

DIRECTORA

Dra. Raquel M. Gleiser

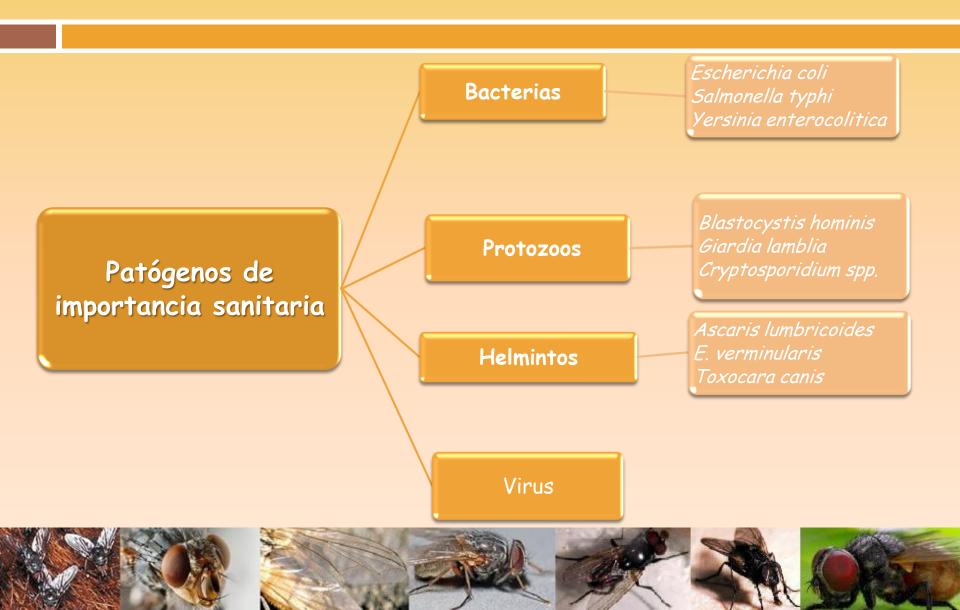
TRIBUNAL EXAMINADOR

Dr. Raúl H. Marin Dra. María Paula Zunino Dr. Mariano P. Grilli

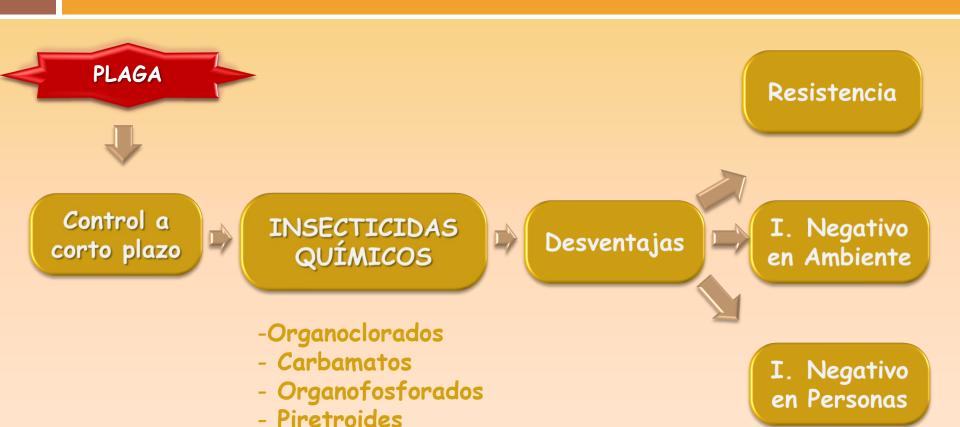
Córdoba – Argentina 2012 Lugar de realización: C.R.E.A.N. (Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales), CONICET, U.N.C.

María Belén de Dio

Córdoba – Argentina 2012 Lugar de realización: C.R.E.A.N. (Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales), CONICET, U.N.C.


INTRODUCCIÓN

Las moscas sinantrópicas:


- . Afectan la calidad de vida y salud de la población
- Relevancia económica en explotaciones avícolas y ganaderas
- Contaminan productos animales y transmiten gran variedad patógenos
- Transportan mecánicamente microorganismos sobre superficie corporal, en cavidad intestinal y luego lo diseminan en regurgitaciones y heces

Control Cultural

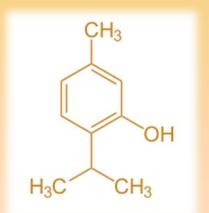
- · Secado de guano
- Ventilación
- Higiene
- Manejo de residuos

Control Biológico

- · Parasitoides
- Patógenos
- · Predadores

Control Químico

- Uso racional
- Compatibles con las prácticas


TIMOL

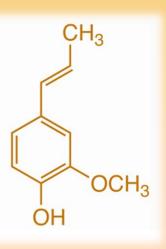
2-isopropil-5-metilfenol

- Sustancia cristalina, incolora, con un agradable olor característico
- •Naturalmente en los aceites esenciales del:

Orégano (Origanum vulgare L.)

