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1 Introduction
For a < b, let Ω := (a, b), and let ã > 0. Let p ∈ (1,∞) and m ∈ Lp� (Ω) (where as usual we define p� by
1/p + 1/p� = 1) be a possibly sign changing function, and consider the problem

{{{
{{{
{

−(|u�|p−2u�)� = m(x)u−ã in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.1)

One-dimensional singular problems involving the p-Laplacian like problem (1.1) arise in applications such as
non-Newtonian fluid theory or the turbulent flow of a gas in a porous medium (cf. [11, 22]), and they have
been widely studied over the years if m is nonnegative. We cite, among many others, the papers [1, 2, 17–
19, 24, 25]. However, to the best of our knowledge, there are no results available in the literature when m is
allowed to change sign in Ω. Let us note that ifm has an indefinite sign, (1.1) becomes amuchmore involved
problem. In fact, (when m changes sign) these problems are quite intriguing even when (1.1) is sublinear
(i.e., ã ∈ (1 − p, 0)), and only lately existence of positive solutions have been obtained in this case (see [14]
for p ∈ (1,∞), and [13] and its references for the special case p = 2).

On the other side, for the Laplace operator (that is, p = 2) problem (1.1) has recently been considered
in [12] for sign changing functions m. Our aim in this article is to establish similar results in the general
situation 1 < p <∞, adapting and extending the approach developed in [12] combined also with some of
the ideas in [14]. Let us mention that this is far from being trivial due to the nonlinearity of the p-Laplacian
and its corresponding solution operator. Moreover, we remark that some of the conditions presented in this
paper improve the ones found in [12] for the Laplacian operator.

In order to derive our results we shall mainly rely on thewell-known sub- and supersolutionmethod. The
major di�culty here (as with various nonlinear problems with indefinite nonlinearities) is to find a (strictly)
positive subsolution. We shall provide such subsolution bymeans of Schauder’s fixed point theorem applied
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to some related nonlinear problems. More precisely, in Theorem 3.1 (i) we shall give a su�cient condition
on m that assures the existence of solutions of (1.1) for all ã > 0 small enough, and further conditions are
stated in Theorem 3.1 (ii) without the smallness restriction on ã (see also Remark 3.2 below).

On the other hand, two necessary conditions on m are exhibited in Theorem 3.3 (see also Remark 3.4).
Let us point out that the first of the aforementioned su�cient conditions on m turns out to be also “almost”
necessary (compare (3.1) with (3.7), and see the last paragraph in Remark 3.4). Finally, as a consequence of
the above theorems, we shall prove in Corollary 3.5 an existence result for singular nonlinearities of the form
m(x)f(u) with no monotonicity nor convexity assumptions on f .

We conclude this introduction with some few comments on some related open interesting problems.
Based on the results in [14] for the analogous sublinear problem, we think that similar theorems to the ones
proved here should still be true replacing the p-Laplacian by operators of the form

Lu = −(|u�|p−2u�)� + c(x)|u|p−2u,

where c ≥ 0 in Ω. We note however that, for instance, the proof of the key Lemma 2.4 does not work in
this case and it is not clear how to adapt it. Also somehow similar results should be valid for the analogous
n-dimensional problem (in fact, this occurs when p = 2 (and c ≡ 0), see [12, Section 4]; and also [8–10] for
related elliptic problems), and in our opinion proving this if p ̸= 2 is not a trivial task. Let us finally mention
that in the one-dimensional case one could also consider (1.1) with the so-called ϕ-Laplacian in place of
the p-Laplacian, that is, taking (ϕ(u�))� instead of the p-Laplacian, where ϕ is an increasing odd homeomor-
phism with ϕ(ℝ) = ℝ (for singular problems with the ϕ-Laplacian we refer to the book [23, Part II]).

2 Preliminaries
For 1 < p <∞, let L be the di�erential operator given by

Lv := −(|v�|p−2v�)�.

We start collecting some necessary facts concerning the problem

{
Lv = h(x) in Ω,
v = 0 on ∂Ω.

(2.1)

Remark 2.1. Let h ∈ Lq(Ω), q > 1. It is well known that (2.1) admits a unique solution v ∈ C1(Ω) such that
|v�|p−2v� is absolutely continuous and that the equation holds in the pointwise sense. In fact, if

φp(t) := |t|p−2t for t ̸= 0, φp(0) := 0,

and φ−1p denotes its inverse, it can be seen that

v(x) =
x

∫
a

φ−1p (ch −
y

∫
a

h(t) dt) dy, (2.2)

where ch is the unique constant such that v(b) = 0 (see e.g. [5, Section 2]). Furthermore, the solution
operator S satisfies that S : Lq(Ω)→ C1(Ω) is continuous (e.g. [20, Lemma 2.1] or [21, Lemma 4.2]) and
S : Lq(Ω)→ C(Ω) is compact (cf. [5, Corollary 2.3]).

