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We define the center of mass and spin of an isolated system in general relativity. The resulting
relationships between these variables and the total linear and angular momentum of the gravitational system
are remarkably similar to their Newtonian counterparts, though only variables at the null boundary of an
asymptotically flat spacetime are used for their definition. We also derive equations of motion linking their
time evolution to the emitted gravitational radiation. The results are then compared to other approaches. In
particular, one obtains unexpected similarities as well as some differences with results obtained in the post-
Newtonian literature. These equations of motion should be useful when describing the radiation emitted by
compact sources, such as coalescing binaries capable of producing gravitational kicks, supernovas, or
scattering of compact objects.
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I. INTRODUCTION

The main goal of this work is to define the notions of
center of mass and intrinsic angular momentum for isolated
systems and obtain their dynamical evolution when gravi-
tational radiation is emitted. The evolution of isolated
systems and its gravitational radiation is naturally described
using the notion of asymptotically flat spacetimes. Thus, our
approach will be based on this mathematical framework.
Both in Newtonian theory and special relativity, one can

find a particular trajectory with the property that the mass
dipole moment vanishes at this trajectory. This special
trajectory is called the center of mass. If one would like to
generalize this concept to GR, then the goal would be to
find a world line in spacetime with analogous properties
to the one described in Newtonian gravity or special
relativity. The first step is therefore to provide an adequate
definition of mass dipole moment in GR.
One also expects that any suitable definition of center of

mass should be related to other global quantities like the
Bondi mass M or momentum Pi by the relation Pi ¼
MVi þ radiation terms. However, in contrast to Newton’s
theory of gravity, the Bondi mass or momentum will not be
conserved for an isolated system since gravitational waves
carry away mass and momentum. Therefore, one also
expects that the velocity of the center of mass will change
when radiation is emitted.
It is also worth mentioning that there is a qualitative

difference between the geometrical meaning of the dipole
mass moment in Newtonian gravity and in special rela-
tivity. Whereas in Newton theory the mass moment is a
vector, in special relativity it is a component of the so-called
mass dipole moment–angular momentum two-form [1].
Thus, to implement this program one should generalize the
mass dipole moment–angular momentum two-form to GR,
and then define the center of mass world line as the special
place where the mass dipole vanishes. As a bonus one

should obtain the intrinsic angular momentum evaluating
the nonvanishing part of this generalized two-form on the
center of mass world line.
However, as one can see in the literature, there are many

definitions of the angular momentum–mass dipole moment
for isolated systems in general relativity. An incomplete list
of authors includes Dray and Streubel [2], Bramson [3],
Geroch [4], Helfer [5], Moreschi [6], Penrose [7], and
Winicour [8]. Although a recent living review [9] offers a
complete survey of themain results in the fieldwith themain
motivations and technical aspects of each definition, the fact
that there is no agreement among these alternative
approaches reflects the difficulty of the subject. However,
there is a common link between them that can be used as a
starting point: all the approaches agree for quadrupole
radiation.
This fact has been used in the Adamo-Newman-

Kozameh [10] approach. By restricting themselves to
quadrupole radiation data, it is shown that both the center
of mass and angular momentum are defined from an
asymptotic Weyl scalar whose l ¼ 1 part of the spherical
harmonic decomposition transforms as a four-dimensional
two-form under the action of the homogeneous Lorentz
algebra of the BMS group, the available kinematic geom-
etry of null infinity [10]. Moreover, the ANK formulation is
the only one that gives equations of motion for both the
center of mass and spin of an isolated system. In the ANK
approach the center of mass and spin are, respectively, the
real and imaginary parts of a complex world line defined in
the solution space of the good cut equation. The geomet-
rical interpretation of this space is that each solution
describes a congruence of asymptotically shear free null
geodesics reaching null infinity. The novelty of the for-
mulation lies in the definition of the spin as an intrinsic
property of this complex world line and thus it can be used
to give a classic definition of a gravitational particle
with spin.
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From our perspective, however, the ANK approach has
some points that deserve further attention
(1) the angular momentum is only defined for quadru-

pole radiation and cannot be extended to generic
radiation since it does not give the expected results
when the space time has a rotational symmetry.
Thus, one must generalize this definition to space-
times with arbitrary gravitational radiation, and
include the case when the spacetime is axially
symmetric,

(2) By assumption, the approach is based on null
congruences with vanishing shear at null infinity.
However, at null infinity the shear of the future null
cone of any point does not vanish. This follows from
the optical equations since a nonvanishing Weyl
curvature on the null cone induces nonvanishing
shear. Thus, the center of mass world line defined on
the solution space of asymptotically vanishing
shears does not correspond to a world line of the
underlying spacetime.

(3) The spin is defined as the imaginary part of a
complex world line instead of simply evaluating
the angular momentum at the center of mass.

In this work we present new definitions of center of mass
and spin using the available tools on asymptotically flat
spacetimes. In these new definitions we try to answer the
above issues by constructing one parameter (Newman-
Unti) foliations of null infinity that are related to null cones
cuts from points of the spacetime and have nonvanishing
shear at null infinity. The spin is simply the angular
momentum at the center of mass and the center of mass
is the place where the mass dipole moment vanishes.
Since there are many technical details, some of them

involved, it is better to outline here the main ideas of our
approach. In this way the reader can have a broad picture
without the technical complications.
We first introduce the notion of null cone cuts as the

intersection of the future null cones from points xa of the
spacetime with null infinity. We then define the regularized
null cone cuts (or RNC cuts) as the Huygens part of the null
cone cuts. By construction the RNC cuts are smooth two-
surfaces at null infinity that parametrically depend on the
points of the spacetime. If the points xaðuÞ describe a world
line the RNC cuts yield a special Newman-Unti (NU)
family of cuts.
We then introduce the notion of linkages [8,11] on this

special family of NU cuts to define the dipole mass
moment/angular momentum. The main reason for this
choice is that the linkage is a linear generalization of the
Komar formula which automatically yields the standard
Komar definition when the spacetime has a Killing field
associated to a rotational symmetry. By restricting the
linkages to the RNC cuts we fix one of the main problems
in the linkage formulation. Instead of having a definition of
angular momentum with a supertranslation freedom we

restrict the freedom to the RNC family, a special four-
dimensional family of Newman-Unti cuts, where the
notions of dipole mass moment and angular momentum
are introduced (see Ref. [9], page 30). Although there are
still infinite degrees of freedom, one for each world line, the
freedom is analogous to the choice of origins in the
Newtonian definition of angular momentum.
Finally, by demanding that on one RNC cut the mass

dipole term vanishes we select a special point associated
with this cut that by definition is called center of mass.
Evaluating the angular momentum on this special RNC cut
yields the intrinsic angular momentum or spin.
Note that the notion of a null cone cut as the intersection

of null cones from points of the spacetime with null infinity
is purely geometric. Note also that, as pointed out by
Geroch and Winicour, the linkages also offer a coordinate
free definition. Thus in principle our construction solely
depends on a family of NU cuts and it is independent on the
coordinates used for its description.
As it was also done in the ANK formulation, this

approach yields explicit equations of motion for the center
of mass and spin when gravitational radiation is emitted
from the source. The equations of motion of both for-
mulations can be compared and, as one would expect, they
are different. Given that there is available in the literature
models of binary coalescence based on the post-Newtonian
approximation it is also of great interest to compare our
equations with these models. It is surprising to find out that
the time evolution of the total mass, linear and angular
momentum in our approach agrees with the PN formulation
up to octupole terms in the gravitational radiation.
It is left for future work to analyze other definitions of

dipole mass moment and angular momentum, that yield the
Komar formula for axial symmetry. In this sense one should
mention that the Gallo-Moreschi definition [12], following
a completely different approach, gives exactly the same
formula as the linkages on Bondi sections. (The old
definition had some freedom and the original way to fix
it yielded a different result [13].)
Since the Moreschi approach also defines a preferred

family of Bondi cuts (called nice sections) it is worth
making a few remarks about them. The nice sections are
found by demanding that the l ≥ 2 part of the super-
momentum at null infinity vanishes when restricted to those
cuts. The nice section equation is obtained and the center of
mass frame is a special solution of the equation. The nice
section equation is different from either the null cone
cut equation at a local level or the regularized null cone cut
equation at a global level on the sphere. Where the cut
equations have (at least) a linear dependence on the Bondi
shear, the nice section equation has a quadratic dependence.
In addition, since the RNC cut equation yield monopara-
metric families of NU cuts whose areas are time dependent
and in general are not unit spheres, the nice sections are by
construction Bondi surfaces and thus have unit area.
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Furthermore, the solutions to the nice sections are specially
adapted to get rid of unwanted supermomentum terms and
thus define unambiguously the notion of center of mass and
intrinsic angular momentum at each Bondi time. On the
other hand, our formulation is based on a special monop-
arametric family of cuts at null infinity together with a
coordinate free approach to find the notion of center of
mass and intrinsic angular momentum. In the end however,
one uses a Bondi coordinate system to obtain explicit
description of the approach. Therefore, it is worthwhile to
examine in more detail both approaches and find similar-
ities and differences in a future work.
The technical material needed for this work is presented

in Secs. II–IV 2. Sec. V is the main part of this work. We
give definitions of center of mass and spin, derive the
equations of motion and compare our results with other
approaches. The work ends with some concluding remarks.

II. FOUNDATIONS

In this section, we introduce several of the key ideas and
the basic tools that are needed for our later discussion.