- Propiedades antisépticas
- Usos : perfumería, saborizantes, preparaciones farmacéuticas, cosméticas, repelente, fungicidas, desinfectantes en medicina.

ISOEUGENOL


2-Metoxi-4-propenilfenol

- · Líquido aceitoso, color amarillo, olor dulce, picante y floral.
- · Naturalmente en los aceites esenciales de:

Albahaca (Ocinum basilicum L.)

Nuez moscada (Myristica spp.)

 Como fragancia el isoeugenol se incorpora a productos de higiene personal, perfumes, lociones crema, jabones y detergentes.

Cría de Codornices

Actividad Creciente en Argentina

OBJETIVOS

Objetivo general

Contribuir a la generación de compuestos con potencial efecto insecticida o detrimente para el desarrollo de moscas en residuos de la industria avícola.

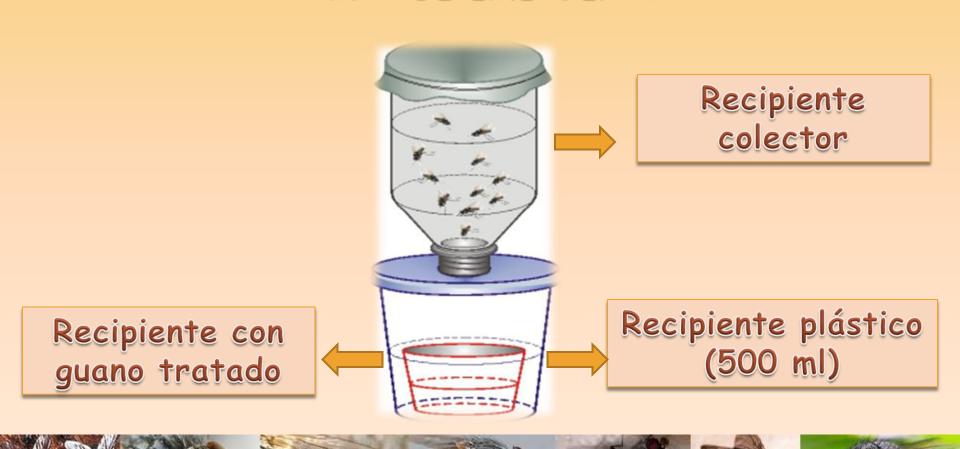
OBJETIVOS

Objetivos específicos

- Determinar si el rociado de guano de codornices con los componentes de aceites esenciales isoeugenol o timol afecta el número de moscas emergentes.
- Analizar si el rociado de guano de codornices con los componentes de AE alteran los tiempos de desarrollo de las moscas respecto a desechos no tratados.
- Evaluar si el tratamiento con estos componentes afectan la composición de especies (riqueza y diversidad) de moscas emergentes.

HIPÓTESIS

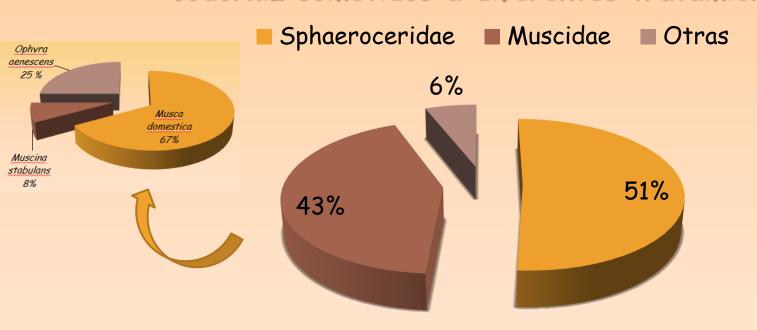
Debido a las propiedades insecticidas del timol e isoeugenol, los desechos de las aves tratados con estos compuestos mostrarán una producción de moscas significativamente menor y la emergencia de adultos se retrasará respecto a los desechos de aves sin tratar.