The so-called weak comparison principle shall be repeatedly used along the paper, and so we state it here for
the reader’s convenience (for a proof, see for instance [7, Corollary 6.5.3]).

Lemma 2.2. Let u, v ∈ W1,p
0 (Ω) be such that u ≤ v on ∂Ω and Lu ≤ Lv in weak sense in Ω, that is,
b

∫
a

|u�|p−2u�φ� ≤
b

∫
a

|v�|p−2v�φ� for all 0 ≤ φ ∈ W1,p
0 (Ω).

Then u ≤ v in Ω.
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The next remark compiles some properties concerning the first eigenvalue of the p-Laplacian and its corre-
sponding eigenfunctions.

Remark 2.3. There exists a first eigenvalue λ1(Ω) > 0 and Φ ∈ W1,p
0 (Ω), ‖Φ‖L∞(Ω) = 1, satisfying

{{{
{{{
{

LΦ = λ1(Ω)Φp−1 in Ω,
Φ > 0 in Ω,
Φ = 0 on ∂Ω.

(2.3)

Moreover,

λ1(Ω) = (
πp
b − a)

p
, where πp :=

2π(p − 1)
1
p

p sin( πp )
,

and Φ is a multiple of the function sinp(πp(x − a)/(b − a)) which is strictly positive and symmetric in Ω and
increasing in (a, (a + b)/2) (see e.g. [7, Section 6.3]; and for the precise definition and further properties
of sinp, see e.g. [15] and [3, Section 2]).

In the following lemma we establish some useful upper and lower bounds for S(h). We write as usual
h = h+ − h− with h+ := max(h, 0) and h− := max(−h, 0). We also set

δΩ(x) := dist(x, ∂Ω) = min(x − a, b − x).

Lemma 2.4. Let p ∈ (1,∞) and h ∈ Lq(Ω) for some q > 1.
(i) If h ≥ 0, then in Ω it holds that

S(h) ≤ (
b

∫
a

h)
1
p−1
δΩ . (2.4)

(ii) Let I := (x0, x1) ⊆ Ω and let xI := (x0 + x1)/2. If

inf
I
h > λ1(I)max((xI − a)p−1

x0

∫
a

h−, (b − xI)p−1
b

∫
x1

h−), (2.5)

then in Ω it holds that
S(h) ≥ min(Ha ,Hb)

1
p−1 δΩ , (2.6)

where

Ha :=
infI h

λ1(I)(xI − a)p−1
−
x0

∫
a

h−, Hb :=
infI h

λ1(I)(b − xI)p−1
−

b

∫
x1

h−.

Proof. Let us prove (i). We assume here without loss of generality that h ̸≡ 0. Then by the strong maximum
principle (e.g. [6, Theorem 2]), S(h) > 0 in Ω. We observe now that φ−1p = t

1
p−1 for t ≥ 0 and φ−1p = −|t|

1
p−1 if

t < 0, and so using (2.2) we discover that

S(h)�(x) = φ−1p (ch −
x

∫
a

h(t) dt)

is nonincreasing because h ≥ 0. Hence, S(h) is concave inΩ and thus itmust hold that S(h)�(b) < 0 < S(h)�(a)
and therefore

0 < ch <
b

∫
a

h(t) dt. (2.7)

Noticing that φ−1p is increasing and (2.7) we get that

S(h)�(a), |S(h)�(b)| ≤ (
b

∫
a

h)
1
p−1

and then from the concavity of S(h) we derive (2.4).
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On the other side, let I := (x0, x1) ⊆ Ω , and let λ1(I) > 0 and Φ > 0with ‖Φ‖L∞(I) = 1 be the correspond-
ing normalized positive eigenfunction for the p-Laplacian in I, that is, satisfying (2.3) with I in place of Ω.
Suppose that (2.5) holds (in particular, infI h > 0) and fix λ∗ := λ1(I)/infI h. In order to prove (ii) we start
building some 0 < u ∈ W1,p

0 (Ω) such thatLu ≤ λ∗h(x) in weak sense inΩ. Its construction is inspired in some
of the computationsmade in the proofs of Theorems 3.1 and 3.5 in [14] and [13] respectively. Let us first point
out that since 0 < Φ ≤ 1,

LΦ = λ1(I)Φp−1 ≤ λ∗h(x) in I. (2.8)
On the other hand, define

ca :=
1

(xI − a)p−1
− λ∗

x0

∫
a

h−,

v(x) :=
x

∫
a

(ca + λ∗
y

∫
a

h−)
1
p−1
dy, x ∈ [a, xI].