A. Asymptotic flatness and Iþ

We first introduce some mathematical framework. In
particular, we introduce the notion of an isolated source of
gravitational radiation realized by defining the so-called
asymptotically flat spacetimes. Bondi, Sachs, and collab-
orators in the 1960s [14,15] used a canonical coordinate
system where mass, momentum, and gravitational radiation
could be defined. Later, Penrose gave a geometrical
definition using a rescaled metric together with a null
boundary [16]. Both approaches can be found in the review
of Newman and Tod [17]. We follow Newman and Tod in
the following definitions.
A spacetime ðM; gabÞ is called asymptotically flat if the

curvature tensor vanishes as infinity is approached along
the future-directed null geodesics of the spacetime. These
geodesics end up at what is referred to as future null infinity
Iþ, the future null boundary of the spacetime. These ideas
can be formalized by giving the following.
Definition: a future null asymptote is a manifold M̂ with

boundary Iþ ≡ ∂M̂ together with a smooth Lorentzian
metric ĝab, and a smooth function Ω on M̂ satisfying the
following:
(1) M̂ ¼ M ∪ Iþ
(2) On M, ĝab ¼ Ω2gab with Ω > 0
(3) At Iþ, Ω ¼ 0, n�a ≡ ∂aΩ ≠ 0 and ĝabn�an�b ¼ 0.

We assume Iþ to have topology S2 × R. A Newman-Unti
(N-U) coordinate system [18] is introduced in the neigh-
borhood of Iþ as follows. We first give a regular one-
parameter family of closed two-dimensional cuts at null
infinity, labelled by the parameter u which meet every
generator once. The stereographic coordinates ðζ; ζ̄Þ label
each generator on the cut. We then construct a family of

null surfaces whose intersection with I are these NU cuts,
and use the affine parameter r on each null surface as our
last coordinate.
Since Iþ is a null hypersurface in the rescaled manifold

M̂ the restriction of the rescaled metric on this null
boundary takes the form

dŝ2 ¼ 4dζdζ̄
P2

: ð1Þ

with Pðu; ζ; ζ̄Þ a strictly positive function. With the choice
of Ω ¼ r−1 as the conformal factor, the physical metric is
then given as

ds2 ¼ 4r2dζdζ̄
P2

: ð2Þ

B. Null tetrads and operators on the sphere

Associated with the NU coordinates ðu; r; ζ; ζ̄Þ, there is a
null tetrad system denoted by (l�a,n�a,m�

a,m̄�
a). The first null

tetrad covector l�a is defined as [17]

l�a ¼ ∇au; ð3Þ

Thus, la� is a null vector tangent to the null surface
u ¼ const. The remaining null vectors are then prescribed
at Iþ and then parallel propagated inwards along la�. The
second tetrad vector n�a is tangent to the null generators of
Iþ and normalized to l�a

na�l�a ¼ 1: ð4Þ

The null tetrad at Iþ is finally completed by selecting two
complex null vectors at the intersection of u ¼ const and
Ω ¼ 0. The complex vectorma� orthogonal to la� and na� is
normalized to

m�
am̄�a ¼ −1: ð5Þ

The null tetrad for the spacetime is then constructed from
parallel propagation along la�. The spacetime metric is
given by

gab ¼ l�an�b þ n�al�b −m�
am̄�

b − m̄�
am�

b: ð6Þ

(In this work the letters a, b, c, d take values 0,1,2,3.) For
more details on the asymptotic form of the metric in NU
coordinates, see Ref. [17].
Since there is a gauge freedom in the choice of conformal

factor Ω one can freely choose the function Pðu; ζ; ζ̄Þ. The
particular choice P ¼ P0 ¼ ð1þ ζζ̄Þ, yields a two-surfaces
metric (2) of unit radius that is Lie derived along the null
directions of Iþ. For this particular choice of conformal
factor, a Bondi time uB is introduced as the affine length of
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the null geodesic na ≡ ĝab∇bΩ. The covector la ¼ ∇auB
yields a Bondi tetrad ðla; na; ma; m̄aÞ following the same
procedure as above.
Since uB ¼ const are unit spheres whereas u ¼ const are

not, the description of one cut in terms of the other may be
written as

uB ¼ Zðu; ζ; ζ̄Þ; ð7Þ

u ¼ TðuB; ζ; ζ̄Þ; ð8Þ

where Z is a smooth function and T is the inverse of Z.
They satisfy _TZ0 ¼ 1, where “dot” and “prime” denote the
derivative with respect to uB and u, respectively.
We also introduce the concept of spin weight. A quantity

η that transforms as η → eisλη under a rotation ma� →
eiλma� is said to have a spin weight s. For any function
fðu; ζ; ζ̄Þ, we define the differential operators ð� and ð̄�
[10] by

ð�f ¼ P1−s ∂ðPsfÞ
∂ζ ; ð9Þ

ð̄�f ¼ P1þs ∂ðP−sfÞ
∂ζ̄ ; ð10Þ

where f has a spin weight s and P is the conformal factor
defining the metric (2). Likewise, we define

ðf ¼ P1−s
0

∂ðPs
0fÞ

∂ζ ; ð11Þ

ð̄f ¼ P1þs
0

∂ðP−s
0 fÞ
∂ζ̄ ; ð12Þ

with P0 ¼ ð1þ ζζ̄Þ. Furthermore, using P ¼ P0Z0 (which
follows from rB

P0
¼ r

P and rB ¼ Z0r [18]) one can relate these
two operators as

ð�f ¼ Z0ðf þ sfðZ0 ð13Þ

ð̄�f ¼ Z0ð̄f − sfð̄Z0: ð14Þ

The above equation (which is not a coordinate trans-
formation between the NU and Bondi coordinate systems)
will be used below to expand regular functions on the
sphere in the standard spherical harmonic basis.
Now, we are interested in the relationship between the

NU and Bondi null tetrads. We start by rewriting Eq. (3) in
the form la ¼ ∇aZðu; ζ; ζ̄Þ and using the orthogonality of
the null vectors to get

l�a ¼
1

Z0

�
la −

L
rB

m̄a −
L̄
rB

ma þ
LL̄
r2B

na

�
; ð15Þ

n�a ¼ Z0na; ð16Þ

m�
a ¼ ma −

L
rB

na; ð17Þ

m̄�
a ¼ m̄a −

L̄
rB

na; ð18Þ

where

LðuB; ζ; ζ̄Þ ¼ ðZðu; ζ; ζ̄Þ:

C. The spin coefficient formalism

In this subsection we will describe the NP formalism in
term of the Bondi coordinates ðuB; rB; ζ; ζ̄Þ, this means that
all introduced functions depend on these coordinates. First,
we introduce the Ricci rotation coefficients γμνρ [17,19]

γμνρ ¼ λaρλ
b
ν∇aλbμ; ð19Þ

the Ricci rotations coefficients satisfy

γμνρ ¼ −γνμρ: ð20Þ

where

λaμ ¼ ðla; na; ma; m̄aÞ; ð21Þ

where μ; ν; ρ ¼ 1, 2, 3, 4 are tetrad indexes. The twelve
spin coefficients are defined as combinations of the γμνρ

α ¼ 1

2
ðγ124 − γ344Þ; λ ¼ −γ244; κ ¼ γ131

β ¼ 1

2
ðγ123 − γ343Þ; μ ¼ −γ243; ρ ¼ γ134

γ ¼ 1

2
ðγ122 − γ342Þ; ν ¼ −γ242; σ ¼ γ133

ε ¼ 1

2
ðγ121 − γ341Þ; π ¼ −γ241; τ ¼ γ132 ð22Þ

The Peeling theorem of Sachs [20] tell us the asymptotic
behavior of the spin coefficients [10].
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κ ¼ π ¼ ε ¼ 0; ρ ¼ ρ̄; τ ¼ ᾱþ β

ρ ¼ −r−1B − σ0σ̄0r−3B þOðr−5B Þ
σ ¼ σ0r−2B þ ½ðσ0Þ2σ̄0 − ψ0

0=2�r−4B þOðr−5B Þ
α ¼ α0r−1B þOðr−2B Þ
β ¼ β0r−1B þOðr−2B Þ
γ ¼ γ0 − ψ0

2ð2r2BÞ−1 þOðr−3B Þ
μ ¼ μ0r−1B þOðr−2B Þ
λ ¼ λ0r−1B þOðr−2B Þ
ν ¼ ν0 þOðr−1B Þ ð23Þ

where the relationships among the r-independent functions

α0 ¼ −β̄0 ¼ −
ζ

2
; γ0 ¼ ν0 ¼ 0;

ω0 ¼ −ð̄σ0; λ0 ¼ _̄σ0; μ0 ¼ −1;

with σ0 the value of the Bondi shear at null infinity. This
complex scalar is called the Bondi free data (or Bondi
news) since σ̈0 yields the gravitational radiation reaching
null infinity. Since the Bondi shear is a spin weighted 2
object, it can be written as

σ0 ¼ ð2ðσR þ iσIÞ:
The real functions σR, σI are, respectively, called the

electric and magnetic part of the Bondi shear. They are
related to the mass and magnetic nth pole moments of the
gravitational source.
As the spacetime is assumed to be empty in a neighbor-

hood of Iþ, the gravitational field is given by the Weyl
tensor. Using the available tetrad one defines five complex
scalars, whose asymptotic behavior is [20]

ψ0 ¼ Cabc
dmalblcmd ≃ ψ0

0

r5B
;

ψ3 ¼ Cabc
dlanbncm̄d ≃ ψ0

3

r2B
:

ψ1 ¼ Cabc
dnalblcmd ≃ ψ0

1

r4B
;

ψ4 ¼ Cabc
dm̄anbncm̄d ≃ ψ0

4

rB
:

ψ2 ¼
1

2
ðCabc

dlanbmcm̄d − CabcdlanblcndÞ≃ ψ0
2

r3B
:

Using the peeling theorem the radial part of the Einstein
equations can be integrated leaving only the Bianchi
identities at I as the unsolved equations. In a Bondi frame
the resulting equations look remarkably simple. Some of
those equations relate the Weyl scalars with the Bondi
shear, i.e., [10,17]

ψ0
2 þ ð2σ̄0 þ σ0 _̄σ0 ¼ ψ̄0

2 þ ð̄2σ0 þ σ̄0 _σ0; ð24Þ

ψ0
3 ¼ ð _̄σ0; ð25Þ

ψ0
4 ¼ − ̈σ̄0; ð26Þ

Here the ð operator is taken at uB ¼ const.
In the same way we can define the Weyl scalars in N-U

using the fact that the Weyl tensor Cabc
d is conformally

invariant [17].