MATERIALES Y MÉTODOS

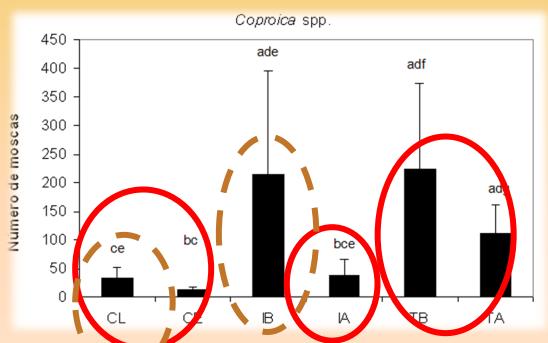
TRAMPA DE EMERGENCIA

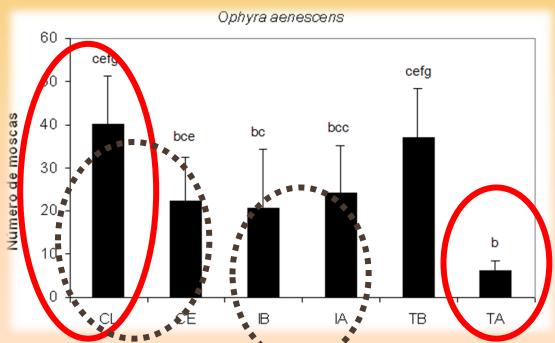
EMERGENCIA DE LAS MOSCAS

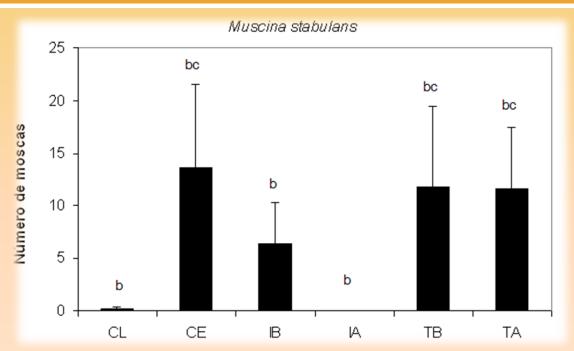

- Las trampas de emergencia se monitorearon diariamente (40 días)
- Se registraron emergencia de adultos, se fueron removiendo y conservando en alcohol 80%.
- Se determinaron taxonómicamente en laboratorio .


RESULTADOS

Total de dípteros emergentes de guano de codorniz sometidos a diferentes tratamientos




Musca domestica emergentes de guano tratado con timol o isoeugenol en concentración bajas (5 \times 10⁻⁵ Mol) o altas (4 \times 10⁻⁴ Mol), y sus respectivos controles (tratados con etanol o sin tratar).


Coproica spp. emergentes de guano tratado con timol o isoeugenol en concentración bajas (5 x 10^{-5} Mol) o altas (4 x 10^{-4} Mol), y sus respectivos controles (tratados con etanol o sin tratar).

Ophyra aenescens emergentes de guano tratado con timol o isoeugenol en concentración bajas (5 \times 10⁻⁵ Mol) o altas (4 \times 10⁻⁴ Mol), y sus respectivos controles (tratados con etanol o sin tratar).

Muscina stabulans emergentes de guano tratado con timol o isoeugenol en concentración bajas (5 \times 10⁻⁵ Mol) o altas (4 \times 10⁻⁴ Mol), y sus respectivos controles (tratados con etanol o sin tratar).

