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Low-Speed Aerodynamics, Second Edition

Low-speed aerodynamics is important in the design and operation of aircraft fly-
ing at low Mach number and of ground and marine vehicles. This book offers a
modern treatment of the subject, both the theory of inviscid, incompressible, and
irrotational aerodynamics and the computational techniques now available to solve
complex problems.

A unique feature of the text is that the computational approach (from a single
vortex element to a three-dimensional panel formulation) is interwoven throughout.
Thus, the reader can learn about classical methods of the past, while also learning
how to use numerical methods to solve real-world aerodynamic problems. This
second edition, updates the first edition with a new chapter on the laminar boundary
layer, the latest versions of computational techniques, and additional coverage
of interaction problems. It includes a systematic treatment of two-dimensional
panel methods and a detailed presentation of computational techniques for three-
dimensional and unsteady flows. With extensive illustrations and examples, this
book will be useful for senior and beginning graduate-level courses, as well as a
helpful reference tool for practicing engineers.

Joseph Katz is Professor of Aerospace Engineering and Engineering Mechanics
at San Diego State University.

Allen Plotkin is Professor of Aerospace Engineering and Engineering Mechanics
at San Diego State University.
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Preface

Our goal in writing this Second Edition of Low-Speed Aerodynamics remains the
same, to present a comprehensive and up-to-date treatment of the subject of inviscid, incom-
pressible, and irrotational aerodynamics. It is still true that for most practical aerodynamic
and hydrodynamic problems, the classical model of a thin viscous boundary layer along
a body’s surface, surrounded by a mainly inviscid flowfield, has produced important engi-
neering results. This approach requires first the solution of the inviscid flow to obtain the
pressure field and consequently the forces such as lift and induced drag. Then, a solution
of the viscous flow in the thin boundary layer allows for the calculation of the skin friction
effects.

The First Edition provides the theory and related computational methods for the solution
of the inviscid flow problem. This material is complemented in the Second Edition with
a new Chapter 14, “The Laminar Boundary Layer,” whose goal is to provide a modern
discussion of the coupling of the inviscid outer flow with the viscous boundary layer. First,
an introduction to the classical boundary-layer theory of Prandtl is presented. The need for an
interactive approach (to replace the classical sequential one) to the coupling is discussed and
a viscous–inviscid interaction method is presented. Examples for extending this approach,
which include transition to turbulence, are provided in the final Chapter 15.

In addition, updated versions of the computational methods are presented and several
topics are improved and updated throughout the text. For example, more coverage is given of
aerodynamic interaction problems such as multiple wings, ground effect, wall corrections,
and the presence of a free surface.

We would like to thank Turgut Sarpkaya of the Naval Postgraduate School and H. K.
Cheng of USC for their input in Chapter 14 and particularly Mark Drela of MIT who
provided a detailed description of his solution technique, which formed the basis for the
material in Sections 14.7 and 14.8. Finally, we would like to acknowledge the continuing
love and support of our wives, Hilda Katz and Selena Plotkin.
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Preface to the First Edition

Our goal in writing this book is to present a comprehensive and up-to-date treat-
ment of the subject of inviscid, incompressible, and irrotational aerodynamics. Over the
last several years there has been a widespread use of computational (surface singularity)
methods for the solution of problems of concern to the low-speed aerodynamicist and a
need has developed for a text to provide the theoretical basis for these methods as well as
to provide a smooth transition from the classical small-disturbance methods of the past to
the computational methods of the present. This book was written in response to this need.
A unique feature of this book is that the computational approach (from a single vortex el-
ement to a three-dimensional panel formulation) is interwoven throughout so that it serves
as a teaching tool in the understanding of the classical methods as well as a vehicle for the
reader to obtain solutions to complex problems that previously could not be dealt with in
the context of a textbook. The reader will be introduced to different levels of complexity in
the numerical modeling of an aerodynamic problem and will be able to assemble codes to
implement a solution.

We have purposely limited our scope to inviscid, incompressible, and irrotational aero-
dynamics so that we can present a truly comprehensive coverage of the material. The book
brings together topics currently scattered throughout the literature. It provides a detailed pre-
sentation of computational techniques for three-dimensional and unsteady flows. It includes
a systematic and detailed (including computer programs) treatment of two-dimensional
panel methods with variations in singularity type, order of singularity, Neumann or Dirich-
let boundary conditions, and velocity or potential-based approaches.

This book is divided into three main parts. In the first, Chapters 1–3, the basic theory is
developed. In the second part, Chapters 4–8, an analytical approach to the solution of the
problem is taken. Chapters 4, 5, and 8 deal with the small-disturbance version of the problem
and the classical methods of thin-airfoil theory, lifting line theory, slender wing theory, and
slender body theory. In this part exact solutions via complex variable theory and perturbation
methods for obtaining higher-order small disturbance approximations are also included.
The third part, Chapters 9–14, presents a systematic treatment of the surface singularity
distribution technique for obtaining numerical solutions for incompressible potential flows.
A general methodology for assembling a numerical solution is developed and applied to a
series of increasingly complex aerodynamic elements (two-dimensional, three-dimensional,
and unsteady problems are treated).

The book is designed to be used as a textbook for a course in low-speed aerodynamics at
either the advanced senior or first-year graduate levels. The complete text can be covered in
a one-year course and a one-quarter or one-semester course can be constructed by choosing
the topics that the instructor would like to emphasize. For example, a senior elective course
which concentrated on two-dimensional steady aerodynamics might include Chapters 1–3,
4, 5, 9, 11, 8, 12, and 14. A traditional graduate course which emphasized an analytical
treatment of the subject might include Chapters 1–3, 4, 5–7, 8, 9, and 13 and a course which
emphasized a numerical approach (panel methods) might include Chapters 1–3 and 9–14
and a treatment of pre- and postprocessors. It has been assumed that the reader has taken

xv
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xvi Preface to the First Edition

a first course in fluid mechanics and has a mathematical background which includes an
exposure to vector calculus, partial differential equations, and complex variables.

We believe that the topics covered by this text are needed by the fluid dynamicist because
of the complex nature of the fluid dynamic equations which has led to a mainly experimental
approach for dealing with most engineering research and development programs. In a wider
sense, such an approach uses tools such as wind tunnels or large computer codes where the
engineer/user is experimenting and testing ideas with some trial and error logic in mind.
Therefore, even in the era of supercomputers and sophisticated experimental tools, there is
a need for simplified models that allow for an easy grasp of the dominant physical effects
(e.g., having a simple lifting vortex in mind, one can immediately tell that the first wing in
a tandem formation has the larger lift).

For most practical aerodynamic and hydrodynamic problems, the classical model of a thin
viscous boundary layer along a body’s surface, surrounded by a mainly inviscid flowfield,
has produced important engineering results. This approach requires first the solution of
the inviscid flow to obtain the pressure field and consequently the forces such as lift and
induced drag. Then, a solution of the viscous flow in the thin boundary layer allows for
the calculation of the skin friction effects. This methodology has been used successfully
throughout the twentieth century for most airplane and marine vessel designs. Recently, due
to developments in computer capacity and speed, the inviscid flowfield over complex and
detailed geometries (such as airplanes, cars, etc.) can be computed by this approach (panel
methods). Thus, for the near future, since these methods are the main tools of low-speed
aerodynamicists all over the world, a need exists for a clear and systematic explanation
of how and why (and for which cases) these methods work. This book is one attempt to
respond to this need.

We would like to thank graduate students Lindsey Browne and especially Steven Yon
who developed the two-dimensional panel codes in Chapter 11 and checked the integrals in
Chapter 10. Allen Plotkin would like to thank his teachers Richard Skalak, Krishnamurthy
Karamcheti, Milton Van Dyke, and Irmgard Flugge-Lotz, his parents Claire and Oscar for
their love and support, and his children Jennifer Anne and Samantha Rose and especially
his wife Selena for their love, support, and patience. Joseph Katz would like to thank his
parents Janka and Jeno, his children Shirley, Ronny, and Danny, and his wife Hilda for their
love, support, and patience. The support of the Low-Speed Aerodynamic Branch at NASA
Ames is acknowledged by Joseph Katz for their inspiration that initiated this project and
for their help during past years in the various stages of developing the methods presented
in this book.
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CHAPTER 1

Introduction and Background

The differential equations that are generally used in the solution of problems rel-
evant to low-speed aerodynamics are a simplified version of the governing equations of
fluid dynamics. Also, most engineers when faced with finding a solution to a practical aero-
dynamic problem, find themselves operating large computer codes rather than developing
simple analytical models to guide them in their analysis. For this reason, it is important to
start with a brief development of the principles upon which the general fluid dynamic equa-
tions are based. Then we will be in a position to consider the physical reasoning behind the
assumptions introduced to generate simplified versions of the equations that still correctly
model the aerodynamic phenomena being studied. It is hoped that this approach will give
the engineer the ability to appreciate both the power and the limitations of the techniques
that will be presented in this text. In this chapter we will derive the conservation of mass and
momentum balance equations and show how they are reduced to obtain the equations that
will be used in the rest of the text to model flows of interest to the low-speed aerodynamicist.

1.1 Description of Fluid Motion

The fluid being studied here is modeled as a continuum, and infinitesimally small
regions of the fluid (with a fixed mass) are called fluid elements or fluid particles. The
motion of the fluid can be described by two different methods. One adopts the particle point
of view and follows the motion of the individual particles. The other adopts the field point
of view and provides the flow variables as functions of position in space and time.

The particle point of view, which uses the approach of classical mechanics, is called the
Lagrangian method. To trace the motion of each fluid particle, it is convenient to introduce
a Cartesian coordinate system with the coordinates x, y, and z. The position of any fluid
particle P (see Fig. 1.1) is then given by

x = xP (x0, y0, z0, t)

y = yP (x0, y0, z0, t)

z = zP (x0, y0, z0, t)

(1.1)

where (x0, y0, z0) is the position of P at some initial time t = 0. (Note that the quantity
(x0, y0, z0) represents the vector with components x0, y0, and z0.) The components of the
velocity of this particle are then given by

u = ∂x/∂t

v = ∂y/∂t

w = ∂z/∂t

(1.2)

and those of the acceleration by

ax = ∂2x/∂t2

ay = ∂2 y/∂t2

az = ∂2z/∂t2

(1.3)

1



P1: FBT

CB329-01 CB329/Katz September 22, 2000 13:49 Char Count= 58027

2 1 / Introduction and Background

Figure 1.1 Particle trajectory lines in a steady-state flow over an airfoil as viewed from a body-fixed
coordinate system.

The Lagrangian formulation requires the evaluation of the motion of each fluid particle.
For most practical applications this abundance of information is neither necessary nor useful
and the analysis is cumbersome.

The field point of view, called the Eulerian method, provides the spatial distribution of
flow variables at each instant during the motion. For example, if a Cartesian coordinate
system is used, the components of the fluid velocity are given by

u = u(x, y, z, t)

v = v(x, y, z, t)

w = w(x, y, z, t)

(1.4)

The Eulerian approach provides information about the fluid variables that is consistent
with the information supplied by most experimental techniques and that is in a form ap-
propriate for most practical applications. For these reasons the Eulerian description of fluid
motion is the most widely used.

1.2 Choice of Coordinate System

For the following chapters, when possible, primarily a Cartesian coordinate system
will be used. Other coordinate systems such as curvilinear, cylindrical, spherical, etc. will be
introduced and used if necessary, mainly to simplify the treatment of certain problems. Also,
from the kinematic point of view, a careful choice of a coordinate system can considerably
simplify the solution of a problem. As an example, consider the forward motion of an airfoil,
with a constant speed U∞, in a fluid that is otherwise at rest – as shown in Fig. 1.1. Here, the
origin of the coordinate system is attached to the moving airfoil and the trajectory of a fluid
particle inserted at point P0 at t = 0 is shown in the figure. By following the trajectories of
several particles a more complete description of the flowfield is obtained in the figure. It is
important to observe that for a constant-velocity forward motion of the airfoil, in this frame
of reference, these trajectory lines become independent of time. That is, if various particles
are introduced at the same point in space, then they will follow the same trajectory.

Now let us examine the same flow, but from a coordinate system that is fixed relative to
the undisturbed fluid. At t = 0, the airfoil was at the right side of Fig. 1.2 and as a result
of its constant-velocity forward motion (with a speed U∞ toward the left side of the page),
later at t = t1 it has moved to the new position indicated in the figure. A typical particle’s
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1.3 Pathlines, Streak Lines, and Streamlines 3

Figure 1.2 Particle trajectory line for the airfoil of Fig. 1.1 as viewed from a stationary inertial frame.

trajectory line between t = 0 and t = t1, for this case, is shown in Fig. 1.2. The particle’s
motion now depends on time, and a new trajectory has to be established for each particle.

This simple example depicts the importance of good coordinate system selection. For
many problems where a constant velocity and a fixed geometry (with time) are present, the
use of a body-fixed frame of reference will result in a steady or time-independent flow.

1.3 Pathlines, Streak Lines, and Streamlines

Three sets of curves are normally associated with providing a pictorial description
of a fluid motion: pathlines, streak lines, and streamlines.