ψ�
1 ¼ Cabc

dna�lb�lc�m�
d ≃ ψ0�

1 r−4;

σ� ¼ m�am�b∇al�b ≃ σ0�r−2:

From Eqs. (15)–(18), we can find transformations from NU
to Bondi for any scalar or spin coefficient [21,22]. In
particular, we are interested in

ψ0�
1

Z03 ¼ ½ψ0
1 − 3Lψ0

2 þ 3L2ψ0
3 − L3ψ0

4�; ð27Þ

where ψ0�
1 is constructed from the N-U tetrad. Similarly we

find the relation between σ0� and σ0 [21]

σ0�

Z0 ¼ σ0 − ð2Z: ð28Þ

where σ0� is the NU shear [18].

D. Evolution equations

Finally, the Bianchi identities (in Bondi coordinates) are
given by [10,17]

_ψ0
0 ¼ −ðψ0

1 þ 3σ0ψ0
2; ð29Þ

_ψ0
1 ¼ −ðψ0

2 þ 2σ0ψ0
3; ð30Þ

_ψ0
2 ¼ −ðψ0

3 þ σ0ψ0
4: ð31Þ

Note that Eq. (24) defines a real variable Ψ called the mass
aspect [14].

Ψ ¼ ψ0
2 þ ð2σ̄0 þ σ0 _̄σ0; ð32Þ

In term of Ψ is possible to write the Bondi Mass M and
Bondi lineal momentum Pi by

M ¼ −
c2

8π
ffiffiffi
2

p
G

Z
ΨdS; ð33Þ

Pi ¼ −
c3

8π
ffiffiffi
2

p
G

Z
Ψ~lidS; ð34Þ

with
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~li ¼ 1

1þ ζζ̄
ðζ þ ζ̄;−iðζ − ζ̄Þ; 1 − ζζ̄Þ: ð35Þ

with dS ¼ 4dζ∧dζ̄
P2
0

the area element on the unit sphere and

where i; j; k; l; m ¼ 1, 2, 3 are three-dimensional Euclidian
indices. It is important to note that at I we move upstairs
and downstairs indices with the flat metric.
It is also quite convenient to give the evolution equation

for Ψ. Directly from Eq. (31), one obtains

_Ψ ¼ _σ0 _̄σ0: ð36Þ

This equation will be used later.

III. REGULARIZED NULL CONE CUTS

Another important construction in this work is a special
NU foliation obtained from the null cone cuts of null
infinity or NC cuts for short.
Given a point xa on the spacetime and denoting by Nx

the future null cone from xa, we define a null cone cut (NC
cut) as Nx ∩ Iþ. The local and global properties of the NC
cuts have been extensively analyzed [23–25] and some of
them are summarized in the Appendix A. In this section, we
briefly review some results that are needed for this work.
In flat spacetime, the NC cuts are smooth surfaces that

can be written as a regular functions on the sphere, i.e.,

Z0 ¼ xala; xa ¼ ðt; xiÞ; la ¼
�
Y0
0;−

1

2
Y0
1i

�
;

ð37Þ

with xa the apex of the null cone and Y0
0; Y

0
1i the l ¼ 0, 1

spherical harmonics. If the apex describes a timelike world
line xaðτÞ in Minkowski space the NC cuts describe a one
parameter foliation of null infinity.
The idea is to generalize this concept for asymptotically

flat spacetimes. This is a highly nontrivial task since
curvature induces caustics on the future null cones of
points. Thus, the NC cuts have self-intersections and
caustics. Nevertheless one can show that it is always
possible to find a neighborhood at null infinity where a
NC cut is a smooth two-surface. In a Bondi coordinate
system, this surface is a graph of a function

uB ¼ Zðxa; ζ; ζ̄Þ: ð38Þ

For the type of systems we are interested in describing,
i.e., gravitational radiation coming from compact sources in
the observation volume of aLIGO, one can always assume
the null cone cut can be described by the above function.
Moreover, to recover the point xa from which the radiation
is coming one does not need the whole two-surface, rather a
small neighborhood of points ðζ; ζ̄Þ in the sphere. This

follows from the dual meaning of Z as the past null cone
from ðuB; ζ; ζ̄Þ. Thus, ððZ; ð̄ZÞ gives you the incoming
direction of the null geodesic of that past null cone, whereas
ð̄ðZ identifies a point on that null geodesic. Therefore, with
a very small array of observers one can identify points in
the spacetime such that their null cone cuts are described
by Eq. (38).
One can also show that Z;a is a null covector, namely, it

satisfies

gabZ;aZ;b ¼ 0: ð39Þ

The above equation can also be used to reconstruct the
conformal metric from knowledge of Z. The explicit
construction is given on a preferred coordinate system
ðu;ω; ω̄; RÞ ¼ ðZ; ðZ; ð̄Z; ð̄ðZÞ, and the metric coefficients
are given in terms of a function ΛðZ; ðZ; ð̄Z; ð̄ðZ; ζ; ζ̄Þ,
related to Z by the equation

ð2Z ¼ Λ:

This function plays a central role in the metric
reconstruction technique. If Λ is given, to obtain a
Lorentzian metric from (39), Λ must satisfy a set of
PDEs called metricity conditions. This is the core of the
null surface formulation of general relativity [26], or NSF
for short, and it gives a generalization of Cartan’s work on
third-order ODEs and a Lorentzian metric on the solution
space [27,28]. Note that ifΛ ¼ 0we obtain a flat metric and
the solution of ð2Z ¼ 0 is given by (37).
Λ also has a very simple geometric meaning. Using

Sachs’s theorem, one can show that

ð2Z ¼ σ0 − σx; ð40Þ

with σ0 the asymptotic Bondi shear at null infinity and σx
the asymptotic shear of the future null cone from xa

evaluated at null infinity [29]. In general, σx will always
be nonvanishing for a non flat spacetime since the Weyl
tensor induces shear on the future null cone from any point
xa. It follows from the above equation that a vanishing
asymptotic shear does not correspond to a NC cut. (We
point out that in the ANK approach one uses a congruence
of null geodesics such that the associated asymptotic shear
vanishes at null infinity. One thus sets σx ¼ 0 in Eq. (40) to
obtain the so-called “good cut equation.”)
As we are interested in describing a particular world line

whose motion will depend on σ0ðuB; ζ; ζ̄Þ, we assume _σ0 is
known. Moreover, the outgoing gravitational radiation we
are interested in is emitted by closed binaries, supernovae,
or scattering of compact sources. For those systems, one
can always assume they are asymptotically stationary; i.e.,
_σ0 vanishes as uB → −∞. In that limit σI → 0, σ0 is purely
electric and by a supertranslation one can get rid of the
electric part at that initial time. We thus assume that we
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work in a definite Bondi system such that σ0 vanishes as
uB → −∞. This restricts the Bondi supertranslation free-
dom to the translations of the Poincaré group. Following
the above results, the description of the cuts in any other
Bondi system will be given by ~Zðxa; ζ; ζ̄Þ ¼ Zðxa; ζ; ζ̄Þ þ
αðζ; ζ̄Þ and the l ¼ 0, 1 parts of Z and ~Z do not depend on
the higher harmonics of αðζ; ζ̄Þ.
Finally, we want to obtain dynamical equations for Z to

exhibit the explicit dependence of σx on σ0. It is clear that
one cannot hope to obtain Z or Λ in closed form for an
arbitrary asymptotically flat spacetime. On the other hand it
is not difficult to set up a perturbation procedure off
Minkowski space and obtain a first-order deviation from
a flat cut.
Writing

Z ¼ Z0 þ Z1;

with Z0 given by (37) and

Λ1 ¼ ð2Z1;

one can show that Λ1 satisfies the wave equation in
Minkowski space and that it functionally depends on the
Bondi shear via (see Appendix A)

ð̄2ð2Z1 ¼ ð̄2σ0ðZ0; ζ; ζ̄Þ þ ð2σ̄0ðZ0; ζ; ζ̄Þ: ð41Þ

The second term in the rhs of Eq. (41) gives the relationship
between σx and σ0. Since the Bondi shear is a smooth spin
weighted 2 function on Iþ, the above equation admit
regular solutions on the sphere. Thus, the first-order
deviation from a flat cut are smooth two-surfaces (they
can be expanded in spherical harmonics) at null infinity and
are called the (linearized) regularized null cone cuts. If
xaðuÞ describes a world line in Minkowski space, the
function ZðxaðuÞ; ζ; ζ̄Þ describes a one parameter family of
cuts. To show that this family is NU, we perform a Taylor
expansion