(Recall that xI := (x0 + x1)/2, and note that ca > 0 due to (2.5).) It is easy to check that v is increasing and
convex, v(a) = 0 and Lv = −λ∗h−(x) ≤ λ∗h(x) in (a, xI). Also, (2.5) implies that h > 0 in I and thus

‖v‖L∞(a,xI ) ≤
xI

∫
a

(ca + λ∗
x0

∫
a

h−)
1
p−1
dy = 1.

Similarly, if for x ∈ [xI , b] we set

cb :=
1

(b − xI)p−1
− λ∗

b

∫
x1

h−,

w(x) :=
b

∫
x

(cb + λ∗
b

∫
y

h−)
1
p−1
dy,

then w is decreasing and convex, w(b) = 0, Lw ≤ λ∗h(x) in (xI , b) and ‖w‖L∞(xI ,b) ≤ 1.
Now, since v(a) = w(b) = Φ(x0) = Φ(x1) = 0 and ‖v‖∞, ‖w‖∞ ≤ 1 = ‖Φ‖∞, and since Φ is increasing

in [x0, xI] and decreasing in [xI , x1] (see Remark 2.3), reasoning as in [13, proof of Theorem 3.1 (i)] we find
some x0 ∈ (x0, xI) and x1 ∈ (xI , x1) such that

v(x0) = Φ(x0), Φ(x1) = w(x1),
v�(x0) ≤ Φ

�(x0), Φ�(x1) ≤ w�(x1).
(2.9)

Let us define a function u by u := v in [a, x0], u := Φ in [x0, x1] and u := w in [x1, b]. (We mention that
if x0 = a, in order to build u we only use Φ and w, if x1 = b then we do not need w, and if I = Ω we simply
put u = Φ.) Taking into account the above paragraph, (2.8) and (2.9), a simple integration by parts gives that
Lu ≤ λ∗h(x) in weak sense in Ω. Moreover, since

v�(a) = c
1
p−1
a and −w�(b) = c

1
p−1
b ,

by the convexity of v and w and the aforementioned monotonicity properties of Φ it follows that

u ≥ min(ca , cb)
1
p−1 δΩ in Ω,

and from the weak comparison principle (see Lemma 2.2) the same estimate is also true for S(λ∗h). Further-
more, by the homogeneity of the di�erential operator L we get that

S(h) ≥ (min(ca , cb)
λ∗ )

1
p−1
δΩ in Ω

which in turn yields (2.6), and this ends the proof of the lemma.

Remark 2.5. Let us note that in particular (ii) establishes the strong maximum principle and Hopf’s lemma
for the operator L, even if h changes sign in Ω. Moreover, it provides explicit lower and upper bounds for
S(h)�(a) and S(h)�(b) respectively, in terms of Ω, p and h.
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Let f : Ω × (0,∞)→ ℝ be a Carathéodory function (that is, f( ⋅ , ξ) is measurable for all ξ ∈ (0,∞) and f(x, ⋅ )
is continuous for a.e. x ∈ Ω). We consider next singular problems of the form

{{{
{{{
{

Lu = f(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(2.10)

in a suitable sense. We say that v ∈ W1,p
loc (Ω) ∩ C(Ω) is a subsolution (in the sense of distributions) of (2.10)

if v > 0 in Ω, v = 0 on ∂Ω, and
b

∫
a

|v�|p−2v�ϕ� ≤
b

∫
a

f(x, v)ϕ for all 0 ≤ ϕ ∈ C∞c (Ω).

Analogously, w ∈ W1,p
loc (Ω) ∩ C(Ω) is a supersolution of (2.10) if w > 0 in Ω, w = 0 on ∂Ω, and

b

∫
a

|w�|p−2w�ϕ� ≥
b

∫
a

f(x, w)ϕ for all 0 ≤ ϕ ∈ C∞c (Ω).

For the sake of completeness we state the following existence theorem in the presence of well-ordered
sub- and supersolutions (for the proof, see [16, Theorem 4.1]).