Pathlines: A curve describing the trajectory of a fluid element is called a pathline or a
particle path. Pathlines are obtained in the Lagrangian approach by an integration of the
equations of dynamics for each fluid particle. If the velocity field of a fluid motion is given
in the Eulerian framework by Eq. (1.4) in a body-fixed frame, the pathline for a particle at P0

in Fig. 1.1 can be obtained by an integration of the velocity. For steady flows the pathlines
in the body-fixed frame become independent of time and can be drawn as in the case of
flow over the airfoil shown in Fig. 1.1.

Streak Lines: In many cases of experimental flow visualization, particles (e.g., dye or
smoke) are introduced into the flow at a fixed point in space. The line connecting all of these
particles is called a streak line. To construct streak lines using the Lagrangian approach,
draw a series of pathlines for particles passing through a given point in space and, at a
particular instant in time, connect the ends of these pathlines.

Streamlines: Another set of curves can be obtained (at a given time) by lines that are
parallel to the local velocity vector. To express analytically the equation of a streamline at
a certain instant of time, at any point P in the fluid, the velocity1 q must be parallel to the
streamline element dl (Fig. 1.3). Therefore, on a streamline:

q × dl = 0 (1.5)

If the velocity vector is q = (u, v, w), then the vector equation (Eq. (1.5)) reduces to the
following scalar equations:

w dy − v dz = 0

u dz − w dx = 0 (1.6)

v dx − u dy = 0

or in a differential equation form:

dx

u
= dy

v
= dz

w
(1.6a)

1 Bold letters in this book represent vectors.
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Figure 1.3 Description of a streamline.

In Eq. (1.6a), the velocity (u, v, w) is a function of the coordinates and of time. However,
for steady flows the streamlines are independent of time and streamlines, pathlines, and
streak lines become identical, as shown in Fig. 1.1.

1.4 Forces in a Fluid

Prior to discussing the dynamics of fluid motion, the types of forces that act on a
fluid element should be identified. Here, we consider forces such as body forces per unit
mass f and surface forces resulting from the stress vector t. The body forces are independent
of any contact with the fluid, as in the case of gravitational or magnetic forces, and their
magnitude is proportional to the local mass.

To define the stress vector t at a point, consider the force F acting on a planar area S
(shown in Fig. 1.4) with n being an outward normal to S. Then

t = lim
S→0

(
F

S

)

To obtain the components of the stress vector consider the force equilibrium on an infinites-
imal tetrahedral fluid element, shown in Fig. 1.5. According to Batchelor1.1 (p. 10) this
equilibrium yields the components in the x1, x2, and x3 directions:

ti =
3∑

j=1

τi j n j , i = 1, 2, 3 (1.7)

where the subscripts 1, 2, and 3 denote the three coordinate directions. A similar treatment
of the moment equilibrium results in the symmetry of the stress vector components so that
τi j = τ j i .

These stress components τi j are shown schematically on a cubical element in Fig. 1.6.
Note that τi j acts in the xi direction on a surface whose outward normal points in the
x j direction. This indicial notation allows a simpler presentation of the equations, and the

Figure 1.4 Force F acting on a surface S.
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Figure 1.5 Tetrahedral fluid element.

subscripts 1, 2, and 3 denote the coordinate directions x , y, and z, respectively. For example,

x1 = x, x2 = y, x3 = z

and

q1 = u, q2 = v, q3 = w

The stress components shown on the cubical fluid element of Fig. 1.6 can be summarized
in a matrix form or in an indicial form as follows:⎛

⎝ τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎞
⎠ =

⎛
⎝ τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞
⎠ = τi j (1.8)

Also, it is customary to sum over any index that is repeated such that

3∑
j=1

τi j n j ≡ τi j n j for i = 1, 2, 3 (1.9)

Figure 1.6 Stress components on a cubical fluid element.
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Figure 1.7 Flow between a stationary (lower) and a moving (upper) plate.

and to interpret an equation with a free index (as i in Eq. (1.9)) as being valid for all values
of that index.

For a Newtonian fluid (where the stress components τi j are linear in the derivatives
∂qi/∂x j ), the stress components are related to the velocity field by (see, for example,
Batchelor,1.1 p. 147)

τi j =
(

−p − 2

3
μ

∂qk

∂xk

)
δi j + μ

(
∂qi

∂x j
+ ∂q j

∂xi

)
(1.10)

where μ is the viscosity coefficient, p is the pressure, the dummy variable k is summed
from 1 to 3, and δi j is the Kronecker delta function defined by

δi j ≡
(

1, i = j
0, i �= j

)

When the fluid is at rest, the tangential stresses vanish and the normal stress component
becomes simply the pressure. Thus the stress components become

τi j =
⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠ (1.11)

Another interesting case of Eq. (1.10) is the one-degree-of-freedom shear flow between
a stationary and a moving infinite plate with a velocity U∞ (shown in Fig. 1.7), without
pressure gradients. This flow is called Couette flow (see, for example, Yuan,1.2 p. 260) and
the shear stress becomes

τxz = μ
∂u

∂z
= μU∞

h
(1.12)

Since there is no pressure gradient in the flow, the fluid motion in the x direction is entirely
due to the action of the viscous forces. The force F on the plate can be found by integrating
τxz on the upper moving surface.

1.5 Integral Form of the Fluid Dynamic Equations

To develop the governing integral and differential equations describing the fluid
motion, the various properties of the fluid are investigated in an arbitrary control volume
that is stationary and submerged in the fluid (Fig. 1.8). These properties can be density,
momentum, energy, etc., and any change with time of one of them for the fluid flowing
through the control volume is the sum of the accumulation of the property in the control
volume and the transfer of this property out of the control volume through its boundaries.
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Figure 1.8 A control volume in the fluid.

For example, the conservation of mass can be analyzed by observing the changes in fluid
density ρ for the control volume (c.v.). The mass mc.v. within the control volume is then

mc.v. =
∫

c.v.
ρ dV (1.13)

where dV is the volume element. The accumulation of mass within the control volume is
∂mc.v.

∂t
= ∂

∂t

∫
c.v.

ρ dV (1.13a)

The change in the mass within the control volume, due to the mass leaving (mout) and to
the mass entering (m in) through the boundaries (c.s.), is

mout − m in =
∫

c.s.
ρ(q · n) dS (1.14)

where q is the velocity vector (u, v, w) and ρq · n is the rate of mass leaving across and
normal to the surface element dS (n is the outward normal), as shown in Fig. 1.8. Since
mass is conserved, and no new material is being produced, then the sum of Eq. (1.13a) and
Eq. (1.14) must be equal to zero:

dmc.v.

dt
= ∂

∂t

∫
c.v.

ρ dV +
∫

c.s.
ρ(q · n) dS = 0 (1.15)

Equation (1.15) is the integral representation of the conservation of mass. It simply states
that any change in the mass of the fluid in the control volume is equal to the rate of mass
being transported across the control surface (c.s.) boundaries.

In a similar manner the rate of change in the momentum of the fluid flowing through the
control volume at any instant d(mq)c.v./dt is the sum of the accumulation of the momentum
per unit volume ρq within the control volume and of the change of the momentum across
the control surface boundaries:

d(mq)c.v.

dt
= ∂

∂t

∫
c.v.

ρq dV +
∫

c.s.
ρq(q · n) dS (1.16)

This change in the momentum, as given in Eq. (1.16), according to Newton’s second law
must be equal to the forces �F applied to the fluid inside the control volume:

d(mq)c.v.

dt
= �F (1.17)

The forces acting on the fluid in the control volume in the xi direction are either body
forces ρ fi per unit volume or surface forces n jτi j per unit area, as discussed in Section 1.4:

(�F)i =
∫

c.v.
ρ fi dV +

∫
c.s.

n jτi j dS (1.18)

where n is the unit normal vector that points outward from the control volume.
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By substituting Eqs. (1.16) and (1.18) into Eq. (1.17), the integral form of the momentum
equation in the i direction is obtained:

∂

∂t

∫
c.v.

ρqi dV +
∫

c.s.
ρqi (q · n) dS =

∫
c.v.

ρ fi dV +
∫

c.s.
n jτi j dS (1.19)

This approach can be used to develop additional governing equations, such as the energy
equation. However, for the fluid dynamic cases that are being considered here, the mass and
the momentum equations are sufficient to describe the fluid motion.

1.6 Differential Form of the Fluid Dynamic Equations

Equations (1.15) and (1.19) are the integral forms of the conservation of mass
and momentum equations. In many cases, though, the differential representation is more
useful. In order to derive the differential form of the conservation of mass equation, both
integrals of Eq. (1.15) should be volume integrals. This can be accomplished by the use of
the divergence theorem (see, Kellogg,1.3 p. 39), which states that for a vector q:∫

c.s.
n · q dS =

∫
c.v.

∇ · q dV (1.20)

If q is the flow velocity vector then this equation states that the fluid flux through the
boundary of the control surface (left-hand side) is equal to the rate of expansion of the fluid
(right-hand side) inside the control volume. In Eq. (1.20), ∇ is the gradient operator, which,
in Cartesian coordinates, is

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

or in indicial form

∇ = e j
∂

∂x j

where e j is the unit vector (i, j, k, for j = 1, 2, 3). Thus the indicial form of the divergence
theorem becomes∫

c.s.
n j q j dS =

∫
c.v.

∂q j

∂x j
dV (1.20a)

An application of Eq. (1.20) to the surface integral term in Eq. (1.15) transforms it to a
volume integral:∫

c.s.
ρ(q · n) dS =

∫
c.v.

(∇ · ρq) dV

This allows the two terms to be combined as one volume integral:∫
c.v.

(
∂ρ

∂t
+ ∇ · ρq

)
dV = 0

where the time derivative is taken inside the integral since the control volume is stationary.
Because the equation must hold for an arbitrary control volume anywhere in the fluid, the
integrand is also equal to zero. Thus, the following differential form of the conservation of
mass or the continuity equation is obtained:

∂ρ

∂t
+ ∇ · ρq = 0 (1.21)
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Expansion of the second term of Eq. (1.21) yields

∂ρ

∂t
+ q · ∇ρ + ρ∇ · q = 0 (1.21a)

and in Cartesian coordinates

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0 (1.21b)

Use of the material derivative

D

Dt
≡ ∂

∂t
+ q · ∇ = ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

transforms Eq. (1.21) into

Dρ

Dt
+ ρ∇ · q = 0 (1.21c)

The material derivative D/Dt represents the rate of change following a fluid particle. For
example, the acceleration of a fluid particle is given by

a = Dq

Dt
= ∂q

∂t
+ q · ∇q (1.22)

An incompressible fluid is a fluid whose elements cannot experience volume change.
Since by definition the mass of a fluid element is constant, the fluid elements of an incom-
pressible fluid must have constant density. (A homogeneous incompressible fluid is therefore
a constant-density fluid.) The continuity equation (Eq. (1.21)) for an incompressible fluid
reduces to

∇ · q = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1.23)

Note that the incompressible continuity equation does not have time derivatives (but time
dependency can be introduced via time-dependent boundary conditions).

To obtain the differential form of the momentum equation, the divergence theorem
(Eq. (1.20a)) is applied to the surface integral terms of Eq. (1.19):∫

c.s.
ρqi (q · n) dS =

∫
c.v.

∇ · ρqi q dV

∫
c.s.

n jτi j dS =
∫

c.v.

∂τi j

∂x j
dV

Substitution of these results into Eq. (1.19) yields∫
c.v.

[
∂

∂t
(ρqi ) + ∇ · ρqi q − ρ fi − ∂τi j

∂x j

]
dV = 0 (1.24)

Since this integral holds for an arbitrary control volume, the integrand must be zero and
therefore

∂

∂t
(ρqi ) + ∇ · ρqi q = ρ fi + ∂τi j

∂x j
(i = 1, 2, 3) (1.25)

Expanding the left-hand side of Eq. (1.25) first, and then using the continuity equation, we
can reduce the left-hand side to

∂

∂t
(ρqi ) + ∇ · (ρqi q) = qi

[
∂ρ

∂t
+ ∇ · ρq

]
+ ρ

[
∂qi

∂t
+ q · ∇qi

]
= ρ

Dqi

Dt
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(Note that the fluid acceleration is

ai = Dqi

Dt

which, according to Newton’s second law, when multiplied by the mass per volume must
be equal to �Fi .)

So, after substituting this form of the acceleration term into Eq. (1.25), the differential
form of the momentum equation becomes ρai = �Fi or

ρ
Dqi

Dt
= ρ fi + ∂τi j

∂x j
(i = 1, 2, 3) (1.26)

and in Cartesian coordinates

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= �Fx = ρ fx + ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z

(1.26a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= �Fy = ρ fy + ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z

(1.26b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= �Fz = ρ fz + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

(1.26c)

(Note that in Eqs. (1.26a–c) the symmetry of the stress vector has been enforced.) For a
Newtonian fluid the stress components τi j are given by Eq. (1.10), and by substituting them
into Eqs. (1.26a–c), the Navier–Stokes equations are obtained:

ρ

(
∂qi

∂t
+ q · ∇qi

)
= ρ fi − ∂

∂xi

(
p + 2

3
μ∇ · q

)
+ ∂

∂x j
μ

(
∂qi

∂x j
+ ∂q j

∂xi

)

(i = 1, 2, 3) (1.27)

which in Cartesian coordinates are

ρ

(
∂u

∂t
+ q · ∇u

)
= ρ fx − ∂p

∂x
+ ∂

∂x

{
μ

[
2
∂u

∂x
− 2

3
(∇ · q)

]}

+ ∂

∂y

[
μ

(
∂u

∂y
+ ∂v

∂x

)]
+ ∂

∂z

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
(1.27a)

ρ

(
∂v

∂t
+ q · ∇v

)
= ρ fy − ∂p

∂y
+ ∂

∂y

{
μ

[
2
∂v

∂y
− 2

3
(∇ · q)

]}

+ ∂

∂z

[
μ

(
∂v

∂z
+ ∂w

∂y

)]
+ ∂

∂x

[
μ

(
∂u

∂y
+ ∂v

∂x

)]
(1.27b)

ρ

(
∂w

∂t
+ q · ∇w

)
= ρ fz − ∂p

∂z
+ ∂

∂z

{
μ

[
2
∂w

∂z
− 2

3
(∇ · q)

]}

+ ∂

∂x

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
+ ∂

∂y

[
μ

(
∂v

∂z
+ ∂w

∂y

)]
(1.27c)
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Figure 1.9 Direction of tangential and normal velocity components near a solid boundary.