Musca domestica					
Control s Tratar		20,8 ± 2,9 23,6 ± 2,3 30,8 ± 0,8	14	24,6 ± 3,1aB 28,4 ± 3,6aB 35,6 ± 1,3bB	23,0 ± 0,0a 23,0 ± 0,0a 23,0 ± 0,0a
Control c Etanol	on	$22,7 \pm 2,1$ $26,3 \pm 3,0$ $31,0 \pm 2,4$	12	18,0 ± 1,2aA 19,0 ± 1,5aA 20,6 ± 1,8aA	20,5 ± 1,3a 21,5 ± 1,0a 22,0 ± 1,4a
Isoeugeno Baja	[]	21,4 ± 1,8 27,2 ± 3,2 32,0 ± 3,0	16	16,4 ± 0,8 aA 19,0 ± 1,8 abA 22,6 ± 3,2 bAC	20,0 ± 0,0a 21,0 ± 1,4a 21,0 ± 1,4a
Isoeugeno Alta	[]	23,7 ± 3,6 28,7 ± 4,0 30,3 ± 3,9	14	24,0 ± 4,7aB 25,8 ± 5,4aB 26,8 ± 5,7aC	
ТВ	25 50 75	$25,2 \pm 3,0$ $29,8 \pm 2,1$ $34,0 \pm 2,3$	12,7±0,3aAB 12,7±0,3aA 13,0±0,6aD	19,0 ± 1,1 aA 20,0 ± 1,1 abA 23,4 ± 2,5 bAC	19,6 ± 2,3a 20,0 ± 2,0a 22,6 ± 5,5a
Timol [Alta	1	21,4 ± 2,3 24,2 ± 3,3 28,4 ± 3,2	17	20,4 ± 3,7 aA 20,4 ± 3,7 aA 21,2 ± 3,5 aA	19,0 ± 1,0a 19,7 ± 0,6a 20,3 ± 1,2a

Coproica spp					
25 %	22,5	,0 ± 0,0aAB 4,4 ± 0,7bB 5,2 ± 1,0bB 2,2 ± 0,2aA 2,4 ± 0,2aA 2,6 ± 0,4aA	24,6 ± 3,1aB 28,4 ± 3,6aB 35,6 ± 1,3bB 18,0 ± 1,2aA 19,0 ± 1,5aA 20,6 ± 1,8aA	$23,0 \pm 0,0a$ $23,0 \pm 0,0a$ $23,0 \pm 0,0a$ $20,5 \pm 1,3a$ $21,5 \pm 1,0a$ $22,0 \pm 1,4a$	
50 %	26,6	5,0 ± 2,0aC 5,3 ± 2,3aC 7,3 ± 3,4bB 3,6 ± 0,4aB 1,2 ± 0,5aBC 5,2 ± 0,6bB	16,4 ± 0,8 aA 19,0 ± 1,8 abA 22,6 ± 3,2 bAC 24,0 ± 4,7aB 25,8 ± 5,4aB 26,8 ± 5,7aC	20,0 ± 0,0a 21,0 ± 1,4a 21,0 ± 1,4a - - -	
75 %	31,1	,7 \pm 0,3aAB 2,7 \pm 0,3aA 3,0 \pm 0,6aD 7,0 \pm 0,0aD 7,0 \pm 0,0aC	19,0 ± 1,1 aA 20,0 ± 1,1 abA 23,4 ± 2,5 bAC 20,4 ± 3,7 aA 20,4 ± 3,7 aA 21,2 ± 3,5 aA	$19,6 \pm 2,3a$ $20,0 \pm 2,0a$ $22,6 \pm 5,5a$ $19,0 \pm 1,0a$ $19,7 \pm 0,6a$ $20,3 \pm 1,2a$	

Ophyra aenescens					
Control sin Tratar	20,8 ± 2,9 23,6 ± 2,3 30,8 ± 0,8	13,0 ± 0,0aAB 14,4 ± 0,7bB 15,2 ± 1,0bB	30	23,0 ± 0,0a 23,0 ± 0,0a 23,0 ± 0,0a	
Control con Etanol	22,7 ± 2,1 26,3 ± 3,0 31,0 ± 2,4	12,2 ± 0,2aA 12,4 ± 0,2aA 12,6 ± 0,4aA	19	$20,5 \pm 1,3a$ $21,5 \pm 1,0a$ $22,0 \pm 1,4a$	
25 IB 50 75	21,4 ± 1,8 27,2 ± 3,2 32,0 ± 3,0	15,0 ± 2,0aC 15,3 ± 2,3aC 17,3 ± 3,4bB	16,4 ± 0,8 aA 19,0 ± 1,8 abA 22,6 ± 3,2 bAC	$20,0 \pm 0,0a$ $21,0 \pm 1,4a$ $21,0 \pm 1,4a$	
Isoeugenol [] Alta	23,7 ± 3,6 28,7 ± 4,0 30,3 ± 3,9	13,6 ± 0,4aB 14,2 ± 0,5aBC 15,2 ± 0,6bB	26	- - -	
Timol [] Baja	25,2 ± 3,0 29,8 ± 2,1 34,0 ± 2,3	12,7 ± 0,3aAB 12,7 ± 0,3aA 13,0 ± 0,6aD	21	19,6 ± 2,3a 20,0 ± 2,0a 22,6 ± 5,5a	
Timol [] Alta	21,4 ± 2,3 24,2 ± 3,3 28,4 ± 3,2	17,0 ± 0,0aD 17,0 ± 0,0aD 17,0 ± 0,0aC	21	19,0 ± 1,0a 19,7 ± 0,6a 20,3 ± 1,2a	