Zðxaðuþ δuÞ; ζ; ζ̄Þ ¼ ZðxaðuÞ; ζ; ζ̄Þ þ va∂aZδu;

where va ≡ ∂uxa and δu > 0. If we assume va is future
pointing with respect to the flat metric, it then follows that

va∂aZ > 0;

since Za is null and future pointing (for the flat metric) for
small values of σB. We conclude that this monoparametric
family never intersects itself and it is a well-behaved NU
foliation.
Solving for (41) yields

Z ¼ R0 −
1

2
RiY0

1i þ
�
σijR
12

þ
ffiffiffi
2

p

72
_σigI R

fϵgfj
�
Y0
2ij; ð42Þ

with Y0
0; Y

0
1i, and Y0

2ij the tensorial spin-s harmonic expan-
sion [30]. Note that Z depends on the real and imaginary
part of the Bondi shear [22,29]. This is what one would
expect in a perturbation expansion since the imaginary part
of the Bondi shear is related to the current quadrupole
moment, but the real part comes from the mass quadrupole
moment [31].
The first-order solution (42) will be used to define center

of mass and spin for isolated sources of gravitational
radiation. It will also be used to compare our results
with those derived in the ANK and post-Newtonian
formulations.
Finally, it is a fair question to ask what happens to the

above construction if one goes beyond the linearized
approximation.
If we assume the spacetime is Ricci flat in a neighbor-

hood of Iþ one obtains the field equation for Z [26] (see
Appendix A). The field equation exhibits the non Huygens
nature of the NC cuts showing explicitly which term is
responsible for caustics. Thus, a generic NC cut is not a
smooth two-surface at null infinity. However, if _σ0 is small
both in the past or in the future of some small interval of
time, one expects that the leading contribution to the
solution comes from the Huygens part of field equation,

ð̄2ð2Z ¼ ð̄2σ0ðZ; ζ; ζ̄Þ þ ð2σ̄0ðZ; ζ; ζ̄Þ; ð43Þ

referred to as the regularized null cone cut equation or RNC
cut equation for short. Since (43) only contains l > 2 terms
in a spherical harmonic decomposition, the kernel of (43) is
a four-dimensional space xa, i.e., a flat cut Z0 ¼ xala.
Equation (43) or its linearized version (41) should be

compared with the good cut equation

ð2ZC ¼ σ0ðZC; ζ; ζ̄Þ; ð44Þ

Note that the good cut equation yields complex cuts with
vanishing shear, where the NRC cut equation yields NU
cuts whose shear depends linearly on the Bondi shear.
Thus, from the point of view of available structures at

null infinity we could start with the RNC cut equation (43).
On its four-dimensional solution space, one constructs
a Lorentzian metric following the NSF procedure [26].
A perturbative solution gives a Minkowski space together
with flat cuts (37) at its lowest order, and the linearized
RNC cuts (42) at first order.

IV. LINKAGES AND THE ANGULARMOMENTUM
CENTER OF MASS TENSOR

For axially symmetric spacetimes, the Komar integral
constructed from the axial Killing field yields a natural
definition of angular momentum—that it is a conserved
quantity in vacuum and has a flux law in Einstein-Maxwell
spacetimes [22]. This idea can be generalized to asymp-
totically flat spacetimes by first introducing the notion of
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asymptotic Killing vectors and then giving a generalization
of the Komar integral, the Winicour-Tamburino linkage
[32], which yields the Komar formula when the spacetime
has a Killing symmetry. We will use in future sections these
concepts to define the spin, total angular momentum, and
center of mass of an asymptotically flat spacetime.

A. The asymptotic symmetry group

First we introduce the generators ξa of asymptotic
symmetries on a neighborhood of Iþ as smooth solutions
of the asymptotic Killing equation [11]

ξa;b þ ξb;a ¼ Oðr−nÞ ð45Þ
ðξa;b þ ξb;aÞlb� ¼ 0: ð46Þ

Here lb� is a null vector tangent to the generators of each
outgoing null hypersurface in M and n differs with the
choice of components [18]. The second equation represents
theKilling propagation law along the null hypersurface [33].
At Iþ the collection of all solutions form the BMS algebraL
[20]. If ξa ∝ na they define the supertranslation subalgebra
T and the quotient L=T is isomorphic to the Lorentz group
[11]. This subalgebra is realizad by an equivalence class ½ξa�
where ξa ∼ ξ0a if ξa − ξ0a ∝ na�. Equations (45) and (46) can
be solved by direct integration using the spin-coefficient
[34]. The results may be written as

ξa ¼ Ala� þ Bna� þ Cm̄a� þ C̄ma� ð47Þ
where

A ¼ A1rþ A0 þ A−1r−1 þOðr−2Þ
B ¼ B0

C ¼ C1rþ C0 þ C−1r−1 þOðr−2Þ
and

A1 ¼ −ð1=Z0ÞðB0Z0Þ0;
A0 ¼ ð�ð̄�B0 þ B0ð�ð̄� lnP;

A−1 ¼
1

2
½B0ðψ0�

2 þ ψ̄0�
2 Þ þ C̄1ψ

0�
1 þ C1ψ̄

0�
1 �;

C1 ¼ aðζ; ζ̄Þ=Z0; with ða ¼ 0;

C0 ¼ ð�B0 þ C̄1σ
0�;

C−1 ¼ 0;

B0 ¼ bðζ; ζ̄Þ=Z0 − ð1=2Z0Þ
Z

u

0

Z03½ððāZ0−2Þ

þ ð̄ðaZ0−2Þ�du:

Note that the only freedom is in bðζ; ζ̄Þ, the supertranslation
freedom, and solutions to ða ¼ 0, which correspond to the
homogeneous Lorentz transformation.

B. Linkages in asymptotically flat spacetimes

Given a u ¼ const null foliation, which can be either NU
or Bondi, introducing an affine parameter r and construct-
ing the r ¼ const two-surface with surface element
l�½an̂�b�dS, the linkage integral is defined as [35]

LξðIþÞ ¼ −
1

16π
lim
r→∞

Z
ð∇½aξb� þ∇cξ

cl�½an̂�b�Þl�an̂�bdS;

ð48Þ

Note that n̂�b is not one of the associated null vectors of the
NU tetrad. Whereas n�b is parallel propagated along l�a,
n̂�b is orthogonal to the u ¼ const, r ¼ const surface. It can
be rewritten in terms of the NU tetrad via a null rotation
around l�b as [34]

n̂�b ¼ n�b − ω̄�m�b − ω�m̄�b þ ωω̄l�b ð49Þ

with

ω� ¼ −ðð̄�σ0�Þr−1 þOðr−2Þ ð50Þ

This scalar linear functional of ξb transforms as an
adjoint representation of the BMS group. If ξb is a trans-
lation, Eq. (48) yields the Bondi energy momentum vector.
Likewise, if ξb belongs to the Lorentz subgroup, Eq. (48)
can be used to define the notion of the mass dipole and
angular momentum. Solving the asymptotic Killing equa-
tion by making use of the radial dependence of the spin
coefficients and tetrad components, one can show that this
linkage integral can be written as [34]

L ¼ 1

8π
ffiffiffi
2

p Re
Z �

b

�
ψ0�
2 þ σ0�λ0� − ð�2σ̄0�

Z03

�

þ ā

�
2ψ0�

1 − 2σ0�ð�σ̄0� − ð�ðσ0�σ̄0�Þ
Z03

��
dS

putting b ¼ 0 we obtain

LDJ ¼
Re

8π
ffiffiffi
2

p
Z

ā

�
2ψ0�

1 − 2σ0�ð�σ̄0� − ð�ðσ0�σ̄0�Þ
Z03

�
dS

ð51Þ

where ā ¼ āiY−1
1i where āi represents three complex con-

stants. The three complex, i.e., six real, values of (51) are,
by definition, the components of the mass dipole–angular
momentum tensor (for more details, the reader can see
Ref. [34]). To obtain those components, it is quite con-
venient to define a complex vector D�

i þ i
c J

�
i where i

symbolize the vectors (1,0,0), (0,1,0) and (0,0,1) as
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D�
i þ

i
c
J�i ¼

Z
Y−1
1i

�
2ψ0�

1 − 2σ0�ð�σ̄0� − ð�ðσ0�σ̄0�Þ
8π

ffiffiffi
2

p
Z03

�
dS

ð52Þ

It is worth mentioning that at a linearized level and for
stationary spacetimes, the real and imaginary parts of ψ0

1

capture the notion of the two-form that defines the center of
mass and angular momentum and transform appropriately
under the Lorentz transformation. The linkage is a natural
generalization for asymptotically flat spacetimes.
It is also worth mentioning that the value of the linkage

depends on the choice of section introduced for its
definition [11]. This is analogous to the freedom in special
relativity with the choice of origin for the definition for
center of mass or angular momentum. The main difference
is that in relativistic mechanics the freedom is a point on the
spacetime, but in the definition of a linkage, the freedom is
a whole section, an infinite set of constants—one for each
coefficient in a spherical harmonic decomposition.
Consequently, if one now has a NU foliation, where each
coefficient now depends on the Bondi time, the freedom
becomes an infinite set of functions of time a prioriwithout
physical meaning.
However, in what follows below, we will restrict this

infinite freedom to four functions that describe a world line
in the solution space of the RNC cuts. From its geometrical
meaning there is a one to one correspondence between
world lines in the solution space and a RNC foliation at null
infinity. Furthermore, by defining the notion of mass dipole
moment and requiring that, for one world line of the RNC
foliation, the mass dipole moment vanishes, one gets the
right number of equations from which a special world line
is found. This special world line will be called the center of
mass world line. Finally, restricting the angular momentum
to this special RNC cut yields the notion of spin or intrinsic
angular momentum.