Typical boundary conditions for this problem require that on stationary solid boundaries
(Fig. 1.9) both the normal and tangential velocity components will reduce to zero:

qn = 0 (on solid surface) (1.28a)

qt = 0 (on solid surface) (1.28b)

The number of exact solutions to the Navier–Stokes equations is small because of the
nonlinearity of the differential equations. However, in many situations some terms can be
neglected so that simpler equations can be obtained. For example, by assuming constant
viscosity coefficient μ, Eq. (1.27) becomes

ρ

(
∂q

∂t
+ q · ∇q

)
= ρf − ∇ p + μ∇2q + μ

3
∇(∇ · q) (1.29)

Furthermore, by assuming an incompressible fluid (for which the continuity equation
(Eq. (1.23)) becomes ∇ · q = 0), Eq. (1.27) reduces to

ρ

(
∂q

∂t
+ q · ∇q

)
= ρf − ∇ p + μ∇2q (1.30)

For an inviscid compressible fluid

∂q

∂t
+ q · ∇q = f − ∇ p

ρ
(1.31)

This equation is called the Euler equation.
In situations in which the problem has cylindrical or spherical symmetry, the use of ap-

propriate coordinates can simplify the solution. As an example, we present the fundamental
equations for an incompressible fluid with constant viscosity. The cylindrical coordinate
system is described in Fig. 1.10, and for this example the r, θ coordinates are in a plane
normal to the x coordinate. The operators ∇, ∇2, and D/Dt in the r, θ, x system are (see
Pai,1.4 p. 38 or Yuan,1.2 p. 132)

∇ =
(

er
∂

∂r
, eθ

1

r

∂

∂θ
, ex

∂

∂x

)
(1.32)

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂x2
(1.33)

D

Dt
= ∂

∂t
+ qr

∂

∂r
+ qθ

r

∂

∂θ
+ qx

∂

∂x
(1.34)
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Figure 1.10 Cylindrical coordinate system.

The continuity equation in cylindrical coordinates for an incompressible fluid then be-
comes

∂qr

∂r
+ 1

r

∂qθ

∂θ
+ ∂qx

∂x
+ qr

r
= 0 (1.35)

The momentum equations for an incompressible fluid are

r direction:

ρ

(
Dqr

Dt
− q2

θ

r

)
= ρ fr − ∂p

∂r
+ μ

(
∇2qr − qr

r2
− 2

r2

∂qθ

∂θ

)
(1.36)

θ direction:

ρ

(
Dqθ

Dt
+ qr qθ

r

)
= ρ fθ − 1

r

∂p

∂θ
+ μ

(
∇2qθ + 2

r2

∂qr

∂θ
− qθ

r2

)
(1.37)

x direction:

ρ
Dqx

Dt
= ρ fx − ∂p

∂x
+ μ∇2qx (1.38)

A spherical coordinate system with the coordinates r, θ, ϕ is described in Fig. 1.11. The
operators ∇, ∇2, and D/Dt in the r, θ, ϕ system are (Karamcheti,1.5 Chapter 2 or Yuan,1.2

p. 132)

∇ =
(

er
∂

∂r
, eθ

1

r

∂

∂θ
, eϕ

1

r sin θ

∂

∂ϕ

)
(1.39)

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂ϕ2
(1.40)

D

Dt
= ∂

∂t
+ qr

∂

∂r
+ qθ

r

∂

∂θ
+ qϕ

r sin θ

∂

∂ϕ
(1.41)

The continuity equation in spherical coordinates for an incompressible fluid becomes
(Pai,1.4 p. 40)

1

r

∂(r2qr )

∂r
+ 1

sin θ

∂(qθ sin θ )

∂θ
+ 1

sin θ

∂qϕ

∂ϕ
= 0 (1.42)
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Figure 1.11 Spherical coordinate system.

The momentum equations for an incompressible fluid are (Pai,1.4 p. 40)

r direction:

ρ

(
Dqr

Dt
− q2

ϕ + q2
θ

r

)

= ρ fr − ∂p

∂r
+ μ

(
∇2qr − 2qr

r2
− 2

r2

∂qθ

∂θ
− 2qθ cot θ

r2
− 2

r2 sin θ

∂qϕ

∂ϕ

)

(1.43)

θ direction:

ρ

(
Dqθ

Dt
+ qr qθ

r
− q2

ϕ cot θ

r

)

= ρ fθ − 1

r

∂p

∂θ
+ μ

(
∇2qθ + 2

r2

∂qr

∂θ
− qθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂qϕ

∂ϕ

)
(1.44)

ϕ direction:

ρ

(
Dqϕ

Dt
+ qϕqr

r
+ qθqϕ cot θ

r

)

= ρ fϕ − 1

r sin θ

∂p

∂ϕ
+ μ

(
∇2qϕ − qϕ

r2 sin2 θ
+ 2

r2 sin θ

∂qr

∂ϕ
+ 2 cos θ

r2 sin2 θ

∂qθ

∂ϕ

)

(1.45)

When a two-dimensional flowfield is treated in this text, it will be described in either a
Cartesian coordinate system with coordinates x and z or in a corresponding polar coordi-
nate system with coordinates r and θ (see Fig. 1.12). In this polar coordinate system, the
continuity equation for an incompressible fluid is obtained from Eq. (1.35) by eliminating
∂qx/∂x , and the r - and θ -momentum equations for an incompressible fluid are identical to
Eqs. (1.36) and (1.37), respectively.
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Figure 1.12 Two-dimensional polar coordinate system.

1.7 Dimensional Analysis of the Fluid Dynamic Equations

The governing equations developed in the previous section (e.g., Eq. (1.27)) are
very complex and their solution, even by numerical methods, is difficult for many prac-
tical applications. If some of the terms causing this complexity can be neglected in cer-
tain regions of the flowfield, while the dominant physical features are still retained, then
a set of simplified equations can be obtained (and probably solved with less effort). In
this section, some of the conditions for simplifying the governing equations will be dis-
cussed.

To determine the relative magnitude of the various elements in the governing differential
equations, the following dimensional analysis is performed. For simplicity, consider the
fluid dynamic equations with constant properties (μ = constant, and ρ = constant):

∇ · q = 0 (1.23)

ρ

(
∂q

∂t
+ q · ∇q

)
= ρf − ∇ p + μ∇2q (1.30)

The first step is to define some characteristic or reference quantities, relevant to the physical
problem to be studied:

L – reference length (e.g., wing’s chord)
V – reference speed (e.g., the free-stream speed )
T – characteristic time (e.g., one cycle of a periodic process, or L/V )
p0 – reference pressure (e.g., free-stream pressure, p∞)
f0 – body force (e.g., magnitude of earth’s gravitation, g)

With the aid of these characteristic quantities we can define the following nondimensional
variables:

x∗ = x

L
, y∗ = y

L
, z∗ = z

L

u∗ = u

V
, v∗ = v

V
, w∗ = w

V

t∗ = t

T

p∗ = p

p0

f ∗ = f

f0

(1.46)

If these characteristic magnitudes are properly selected, then all the nondimensional vari-
ables in Eq. (1.46) will be of the order of one. Next, the governing equations need to be
rewritten using the quantities of Eq. (1.46). As an example, the first term of the continuity
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equation becomes

∂u

∂x
= ∂u

∂u∗
∂u∗

∂x∗
∂x∗

∂x
= V

L

(
∂u∗

∂x∗

)

and the transformed incompressible continuity equation is

V

L

(
∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗

)
= 0 (1.47)

After a similar treatment, the momentum equation in the x direction becomes

ρ

(
V

T

∂u∗

∂t∗ + V
V

L
u∗ ∂u∗

∂x∗ + V
V

L
v∗ ∂u∗

∂y∗ + V
V

L
w∗ ∂u∗

∂z∗

)

= ρ f0 f ∗
x − p0

L

∂p∗

∂x∗ + μ
V

L2

(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)
(1.48)

The corresponding equations in the y and z directions can be obtained by the same procedure.
Now, multiplying Eq. (1.47) by L/V and Eq. (1.48) by L/ρV 2 we end up with

∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗ = 0 (1.49)

(
L

T V

)
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗

=
(

L f0

V 2

)
f ∗
x −

(
p0

ρV 2

)
∂p∗

∂x∗ +
(

μ

ρV L

)(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)
(1.50)

If all the nondimensional variables in Eq. (1.46) are of order one, then all terms appearing
with an asterisk (∗) will also be of order one, and the relative magnitude of each group in
the equations is fixed by the nondimensional numbers appearing inside the parentheses. In
the continuity equation (Eq. (1.49)), all terms have the same order of magnitude and for an
arbitrary three-dimensional flow all terms are equally important. In the momentum equation
the first nondimensional number is

	 = L

T V
(1.51)

which is a time constant and signifies the importance of time-dependent phenomena. A
more frequently used form of this nondimensional number is the Strouhal number, where
the characteristic time is the inverse of the frequency ω of a periodic occurrence (e.g., wake
shedding frequency behind a separated airfoil):

St = L(
1
ω

)
V

= ωL

V
(1.52)

If the Strouhal number is very small, perhaps due to very low frequencies, then the time-
dependent first term in Eq. (1.50) can be neglected compared to the terms of order one.

The second group of nondimensional numbers (when gravity is the body force and f0 is
the gravitational acceleration g) is called the Froude number, which stands for the ratio of
inertial force to gravitational force:

Fr = V√
Lg

(1.53)
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Small values of Fr (note that Fr−2 appears in Eq. (1.50)) will mean that body forces such
as gravity should be included in the equations, as in the case of free surface river flows,
waterfalls, ship hydrodynamics, etc.

The third nondimensional number is the Euler number, which represents the ratio be-
tween the pressure and the inertia forces:

Eu = p0

ρV 2
(1.54)

A frequently used quantity related to the Euler number is the pressure coefficient C p, which
measures the nondimensional pressure difference, relative to a reference pressure p0:

C p ≡ p − p0

(1/2)ρV 2
(1.55)

The last nondimensional group in Eq. (1.50) represents the ratio between the inertial and
viscous forces and is called the Reynolds number:

Re = ρV L

μ
= V L

ν
(1.56)

where ν is the kinematic viscosity given by

ν = μ

ρ
(1.57)

For the flow of gases, from the kinetic theory point of view (see Yuan,1.2 p. 257) the viscosity
can be connected to the characteristic velocity of the molecules c and to the mean distance
λ that they travel between collisions (mean free path), by

μ ≈ ρ
cλ

3

Substituting this into Eq. (1.56) yields

Re ≈
(

V

c

)(
L

λ

)

This formulation shows that the Reynolds number represents the scaling of the velocity-
times-length, compared to the molecular scale.

The conditions for neglecting the viscous terms when Re 
 1 will be discussed in more
detail in the next section.

For simplicity, at the beginning of this analysis an incompressible fluid was assumed.
However, if compressibility is to be considered, an additional nondimensional number,
called the Mach number, appears. It is the ratio of the velocity to the speed of sound a:

M = V

a
(1.58)

Note that the Euler number can be related to the Mach number since p/ρ ∼ a2 (see also
Section 4.8).

Density changes caused by pressure changes are negligible if (see Karamcheti,1.5 p. 23)

M � 1,
M2

Fr2
� 1,

M2

Re
� 1 (1.59)

and if these conditions are met, an incompressible fluid can be assumed.
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1.8 Flow with High Reynolds Number

The most important outcome of the nondimensionalizing process of the governing
equations is that now the relative magnitude of the terms appearing in the equations can be
determined and compared. If desired, small terms can be neglected, resulting in simplified
equations that are easier to solve but still contain the dominant physical effects.

In the case of the continuity equation all terms have the same magnitude and none is
to be neglected. For the momentum equation the relative magnitude of the terms can be
obtained by substituting Eqs. (1.51)–(1.56) into Eq. (1.50), and for the x direction we get

	
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗

=
(

1

Fr2

)
f ∗
x − Eu

∂p∗

∂x∗ +
(

1

Re

)(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)
(1.60)

Before proceeding further let us examine the range of Reynolds number and Mach number
for some typical engineering problems. Since the viscosity of typical fluids such as air and
water is very small, a wide variety of practical engineering problems (aircraft low-speed
aerodynamics, hydrodynamics of naval vessels, etc.) fall within the Re 
 1 range, as shown
in Fig. 1.13. So for situations when the Reynolds number is high, the viscous terms become
small compared to the other terms of order one in Eq. (1.60). But before neglecting these
terms, a closer look at the high Reynolds number flow condition is needed. As an example,
consider the flow over an airfoil, as shown in Fig. 1.14. In general, based on the assumption
of high Reynolds number the viscous terms of Eq. (1.60) (or Eq. (1.30)) can be neglected
in the outer flow regions (outside the immediate vicinity of a solid surface where ∇2q ≈
order 1). Therefore, in this outer flow region, the solution can be approximated by solving
the incompressible continuity and the Euler equations:

∇ · q = 0 (1.61)

∂q

∂t
+ q · ∇q = f − ∇ p

ρ
(1.62)

Figure 1.13 Range of Reynolds number and Mach number for some typical fluid flows.
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Figure 1.14 Flow regions in a high Reynolds number flow.