		N	luscina s	tabulans		
		25	20,8 ± 2,9	13,0 ± 0,0aAB	24,6 ± 3,1aB	23,0 ± 0,0a
	CL	50	23,6 ± 2,3	14,4 ± 0,7bB	28,4 ± 3,6aB	23,0 ± 0,0a
		75	30,8 ± 0,8	15,2 ± 1,0bB	35,6 ± 1,3bB	$23,0 \pm 0,0a$
		25	22,7 ± 2,1	12,2 ± 0,2aA	18,0 ± 1,2aA	20,5 ± 1,3a
	CE	50	26,3 ± 3,0	12,4 ± 0,2aA	19,0 ± 1,5aA	21,5 ± 1,0a
		75	$31,0 \pm 2,4$	12,6 ± 0,4aA	20,6 ± 1,8aA	22,0 ± 1,4a
		25	21,4 ± 1,8	15,0 ± 2,0aC	16,4 ± 0,8 aA	20,0 ± 0,0a
	IB	50	27,2 ± 3,2	15,3 ± 2,3aC	19,0 ± 1,8 abA	21,011,4a
		75	32,0 ± 3,0	17,3 ± 3,4bB	22,6 ± 3,2 bA/	21,0 ± 1,4a
ı	Tsoquo	enal []	23,7 ± 3,6	13,6 ± 0,4aB	24,0 ± 4,7a	-
ı	Isoeug		28,7 ± 4,0	14,2 ± 0,5aBC	25,8 ± 5,4a 3	-
	Alta		30,3 ± 3,9	$15,2 \pm 0,6$ bB	26,8 ± 5,7aC	
		25	25,2 ± 3,0	12,7 ± 0,3aAB	19,0 ± 1,1 aA	15,0 ± z,3a
1	ТВ	50	29,8 ± 2,1	12,7 ± 0,3aA	20,0 ± 1,1 abA	20,0 ± 2,0a
		75	34,0 ± 2,3	13,0 ± 0,6aD	23,4 ± 2,5 bAC	22,6 ± 5,5a
		25	21,4 ± 2,3	17,0 ± 0,0aD	20,4 ± 3,7 aA	19,0 ± 1,0a
	TA	50	24,2 ± 3,3	17,0 ± 0,0aD	20,4 ± 3,7 aA	19,7 ± 0,6a
		75	28,4 ± 3,2	17,0 ± 0,0aC	21,2 ± 3,5 aA	20,3 ± 1,2a

Diversidad de moscas emergentes

Tratamiento		Índices de 🛚	Piediversidad	
Tratamiento	Riqueza (r)	Shannon	Simpson	Bulla
CL	3,6			
CE	4,6			
IB	3,2			
IA	3,2			

DISCUSIÓN Y CONCLUSIÓN

- El rociado con timol o isoeugenol no impidió el desarrollo de *Musca domestica, Ophyra aenescens* y *Coproica* spp. Posiblemente tampoco su ovipostura.
- Si se observaron diferencias entre tratamientos en el número de moscas emergentes para algunas de estas especies.

• En M. domestica y O. aenescens del tratamiento con timol emergieron menos moscas respecto al guano control.

¿Actividad insecticida?

- Del guano rociado con timol emergieron más *Coproica* spp. que de los controles.
- M. stabulans no difirió significativamente entre tratamientos.

Diferencias observadas pueden deberse a :

Las dosis utilizadas.

Los métodos de aplicación.

Las capacidades de desintoxicación de grupos de insectos.

La persistencia de los mismos según condiciones ambientales.

- El isoeugenol no mostró un patrón consistente.
- Bajo efecto del isoeugenol sobre el número de moscas emergentes

¿Poco tóxico?.

EFECTO DEL ROCIADO DE GUANO DE CODORNICES CON COMPONENTES DE ACEITES ESENCIALES SOBRE LA EMERGENCIA DE MOSCAS (DIPTERA)

- En *M. domestica* el tratamiento con timol demoró los tiempos de desarrollo respecto a los controles.
- En O. aenescens el tratamieto con timol no demoró los tiempos de desarrollo respecto al guano no tratado.
- En *M. domestica y O. aenescens* el isoeugenol no afectó mayormente los tiempos de desarrollo respecto al control no tratado.
- M. domestica y O. aenescens emergieron más rápido del control tratado con etanol.