V. MAIN RESULTS

A. Definitions of center of mass and angular momentum

Directly from (52), we define the mass dipole moment
and angular momentum associated with a RNC foliation as

D�
i þ

i
c
J�i ¼

−c2G−1

12
ffiffiffi
2

p
�
2ψ0�

1 − 2σ0�ð�σ̄0� − ð�ðσ0�σ̄0�Þ
Z03

�
i

:

ð53Þ

The six functions of the NU time u defined above
functionally depend on the particular world line xaðuÞ that
characterizes each RNC cut.
We then impose a condition on a special RNC foliation,

i.e., on a special world line (42), at each u ¼ const cut, the
mass dipole moment D�i vanishes. This condition is
given by

Re

�
2ψ0�

1 − 2σ0�ð�σ̄0� − ð�ðσ0�σ̄0�Þ
Z03

�
i

¼ 0: ð54Þ

By adequately choosing xaðuÞ one has enough freedom
to satisfy the above equation for each value of u. Since the
4-velocity of the world line is normalized to one (using the
spacetime metric), we use this norm to fix the timelike
component of the world line coordinate. Thus, the freedom
left are the spatial components of the world line xaðuÞ and
the above equation gives three algebraic equations from
which these components are obtained. This special world
line will be called the center of mass world line. The
angular momentum Ji� evaluated at the center of mass will
be called intrinsic angular momentum Si, i.e.,

Si ¼ −
c3

12
ffiffiffi
2

p
G
Im

�
2ψ0�

1 − 2σ0�ð�σ̄0� − ð�ðσ0�σ̄0�Þ
Z03

�
i

:

ð55Þ

The above equations have been obtained from two
surface integrals on a particular RNC cut foliation, namely,
the center of mass foliation. Thus, they have a well-defined
geometrical meaning. We now solve Eq. (54) explicitly on a
Bondi frame since variables like gravitational radiation,
mass loss, linear momentum, are easier to define in Bondi
coordinates. To write down the mass dipole moment and
angular momentum (53) in Bondi coordinates, it is con-
venient to define analogous quantities in a Bondi
tetrad, i.e.,

Di þ ic−1Ji ¼ −
c2

12
ffiffiffi
2

p
G
½2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ�i:

ð56Þ

Using the relations between the NU and the Bondi null
vectors given by (15)–(28) to transform the quantities
ðψ0�

1 ; σ0�; ð�Þ → ðψ0
1; σ

0; ðÞ, one can write (53) as

D�iðuÞ ¼ DiðuBÞ þ
3c2

6
ffiffiffi
2

p
G
Re½ðZðΨ − ð2σ̄0Þ þ F�i ð57Þ

Ji�ðuÞ ¼ JiðuBÞ þ
3c3

6
ffiffiffi
2

p
G
Im½ðZðΨ − ð2σ̄0Þ þ F�i ð58Þ

with

F ¼ −
1

2
ðσ0ðð̄2Z þ ð2Zðσ̄0 − ð2Zðð̄2ZÞ

−
1

6
ðσ̄0ð3Z þ ð̄2Zðσ0 − ð̄2Zð3ZÞ: ð59Þ

If we insert the center of mass RNC cut Z1 in (57), then its
lhs vanishes on a u ¼ const. surface and we obtain an
algebraic equation to be solved for RiðuÞ. Equation (58)
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then gives a relationship between Si and Ji, the intrinsic and
total angular momentum, respectively.

B. Approximations and assumptions

Although the main equations have been presented above,
to obtain the explicit form of the world line in this work, we
will make the following assumptions:

(i) σ ¼ 0 for some initial Bondi time, usually taken to
be −∞.

(ii) Ri is a small deviation form the coordinates origin.
(iii) R0 ¼ u assuming the slow motion approximation.
(iv) The Bondi shear only has a quadrupole term.

The first assumption fixes the supertranslation freedom and
is consistent with our choice of null cone cut, namely, the
freedom in the solution of Eq. (41) is only a translation
between two Bondi frames. The second assumption is a
working simplification. Since we are particularly interested
in the acceleration of the center of mass, which is quadratic
in the gravitational radiation, we want to ignore terms like
R2σ. Finally, the third assumption is a physical one. Since
in most astrophysical processes less than 25% of the total
mass is lost as gravitational radiation the gamma factor for
the center of mass velocity is about 1.003. Putting it in other
words, even if two coalescing stars are approaching each
other at relativistic speeds, if the center of mass is initially
at rest it will never acquire a relativistic velocity.
In principle, all of these assumptions can be relaxed but

since we want to make direct comparisons with other
formulations, like the ANK approach or the PN equations
of motion, they are needed for these purposes. The ANK
approach uses the same Bondi gauge as ours, whereas the
PN formulation selects an initial time where the system is
stationary and the metric is flat.
It is possible to extract several important formulas

relating the dynamical evolution of mass, momentum,
etc. by expanding the Bianchi identities in a spherical
harmonics decomposition. Using the tensorial spin-s
spherical harmonics [30]; Y0

0; Y
0
1i; Y

0
2ij, etc., one can expand

the relevant scalars at null infinity as

σ0 ¼ σijðuBÞY2
2ijðζ; ζ̄Þ;

ψ0
1 ¼ ψ0i

1 ðuBÞY1
1iðζ; ζ̄Þ þ ψ0ij

1 ðuBÞY1
2ijðζ; ζ̄Þ;

Ψ ¼ −
2

ffiffiffi
2

p
G

c2
M −

6G
c3

PiY0
1iðζ; ζ̄Þ þΨijðuBÞY0

2ijðζ; ζ̄Þ;
ð60Þ

Note that the complex tensor σij represents the quadrupole
momentum of the gravitational wave.
Now, from Eq. (41) if we write xaðuÞ as ðR0ðuÞ; RiðuÞÞ,

assuming the Bondi shear only has a quadrupole term, and
using the tensorial spin-s harmonic expansion, this solution
is given as

Z1ðu; ζ; ζ̄Þ ¼ R0ðuÞ − 1

2
RiðuÞY0

1i þ
1

12
σijRðuÞY0

2ij: ð61Þ

the freedom left in (61) is an arbitrary world line in a
fiducial spacetime. Choosing u as the proper time, we can
easily solve for R0ðuÞ in terms of the spatial components of
the 4-velocity. Furthermore, in the slow motion approxi-
mation R0ðuÞ ¼ uþOðv2Þ.

C. The center of mass and spin

The center of mass world line RiðuÞ is obtained from
(57) by demanding that the lhs vanishes on the u ¼ const
cut when uB ¼ Z1ðu; ζ; ζ̄Þ is inserted in the rhs of the
equation. Furthermore, since by assumption RiðuÞ and
σijRðuÞ are small, we write

Z1 ¼ uþ δu ¼ u −
1

2
RiðuÞY0

1i þ
1

12
σijRðuÞY0

2ij; ð62Þ

and make a Taylor expansion of the Bondi tetrad variables
up to first order in δu. We write (57) as

0 ¼ Diðuþ δuÞ þ 3c2

6
ffiffiffi
2

p
G
Re½ðΨ − ð2σ̄0Þðδuþ F�i

¼ DiðuÞ þ ½ _DðuÞδu�i þ 3c2

6
ffiffiffi
2

p
G
Re½ðΨ − ð2σ̄0Þðδuþ F�i

¼ DiðuÞ þ c2

6
ffiffiffi
2

p
G
Re½ððΨ − ð3σ̄0Þδu�i

þ 3c2

6
ffiffiffi
2

p
G
Re½ðΨ − ð2σ̄0Þðδuþ F�i; ð63Þ

where we have used Eq. (30) to rewrite _Di. Note that in this
case the second line in the definition of F (59) vanishes
since σ0 only has quadrupole terms. In the remaining terms
of (57), we simply replace uB by u as the extra terms are
cubic or higher in the expansion variables. Solving for Ri

from the above equation yields

MRi ¼ Di þ 8

5
ffiffiffi
2

p
c
σijRP

j; ð64Þ

where σijR and σijI are, respectively, the real and the
imaginary part of σij. Note that inserting Eq. (64) in
(62) yields

ZCM ¼ u −
1

2M

�
Di þ 8

5
ffiffiffi
2

p
c
σijRP

j

�
Y0
1i þ

1

12
σijRY

0
2ij;

ð65Þ

the special NU foliation that represents the center of mass
world line.

CARLOS N. KOZAMEH and GONZALO D. QUIROGA PHYSICAL REVIEW D 93, 064050 (2016)

064050-10



As it was mentioned previously, replacing Eq. (64) in the
imaginary part of (53) yields the spin of the system. To do
that we start with the relationship (58)

J�iðuÞ ¼ Jiðuþ δuÞ þ 3c3

6
ffiffiffi
2

p
G
Im½ðΨ − ð2σ̄0Þðδuþ F�i;

perform a Taylor expansion,

J�iðuÞ ¼ JiðuÞ þ ½ _JðuÞδu�i

þ 3c3

6
ffiffiffi
2

p
G
Im½ðΨ − ð2σ̄0Þðδuþ F�i;

and use the Bianchi identities,

J�i ¼ JiðuÞ þ c3

6
ffiffiffi
2

p
G
Im½ððΨ − ð3σ̄0Þδu�i

þ 3c3

6
ffiffiffi
2

p
G
Im½ðΨ − ð2σ̄0Þðδuþ F�i: ð66Þ

Finally, using Eq. (65) gives

Si ¼ Ji − RjPkϵijk: ð67Þ
Note that this equation is exactly the same formula as in
Newtonian theory although no post-Newtonian approxi-
mation has been assumed.