Equation (1.62) is a first-order partial differential equation and the solid surface boundary
condition requires the specification of only one velocity component compared to all velocity
components needed for Eq. (1.30) in the previous section. Since the flow is assumed to be
inviscid, there is no physical reason for the tangential velocity component to be zero on a
stationary solid surface and therefore what remains from the no-slip boundary condition
(Eq. (1.28b)) is that the normal component of velocity must be zero:

qn = 0 (on solid surface) (1.63)

However, a closer investigation of such flowfields reveals that near the solid boundaries in
the fluid, shear flow derivatives such as ∇2q become large and the viscous terms cannot be
neglected even for high values of the Reynolds number (Fig. 1.14). For example, near the
surface of a streamlined two-dimensional body submerged in a steady flow in the x direction
(with no body forces) the Navier–Stokes equations can be reduced to the classical boundary
layer equations (see Schlichting,1.6 p. 131) where now x represents distance along the body
surface and z is measured normal to the surface. The momentum equation in the x direction is

ρ

(
u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+ μ

∂2u

∂z2
(1.64)

and that in the normal z direction is

0 = −∂p

∂z
(1.65)

So, in conclusion, for high Reynolds number flows there are two dominant regions in the
flowfield:

1. The outer flow (away from the solid boundaries) where the viscous effects are
negligible. A solution for the inviscid flow in this region provides information
about the pressure distribution and the related forces.

2. The thin boundary layer (near the solid boundaries) where the viscous effects can-
not be neglected. Solution of the boundary layer equations will provide information
about the shear stress distribution and the related (friction) forces.

For the solution of the boundary layer equations, the no-slip boundary condition is
applied on the solid boundary. The tangential velocity profile inside the boundary layer is
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shown in Fig. 1.14; we see that as the outer region is approached, the tangential velocity
component becomes independent of z. The interface between the boundary layer region and
the outer flow region is not precisely defined and occurs at a distance δ, the boundary layer
thickness, from the wall. For large values of the Reynolds number the ratio of the boundary
layer thickness to a characteristic length of the body (an airfoil’s chord, for example) is
proportional to Re−1/2 (see Schlichting,1.6 p. 129). Therefore, the normal extent of the
boundary layer region is negligible when viewed on the length scale of the outer region.

A detailed solution for the complete flowfield of such a high Reynolds number flow
proceeds as follows:

1. A solution is found for the inviscid flow past the body. For this solution the boundary
condition of zero velocity normal to the solid surface is applied at the surface of
the body (which is indistinguishable from the edge of the boundary layer on the
scale of the chord). The tangential velocity component on the body surface Ue is
then obtained as part of the inviscid solution and the pressure distribution along
the solid surface is then determined.

2. Note that in the boundary layer equations (Eqs. (1.64) and (1.65)) the pressure does
not vary across the boundary layer and is said to be impressed on the boundary
layer. Therefore, the surface pressure distribution is taken from the inviscid solution
in (1) and inserted into Eq. (1.64). Also, Ue is taken from the inviscid solution as
the tangential component of the velocity at the edge of the boundary layer and is
used as a boundary condition in the solution of the boundary layer equations.

Solving for a high Reynolds number flowfield with the assumption of an inviscid fluid is
therefore the first step toward solving the complete physical problem. (Additional iterations
between the inviscid outer flow and the boundary layer region in search of an improved
solution are possible and are discussed in Chapters 9, 14, and 15.)

1.9 Similarity of Flows

Another interesting aspect of the process of nondimensionalizing the equations in
the previous section is that two different flows are considered to be similar if the nondi-
mensional numbers of Eq. (1.60) are the same. For most practical cases, where gravity
and unsteady effects are negligible, only the Reynolds and the Mach numbers need to be
matched. A possible implementation of this principle is in water or wind-tunnel testing,
where the scale of the model differs from that of the actual flow conditions.

For example, many airplanes are tested in small scale first (e.g., 1/5-th scale). To keep
the Reynolds number the same then either the airspeed or the air density must be increased
(e.g., by a factor of 5). This is a typical conflict that test engineers face, since increasing the
airspeed 5 times will bring the Mach number to an unreasonably high range. The second
alternative of reducing the kinematic viscosity ν by compressing the air is possible in only a
very few wind tunnels, and in most cases matching both of these nondimensional numbers
is difficult.

Another possible way to apply the similarity principle is to exchange fluids between the
actual and the test conditions (e.g., water with air where the ratio of kinematic viscosity is
about 1:15). Thus a 1/15-scale model of a submarine can be tested in a wind tunnel at true
speed conditions. Usually it is better to increase the speed in the wind tunnel and then even
a smaller scale model can be tested (of course the Mach number is not always matched but
for such low Mach number applications this is less critical).
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Problems

1.1. The velocity components of a two-dimensional flowfield are given by

u(x, y) = k

[
x2 + y2 − 1

(x2 + y2 − 1)2 + 4y2

]

v(x, y) = 2k

[
xy

(x2 + y2 − 1)2 + 4y2

]

where k is a constant. Does this flow satisfy the incompressible continuity equation?

1.2. The velocity components of a three-dimensional, incompressible flow are given
by

u = 2x, v = −y, w = −z

Determine the equations of the streamlines passing through point (1,1,1).

1.3. The velocity components of a two-dimensional flow are given by

u = ky

x2 + y2

v = −kx

x2 + y2

where k is a constant.
a. Obtain the equations of the streamlines.
b. Does this flow satisfy the incompressible continuity equation?

1.4. The two-dimensional, incompressible, viscous, laminar flow between two par-
allel plates due to a constant pressure gradient dp/dx is called Poiseuille flow
(shown in Fig. 1.15). Simplify the continuity and momentum equations for this
case and specify the boundary conditions on the wall (at z = ±h/2). Deter-
mine the velocity distribution u(z) between the plates and the shearing stress
τzx (z = h/2) = −μ(∂u/∂z)|h/2 on the wall.

Figure 1.15 Two-dimensional viscous incompressible flow between two parallel plates.
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CHAPTER 2

Fundamentals of Inviscid, Incompressible Flow

In Chapter 1 it was established that for flows at high Reynolds number the effects of
viscosity are effectively confined to thin boundary layers and thin wakes. For this reason our
study of low-speed aerodynamics will be limited to flows outside these limited regions where
the flow is assumed to be inviscid and incompressible. To develop the mathematical equa-
tions that govern these flows and the tools that we will need to solve the equations it is neces-
sary to study rotation in the fluid and to demonstrate its relationship to the effects of viscosity.

It is the goal of this chapter to define the mathematical problem (differential equation
and boundary conditions) of low-speed aerodynamics whose solution will occupy us for
the remainder of the book.

2.1 Angular Velocity, Vorticity, and Circulation

The arbitrary motion of a fluid element consists of translation, rotation, and defor-
mation. To illustrate the rotation of a moving fluid element, consider at t = t0 the control
volume shown in Fig. 2.1. Here, for simplicity, we select an infinitesimal rectangular el-
ement that is being translated in the z = 0 plane by a velocity (u, v) of its corner no. 1.
The lengths of the sides, parallel to the x and y directions, are �x and �y, respectively.
Because of the velocity variations within the fluid the element may deform and rotate, and,
for example, the x component of the velocity at the upper corner (no. 4) of the element
will be (u + (∂u/∂y)�y), where higher order terms in the small quantities �x and �y
are neglected. At a later time (e.g., t = t0 + �t), this will cause the deformation shown
at the right-hand side of Fig. 2.1. The angular velocity component ωz (note that positive
direction in the figure follows the right-hand rule) of the fluid element can be obtained by
averaging the instantaneous angular velocities of the segments 1–2 and 1–4 of the element.
The instantaneous angular velocity of segment 1–2 is the difference in the linear velocities
of the two edges of this segment, divided by the distance (�x):

angular velocity of segment 1–2 ≈ relative velocity

radius

= v + (∂v/∂x)�x − v

�x
= ∂v

∂x

and the angular velocity of the 1–4 segment is

−[u + (∂u/∂y)�y] + u

�y
= −∂u

∂y

The z component of the angular velocity of the fluid element is then the average of these
two components:

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)

The two additional components of the angular velocity can be obtained similarly, and in

21
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Figure 2.1 Angular velocity of a rectangular fluid element.

vector form the angular velocity becomes

ω = 1

2
∇ × q (2.1)

It is convenient to define the vorticity ζ as twice the angular velocity:

ζ ≡ 2ω = ∇ × q (2.2)

In Cartesian coordinates the vorticity components are

ζx = 2ωx =
(

∂w

∂y
− ∂v

∂z

)

ζy = 2ωy =
(

∂u

∂z
− ∂w

∂x

)

ζz = 2ωz =
(

∂v

∂x
− ∂u

∂y

)
(2.2a)

Now consider an open surface S, shown in Fig. 2.2, which has the closed curve C as
its boundary. With the use of Stokes’s theorem (see Kellogg,1.3 p. 73) the vorticity on the
surface S can be related to the line integral around C :∫

S
∇ × q · n dS =

∫
S
ζ · n dS =

∮
C

q · dl

Figure 2.2 The relation between surface and line integrals.
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where n is normal to S. The integral on the right-hand side is called the circulation and
denoted by �:

� ≡
∮

C
q · dl (2.3)

This relation can be illustrated again with the simple fluid element of Fig. 2.1. The circulation
�� is obtained by the evaluation of the closed line integral of the tangential velocity
component around the fluid element. Note that the positive direction corresponds to the
positive direction of ω:

�� =
∮

C
q · dl = u�x +

(
v + ∂v

∂x
�x

)
�y −

(
u + ∂u

∂y
�y

)
�x − v�y

=
(

∂v

∂x
− ∂u

∂y

)
�x�y =

∫
S
ζz dS

For the general three-dimensional case these conclusions can be summarized as

� ≡
∮

C
q · dl =

∫
S
∇ × q · n dS =

∫
S
ζ · n dS (2.4)

The circulation is therefore somehow tied to the rotation in the fluid (e.g., to the angular
velocity of a solid body type rotation). In Fig. 2.3 two examples are shown to illustrate the
concept of circulation. The curve C (dashed lines) is taken to be a circle in each case. In
Fig. 2.3a the flowfield consists of concentric circular streamlines in the counterclockwise
direction. It is clear that along the circular integration path C (Fig. 2.3a) q and dl in Eq. (2.3)
are positive for all dl and therefore C has a positive circulation. In Fig. 2.3b the flowfield is
the symmetric flow of a uniform stream past a circular cylinder. It is clear from the symmetry
that the circulation is zero for this case.

To illustrate the motion of a fluid with rotation consider the control volume shown in
Fig. 2.4a, moving along the path l. Let us assume that the viscous forces are very large
and the fluid will rotate as a rigid body, while following the path l. In this case ∇ × q �=0
and the flow is called rotational. For the fluid motion described in Fig. 2.4b, the shear
forces in the fluid are negligible, and the fluid will not be rotated by the shear force of
the neighboring fluid elements. In this case ∇ × q = 0 and the flow is considered to be
irrotational.

Figure 2.3 Flow fields with (a) and without (b) circulation.
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Figure 2.4 Rotational and irrotational motion of a fluid element.

2.2 Rate of Change of Vorticity

To obtain an equation that governs the rate of change of vorticity of a fluid ele-
ment, we start with the incompressible Navier–Stokes equations in Cartesian coordinates
(Eq. (1.30))

∂q

∂t
+ q · ∇q = f − ∇ p

ρ
+ ν∇2q (1.30)

The convective acceleration term is rewritten using the vector identity

q · ∇q = ∇ q2

2
− q × ζ (2.5)

Now take the curl of Eq. (1.30), with the second term on the left-hand side replaced by
the right-hand side of Eq. (2.5). Note that for a scalar A, ∇ × ∇ A ≡ 0 and therefore the
pressure term vanishes:

∂ζ

∂t
− ∇ × (q × ζ) = ∇ × f + ν∇2ζ (2.6)

To simplify the result, we use the following vector identity:

∇ × (q × ζ) = q∇ · ζ − q · ∇ζ + ζ · ∇q − ζ∇ · q (2.7)

along with the incompressible continuity equation and the fact that the vorticity is divergence
free (note that for any vector A, ∇ · ∇ × A ≡ 0). If we also assume that the body force
acting is conservative (irrotational, such as gravity) then

∇ × f = 0

and the rate of change of vorticity equation becomes

Dζ

Dt
= ∂ζ

∂t
+ q · ∇ζ = ζ · ∇q + ν∇2ζ (2.8)

The inviscid incompressible version of the vorticity transport equation is then

Dζ

Dt
= ζ · ∇q (2.9)

For a flow that is two-dimensional, the vorticity is perpendicular to the flow direction and
Eq. (2.8) becomes

Dζ

Dt
= ν∇2ζ (2.10)



P1: FBT

CB329-02 CB329/Katz October 5, 2000 11:54 Char Count= 0

2.3 Rate of Change of Circulation: Kelvin’s Theorem 25

and for the two-dimensional flow of an inviscid, incompressible fluid

Dζ

Dt
= 0 (2.11)

and the vorticity of each fluid element is seen to remain constant.
The vorticity equation (Eq. (2.8)) strongly resembles the Navier–Stokes equation and for

very high values of the Reynolds number we see that the vorticity that is created at the solid
boundary is convected along with the flow at a much faster rate than it can be diffused out
across the flow and so it remains in the confines of the boundary layer and trailing wake.
The fluid in the outer portion of the flowfield (the part that we will study) is seen to be
effectively rotation free (irrotational) as well as inviscid.