EFECTO DEL ROCIADO DE GUANO DE CODORNICES CON COMPONENTES DE ACEITES ESENCIALES SOBRE LA EMERGENCIA DE MOSCAS (DIPTERA)

- En *Coproica* spp. y *M. stabulans* no se detectaron diferencias significativas entre tratamientos en tiempos de desarrollo.
- En general, para todas las especies la emergencia de moscas de un mismo tratamiento fue sincrónica.
- El control con etanol fue más rico en especies emergentes que el control no tratado y los dos tratamientos de isoeugenol, con valores intermedios en los tratamientos con timol.

EFECTO DEL ROCIADO DE GUANO DE CODORNICES CON ACEITES ESENCIALES SOBRE LA EMERGENCIA DE MOSCAS (DIPTERA)

- La disminución de emergencia de *M. domestica* frente al timol es un resultado alentador, y la prolongación de su desarrollo resaltaría el efecto tóxico de este para *M. domestica*.
- Si bien O. aenescens fue una de las especies frecuentes, se considera que no representaría un problema para la salud pública.
- La mayor emergencia de *Coproica* spp. de las muestras tratadas con timol podría tener menor relación con este compuesto y ser una consecuencia indirecta del menor desarrollo de *M. domestica*.

EFECTO DEL ROCIADO DE GUANO DE CODORNICES CON COMPONENTES DE ACEITES ESENCIALES SOBRE LA EMERGENCIA DE MOSCAS (DIPTERA)

En conclusión

El rociado de guano de Coturnix coturnix con timol o isoeugenol afecta de forma variable el número de moscas emergentes.

Reduciendo el timol el número de *M. domestica* y de *O. aenescens*, prolongando los tiempos de desarrollo de la primera y acortando el tiempo de emergencia de la segunda, y aumentando la producción de *Coproica* spp.

AGRADECIMIENTOS

A la Dra. Raquel Gleiser por aceptarme para realizar esta tesina bajo su dirección.

Su apoyo y confianza en mi trabajo y su capacidad para guiar mis ideas.

A mis abuelos,
Hilda y Egardo por su
incondicionalidad.

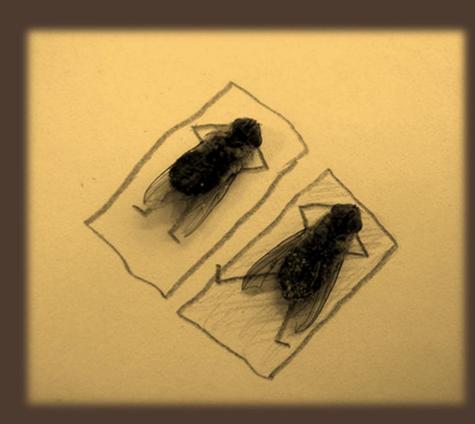
Por enseñarme que la honestidad, la perseverancia y el esfuerzo son los caminos para lograr objetivos.

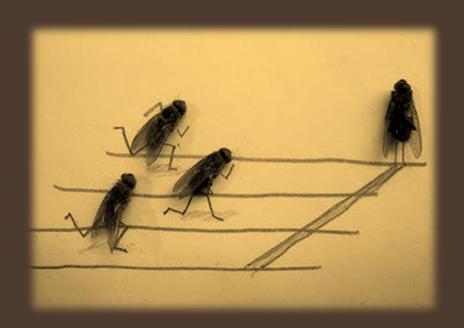

Un agradecimiento profundo y sentido a mis padres, Lorna y Mario por brindarme un hogar cálido y generoso.

Sin su apoyo, colaboración y confianza habría sido imposible llegar a este momento.

A mi esposo, Ramiro por su cariño, comprensión y constante estímulo.

Por su paciencia, entendimiento y por sobre todo por enseñarme a enfrentar mis miedos.




A mis amigas de la vida por ser mis secuaces, mi segunda familia.

Por estar siempre presentes en los buenos y malos momentos.

A mis compañeros de Facultad, especialmente a Sabrina.

Por horas de estudios, charlas interminables y por sobre todo amiga.

A todas esas personas que formaron parte de mi vida, caminaron conmigo y ayudaron a que hoy termine este ciclo.

GRACIAS !!!