D. Dynamical evolution

The time evolution ofDi and Ji follows from the Bianchi
identity for ψ0

1, where we must insert the proper factor offfiffiffi
2

p
to account for the retarded Bondi time, i.e., the retarded

time, uret ¼
ffiffiffi
2

p
uB. The use of the retarded time, uret, is

important in order to obtain the correct numerical factors in
the expressions for the final physical results [10]. Note that
the two last important Eqs. (64) and (67) remain unchanged
in term of uret or uB. However, for the rest of the paper, we
adopt the symbol “dot” for ∂uret.
Then, we use the definition (56) and replace the real and

imaginary l ¼ 1 component of (30) to obtain

_Di ¼ Pi; ð68Þ

_Ji ¼ c3

5G
ðσklR _σjlR þ σklI _σjlI Þϵijk: ð69Þ

In the same way, taking the l ¼ 0, 1 part of (36) yields the
mass loss equation and the linear momentum time rate,
namely,

_M ¼ −
c

10G
ð _σijR _σijR þ _σijI _σ

ij
I Þ; ð70Þ

_Pi ¼ 2c2

15G
_σjlR _σ

kl
I ϵ

ijk: ð71Þ

Note that in this Bondi gauge σijR ¼ hijþ and σijI ¼ hij× strains
in the transverse traceless gauge [36]. Now, taking a time

derivative of Eq. (64), using Eq. (68), and writing up to
quadratic terms in σij, gives

M _Ri ¼ Pi þ 8

5
ffiffiffi
2

p
c
_σijRP

j; ð72Þ

the relationship between the velocity of the center of
mass _Ri and the Bondi momentum. It departs from the
Newtonian formula by radiation terms.
Finally, taking one more Bondi time derivative of (72)

yields the equation of motion for the center of mass,

MR̈i ¼ 2c2

15G
_σjlR _σ

kl
I ϵ

ijk þ 8

5
ffiffiffi
2

p
c
σ̈ijRP

j: ð73Þ

The rhs of the equation only depends on the gravitacional
data at null infinity and the initial mass of the system.
Similarly, taking a time derivative of (67) together

with (69) gives

_Si ¼ _Ji ¼ c3

5G
ðσklR _σjlR þ σklI _σjlI Þϵijk: ð74Þ

This equality is also true in Newtonian mechanics for an
isolated system (with both terms being equal to zero).
However, in GR the angular momentum of an isolated
system is not conserved since it is being carried away by the
gravitational radiation.

E. Comparison with ANK equations

In this subsection, we compare the (ANK) equations of
motion with the ones obtained in our approach. Before that,
we list the main differences between the approaches:
(1) We give a definition of angular and mass dipole

momenta based on TWG linkages, the ANK uses the
l ¼ 1 part of ψ0

1 for these definitions.
(2) The ANK approach relies on asymptotically vanish-

ing shears, this approach uses non vanishing shears
obtained from the RNC cut equation.

(3) The solution space of the good cut equation is
complex manifold, the solution space of the RNC
cut equation is real.

(4) The ANK approach defines the intrinsic angular
momentum as the imaginary part of a complex world
line. We evaluate the angular momentum on the
center of mass to define the spin.

Thus, it is interesting to see if the final equations in these
two formulations have some similarities. To proceed with
the comparison we identify the flat metric of our con-
struction with the real flat metric used in the ANK approach
to write the equations of motion for the center of mass
world line.
It is also important to note that the Bondi massM and the

linear momentum Pi have the same definition in both
approaches. First we introduce the mass dipole moment,
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angular momentum, and spin definitions given in the ANK
formalism [10]

Di
ANK ¼ −

c2

6
ffiffiffi
2

p
G
ψ0i
1R; ð75Þ

JiANK ¼ −
c3

6
ffiffiffi
2

p
G
ψ0i
1I; ð76Þ

SiANK ¼ cMξiI : ð77Þ
Now computing the component l ¼ 1 of Eq. (56) we can
write

Di ¼ −
c2

6
ffiffiffi
2

p
G
ψ0i
1R þ c2

5G
σjlRσ

kl
I ϵ

ijk þ higher harmonics

Ji ¼ −
c3

6
ffiffiffi
2

p
G

�
ψ0
1 − σ0ðσ̄0 −

1

2
ððσ0σ̄0Þ

�
i

I
: ð78Þ

The relationship between the mass dipole moment and
angular momentum with the asymptotic fields at null
infinity are different in both formalisms. These differences
are a consequence of the definitions used in both formu-
lations. However, in our approach, we integrate a two-form
with values on the BMS algebra, in the ANK approach one
directly uses ψ0i

1 for the definitions.
The angular momenta in the ANK formulation is only

defined for quadrupole radiation, where most of the
definitions available in the literature agree. However, one
could forsee potential problems for JiANK if one considers
higher multipole moments in the radiation data and/or
spacetimes with symmetry. The fact that ψ0i

1I is not
conserved for axially symmetric spacetimes is a clear
indication that the ANK definition must be changed when
including higher multipole moments [22]. It is worth
mentioning that only for quadrupole radiation both for-
mulas agree. We obtain non vanishing extra terms when
octupole data is included (see Appendix B).
When comparing the relationship between the center of

mas world line, and spin and the geometrical quantities at
null infinity like the Bondi mass, momentum, etc., we will
only consider quadrupole radiation data.
In the ANK approach, one has [10]

Pi ¼ M_ξiR þ 4

3c
ffiffiffi
2

p _σijRP
j þ c2

G
ðσjlRσklI _Þϵijk; ð79Þ

where ξiR is the center of mass world line. In our
formulation, from Eq. (72) we get

Pi ¼ M _Ri −
8

5
ffiffiffi
2

p
c
_σijRP

j; ð80Þ

The main difference between the above equations is the
last term in the ANK, which is missing in our equation.
Note also a different factor with an opposite sign in front of
the second term. This difference can be traced back in the

ANK formulation to the use of the relation Ψij ¼ −σ̄ij in
Eq. (6.33) [10]. However, this relationship contradicts
Eq. (36) as one can see by deriving the relationship with
respect to time and getting _Ψij ¼ − _̄σij. It is clear from
Eq. (36) that _Ψij must be quadratic in _σij. Thus, some
derivations in the ANK formulation and, in particular, the
above relation are incorrect.
The ANK equations for the angular momentum are

given by

JiANK ¼ SiANK þ ξjRP
kϵijk þ 4

5
ffiffiffi
2

p PkσkiI : ð81Þ

However, we obtain

Ji ¼ Si þ RjPkϵijk: ð82Þ
Another subtle but important difference is that our defi-
nition of spin is via a linkage formulation; however, in the
ANK formulation, the spin is an intrinsic property of a
complex world line, by definition it is the imaginary part of
a complex world line.
Finally in the ANK formalism the equation of motion for

the center of mass is given by

M ̈ξiR ¼ 2
ffiffiffi
2

p
c2

15G
_σjlR _σ

kl
I ϵ

ijk −
c2

G
ðσjlRσklI Þ̈ϵijk −

4

3c
ffiffiffi
2

p σ̈ijRP
j;

ð83Þ
while in our formalism it is given by

MR̈i ¼ 2c2

15G
_σjlR _σ

kl
I ϵ

ijk þ 8

5
ffiffiffi
2

p
c
σ̈ijRP

j: ð84Þ

Although both formulations agree for stationary space-
times, they differ when gravitational radiation is present.

F. Comparison with PN equations

In this subsection, we partially compare the evolution
equations obtained in our approach with those coming from
the PN formalism. In principle, a full comparison between
these approaches can be a formidable task, i.e., the PN start
with definitions in the near zone with multipoles defined in
terms of the source, whereas the asymptotic formulation
defines radiative multipole moments. The asymptotic
formulation has exact equations of motion for mass,
momentum, and angular momentum; however, in the PN
approach, one builds up the loss due to gravitational
radiation valid up to the level of approximation considered
since a priori one does not have available an exact formula.
Nevertheless it is very useful to try to build a bridge
between these approaches and see whether or not they yield
equivalent equations of motion for a compact source
emitting gravitational radiation.
We compare below the evolution equations for the total

mass, momentum and angular momentum of a compact
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source of gravitational radiation. In both formalisms, a dot
derivative means derivation with respect with the retarded
time, as one can see following Ref. [37], pages 6 and 27.
In the PN equations, the radiative energy loss and the

linear and angular momentum loss are given by (in units of
G ¼ c ¼ 1) [38,39]

_EPN ¼ −
1

5
_Uij _Uij −

16

45
_Vij _Vij −

1

189
_Uijk _Uijk

−
1

84
_Vijk _Vijk ð85Þ

_Pi
PN ¼

�
16

45
_Ukl _Vjl þ 1

126
_Uklm _Vjlm

�
ϵijk

−
2

63
ð _Ujk _Uijk þ 2 _Vjk _VijkÞ ð86Þ

_JiPN ¼ −
�
2

5
Ukl _Ujl þ 32

45
Vkl _Vjl

�
ϵijk

−
�
1

63
Uklm _Ujlm þ 1

28
Vklm _Vjlm

�
ϵijk ð87Þ

where in the above equations the quadrupole as well as
octupole terms have been included.
To compare both approaches, we must include in our

formalism the octupole contribution to the equations for the
mass, angular and linearmomentum (seeAppendixB). In this
way, we can write our equations (in term of G ¼ c ¼ 1) as

