Show simple item record

dc.contributor.authorCattena, Carlos J.
dc.contributor.authorBustos Marún, Raúl A.
dc.contributor.authorFernández Alcázar, Lucas J.
dc.contributor.authorNozaki, Daijiro
dc.contributor.authorPastawski, Horacio M.
dc.date.accessioned2022-09-01T18:17:47Z
dc.date.available2022-09-01T18:17:47Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/11086/28416
dc.description.abstractDecoherent transport in mesoscopic and nanoscopic systems can be formulated in terms of the D'Amato–Pastawski (DP) model. This generalizes the Landauer–Büttiker picture by considering a distribution of local decoherent processes. However, its generalization for multi-terminal set-ups is lacking. We first review the original two-terminal DP model for decoherent transport. Then, we extend it to a matrix formulation capable of dealing with multi-terminal problems. We also introduce recursive algorithms to evaluate the Green's functions for general banded Hamiltonians as well as local density of states, effective conductances and voltage profiles. We finally illustrate the method by analyzing two problems of current relevance. (1) Assessing the role of decoherence in a model for phonon lasers (SASER). (2) Obtaining the classical limit of giant magnetoresistance from a spin-dependent Hamiltonian. The presented methods should pave the way for computationally demanding calculations of transport through nanodevices, bridging the gap between fully coherent quantum schemes and semiclassical ones.en
dc.format.mediumImpreso; Electrónico y/o Digital
dc.language.isoenges
dc.relationDe la versión publicada: https://doi.org/10.1088/0953-8984/26/34/345304
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceISSN 0953-8984
dc.subjectGeneralized Landauer-Büttiker equationsen
dc.subjectD'Amato-Pastawski modelen
dc.subjectGiant magnetoresistanceen
dc.subjectSaseren
dc.titleGeneralized multi-terminal decoherent transport: recursive algorithms and applications to SASER and giant magnetoresistanceen
dc.typearticlees
dc.description.versionsubmittedVersiones
dc.description.filFil: Cattena, Carlos J. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.es
dc.description.filFil: Bustos Marún, Raúl A. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.es
dc.description.filFil: Fernández Alcázar, Lucas J. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.es
dc.description.filFil: Pastawski, Horacio M. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.es
dc.description.filFil: Bustos Marún, Raúl A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.es
dc.description.filFil: Nozaki, Daijiro. Dresden University of Technology. Institute for Materials Science. Max Bergmann Center of Biomaterials; Germanyen
dc.description.filFil: Pastawski, Horacio M. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina.es
dc.description.filFil: Pastawski, Horacio M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.es
dc.journal.cityLondreses
dc.journal.countryReino Unidoes
dc.journal.editorialIOP PUBLISHING LTDes
dc.journal.number34es
dc.journal.pagination345304-345318es
dc.journal.referatoCon referato
dc.journal.titleJournal of Physics: Condensed Matteres
dc.journal.volume26es
dc.description.fieldFísica de los Materiales Condensados
dc.identifier.doihttps://doi.org/10.48550/arXiv.1311.2231


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International