The above observation can be illustrated for the two-dimensional case using the nondi-
mensional quantities defined in Eq. (1.46). Then, Eq. (2.10) can be rewritten in nondimen-
sional form as

Dζ ∗
z

Dt∗ = 1

Re
∇∗2ζ ∗

z (2.10a)

where the Reynolds number, Re, is defined in Eq. (1.56). Here a two-dimensional flow in
the x–y plane is assumed and therefore the vorticity points in the z direction. The left-hand
side in this equation is the rate at which vorticity is accumulated, which is equal to the rate it
is being generated (near the solid boundaries of solid surfaces). It is clear from Eq. (2.10a)
that for high Reynolds number flows, vorticity generation is small and can be neglected
outside the boundary layer. Thus for an irrotational fluid Eq. (2.2) reduces to

∂w

∂y
= ∂v

∂z

∂u

∂z
= ∂w

∂x
∂v

∂x
= ∂u

∂y

(2.12)

2.3 Rate of Change of Circulation: Kelvin’s Theorem

Consider the circulation around a fluid curve (which always passes through the
same fluid particles) in an incompressible inviscid flow with conservative body forces
acting. The time rate of change of the circulation of this fluid curve C is given as

D�

Dt
= D

Dt

∮
C

q · dl =
∮

C

Dq

Dt
· dl +

∮
C

q · D

Dt
dl (2.13)

Since C is a fluid curve, we have

Dq

Dt
= a and

D

Dt
dl = dq

and therefore
D�

Dt
=

∮
C

a · dl (2.14)

since the closed integral of an exact differential that is a function of the coordinates and time
only is

∮
C q · dq = ∮

C d(q2/2) = 0. The acceleration a is obtained from the Euler equation
(Eq. (1.62)) and is

a = −∇
(

p

ρ

)
+ f



P1: FBT

CB329-02 CB329/Katz October 5, 2000 11:54 Char Count= 0

26 2 / Fundamentals of Inviscid, Incompressible Flow

Figure 2.5 Circulation caused by an airfoil after it is suddenly set into motion.

Substitution into Eq. (2.14) yields the result that the circulation of a fluid curve remains
constant:

D�

Dt
= 0 = −

∮
C

d

(
p

ρ

)
+

∮
C

f · dl (2.15)

since the integral of a perfect differential around a closed path is zero and the work done by
a conservative force around a closed path is also zero. The result in Eq. (2.15) is a form of
angular momentum conservation known as Kelvin’s theorem (after the British scientist who
published his theorem in 1869), which states that: The time rate of change of circulation
around a closed curve consisting of the same fluid elements is zero. For example, consider
an airfoil as in Fig. 2.5, which prior to t = 0 was at rest and then at t > 0 was suddenly set
into a constant forward motion. As the airfoil moves through the fluid a circulation �airfoil

develops around it. In order to comply with Kelvin’s theorem a starting vortex �wake must
exist such that the total circulation around a line surrounding both the airfoil and the wake
remains unchanged:

D�

Dt
= 1

�t
(�airfoil + �wake) = 0 (2.16)

This is possible only if the starting vortex circulation equals the airfoil’s circulation, but
with rotation in the opposite direction.

2.4 Irrotational Flow and the Velocity Potential

It has been shown that the vorticity in the high Reynolds number flowfields being
studied is confined to the boundary layer and wake regions where the influence of viscosity
is not negligible and so it is appropriate to assume an irrotational as well as inviscid flow
outside these confined regions. (The results of Sections 2.2 and 2.3 will be used when it is
necessary to model regions of vorticity in the flowfield.)

Consider the following line integral in a simply connected region, along the line C :∫
C

q · dl =
∫

C
u dx + v dy + w dz (2.17)

If the flow is irrotational in this region then u dx + v dy + w dz is an exact differential (see
Kreyszig,2.1 p. 475) of a potential 	 that is independent of the integration path C and is a
function of the location of the point P(x, y, z):

	(x, y, z) =
∫ P

P0

u dx + v dy + w dz (2.18)
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where P0 is an arbitrary reference point. 	 is called the velocity potential, and the velocity
at each point can be obtained as its gradient

q = ∇	 (2.19)

In Cartesian coordinates the velocity components are given by

u = ∂	

∂x
, v = ∂	

∂y
, w = ∂	

∂z
(2.20)

The substitution of Eq. (2.19) into the continuity equation (Eq. (1.23)) leads to the
following differential equation for the velocity potential:

∇ · q = ∇ · ∇	 = ∇2	 = 0 (2.21)

which is Laplace’s equation (named after the French mathematician Pierre S. De Laplace
(1749–1827)). It is a statement of the incompressible continuity equation for an irrotational
fluid. Note that Laplace’s equation is a linear differential equation. Since the fluid’s viscosity
has been neglected, the no-slip boundary condition on a solid–fluid boundary cannot be
enforced and only Eq. (1.28a) is required. In a more general form, the boundary condition
states that the normal component of the relative velocity between the fluid and the solid
surface (which may have a velocity qB) is zero on the boundary:

n · (q − qB) = 0 (2.22)

This boundary condition is physically reasonable and is consistent with the proper mathe-
matical formulation of the problem as will be shown later in the chapter.

For an irrotational, inviscid, incompressible flow it now appears that the velocity field
can be obtained from a solution of Laplace’s equation for the velocity potential. Note that
we have not yet used the Euler equation, which connects the velocity to the pressure. Once
the velocity field is obtained it is necessary to also obtain the pressure distribution on the
body surface to allow for a calculation of the aerodynamic forces and moments.

2.5 Boundary and Infinity Conditions

Laplace’s equation for the velocity potential is the governing partial differential
equation for the velocity for an inviscid, incompressible, and irrotational flow. It is an elliptic
differential equation that results in a boundary-value problem. For aerodynamic problems
the boundary conditions need to be specified on all solid surfaces and at infinity. One form
of the boundary condition on a solid–fluid interface is given in Eq. (2.22). Another state-
ment of this boundary condition, which will prove useful in applications, is obtained in the
following way.

Let the solid surface be given by

F(x, y, z, t) = 0 (2.23)

in Cartesian coordinates. Particles on the surface move with velocity qB such that F remains
zero. Therefore the derivative of F following the surface particles must be zero:(

D

Dt

)
B

F ≡ ∂F

∂t
+ qB · ∇F = 0 (2.24)

Equation (2.22) can be rewritten as

q · ∇F = qB · ∇F (2.25)



P1: FBT

CB329-02 CB329/Katz October 5, 2000 11:54 Char Count= 0

28 2 / Fundamentals of Inviscid, Incompressible Flow

since the normal to the surface n is proportional to the gradient of F ,

n = ∇F

|∇F | (2.26)

If Eq. (2.25) is now substituted into Eq. (2.24) the boundary condition becomes

∂ F

∂t
+ q · ∇F = DF

Dt
= 0 (2.27)

At infinity, the disturbance q, due to the body moving through a fluid that was initially
at rest, decays to zero. In a space-fixed frame of reference the velocity of such fluid (at rest)
is therefore zero at infinity (far from the solid boundaries of the body):

lim
r→∞ q = 0 (2.28)

2.6 Bernoulli’s Equation for the Pressure

The incompressible Euler equation (Eq. (1.31)) can be rewritten with the use of
Eq. (2.5) as

∂q

∂t
− q × ζ + ∇ q2

2
= f − ∇ p

ρ
(2.29)

For irrotational flow ζ = 0 and the time derivative of the velocity can be written as

∂q

∂t
= ∂

∂t
∇	 = ∇

(
∂	

∂t

)
(2.30)

Let us also assume that the body force is conservative with a potential E ,

f = −∇E (2.31)

If gravity is the body force acting and the z axis points upward, then E = gz.
The Euler equation for incompressible irrotational flow with a conservative body force

(by substituting Eqs. (2.30) and (2.31) into Eq. (2.29)) then becomes

∇
(

E + p

ρ
+ q2

2
+ ∂	

∂t

)
= 0 (2.32)

Equation (2.32) is true if the quantity in parentheses is a function of time only, that is,

E + p

ρ
+ q2

2
+ ∂	

∂t
= C(t) (2.33)

This is the Bernoulli equation (named after the Dutch/Swiss mathematician, Daniel
Bernoulli (1700–1782)) for inviscid incompressible irrotational flow. A more useful form
of the Bernoulli equation is obtained by comparing the quantities on the left-hand side of
Eq. (2.33) at two points in the fluid; the first is an arbitrary point and the second is a reference
point at infinity. The equation becomes[

E + p

ρ
+ q2

2
+ ∂	

∂t

]
=

[
E + p

ρ
+ q2

2
+ ∂	

∂t

]∣∣∣∣
∞

(2.34)

If the reference condition is chosen such that E∞ = 0, 	∞ = const., and q∞ = 0 then
the pressure p at any point in the fluid can be calculated from

p∞ − p

ρ
= ∂	

∂t
+ E + q2

2
(2.35)
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If the flow is steady, incompressible, but rotational the Bernoulli equation (Eq. (2.34)) is
still valid with the time-derivative term set equal to zero if the constant on the right-hand
side is now allowed to vary from streamline to streamline. (This is because the product
q × ζ is normal to the streamline dl and their dot product vanishes along the streamline.
Consequently, Eq. (2.34) can be used in a rotational fluid between two points lying on the
same streamline.)

2.7 Simply and Multiply Connected Regions

The region exterior to a two-dimensional airfoil and that exterior to a three-
dimensional wing or body are fundamentally different in a mathematical sense and lead to
velocity potentials with different properties. To point out the difference in these regions, we
need to introduce a few basic definitions.

A reducible curve in a region can be contracted to a point without leaving the region.
For example, in the region exterior to an airfoil, any curve surrounding the airfoil is not
reducible and any curve not surrounding it is reducible. A simply connected region is one
where all closed curves are reducible. (The region exterior to a finite three-dimensional
body is simply connected. Any curve surrounding the body can be translated away from
the body and then contracted.) A barrier is a curve that is inserted into a region but is not
a part of the resulting modified region. The insertion of barriers into a region can change it
from being multiply connected to being simply connected. The degree of connectivity of a
region is n + 1, where n is the minimum number of barriers needed to make the remaining
region simply connected. For example, consider the region in Fig. 2.6 exterior to an airfoil.
Draw a barrier from the trailing edge to downstream infinity. The original region minus the
barrier is now simply connected. (Note that curves in the region can no longer surround the
airfoil.) Therefore n = 1 and the original region is doubly connected.

Consider irrotational motion in a simply connected region. The circulation around any
curve is given by

� =
∮

q · dl =
∮

∇	 · dl =
∮

d	 (2.36)

With the use of Eqs. (2.4) and with ζ = 0 the circulation is seen to be zero. Also, since the
integral of d	 around any curve is zero (Eq. (2.36)), the velocity potential is single valued.

Now consider irrotational motion in the doubly connected region exterior to an airfoil
as shown in Fig. 2.7. For any curve not surrounding the airfoil, the above results for the
simply connected region apply and the circulation is zero. Now insert a barrier as shown
in the figure. Consider the curve consisting of C1 and C2, which surround the airfoil, and
the two sides of the barrier. Since the region excluding the barrier is simply connected, the
circulation around this curve is zero. This leads to the following equation:

∮
C1

q · dl −
∮

C2

q · dl +
∫ B

A
q · dl +

∫ A

B
q · dl = 0

Note that the first term is the circulation around C1 and the second is minus the circulation
around C2. Also, the contributions from the barrier cancel for steady flow (since the barrier

Figure 2.6 Flow exterior to an airfoil in a doubly connected region.
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Figure 2.7 Integration lines along a simply connected region.

cannot be along a vortex sheet). The circulation around curves C1 and C2 (and any other
curves surrounding the airfoil once) are the same and may be nonzero. From Eq. (2.36) the
velocity potential is not single valued if there is a nonzero circulation.

2.8 Uniqueness of the Solution

The physical problem of finding the velocity field for the flow created, say, by
the motion of an airfoil or wing has been reduced to the mathematical problem of solving
Laplace’s equation for the velocity potential with suitable boundary conditions for the
velocity on the body and at infinity. In a space-fixed reference frame, this mathematical
problem is

∇2	 = 0 (2.37a)
∂	

∂n
= n · qB on body (2.37b)

∇	 → 0 at r → ∞ (2.37c)

Since the body boundary condition is on the normal derivative of the potential and since
the flow is in the region exterior to the body, the mathematical problem of Eqs. (2.37a,b,c)
is called the Neumann exterior problem. In what follows we will answer the question “Is
there a unique solution to the Neumann exterior problem?” We will discover that the answer
is different, depending on whether the region is simply or multiply connected.