_M ¼ −
1

10
ð _σijR _σijR þ _σijI _σ

ij
I Þ −

3

7
ð _σijkR _σijkR þ _σijkI _σijkI Þ;

_Pi ¼ −
2

15
_σklR _σjlI ϵ

ijk −
ffiffiffi
2

p

7
ð _σjkR _σijkR þ _σjkI _σijkI Þ

−
3

7
_σklmR _σjlmI ϵijk: ð88Þ

_Ji ¼ 1

5
ðσklR _σjlR þ σklI _σjlI Þϵijk

þ 9

7
ðσklmR _σjlmR þ σklmI _σjlmI Þϵijk: ð89Þ

Since the rhs of the above equations are quadratic in the
radiation terms we only need a linear relationship between
the radiation data and the PN multipole expansion. Using
the linearized Einstein’s equation in the TT gauge and
following [37], one finds that

σijR ¼ −
ffiffiffi
2

p
Uij

σijI ¼ 8

3
ffiffiffi
2

p Vij

σijkR ¼ −
1

9
Uijk

σijkI ¼ 1

6
Vijk

Thus, both have identical rhs to this order. This is a
remarkable result since the evolution equations come from
completely different approaches. On the other hand one
must be careful with the final equations of motion for the
center of mass, energy and spin of the system since their
relationship to kinematical variables are different in both
formulations. In several PN papers, the recoil velocity of
the center of mass is defined as ΔPi

M which is the integral of
Eq. (71) divided by the total mass. However, it follows from
Eq. (72) that in our formulation one obtains a different
result. This a straightforward consequence that in this
formalism the gravitational radiation is part of the total
linear momentum. In some sense, this is analogous to the
definition of momentum in electrodynamics where the
kinematical definition Σimi~vi as well as the electromag-
netic radiation enter in the definition of Pi. A more careful
look into these differences will be addressed in the future.

VI. FINAL COMMENTS AND CONCLUSIONS

We summarize our results and make some final remarks.
(i) We have defined the notion of center of mass and

spin for asymptotically flat spacetimes, i.e., space-
times where there is a precise notion of an isolated
gravitational system.

(ii) The main tools used in our approach are the linkages
together with a canonical NU foliation constructed
from solutions to the regularized null cone cut
equation. The RNC cut foliation is given in the
so-called Newman-Penrose gauge with a vanishing
shear in the asymptotic past. Physically this corre-
sponds to an isolated gravitational system which is
asymptotically stationary in the past and it is
specially useful to describe the emission of sources
like of closed binary coalescence, supernovas or
scattering of compact objects.

(iii) The RNC cut equation is an important ingredient in
this construction. Its four-dimensional solution
space together with the Lorentzian metric con-
structed from the solutions of the RNC cut equation
provide the background to define the center of mass
world line. In this work, we have used a perturbative
approach to the RNC cut equation to introduce a flat
metric at the zeroth order and a first-order solution of
the RNC cut equation to obtain NU foliations, one
for each timelike world line (with respect to the flat
metric) on the solution space.

(iv) We have obtained the center of mass world line by
requiring that the mass dipole moment vanishes at
the special NU foliation associated with this world
line. We have derived equations of motion for the
center of mass and spin linking their time evolution
to the emitted gravitational radiation. They are given
by a very simple set of equations that resemble their
Newtonian counterparts and thus should be useful in
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generalizing many well-known results in astrophys-
ics when very energetic processes are considered.

(v) In astrophysics very often one assumes conservation
laws for isolated systems. However, our equations
show that for highly energetic processes were a fair
percentage of energy is emitted as gravitational
radiation, this is far from being true. We have shown
here that this radiation affects the motion of the
center of mass and the spin of the system and the
solutions to the above equations yield their dynami-
cal evolution.

(vi) We have compared our approach with the ANK
formulation to check for differences and similarities.
This comparison suggest that our definitions of mass
dipole moment and angular momentum are better
suited to allow for higher multipole radiation or
spacetimes with rotational symmetry.

(vii) We have also compared our equations with those
derived from the PN formalism. Although we have
mainly done so for a very simple set of global
variables, the results are very encouraging since, to
second-order approximation, the rhs of the evolution
equation for these variables are identical in both
formulations. However, the relationship between total
linear momentum and the velocity of the center of
mass is different in both approaches. This difference
might disappear after taking a careful look at other
variables like radiative vs local shears, etc. A lot more
work is needed to find a bridge between these
formulations that start at opposite ends, one at null
infinity, the other from local definitions based on the
sources.

(viii) It is believed that in late 2017 aLIGO will be
operational to detect radiation from coalescing
neutron stars and/or black holes. As we are all
aware, numerical waveforms will never be able to
fill out the parameter space needed for a coincidence
check. Therefore, several ODE models like the PN
approach or the EOB have been pursued with that
goal in mind. Our approach should be useful to the
ODE models for the reasons outlined below.
The PN approach has several tentative definitions

of center of mass with vanishing acceleration while
emitting gravitational radiation. Since the motion of
the center of mass is crucial in analyzing the motion
of the coalescing sources, evolution of the mass and
current momenta, and finally in the plot of the
waveform in time domain, it is important to know
whether or not the center of mass has an acceleration
during this process. In this work, we have shown that
the center of mass has an acceleration which is
partially given by the radiation reaction ofM, Pi, and
Ji and partially given by the relationship between the
center of mass velocity, gravitational radiation and
the global quantities M, Pi, and Ji. Following our

results, the equations of motion for the coalescing
sources should be revised if it can be shown that the
waveform changes when the center of mass has
acceleration. This will be addressed in the future.

(ix) Finally we want to address an important conceptual
issue, the meaning of the observational space, i.e.,
the solution space of the RNC cut equation.

In this work, we have used world lines on a four-
dimensional Minkowski space constructed on the
solution space of the RNC cut equation. This flat
metric can be regarded as the zeroth-order approxi-
mation on a perturbation procedure on NSF to
construct Lorentzian metrics. Note also that, both
the in ANK and PN approaches, a flat background
metric is used to introduce world lines and propagate
the gravitational radiation. Thus, in the three for-
mulations that provide equations of motion for the
gravitational sources one uses the same Minkowski
background to compare results.

However, the RNC cut equation provides a
method to construct a four-dimensional observatio-
nal space with a regular metric constructed from
fields at null infinity. In which sense are the solution
space points xa and regular metric associated with
the RNC cut equation related to the “real spacetime"
from which the gravitational radiation is obtained at
null infinity?

If the gravitational source is composed of ordinary
matter. Then the NSF equations provides in principle
a method to construct null cone cuts for “real” points
of the spacetime. The equation has three different
terms, a Huygens part made of gravitational radia-
tion, a gravitational tail and a source term that
includes integrals along spacetime lines and is
responsible for caustics and singularities. Therefore,
if one is able to detect gravitational waves one can
then safely assume that is not on a caustic region.
Moreover, we do not have the technology to detect
gravitational tails and we conclude that the dominant
part of the NSF equation for the situation assumed
above is the Huygens one.

The RNC cut equation is the smoothed version of
the NSF equation, obtained by neglecting the other
contributions and extending de validity of the
Huygens part to the whole sphere. Thus, one could
define a “norm” for metrics constructed from the
NSF and RNC cut equations using energy methods
to see how far apart are the solutions. One should
mention that this comparison is a highly non trivial
task that is worth addressing in the future.

Even if the space time contains black holes our
approach can also assign a center of mass world line.
From the gravitational radiation reaching null infin-
ity one constructs the observation space with a
regular metric and in that space one defines the
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center of mass world line associated with this
radiation. In this case, the regular metric of the
solution space has no relationship to the spacetime
with black holes. Nevertheless, from the gravita-
tional radiation reaching null infinity one computes
the equation of motion including the back reaction
effects. If a black hole is formed after the coales-
cence, one can also compute its final position and
velocity although one knows that a black hole
evolution is not a world line in the real spacetime.
We find this a desirable feature of this formalism
since it gives a method of defining particle world
lines without the infinities that appear when one
introduces delta functions in stress energy tensors. It
has been pointed out that this second method yields
ill defined quantities [40].
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APPENDIX A: NULL CONE CUTS

We present here some properties of the NC cuts coming
from a world line on the spacetime.

(i) Globally, the NC cuts are projections from smooth
two-dimensional Legendre submanifolds of the
projective cotangent bundle of Iþ [23–25]. It
follows from this property that a generic NC cut
has a finite number of singularities and those
singularities can be classified as either cusps or
swallowtails. Thus, locally, the NC cuts are smooth
two-surfaces at null infinity.

(ii) For the gravitational systems we would like to
describe—compact sources such as in the observa-
tional volume space of aLIGO—it is always possible
to give a local description of the cuts in a given
Bondi coordinate system as

uB ¼ Zðxa; ζ; ζ̄Þ: ðA1Þ

(iii) The above equation has also a second meaning,
namely, for fixed values of ðuB; ζ; ζ̄Þ the points xa

that satisfy the above equation form the past null
cone from the point ðuB; ζ; ζ̄Þ at null infinity. Thus,
Z satisfies

gabðxÞ∂aZ∂bZ ¼ 0: ðA2Þ

(iv) Under a Bondi supertranslation ~uB ¼ uB þ αðζ; ζ̄Þ,
Z transform as ~Z ¼ Z þ α,. However, neither the

conformal metric nor the field equations for Z
change under a supertranslation as they all depend
on spacetime derivatives of Z.

