coeficiente $K_B =$ 0,65

Ancho de viga b = 0,30 m

Altura zona traccionada d = 0,18 m

Armadura mínima = 5,08 cm²

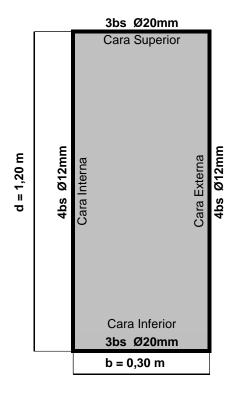
Ramas 2

Armadura adoptada = 9,42 cm² Verifica

10.2.10. Transmisión del corte por fricción entre la VT y la VP lateral (Según Código ACI)

Corte: $V_{ult} = (Vu^2 + (Mu/d)^2)\frac{1}{2} = 14,33 t$ (Coef. 1.75 Sob. Móvil)

 A° Long pasante, $A_{vf} =$ 9,42 cm²


Coef. fricción, μ = **1,0** Hormigón 2da etapa contra hormigón endurecido con rugosidad intencional

Coeficiente φ = **0,85** Rugosidad intencional

Resistencia Corte, $V_d =$ 33,65 t *Verifica*

INTERCAMBIADOR EN ACCESO A SANTA ANA

10.2.11. Esquema de Armadura de Viga Transversal Central

Estribos Horizontales: Ø10mm c/ 15cm (2 Ramas)

Estribos Verticales: Ø10mm c/ 15cm (2 Ramas)

INTERCAMBIADOR EN ACCESO A SANTA ANA

11. DIAGRAMAS DE ENVOLVENTES DE ESFUERZOS

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

11. Diagrama de envolventes de esfuerzos

Sección	Dist. [m]	Q [tn]	$\tau = Qi / (b_0 \times z)$	$ au_{\text{rot}}$	$ au_{máx}$
Apoyo	0,00	85,60	23,06	23,06	23,06
1	1,00	80,62	21,72	12,26	21,72
2	3,88	66,25	17,85	27,83	27,83
3	7,76	46,90	12,63	20,26	20,26
4	11,64	27,55	7,42	12,58	12,58
5	15,53	8,20	2,21	4,78	4,78

11.1. Armaduras

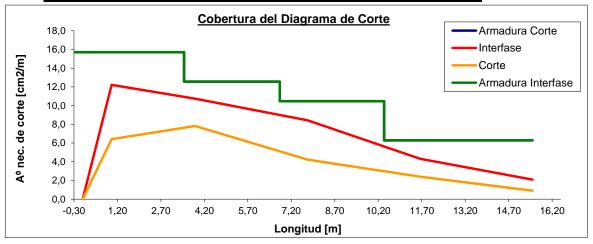
,	<u> </u>	
	Corte	Interfase
Sección 0:	1 Ø 10 c/ 10,0	1 Ø 10 c/ 10,0
Seccion 0.	1 Ø 0 c/ 10,0	1 Ø 0 c/ 25
Sección 1:	1 Ø 10 c/ 10,0	1 Ø 10 c/ 10,0
Seccion 1.	1 Ø 0 c/ 20,0	1 Ø 0 c/ 20
Sección 2:	1 Ø 10 c/ 10,0	1 Ø 10 c/ 10,0
Seccion 2.	1 Ø 0 c/ 20,0	1 Ø 0 c/ 20,0
Sección 3:	1 Ø 10 c/ 12,5	1 Ø 10 c/ 12,5
	1 Ø 0 c/ 25,0	1 Ø 0 c/ 25
Sección 4:	1 Ø 10 c/ 15	1 Ø 10 c/ 15
	1 Ø 0 c/ 30	1 Ø 0 c/ 30
Sección 5:	1 Ø 10 c/ 25	1 Ø 10 c/ 25
	1 Ø 0 c/ 50	1 Ø 0 c/ 50

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

11.2. Verificación cobertura de diagrama de corte

Datos:


Fe interfase (por coacción) = 1,85 cm²/m
Altura útil de la viga = 1,45 m

11.2.1. Tabla de sección necesaria de corte

Sección	Distancia [m]	Fe corte necesaria [cm²/m]	Fe interfase nec. [cm²/m]
Apoyo	0,00	0	0,00
1	1,00	6,42	12,22
2	3,88	7,82	10,74
3	7,76	4,22	8,43
4	11,64	2,40	4,32
5	15,53	0,91	2,09