Theorem 2.6. Assume there exist v, w ∈ C1(Ω) sub- and supersolutions respectively of (2.10), satisfying v ≤ w
in Ω. Suppose also that there exists g ∈ Lp

�
loc(Ω) such that |f(x, ξ)| ≤ g(x) for a.e. x ∈ Ω and all ξ ∈ [v(x), w(x)].

Then there exists u ∈ C1(Ω) ∩ C(Ω) solution (in the sense of distributions) of (2.10) with v ≤ u ≤ w, that is,
b

∫
a

|u�|p−2u�ϕ� =
b

∫
a

f(x, u)ϕ for all ϕ ∈ C∞c (Ω).

Remark 2.7. If m ∈ Lq(Ω) with q > 1 and m+ ̸≡ 0, one can quickly verify that (1.1) possesses arbitrarily big
supersolutions. Indeed, let ψ := S(m+) and let us choose β ∈ (0, 1) and σ > 0 satisfying

β := p − 1
p − 1 + ã, σ ≥ 1

ββ
.

Notice thatψβ ∈ C1(Ω)∩C(Ω),ψβ = 0 on ∂Ω andψβ > 0 inΩ by the strongmaximumprinciple. Also, a simple
computation shows that

L(σψβ) = −(σβ)p−1(|ψ�|p−2ψ�ψ(β−1)(p−1))�

= (σβ)p−1(m+(x)ψ(β−1)(p−1) − (β − 1)(p − 1)|ψ�|pψ(β−1)(p−1)−1)

≥ (σβ)p−1m+(x)ψ(β−1)(p−1)

≥ m+(x)(σψβ)−ã

≥ m(x)(σψβ)−ã in Ω�

for all Ω� ⋐ Ω, and hence σψβ is a supersolution of (1.1).

3 Main results
We denote

P∘ := interior of the positive cone of C10(Ω)

(that is, the functions v ∈ C1(Ω) with v(a) = v(b) = 0, v > 0 in Ω, v�(a) > 0 and v�(b) < 0), and for any
I = (x0, x1) ⊆ Ω we shall write

xI :=
x0 + x1

2 , cI := max(xI − a, b − xI).
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Theorem 3.1. Let m ∈ Lp� (Ω) and ã > 0.
(i) Suppose

S(m) ∈ P∘. (3.1)

Then there exists ã0 > 0 such that problem (1.1) has a solution u ∈ P∘ for all ã ∈ (0, ã0].
(ii) Suppose m−δ−ãΩ ∈ L

q(Ω) with q > 1. If for some I = (x0, x1) ⊆ Ω it holds that

(infI m+)p−1+ã

(∫
b
a m
+)ã
≥ cã,p,Ω,I max(

x0

∫
a

m−δ−ãΩ ,
b

∫
x1

m−δ−ãΩ )
p−1
, (3.2)

where
cã,p,Ω,I := (

p − 1
ã

)
ã
(
p − 1 + ã
p − 1 )

p−1+ã
(
b − a
2 )

ã(p−1)
(cp−1I λ1(I))p−1+ã,

then problem (1.1) has a solution u ∈ C1(Ω) ∩ C(Ω), and u ∈ P∘ whenever m+δ−ãΩ ∈ Lr(Ω) with r > 1.

Proof. Since Remark 2.7 provides arbitrarily large supersolutions of (1.1), it su�ces to find a subsolution.
Let us start proving (i). We first observe that (1.1) admits a solution for m if and only if it has one for τm for
any constant τ > 0, and therefore we shall also assume without loss of generality that S(m+) ≤ 1 in Ω.

Due to (3.1),we canfix ε > 0 such thatS(m) ≥ 2εδΩ inΩ.Wealsopickã0 > 0 such that for everyã ∈ (0, ã0]
it holds that m−δ−ãΩ ∈ Lr(Ω) with r > 1. Since S : Lr(Ω)→ C1(Ω) is a continuous operator for any r > 1 (see
Remark 2.1), making ã0 smaller if necessary, we obtain that for all suchã it holds that

S(m+ − m−(εδΩ)−ã) ≥ εδΩ in Ω. (3.3)

Define now the set
C := {v ∈ C(Ω) : εδΩ ≤ v ≤ S(m+) in Ω},

and for v ∈ C let u := S(m+ − m−v−ã) := T(v). Utilizing (3.3) and the weak comparison principle we see that

S(m+) ≥ S(m+ − m−v−ã) = u ≥ S(m+ − m−(εδΩ)−ã) ≥ εδΩ in Ω

and hence u ∈ C. Furthermore, one can verify that v → m+ − m−v−ã is continuous from C into Lr(Ω) for
some r > 1, and thus employing the compactness of the solution operator S (cf. Remark 2.1) we deduce
that T : C→ C is continuous and compact. It follows from Schauder’s fixed point theorem that there exists
some v ∈ C solution of

{
Lv = m+(x) − m−(x)v−ã in Ω,
v = 0 on ∂Ω.