Let us consider a simply connected region first. This will apply to the region outside of a
three-dimensional body, but care must be taken in extending the results to wings since the
flowfield is not irrotational everywhere (for instance in the wakes). Assume that there are
two solutions 	1 and 	2 to the mathematical problem posed in Eqs. (2.37a,b,c). Then the
difference

	1 − 	2 ≡ 	D

satisfies Laplace’s equation, the homogeneous version of Eq. (2.37b), and Eq. (2.37c).
One form of Green’s theorem (named after the English mathematician George Green

(1793–1841)) (Ref. 1.5, p. 135) is obtained by applying the divergence theorem to the
function 	∇	, where 	 is a solution of Laplace’s equation, R is the fluid region, and S is
its boundary. The result is

∫
R

∇	 · ∇	 dV =
∫

S
	

∂	

∂n
dS (2.38)
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Figure 2.8 Double connected region exterior to an airfoil.

Now apply Eq. (2.38) to 	D for the region R between the body B and an arbitrary surface

 surrounding B to get∫

R
∇	D · ∇	D dV =

∫
B

	D
∂	D

∂n
dS +

∫



	D
∂	D

∂n
dS (2.39)

If we let 
 go to infinity the integral over 
 vanishes and since ∂φD/∂n = 0 on B we
are left with∫

R
∇	D · ∇	D dV = 0 (2.40)

Since the integrand is always greater than or equal to zero, it must be zero and consequently
the difference 	1 − 	2 can at most be a constant. Therefore, the solution to the Neumann
exterior problem in a simply connected region is unique to within a constant.

Consider now the doubly connected region exterior to the airfoil C in Fig. 2.8. Again let
	1 and 	2 be solutions and take

	1 − 	2 = 	D

Green’s theorem is now applied to the function 	D in the region σ between the airfoil C
and the curve 
 surrounding it. Note that the integrals are still volume and surface integrals
and that the integrands do not vary normal to the plane of motion.

Insert a barrier b joining C and 
 and denote the two sides of the barrier as b− and
b+ as shown in the figure. Note that n is the outward normal to b− and −n is the outward
normal to b+. Equation (2.38) then becomes∫

σ

∇	D · ∇	D dV =
∫

C
	D

∂	D

∂n
dS +

∫



	D
∂	D

∂n
dS

+
∫

b−
	D

∂	D

∂n
dS −

∫
b+

	D
∂	D

∂n
dS (2.41)

The integral around C is zero from the boundary condition and if we let 
 go to infinity
the integral around 
 is zero also. Let 	−

D be 	D on b− and 	+
D be 	D on b+. Then Eq.

(2.41) is ∫
σ

∇	D · ∇	D dV =
∫

b−
	−

D

∂	−
D

∂n
dS −

∫
b+

	+
D

∂	+
D

∂n
dS (2.42)
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The normal derivative of 	D is continuous across the barrier and Eq. (2.42) can be written
in terms of an integral over the barrier:∫

σ

∇	D · ∇	D dV =
∫

barrier
(	−

D − 	+
D)

∂	−
D

∂n
dS (2.43)

If we reintroduce the quantities 	1 and 	2 and rearrange the integrand we get∫
σ

∇	D · ∇	D dV =
∫

barrier
(	−

1 − 	+
1 + 	+

2 − 	−
2 )

∂	−
D

∂n
dS (2.44)

Note that the circulations associated with flows 1 and 2 are given by

�1 = 	+
1 − 	−

1

�2 = 	+
2 − 	−

2

and are constant, and finally∫
σ

∇	D · ∇	D dV = (�2 − �1)
∫

barrier

∂	−
D

∂n
ds (2.45)

Since in general we cannot require that the integral along the barrier be zero, the solution
to the Neumann exterior problem is only uniquely determined to within a constant when
�1 = �2 (when the circulation is specified as part of the problem statement). This result
can be generalized for multiply connected regions in a similar manner. The value of the
circulation cannot be specified on purely mathematical grounds but will be determined later
on the basis of physical considerations.

2.9 Vortex Quantities

In conjunction with the velocity vector, we can define various quantities such as
streamlines, stream tubes, and stream surfaces. Corresponding quantities can be defined for
the vorticity vector and these will prove to be useful later on in the modeling of lifting flows.

The field lines (e.g., in Fig. 2.9) that are parallel to the vorticity vector are called vortex
lines and these lines are described by

ζ × dl = 0 (2.46)

where dl is a segment along the vortex line (as shown in Fig. 2.9). In Cartesian coordinates,
this equation yields the differential equations for the vortex lines

dx

ζx
= dy

ζy
= dz

ζz
(2.47)

Figure 2.9 Vortex line.
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Figure 2.10 Vortex tube.

The vortex lines passing through an open curve in space form a vortex surface and the
vortex lines passing through a closed curve in space form a vortex tube. A vortex filament
is defined as a vortex tube of infinitesimal cross-sectional area.

The divergence of the vorticity is zero since the divergence of the curl of any vector is
identically zero:

∇ · ζ = ∇ · ∇ × q = 0 (2.48)

Consider, at any instant, a region of space R enclosed by a surface S. An application of the
divergence theorem yields∫

S
ζ · n dS =

∫
R

∇ · ζ dV = 0 (2.49)

At some instant in time draw a vortex tube in the flow as shown in Fig. 2.10. Apply Eq. (2.49)
to the region enclosed by the wall of the tube Sw and the surfaces S1 and S2 that cap the
tube. Since on Sw the vorticity is parallel to the surface, the contribution of Sw vanishes and
we are left with∫

S
ζ · n dS =

∫
S1

ζ · n dS +
∫

S2

ζ · n dS = 0 (2.50)

Note that n is the outward normal and its direction is shown in the figure. If we denote nv

as being positive in the direction of the vorticity, then Eq. (2.50) becomes∫
S1

ζ · nv dS =
∫

S2

ζ · nv dS = const. (2.51)

At each instant of time, the quantity in Eq. (2.51) is the same for any cross-sectional surface
of the tube. Let C be any closed curve that surrounds the tube and lies on its wall. The
circulation around C is given from Eq. (2.4) as

�C =
∫

S
ζ · nv dS = const. (2.52)

and is seen to be constant along the tube. The results in Eqs. (2.51) and (2.52) express the
spatial conservation of vorticity and are purely kinematical.

If Eq. (2.52) is applied to a vortex filament and nv is chosen parallel to the vorticity
vector, then

�C = ζ dS = const. (2.53)

and the vorticity at any section of a vortex filament is seen to be inversely proportional to
its cross-sectional area. A consequence of this result is that a vortex filament cannot end in
the fluid since zero area would lead to an infinite value for the vorticity. This limiting case,
however, is useful for the purposes of modeling and so it is convenient to define a vortex
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filament with a fixed circulation, zero cross-sectional area, and infinite vorticity as a vortex
filament with concentrated vorticity.

Based on results similar to those of Section 2.3 and this section, the German scientist
Hermann von Helmholtz (1821–1894) developed his vortex theorems for inviscid incom-
pressible flows, which can be summarized as:

1. The strength of a vortex filament is constant along its length.
2. A vortex filament cannot start or end in a fluid (it must form a closed path or extend

to infinity).
3. The fluid that forms a vortex tube continues to form a vortex tube and the strength

of the vortex tube remains constant as the tube moves about (hence vortex elements,
such as vortex lines, vortex tubes, vortex surfaces, etc., will remain vortex elements
with time).

The first theorem is based on Eq. (2.53), while the second theorem follows from this.
The third theorem is actually a combination of Helmholtz’s third and fourth theorems and
is a consequence of the inviscid vorticity transport equation (Eq. (2.9)).

2.10 Two-Dimensional Vortex

To illustrate a flowfield frequently called a two-dimensional vortex consider a
two-dimensional rigid cylinder of radius R rotating in a viscous fluid at a constant angular
velocity of ωy , as shown in Fig. 2.11a. This motion results in a flow with circular streamlines

Figure 2.11 Two-dimensional flowfield around a cylindrical core rotating as a rigid body.
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and therefore the radial velocity component is zero. Consequently the continuity equation
(Eq. (1.35)) in the r–θ plane becomes

∂qθ

∂θ
= 0 (2.54)

Integrating this equation results in

qθ = qθ (r ) (2.55)

The Navier–Stokes equation in the r direction (Eq. (1.36)), after neglecting the body force
terms, becomes

−ρ
q2

θ

r
= −∂p

∂r
(2.56)

Because qθ is a function of r only, and because of the radial symmetry of the problem, the
pressure must be either a function of r or a constant. Therefore, its derivative will not appear
in the momentum equation in the θ direction (Eq. (1.37))

0 = μ

(
∂2qθ

∂r2
+ 1

r

∂qθ

∂r
− qθ

r2

)
(2.57)

and since qθ is a function of r only,

0 = d2qθ

dr2
+ d

dr

(
qθ

r

)
(2.58)

Integration with respect to r yields

dqθ

dr
+ qθ

r
= C1

where C1 is the constant of integration. Rearranging this yields

1

r

d

dr
(rqθ ) = C1

and after an additional integration we get

qθ = C1

2
r + C2

r
(2.59)

The boundary conditions are

at r = R, qθ = −Rωy (2.60a)

at r = ∞, qθ = 0 (2.60b)

The second boundary condition is satisfied only if C1 = 0, and by using the first boundary
condition, the velocity becomes

qθ = − R2ωy

r
(2.61)

From the vortex filament results (Eq. (2.53)), the circulation has the same sign as the
vorticity, and it is therefore positive in the clockwise direction. The circulation around the
circle of radius r concentric with (and larger than) the cylinder is found by using Eq. (2.3),

� =
∫ 0

2π

qθr dθ = 2ωyπ R2 (2.62)

and is constant. The tangential velocity can be rewritten as

qθ = − �

2πr
(2.63)
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This velocity distribution is shown in Fig. 2.11b and is called vortex flow. If r → 0 then the
velocity becomes very large near the solid core, as shown by the dashed lines.

It has been demonstrated that � is the circulation generated by the rotating cylinder.
However, to estimate the vorticity in the fluid, the integration line shown by the dashed lines
in Fig. 2.11a is suggested. Integrating the velocity in a clockwise direction, and recalling
that qr = 0, we obtain∮

q · dl = 0 · �r + �

2π (r + �r )
(r + �r )�θ − 0 · �r − �

2πr
r�θ = 0

This indicates that this vortex flow is irrotational everywhere, excluding the rotating cylinder
at the boundary of which all the vorticity is generated. When the core size approaches zero
(R → 0) then this flow is called an irrotational vortex (excluding the core point, where the
velocity approaches infinity).

The three-dimensional velocity field induced by such an element is derived in the next
section.

2.11 The Biot–Savart Law

At this point we have an incompressible fluid for which the continuity equation is

∇ · q = 0 (1.23)

and where vorticity ζ can exist; the problem is to determine the velocity field as a result
of a known vorticity distribution. We may express the velocity field as the curl of a vector
field B, such that

q = ∇ × B (2.64)

Since the curl of a gradient vector is zero, B is indeterminate to within the gradient of a
scalar function of position and time, and B can be selected such that

∇ · B = 0 (2.65)

The vorticity then becomes

ζ = ∇ × q = ∇ × (∇ × B) = ∇(∇ · B) − ∇2B

Application of Eq. (2.65) reduces this to Poisson’s equation for the vector potential B:

ζ = −∇2B (2.66)

The solution of this equation, using Green’s theorem (see Karamcheti,1.5 p. 533) is

B = 1

4π

∫
V

ζ

|r0 − r1| dV

Here B is evaluated at point P (which is a distance r0 from the origin, shown in Fig. 2.12)
and is a result of integrating the vorticity ζ (at point r1) within the volume V . The velocity
field is then the curl of B:

q = 1

4π

∫
V

∇ × ζ

|r0 − r1| dV (2.67)

Before proceeding with this integration, let us consider an infinitesimal piece of the vorticity
filamentζ, as shown in Fig. 2.13. The cross-sectional area dS is selected such that it is normal
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Figure 2.12 Velocity at point P due to a vortex distribution.

to ζ, and the direction dl on the filament is

dl = ζ

ζ
dl

Also, the circulation � is

� = ζ dS

and

dV = dS dl

Figure 2.13 The velocity at point P induced by a vortex segment.
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so that

∇ × ζ

|r0 − r1| dV = ∇ × �
dl

|r0 − r1|
Carrying out the curl operation while keeping r1 and dl fixed we get

∇ × �
dl

|r0 − r1| = �
dl × (r0 − r1)

|r0 − r1|3
Substitution of this result back into Eq. (2.67) results in the Biot–Savart law, which states

q = �

4π

∫
dl × (r0 − r1)

|r0 − r1|3
(2.68)

or in differential form

�q = �

4π

dl × (r0 − r1)

|r0 − r1|3
(2.68a)

A similar manipulation of Eq. (2.67) leads to the following result for the velocity due to
a volume distribution of vorticity:

q = 1

4π

∫
V

ζ × (r0 − r1)

|r0 − r1|3
dV (2.67a)

2.12 The Velocity Induced by a Straight Vortex Segment

In this section, the velocity induced by a straight vortex line segment is de-
rived, based on the Biot–Savart law. It is clear that a vortex line cannot start or end in
a fluid, and the following discussion is aimed at developing the contribution of a seg-
ment that is a section of a continuous vortex line. The vortex segment is placed at an
arbitrary orientation in the (x, y, z) frame with constant circulation �, as shown in Fig.
2.14. The velocity induced by this vortex segment will have tangential components only as
indicated in the figure. Also, the distance r0 − r1 between the vortex segment and the
point P is r. According to the Biot–Savart law (Eq. (2.68a)) the velocity induced by

Figure 2.14 Velocity induced by a straight vortex segment.
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a segment dl on this line, at a point P , is

�q = �

4π

dl × r

r3
(2.68b)

This may be rewritten in scalar form as

�qθ = �

4π

sin β

r2
dl (2.68c)

From the figure it is clear that

d = r sin β and tan(π − β) = d

l

and therefore

l = −d

tan β
and dl = d

sin2 β
dβ

Substituting these terms into Eq. (2.68c) we get

�qθ = �

4π

sin2 β

d2
sin β

d

sin2 β
dβ = �

4πd
sin β dβ

This equation can be integrated over a section (1 → 2) of the straight vortex segment of
Fig. 2.15:

(qθ )1,2 = �

4πd

∫ β2

β1

sin β dβ = �

4πd
(cos β1 − cos β2) (2.69)

The results of this equation are shown schematically in Fig. 2.15. Thus, the velocity induced
by a straight vortex segment is a function of its strength �, the distance d, and the two view
angles β1 and β2.