11.2.2. Tabla de sección de corte adoptada

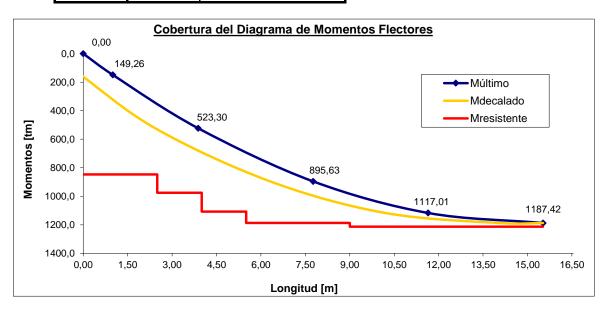
Sección	Distancia [m]	Fe corte	[cm²/m]	Fe Interfase	[cm²/m]
Extremo	-0,30	15,71		15,71	
A1	1,00	15,71		15,71	
E1	1,00	15,71		15,71	
A2	2,50	15,71		15,71	
E2	2,50	15,71		15,71	
А3	3,50	15,71		15,71	
E3	3,50	12,57		12,57	
A4	6,80	12,57		12,57	
E4	6,80	10,47		10,47	
A5	10,40	10,47		10,47	
E5	10,40	6,28		6,28	·
	15,53	6,28		6,28	

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

11.3. Verificación cobertura de diagrama de momento

Datos:


Coeficiente de seguridad = 1,75
Altura útil de la viga = 1,45 m

11.3.1. Tablas de solicitaciones últimas

Sección	Distancia	Momento último	Distancia Decalaje	M _{decalado}
	[m]	[tm]	[m]	[tm]
Apoyo	0,00	0,00		
1	1,00	149,26	-0,30	115,92
2	3,88	523,30	2,43	523,30
3	7,76	895,63	6,31	895,63
4	11,64	1117,01	10,19	1117,01
5	15,53	1187,42	14,08	1187,42
6		1187,42	15,53	1187,42

11.3.2 Tabla de resistencias últimas

Sección	Distancia [m]	Mr,u [tm]
Apoyo	-0,30	846,94
1	1,00	846,94
2	3,88	975,18
3	7,76	1107,32
4	11,64	1186,60
5	15,53	1213,03

PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

11.4. Datos de Postesado

Fuerza de tiro inicial, $V_0 =$ 614 t Fuerza tiro inicial en centro viga, $V_{0,CL} =$ 583 t Fuerza de tiro a tiempo infinito, $V_{inf} =$ 495 t

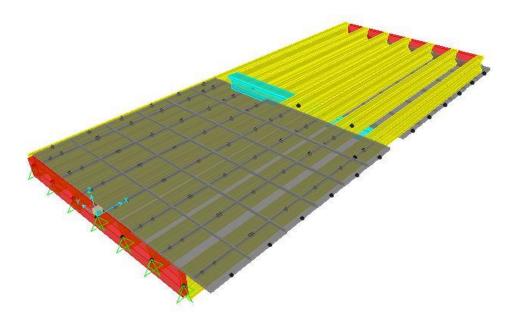
11.5. Materiales

Hormigón: H-35

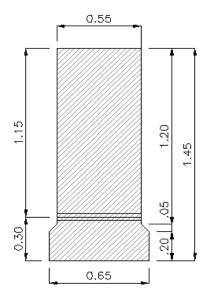
Al soltar los cables: $\sigma'_{bm} = 240 \text{ kg/cm}^2$

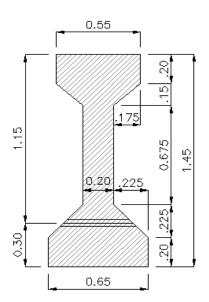
Acero postesado: Cordón 1 x 7 C-1900 G270 "BR"

Acero en barras: Acero ADN-420
Recubrimiento: 2,5 cm


PROVINCIA DE MISIONES

INTERCAMBIADOR EN ACCESO A SANTA ANA

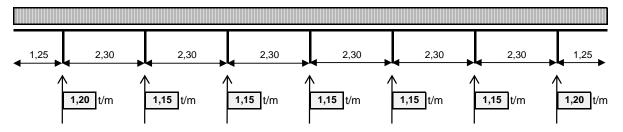

12. Modelo Numérico. Distribución de Cargas y Sobrecargas.


12.1. Modelo Numérico del Tablero

Se ha realizado un modelo numérico del tablero del puente con la geometría y propiedades mecánicas de las secciones según proyecto.