(v) The explicit algebraic construction of the conformal
metric is done by first selecting a ½ðζ; ζ̄Þ family of]
null coordinate system u ¼ Zðxa; ζ; ζ̄Þ;ω ¼ ðZ;
ω̄ ¼ ð̄Z; R ¼ ð̄ðZ and then extracting the metric
components from (A2) by successive ð and ð̄
derivatives of (A2).

(vi) It can be shown that all the non trivial components of
the conformal metric are obtained in terms of
spacetimes derivatives of a function Λðxa; ζ; ζ̄Þ
defined as

ð2Z ¼ Λðxa; ζ; ζ̄Þ: ðA3Þ

This function Λ plays a major role in the field
equations for the NSF. Note that from its definition it
follows that

ð̄2Λ ¼ ð2Λ̄: ðA4Þ

This condition is called the reality condition and it
will be used below to restrict the free data in the field
equations.

(vii) A perfectly valid question is whether a conformal
metric can be constructed from any arbitrary func-
tion Zðxa; ζ; ζ̄Þ. In general, the answer is “no” since
for a fixed value of xa Eq. (A2) is an algebraic
equation for nine constants, whereas ðζ; ζ̄Þ can take
any value. Thus, conditions must be imposed on Z
for a metric to exist. It can be shown that the so-
called metricity conditions are given by

ð3ðgabðxÞ∂aZ∂bZÞ ¼ 0; ðA5Þ

and they must be satisfied by Z before one looks for
a conformal metric. These conditions generalize
work by Cartan [27], and Chern [28] originally
derived for third-order ODEs although coming from
a completely different approach. In three dimen-
sions, one derives exactly the same condition from
either the NSF [41] or the Cartan approach.

(viii) Further insight into the geometrical meaning of Λ
can be gained by Using Sachs theorem. One can
show that the Λ satisfies

Λ ¼ σ0ðZ; ζ; ζ̄Þ − σZðxa; ζ; ζ̄Þ; ðA6Þ

with σ0 the Bondi shear at null infinity and σZ the
asymptotic shear of the future null cone from xa

evaluated at null infinity [29].
(ix) Under a Bondi supertranslation the above equation

remains valid in form as σ00 ¼ σ0 þ ð2α and σZ
remains the same.
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(x) As a particular case of Eq. (A6), one can obtain the
null cone cuts in Minkowski space. Since σZ ¼ 0
(null cones are shear free) and the imaginary part of
the shear vanishes we have,

ð2ZM ¼ σ0ðζ; ζ̄Þ ¼ ð2σR;

with σR a real function on the sphere. Using a
supertranslation one eliminates σR and obtains a
canonical equation

ð2Z0 ¼ 0;

whose solution will be given and used in this work.
To obtain the dynamical equations for Z one uses the

algebraic relation between the conformal metric of the
spacetime and Z directly from (A2). One then constructs
the Ricci and Weyl tensor and imposes the Einstein
equations. Since the resulting equations are technically
involved we present first the linearized version of the field
equations for Λ and Z.
Keeping only terms of order Λ in the metric components

and writing down the Ricci flat equation to linear order in Λ
one gets

□Λ ¼ 0;

with □ the D’Alembertian in flat space. Thus, Λ satisfies
Huygens principle and its solution only depends on the data
given on the flat null cone cut. If in addition one imposes
the metricity conditions and the reality condition for Λ
one gets

∂
∂u ½ð̄

2Λ − ð̄2σ0ðu; ζ; ζ̄Þ − ð2σ̄0ðu; ζ; ζ̄Þ� ¼ 0; ðA7Þ

and as expected, the above equation is supertranslation
invariant.
To go from the above equation to the RNC cut equation

one replaces Λ by ð2Z, u by Z, etc. obtaining

ð̄2ð2ðZ − ZiÞ ¼ ð̄2ðσ − σiÞ þ ð2ðσ̄ − σ̄iÞ ðA8Þ
with Zi some initial cut, and σi ¼ σðZi; ζ; ζ̄Þ. Thus, Z − Zi
is supertranslation invariant and only depends on σ − σi.
Defining ½Z� ¼ Z − Zi, ½σ0� ¼ σ0 − σ0i , one writes the

formal linearized solution as

½Z�ðxa; ζ; ζ̄Þ ¼ xala þ
I

Kðζ; ζ0Þðð̄02½σ00� þ ð02½σ̄00�ÞdS02;

ðA9Þ
with xala and Kðζ; ζ0Þ the kernel and the Green function of
the ð̄2ð2 operator on the sphere. In the above equation, the
four constants xa ¼ ðR0; RiÞ are interpreted as points in the
spacetime, whereas la ¼ ðY0

0;−
1
2
Y0
1iÞ are the l ¼ 0.1

spherical harmonics. Also σ00 ¼ σ0ðxal0
a; ζ0; ζ̄0Þ.

We now seek for a one parameter family of solutions that
represents world lines on the spacetime, i.e., xa ¼ xaðτÞ.
For this family, we set Zi ¼ ZðxaðτiÞ; ζ; ζ̄Þ. Instead of
finding the most general form of the solution to the above
equation, we want to concentrate in the compact systems
we are interested in describing. Essentially, we would like
to describe sources in the volume of space that can be
observed by aLIGO, such as closed binaries, supernovae, or
gravitational kicks. For those situations, it is fair to assume
that the system is asymptotically stationary both in the past
and in the future. We thus assume that as τi → −∞ the
imaginary part of the Bondi vanishes and the cut Zi is
shear free. In that limit, we get σi ¼ ð2σRðζ; ζ̄Þ, Zi ¼
xaðτiÞla þ σRðζ; ζ̄Þ. Selecting a Bondi frame with vanish-
ing σRðζ; ζ̄Þ we obtain

ð̄2ð2Z ¼ ð̄2σ0ðZ; ζ; ζ̄Þ þ ð2σ̄0ðZ; ζ; ζ̄Þ: ðA10Þ
This equation is used in this work and is referred to as the

regularized null cone cut equation or RNC cut equation for
short. Its linearized version was independently derived by
L. Mason [42] and by Fritelli and collaborators [43].
Although the RNC cut does not corresponds to any

spacetime point, the full NSF equation [29] can be used to
check how far apart is the RNC cut from a “real” cut
coming from a spacetime point. Assuming the propagation
is mostly along the characteristics and there are no caustics
in the propagation (this is the type of situation aLIGO will
be operating) then the main contribution to the NSF
equation is the Huygens part. Work of Luc Blanchet show
that the contribution of gravitational tails on binary
coalescence are 5 to 7 orders of magnitude smaller than
the leading part of the radiation. Thus, the real null cone cut
is locally smooth and close to, in a precise way given by the
non-Huygens terms of the NSF equation, a RNC cut.
This seems to be the case for the gravitational radiation

that can be detected by aLIGO. If aLIGO can only detect
radiation for null directions where the intensity is higher it
is safe to assume that for such isolated system the RNC cut
will adequately describe the null cone from the center of
mass since one only detects the Huygens part of the
gravitational wave.
We thus claim that the solution space of the RNC cut

equations is useful to describe the dynamical behaviour of
global variables, such as the center of mass and intrinsic
angular momentum defined in this work.

APPENDIX B: OCTUPOLE CONTRIBUTION

To include the octupole contribution in our equation of
_M; _Pi and _Ji we write the expansion of the Bondi shear of
the set of Eqs. (60) in the form

σ0 ¼ σijðuBÞY2
2ijðζ; ζ̄Þ þ σijkðuBÞY2

3ijkðζ; ζ̄Þ: ðB1Þ
The energy and the linear momentum loss are the l ¼ 0, 1
component of the Eq. (36). Introducing the above equation
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in (36) and using the tensorial harmonics products table of
Refs. [22] and [30], we get

_M ¼ −
c

10G
ð _σijR _σijR þ _σijI _σ

ij
I Þ −

3c
7G

ð _σijkR _σijkR þ _σijkI _σijkI Þ;

_Pi ¼ 2c2

15G
_σjlR _σ

kl
I ϵ

ijk −
ffiffiffi
2

p
c2

7G
ð _σjkR _σijkR þ _σjkI _σijkI Þ

þ 3c2

7G
_σjlmR _σklmI ϵijk:

To obtain the quadrupole and octupole contribution to
the angular momentum loss we compute the imaginary
l ¼ 1 component of the definition (56). For this, we use (30)
and the tensorial harmonics products table to get

_Ji¼ c3

5G
ðσklR _σjlR þσklI _σjlI Þϵijkþ

9c3

7G
ðσklmR _σjlmR þσklmI _σjlmI Þϵijk

In a similar way, one can write the n-pole contribution to the
evolution equation for M, Pi and Ji.

APPENDIX C: THE TENSOR
SPIN-S HARMONICS

In order to clarify the derivation of the main results in
this article, we give several tensor spin-s harmonics
examples.

Y0
0 ¼ 1

Y0
1i ¼ ðY−1

1i ¼ ð̄Y1
1i

ðY0
1i ¼ −2Y1

1i

ð̄Y0
1i ¼ −2Y−1

1i

ðY1
1i ¼ 0

ð̄Y−1
1i ¼ 0

ðð̄Y1
1i ¼ −2Y1

1i

ð̄ðY−1
1i ¼ −2Y−1

1i

and for l ¼ 2

Y1
2ij ¼ ð̄Y2

2i

ðY1
2ij ¼ ðð̄Y2

2ij ¼ −4Y2
2ij

Y0
2ij ¼ ð̄2Y2

2ij

ðY0
2ij ¼ −6Y1

2ij

ðð̄Y0
2ij ¼ −6Y0

2ij

For more details and definitions of the spin-weighted
spherical harmonics, see Ref. [30], and for higher products,
see Ref. [22].
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