Figure 2.15 Definition of the view angles used for the vortex-induced velocity calculations.
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Figure 2.16 Nomenclature used for the velocity induced by a three-dimensional, straight vortex
segment.

For the two-dimensional case (infinite vortex length) β1 = 0, β2 = π , and

qθ = �

4πd

∫ π

0
sin β dβ = �

2πd
(2.70)

For the semi-infinite vortex line that starts at point O in Fig. 2.14, β1 = π/2 and β2 = π

and the induced velocity is

qθ = �

4πd
(2.71)

which is exactly half of the previous value.
Equation (2.68b) can be modified to a form more convenient for numerical computations

by using the definitions of Fig. 2.16. For the general three-dimensional case the two edges
of the vortex segment will be located by r1 and r2 and the vector connecting the edges is

r0 = r1 − r2

as shown in Fig. 2.16. The distance d and the cosines of the angles β are then (Robinson
and Laurman,2.2 p. 33)

d = |r1 × r2|
|r0|

cos β1 = r0 · r1

|r0||r1|
cos β2 = r0 · r2

|r0||r2|
The direction of the velocity q1,2 is normal to the plane created by the point P and the
vortex edges 1, 2 and is given by

r1 × r2

|r1 × r2|
Substituting these quantities, and multiplying by this directional vector, we get an induced
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Figure 2.17 Flow between two two-dimensional streamlines.

velocity of

q1,2 = �

4π

r1 × r2

|r1 × r2|2
r0 ·

(
r1

r1
− r2

r2

)
(2.72)

A more detailed procedure, including the numerical interpretation for using this formula,
is provided in Section 10.4.5. The subroutine inputs are vortex strength � and the three
(x, y, z) values of the points 1, 2, and P; the subroutine returns the three components of the
induced velocity at point P .

2.13 The Stream Function

Consider two arbitrary streamlines in a two-dimensional steady flow, as shown in
Fig. 2.17. The velocity q along these lines l is tangent to them so that

q × dl = u dz − w dx = 0 (1.5)

and, therefore, the flux (volumetric flow rate) between two such lines is constant. This flow
rate between these two curves is

flux =
∫ B

A
q · n dl =

∫ B

A
u dz + w(−dx) (2.73)

where A and B are two arbitrary points on these lines. If a scalar function �(x, z) for this
flux is to be introduced, such that its variation along a streamline will be zero (according to
Eq. (1.5)), then based on these two equations (Eq. (1.6) and Eq. (2.73)) its relation to the
velocity is

u = ∂�

∂z
, w = −∂�

∂x
(2.74)

Substitution of this into Eq. (1.5) for the streamline results in

d� = ∂�

∂x
dx + ∂�

∂z
dz = −w dx + u dz = 0 (2.75)

Therefore, d� along a streamline is zero, and between two different streamlines d� repre-
sents the volume flux (Eq. (2.73)). Integration of this equation results in

� = const. on streamlines (2.76)
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Substitution of Eqs. (2.74) into the continuity equation yields

∂u

∂x
+ ∂w

∂z
= ∂2�

∂x∂z
− ∂2�

∂x∂z
= 0 (2.77)

and therefore the continuity equation is automatically satisfied. Note that the stream function
is valid for viscous flow, too, and if the irrotational flow requirement is added then ζy = 0.
Recall that the y component of the vorticity is

ζy = ∂u

∂z
− ∂w

∂x
= ∇2�

and therefore for two-dimensional, incompressible, irrotational flow � satisfies Laplace’s
equation

∇2� = 0 (2.78)

It is possible to express the two-dimensional velocity in the x–z plane as

q = ∂�

∂z
i − ∂�

∂x
k = j × ∇�

Thus

q = j × ∇� (2.79)

Using this method, we can obtain the velocity in cylindrical coordinates (for the r–θ plane):

q = j ×
(

∂�

∂r
er + 1

r

∂�

∂θ
eθ

)
= −∂�

∂r
eθ + 1

r

∂�

∂θ
er

and the velocity components are

qθ = −∂�

∂r
(2.80a)

qr = 1

r

∂�

∂θ
(2.80b)

The relation between the stream function and the velocity potential can be found by equat-
ing the expressions for the velocity components (Eq. (2.20) and Eq. (2.74)); in Cartesian
coordinates we have

∂	

∂x
= ∂�

∂z
,

∂	

∂z
= −∂�

∂x
(2.81)

and in cylindrical coordinates we have

∂	

∂r
= 1

r

∂�

∂θ
,

1

r

∂	

∂θ
= −∂�

∂r
(2.82)

These are the Cauchy–Riemann equations with which the complex flow potential will be
defined in Chapter 6.

Laplace’s equation in polar coordinates, expressed in terms of the stream function, is

∇2� = ∂2�

∂r2
+ 1

r

∂�

∂r
+ 1

r2

∂2�

∂θ2
= 0 (2.83)

To demonstrate the relation between the velocity potential and the stream function recall
that along a streamline

d� = u dz − w dx = 0 (2.84)



P1: FBT

CB329-02 CB329/Katz October 5, 2000 11:54 Char Count= 0

Problems 43

and similarly, along a constant potential line

d	 = u dx + w dz = 0 (2.85)

Since the slopes of the streamlines and the potential lines are negative reciprocals, these
lines are perpendicular to one another at any point in the flow.

Since constant stream function lines represent streamlines (Eq. (2.76)), the use of the
stream function for two-dimensional flows is quite attractive (see Sections 3.7–3.11). How-
ever, the applicability of stream functions to three-dimensional flows, apart from the ax-
isymmetric case, is more complicated (see Karamcheti,1.5 Section 4.9). Therefore, in this
book the velocity potential representation is preferred, except for a few two-dimensional
examples that use the stream function representation.
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Problems

2.1. Write the scalar version of the inviscid, incompressible, vorticity transport equation
in cylindrical coordinates for an axisymmetric flow.

2.2. Evaluate the boundary condition of Eq. (2.27) for a circle (and a sphere) whose
radius is varying such that r = a(t) in a fluid at rest at infinity.

2.3. a. Consider an incompressible potential flow in a fluid region V with boundary S.
Find an equation for the kinetic energy in the region as an integral over S.

b. Now consider the two-dimensional flow between concentric cylinders with radii
a and b and velocity components qr = 0 and qθ = A/r (where A is constant).
Calculate the kinetic energy in the fluid region using the result from (a).

2.4. a. Find the velocity induced at the center of a square vortex ring whose circulation
is � and whose sides are of length a.

b. Find the velocity along the z axis induced by a circular vortex ring that lies in
the x–y plane, whose radius is a and circulation is �, and whose center is at the
origin of coordinates.

2.5. Find the stream function for a two-dimensional flow whose velocity components
are u = 2Ax and w = −2Az.
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CHAPTER 3

General Solution of the Incompressible,
Potential Flow Equations

In the previous two chapters the fundamental fluid dynamic equations were formu-
lated and the conditions leading to the simplified inviscid, incompressible, and irrotational
flow problem were discussed. In this chapter, the basic methodology for obtaining the el-
ementary solutions to this potential flow problem will be developed. Because of the linear
nature of the potential flow problem, the differential equation does not have to be solved
individually for flowfields having different geometry at their boundaries. Instead, the ele-
mentary solutions will be distributed in a manner that will satisfy each individual set of
geometrical boundary conditions.

This approach, of distributing elementary solutions with unknown strength, allows a
more systematic methodology for resolving the flowfield in both cases of the “classical”
and the numerical methods.

3.1 Statement of the Potential Flow Problem

For most engineering applications the problem requires a solution in a fluid domain
V that usually contains a solid body with additional boundaries that may define an outer flow
boundary (e.g., a wing in a wind tunnel), as shown in Fig. 3.1. If the flow in the fluid region
is considered to be incompressible and irrotational then the continuity equation reduces to

∇2� = 0 (3.1)

For a submerged body in the fluid, the velocity component normal to the body’s surface and
to other solid boundaries must be zero, and in a body-fixed coordinate system:

∇� · n = 0 (3.2)

Here n is a vector normal to the body’s surface, and ∇� is measured in a frame of reference
attached to the body. Also, the disturbance created by the motion should decay far (r → ∞)
from the body:

lim
r→∞(∇� − v) = 0 (3.3)

where r = (x, y, z) and v is the relative velocity between the undisturbed fluid in V and the
body (or the velocity at infinity seen by an observer moving with the body).

3.2 The General Solution, Based on Green’s Identity

The mathematical problem of the previous section is described schematically by
Fig. 3.1. Laplace’s equation for the velocity potential must be solved for an arbitrary body
with boundary SB enclosed in a volume V , with the outer boundary S∞. The boundary
conditions in Eqs. (3.2) and (3.3) apply to SB and S∞, respectively. The normal n is defined
such that it always points outside the region of interest V . Now, the vector appearing in
the divergence theorem (e.g., q in Eq. (1.20)) is replaced by the vector �1∇�2 − �2∇�1,

44
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Figure 3.1 Nomenclature used to define the potential flow problem.

where �1 and �2 are two scalar functions of position. This results in∫
S
(�1∇�2 − �2∇�1) · n dS =

∫
V

(�1∇2�2 − �2∇2�1) dV (3.4)

This equation is one of Green’s identities (Kellogg,1.3 p. 215). Here the surface integral is
taken over all the boundaries S, including a wake model SW (which might model a surface
across which a discontinuity in the velocity potential or the velocity may occur),

S = SB + SW + S∞

Also, let us set

�1 = 1

r
and �2 = � (3.5)

where � is the potential of the flow of interest in V , and r is the distance from a point
P(x, y, z), as shown in the figure. As we shall see later, �1 is the potential of a source (or
sink) and is unbounded ( 1

r → ∞) as P is approached and r → 0. In the case where the
point P is outside of V both �1 and �2 satisfy Laplace’s equation and Eq. (3.4) becomes

∫
S

(
1

r
∇� − �∇ 1

r

)
· n dS = 0 (3.6)

Of particular interest is the case when the point P is inside the region. The point P must
now be excluded from the region of integration and it is surrounded by a small sphere of
radius ε. Outside of the sphere and in the remaining region V the potential �1 satisfies
Laplace’s equation [∇2(1/r ) = 0]. Similarly ∇2�2 = 0 and Eq. (3.4) becomes

∫
S+sphere ε

(
1

r
∇� − �∇ 1

r

)
· n dS = 0 (3.6a)

To evaluate the integral over the sphere, introduce a spherical coordinate system at P
and since the vector n points inside the small sphere, n = −er , n · ∇� = −∂�/∂r , and
∇1/r = −(1/r2)er . Equation (3.6a) now becomes

−
∫

sphere ε

(
1

r

∂�

∂r
+ �

r2

)
dS +

∫
S

(
1

r
∇� − �∇ 1

r

)
· n dS = 0 (3.6b)
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On the sphere surrounding P ,
∫

dS = 4πε2 (where r = ε), and as ε → 0 (and assuming
that the potential and its derivatives are well-behaved functions and therefore do not vary
much in the small sphere) the first term in the first integral vanishes, while the second term
yields

−
∫

sphere ε

(
�

r2

)
dS = −4π�(P)

Equation (3.6b) then becomes

�(P) = 1

4π

∫
S

(
1

r
∇� − �∇ 1

r

)
· n dS (3.7)

This formula gives the value of �(P) at any point in the flow, within the region V , in terms
of the values of � and ∂�/∂n on the boundaries S.