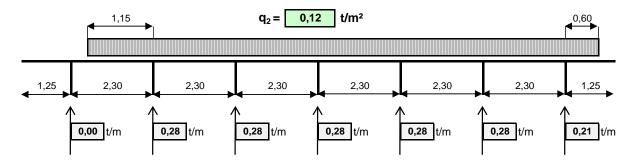
12.1.1. Geometría de la Viga Longitudinal

PROVINCIA DE MISIONES

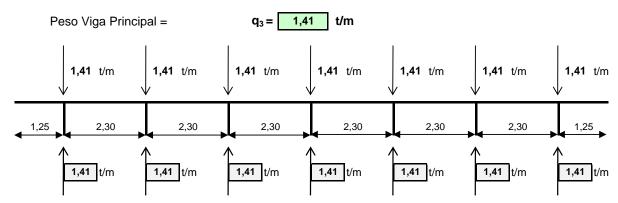

INTERCAMBIADOR EN ACCESO A SANTA ANA

12.2. Cargas Permanentes

12.2.1. Peso Propio Losa Tablero

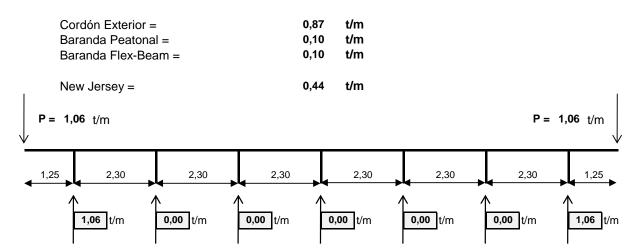

Ancho de Losa de Tablero = 16,06 m Espesor de Losa = 0,20 m Peso Específico H^0 A^0 = 2,50 t/m^3

 $q_1 = 0,50 t/m^2$



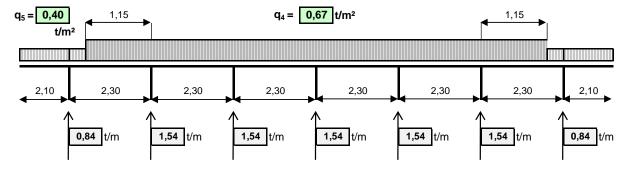
12.2.2. Peso Propio Carpeta de Rodamiento

Ancho de Carpeta de Rodamiento = 7,30 m Espesor de Carpeta de Rodamiento = 0,05 m Peso Específico = 2,40 t/m³


12.2.3. Peso Propio Vigas Principales

PROVINCIA DE MISIONES

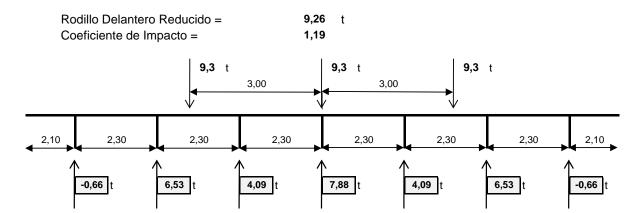
INTERCAMBIADOR EN ACCESO A SANTA ANA


12.2.4. Pesos Propios Varios (Barandas + Cordones de Hormigón)

12.3. Sobrecargas Moviles

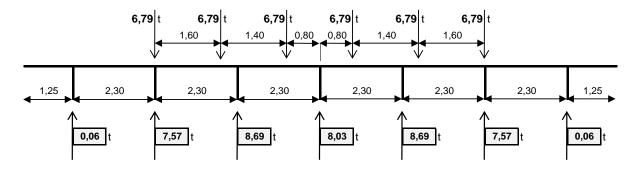
12.3.1. Multitud Compacta en Calzada

Ancho de Calzada =	7,30	m
Ancho de Vereda =	2,10	m
Multitud Compacta en Calzada =	0,56	t/m²
Multitud Compacta en Vereda =	0,40	t/m²
Coeficiente de Impacto =	1,19	



PROVINCIA DE MISIONES

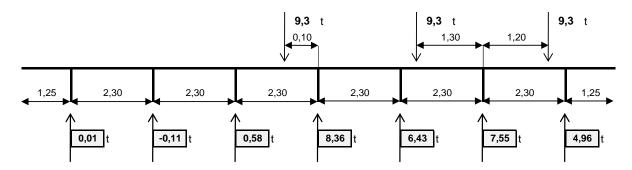
INTERCAMBIADOR EN ACCESO A SANTA ANA


12.3.2. Aplanadoras Centradas en Calzada (Aplanadoras Separadas por 1.00m)

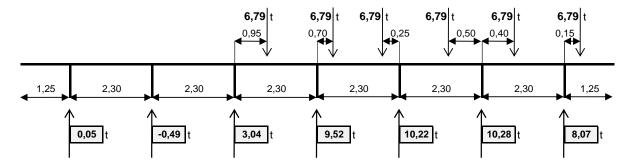
Rodillos Delanteros

Rodillos Traseros

Rodillo Trasero Reducido = 13,57 t Coeficiente de Impacto = 1,19



PROVINCIA DE MISIONES


INTERCAMBIADOR EN ACCESO A SANTA ANA

12.2.4. Aplanadoras Excéntricas (Borde de Aplanadora en Borde de Cordón, Separadas 0,00m)

Rodillos Delanteros

Rodillos Traseros