(3.4)

Moreover, v ∈ C1(Ω) and, since v ≤ 1 (due to v ≤ S(m+) ≤ 1), it follows from (3.4) that v is a subsolution
of (1.1). Therefore, recalling Remark 2.7 and Theorem2.6we obtain some u ∈ C1(Ω) ∩ C(Ω) solution of (1.1).
Finally, decreasing ã0 if necessary so thatm+δ−ãΩ ∈ Lr(Ω)with r > 1, by standard regularity arguments we get
that u ∈ C1(Ω), and also u ∈ P∘ in view of the fact that u ≥ cδΩ for some c > 0. This concludes the proof of (i).

In order to prove (ii) we proceed similarly. We shall prove (ii) for τm, where

τ := ( 2
b − a)

p−1
(
b

∫
a

m+)
−1
.

Since δΩ ≤ (b − a)/2 in Ω, employing (2.4) one can check that S(τm+) ≤ 1 in Ω. We shall also assume that

max(
x0

∫
a

m−δ−ãΩ ,
b

∫
x1

m−δ−ãΩ ) =
x0

∫
a

m−δ−ãΩ (3.5)

because the other case is completely analogous. We define next

c1 :=
infI m+

λ1(I)c
p−1
I

, c2 :=
x0

∫
a

m−δ−ãΩ , r := (
τc2ã
p − 1)

1
p−1+ã

, C := {v ∈ C(Ω) : rδΩ ≤ v ≤ S(τm+) in Ω}.

(Let usmention that if (3.5) is not valid, thenwe set c2 := ∫
b
x1
m−δ−ãΩ .) One can readily verify that (3.2) implies
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that
cp−1+ã1 ≥ (

p − 1
τã )

ã
(
p − 1 + ã
p − 1 )

p−1+ã
cp−12 . (3.6)

Taking into account this fact and the definition of cI we now observe that

λ1(I)(xI − a)p−1
x0

∫
a

m−(rδΩ)−ã ≤ λ1(I)c
p−1
I r−ã

x0

∫
a

m−δ−ãΩ

= λ1(I)c
p−1
I ((

p − 1
τã )

ã
cp−12 )

1
p−1+ã

≤ λ1(I)c
p−1
I c1

p − 1
p − 1 + ã

< inf
I
m+

and thuswemay apply Lemma2.4 (ii) withm+−m−(rδΩ)−ã in place of h (and so alsowith τ(m+−m−(rδΩ)−ã)).
Given any v ∈ C,wenext define u := S(τ(m+−m−v−ã)). Recalling the aboveparagraph, fromLemma2.4 (ii)

and again making use of (3.5) and (3.6), after some computations we deduce that

S(τm+) ≥ u ≥ S(τ(m+ − m−(rδΩ)−ã)) ≥ (τ(c1 − c2r−ã))
1
p−1 δΩ ≥ rδΩ in Ω

and therefore v ∈ C. Now the proof of (ii) can be finished as in (i), and this concludes the proof.

Remark 3.2. (i) Let us notice that by Lemma 2.4 (ii), (3.1) is true if for instance

inf
I
m+ > λ1(I)max((xI − a)p−1

x0

∫
a

m−, (b − xI)p−1
b

∫
x1

m−)

for some I = (x0, x1) ⊂ Ω.
(ii) We also remark that several distinct conditions guarantee thatm−δ−ãΩ ∈ Lq(Ω) for some q > 1. Indeed,

for example, this occurs for all ã ∈ (0, 1/p), ormore generally ifm− ∈ Lq(Ω)with q ≥ p� and ã ∈ (0, (q − 1)/q).
Also, the same is valid for every ã > 0 when m ≥ 0 in the set {x ∈ Ω : δΩ(x) < ε} for some ε > 0. Of course,
analogous statements hold for m+δ−ãΩ .

Theorem 3.3. Suppose (1.1) has a solution u ∈ C1(Ω) such that φp(u�) is absolutely continuous. Then

S(m) > 0 in Ω (3.7)

and
b

∫
a

m > 0. (3.8)

Proof. Let u > 0 be a solution of (1.1) and fix

β :=
p − 1 + ã
p − 1 .

Let 0 ≤ ϕ ∈ C∞c (Ω), and let Ω� be an open set such that suppϕ ⊂ Ω� ⋐ Ω. We have that

L(uβ) = −βp−1(|u�|p−2u�u(β−1)(p−1))�

= βp−1(m(x)u−ãu(β−1)(p−1) − |u�|p(β − 1)(p − 1)u(β−1)(p−1)−1)
≤ βp−1m(x)u−ãu(β−1)(p−1)

= βp−1m(x) in Ω�

and hence, multiplying the above inequality by ϕ, integrating over Ω� and using the integration by parts
formula, we see that

b

∫
a

!!!!(u
β)�!!!!

p−2(uβ)�ϕ� ≤ βp−1
b

∫
a

m(x)ϕ.
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On the other hand, let 0 ≤ v ∈ W1,p
0 (Ω). It is easy to check that there exists {ϕj}j∈ℕ ⊂ C∞c (Ω) with ϕj ≥ 0

in Ω and such that ϕj → v in W1,p(Ω) (see e.g. [4, p. 50]). Utilizing the last inequality with ϕj in place of ϕ
and passing to the limit, we get that L(uβ) ≤ βp−1m(x) in weak sense in Ω and so from the weak comparison
principle we deduce that 0 < uβ ≤ βS(m) in Ω and this ends the proof of (3.7).

Finally, we observe thatmultiplying (1.1) by uã and integrating by parts on (a + ε, b − ε)with ε > 0 small,
we get that

(φp(u�)uã)(a + ε)−(φp(u�)uã)(b − ε) + ã
b−ε

∫
a+ε

|u�|puã−1 ≤
b−ε

∫
a+ε

m

and letting ε → 0 it is easy to deduce (3.8).

Remark 3.4. Let us note that conditions (3.7) and (3.8) are not comparable. Indeed, suppose first p = 2, and
let Ω := (0, 3π) and m(x) := sin x. Then m = S(m) and ∫

3π
0 m > 0, but S(m) < 0 in (π, 2π).

On the other side, integrating (2.1) (with m in place of h) we get that

φp(S(m)�(a)) − φp(S(m)�(b)) =
b

∫
a

m. (3.9)

It follows that we may have S(m) > 0 in Ω but ∫ba m = 0. (Take for instance again p = 2, Ω := (0, π), m(x) :=
2(sin2 x − cos2 x) and S(m)(x) = sin2 x.)

What it is indeed true from (3.9) is that S(m) > 0 in Ω implies ∫ba m ≥ 0. Moreover, from Theorem 3.3 and
(3.9) we have that if (1.1) admits a solution, then either S(m)�(a) ̸= 0 or S(m)�(b) ̸= 0. It is an interesting open
question to see if it is necessary that both derivatives are nonzero.

We conclude the paper showing an existence theorem for singular problems of the form

{{{
{{{
{

Lu = m(x)f(u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(3.10)

for certain continuous functions f : (0,∞)→ (0,∞). Let us observe that we make no monotonicity nor
convexity assumptions on f .

We state the following hypothesis:

Hypothesis (H). There exist cf , Cf > 0 and ã > 0 such that

cf ξ−ã ≤ f(ξ) ≤ Cf ξ−ã for all ξ > 0.

Corollary 3.5. Let m ∈ Lp� (Ω), let f satisfy (H) and suppose (1.1) has a solution with cfm+ − Cfm− in place
of m. Then there exists a solution of (3.10).

Proof. Let u be a solution of (1.1) with cfm+ − Cfm− in place of m. Employing (H) we find that

Lu = (cfm+(x) − Cfm−(x))u−ã ≤ m(x)f(u) in Ω.

On the other hand, let ψ := S(m+) > 0 and fix β ∈ (0, 1) and σ > 0 satisfying

β := p − 1
p − 1 + ã, σ ≥

C
1

p−1+ã
f

ββ
.

Enlarging σ if necessary, recalling that β < 1 and that by Lemma 2.4,

S(m+)�(a) > 0 > S(m+)�(b),

wemay assume that σψβ ≥ u in Ω. Now, arguing as in Remark 2.7 and taking into account (H), we obtain that

L(σψβ) ≥ (σβ)p−1m+(x)ψ(β−1)(p−1) ≥ Cfm+(x)(σψβ)−ã ≥ m+(x)f(σψβ) ≥ m(x)f(σψβ) in Ω�

for every Ω� ⋐ Ω, and the corollary follows.
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