If, for example, the point P lies on the boundary SB then in order to exclude the point
from V , the integration is carried out only around the surrounding hemisphere (submerged
in V ) with radius ε, and Eq. (3.7) becomes

�(P) = 1

2π

∫
S

(
1

r
∇� − �∇ 1

r

)
· n dS (3.7a)

Now consider a situation when the flow of interest occurs inside the boundary of SB and
the resulting “internal potential” is �i . For this flow the point P (which is in the region V )
is exterior to SB , and applying Eq. (3.6) yields

0 = 1

4π

∫
SB

(
1

r
∇�i − �i∇ 1

r

)
· n dS (3.7b)

Here, n points outward from SB . A form of Eq. (3.7) that includes the influence of the inner
potential, as well, is obtained by adding Eq. (3.7) and Eq. (3.7b) (note that the minus sign
is a result of the opposite direction of n for �i ):

�(P) = 1

4π

∫
SB

[
1

r
∇(� − �i ) − (� − �i )∇ 1

r

]
· n dS

+ 1

4π

∫
SW +S∞

(
1

r
∇� − �∇ 1

r

)
· n dS (3.8)

The contribution of the S∞ integral in Eq. (3.8) (when S∞ is considered to be far from SB)
can be defined as

�∞(P) = 1

4π

∫
S∞

(
1

r
∇� − �∇ 1

r

)
· n dS (3.9)

This potential, usually, depends on the selection of the coordinate system and, for example,
in an inertial system where the body moves through an otherwise stationary fluid �∞ can be
selected as a constant in the region. Also, the wake surface is assumed to be thin, such that
∂�/∂n is continuous across it (which means that no fluid-dynamic loads will be supported
by the wake). With these assumptions Eq. (3.8) becomes

�(P) = 1

4π

∫
SB

[
1

r
∇(� − �i ) − (� − �i )∇ 1

r

]
· n dS

− 1

4π

∫
SW

�n · ∇ 1

r
dS + �∞(P) (3.10)
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Figure 3.2 The velocity potential near a solid boundary SB .

As was stated before, Eq. (3.7) (or Eq. (3.10)) provides the value of �(P) in terms of �

and ∂�/∂n on the boundaries. Therefore, the problem is reduced to determining the value
of these quantities on the boundaries. For example, consider a segment of the boundary SB

as shown in Fig. 3.2; then the difference between the external and internal potentials can be
defined as

−μ = � − �i (3.11)

and the difference between the normal derivative of the external and internal potentials as

−σ = ∂�

∂n
− ∂�i

∂n
(3.12)

These elements are called doublet (μ) and source (σ ) and the minus sign is a result of
the normal vector n pointing into SB . The properties of these elementary solutions will be
investigated in the following sections. With the definitions of Eq. (3.11) and Eq. (3.12),
Eq. (3.10) can be rewritten as

�(P) = − 1

4π

∫
SB

[
σ

(
1

r

)
− μn · ∇

(
1

r

)]
dS

+ 1

4π

∫
SW

[
μn · ∇

(
1

r

)]
dS + �∞(P) (3.13)

and the doublet strength μ appearing in the second integral (over SW ) is the potential
difference between the upper and lower wake surfaces (that is, if the wake thickness is zero,
then μ = −�� on SW ). The vector n here is the local normal to the surface, which points
in the doublet direction (as will be shown in Section 3.5). It is convenient to replace n · ∇
by ∂/∂n in this equation, and it becomes

�(P) = − 1

4π

∫
SB

[
σ

(
1

r

)
− μ

∂

∂n

(
1

r

)]
dS + 1

4π

∫
SW

[
μ

∂

∂n

(
1

r

)]
dS + �∞(P)

(3.13a)

Note that both source and doublet solutions decay as r → ∞ and automatically fulfill the
boundary condition of Eq. (3.3) (where v is the velocity due to �∞).

To find the velocity potential in the region V , the strength of the distribution of doublets
and sources on the surface must be determined. Also, Eq. (3.13) does not specify a unique
combination of sources and doublets for a particular problem and a choice must be made
in this matter (usually based on the physics of the problem).

It is possible to require that

∂�i

∂n
= ∂�

∂n
on SB
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and in this case the source term on SB vanishes and only the doublet distribution remains.
Alternatively, the potential can be defined such that

�i = � on SB

and in this case the doublet term on SB vanishes and the problem will be modeled by a
source distribution on the boundary.

In the two-dimensional case the source potential is �1 = ln r as will be shown in Sec-
tion 3.7, and the two functions of Eq. (3.5) become

�1 = ln r and �2 = � (3.14)

Also, at the point P , the integration is around a circle with radius ε and Eq. (3.6b) becomes

−
∫

circle ε

(
ln r

∂�

∂r
− �

1

r

)
dS +

∫
S

(
ln r∇� − �∇ ln r

)
· n dS = 0 (3.15)

The circumference of the small circle around P is now 2πε (compared to 4πε2 in the
three-dimensional case) and Eq. (3.7) in two dimensions is

�(P) = − 1

2π

∫
S
(ln r∇� − �∇ ln r ) · n dS (3.16)

If the point P lies on the boundary SB , then the integration is around a semicircle with
radius ε and Eq. (3.16) becomes

�(P) = − 1

π

∫
S
(ln r∇� − �∇ ln r ) · n dS (3.16a)

whereas if P is inside SB the two-dimensional version of Eq. (3.7b) is

0 = − 1

2π

∫
SB

(ln r∇�i − �i∇ ln r ) · n dS (3.16b)

With the definition of the far field potential �∞ and the unit elements μ and σ being
unchanged, Eq. (3.13a) for the two-dimensional case becomes

�(P) = 1

2π

∫
SB

[
σ ln r − μ

∂

∂n
(ln r )

]
dS − 1

2π

∫
SW

μ
∂

∂n
(ln r ) dS + �∞(P)

(3.17)

Note that ∂/∂n is the orientation of the doublet as will be illustrated in Section 3.5 and
that the wake model SW in the steady, two-dimensional lifting case is needed to represent a
discontinuity in the potential �.

3.3 Summary: Methodology of Solution

In view of Eq. (3.13) (Eq. (3.17) in two dimensions), it is possible to establish
a fairly general approach to the solution of incompressible potential flow problems. The
most important observation is that the solution of ∇2� = 0 can be obtained by distributing
elementary solutions (sources and doublets) on the problem boundaries (SB, SW ). These
elementary solutions automatically fulfill the boundary condition of Eq. (3.3) by having ve-
locity fields that decay as r → ∞. However, at the point where r = 0, the velocity becomes
singular, and therefore the basic elements are called singular solutions.
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The general solution requires the integration of these basic solutions over any surface S
containing these singularity elements because each element will have an effect on the whole
fluid field.

The solution of a fluid dynamic problem is now reduced to finding the appropriate sin-
gularity element distribution over some known boundaries, so that the boundary condition
(Eq. (3.2)) will be fulfilled. The main advantage of this formulation is its straightforward
applicability to numerical methods. When the potential is specified on the problem bound-
aries then this type of mathematical problem is called the Dirichlet problem (Kellogg,1.3

p. 286) and is frequently used in many numerical solutions (panel methods).
A more direct approach to the solution, from the physical point of view, is to specify the

zero normal flow boundary condition (Eq. (3.2)) on the solid boundaries. This problem is
known as the Neumann problem (Kellogg,1.3 p. 286) and in order to evaluate the velocity
field the potential is differentiated:

∇� = − 1

4π

∫
SB

σ∇
(

1

r

)
dS + 1

4π

∫
SB+SW

μ∇
[

∂

∂n

(
1

r

)]
dS + ∇�∞ (3.18)

Again, the derivative ∂/∂n for the doublet indicates the orientation of the element as will
be shown in Section 3.5. Substituting this equation into the boundary condition of Eq. (3.2)
can serve as the basis of finding the unknown singularity distribution. (This can be done
analytically or numerically.)

For a given set of boundary conditions, the above solution technique is not unique,
and many problems can be solved by using a preferred type of singularity element or any
linear combination of the two singularity types. Therefore, in many situations additional
considerations are required (e.g., the method that will be presented in the next chapter to
define the flow near sharp trailing edges of wings). Also, in a particular solution a mixed
use of the above boundary conditions is possible for various regions in the flowfield (e.g.,
Neumann condition on one boundary and Dirichlet on another).

Prior to attempting to apply this methodology to the solution of particular problems, the
features of the elementary solutions are analyzed in the next sections.

3.4 Basic Solution: Point Source

One of the two basic solutions presented in Eq. (3.13) is the source/sink. The
potential of such a point source element (Fig. 3.3a), placed at the origin of a spherical
coordinate system, is

� = − σ

4πr
(3.19)

The velocity due to this element is obtained by using ∇ in spherical coordinates from
Eq. (1.39). This will result in a velocity field with a radial component only

q = − σ

4π
∇

(
1

r

)
= σ

4π

er

r2
= σ

4π

r

r3
(3.20)

which, in spherical coordinates, is

(qr , qθ , qϕ) =
(

∂�

∂r
, 0, 0

)
=

(
σ

4πr2
, 0, 0

)
(3.21)
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Figure 3.3 (a) Streamlines and equipotential lines due to source element at the origin, as viewed in
the x–z plane. (b) Radial variation of the radial velocity component induced by a point source.

So the velocity in the radial direction decays with the rate of 1/r2 and is singular at r = 0,
as shown in Fig. 3.3. Consider a source element of strength σ located at the origin as in
Fig. 3.3. The volumetric flow rate through a spherical surface of radius r is

qr 4πr2 =
(

σ

4πr2

)
· 4πr2 = σ

where 4πr2 is the surface area of the sphere. The positive σ , then, is the volumetric rate
at which fluid is introduced at the source, whereas a negative σ is the rate at which flow is
going into the sink. Note that this introduction of fluid at the source violates the conservation
of mass; therefore, this point must be excluded from the region of solution.

If the point element is located at a point r0 and not at the origin, then the corresponding
potential and velocity will be

� = −σ

4π |r − r0| (3.22)

q = σ

4π

r − r0

|r − r0|3
(3.23)
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The Cartesian form of this equation, when the element is located at (x0, y0, z0), is

�(x, y, z) = −σ

4π
√

(x − x0)2 + (y − y0)2 + (z − z0)2
(3.24)

The velocity components of this source element are

u(x, y, z) = ∂�

∂x
= σ (x − x0)

4π [(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(3.25a)

v(x, y, z) = ∂�

∂y
= σ (y − y0)

4π [(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(3.25b)

w(x, y, z) = ∂�

∂z
= σ (z − z0)

4π [(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(3.25c)

This basic point element can be integrated over a line l, a surface S, or a volume V to
create corresponding singularity elements that can be used, for example, to construct panel
elements. Consequently, these elements can be established by the following integrals:

�(x, y, z) = −1

4π

∫
l

σ (x0, y0, z0) dl√
(x − x0)2 + (y − y0)2 + (z − z0)2

(3.26)

�(x, y, z) = −1

4π

∫
S

σ (x0, y0, z0) dS√
(x − x0)2 + (y − y0)2 + (z − z0)2

(3.27)

�(x, y, z) = −1

4π

∫
V

σ (x0, y0, z0) dV√
(x − x0)2 + (y − y0)2 + (z − z0)2

(3.28)

Note that σ in Eqs. (3.26), (3.27), and (3.28) represents the source strength per unit length,
area, and volume, respectively. The velocity components induced by these distributions can
be obtained by differentiating the corresponding potentials:

(u, v, w) =
(

∂�

∂x
,
∂�

∂y
,
∂�

∂z

)

3.5 Basic Solution: Point Doublet

The second basic solution, presented in Eq. (3.13), is the doublet

� = μ

4π
n · ∇

(
1

r

)
(3.29)

A closer observation reveals that �doublet = −(∂/∂n)�source for elements of unit strength.
This suggests that the doublet element can be developed from the source element. Consider
a point sink at the origin and a point source at l, as shown in Fig. 3.4. The potential at a
point P , due to these two elements, is

� = σ

4π

(
1

|r| − 1

|r − l|
)

(3.30)

Now, bringing the source and the sink together by letting l → 0 and σ → ∞ such that
lσ → μ, where μ is finite, we obtain for the potential

� = lim
l→0

σ→∞
σ l→μ

σ

4π

( |r − l| − |r|
|r||r − l|

)
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Figure 3.4 The influence of a point source and sink at point P .

As the distance l approaches zero

|r||r − l| → r2

and the difference in length between |r| and |r − l| becomes

(|r − l| − |r|) → −l cos ϑ

and the potential becomes

� = −μ

4π

cos ϑ

r2
(3.31)

The angle ϑ is between the unit vector el pointing in the sink-to-source direction (doublet
axis) and the vector r, as shown in the figure. Defining a vector doublet strength μ that
points in this direction μ = μ el can further simplify this equation to

� = −μ · r

4πr3
(3.32)

Note that this doublet element is identical to the second term appearing in the general
equation of the potential (Eq. (3.13) or Eq. (3.29)) if el is in the n direction; thus

�doublet = −el · r

4πr3
= −el · ∇

( −1

4πr

)
= − ∂

∂n
�source (3.33)

For example, for a doublet at the origin and the doublet strength vector (μ, 0, 0) aligned
with the x axis (el = ex and ϑ = θ ), the potential in spherical coordinates is

�(r, θ, ϕ) = −μ cos θ

4πr2
(3.34)

Furthermore, in Cartesian coordinates, the arbitrary orientation of μ can be expressed in
terms of three generic unit doublet elements whose axes are aligned with the coordinate
directions:

(μ, 0, 0), (0, μ, 0), (0, 0, μ)
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Figure 3.5 Sketch of the streamlines due to a doublet pointing in the x direction (e.g., a small jet
engine blowing in the μ = (μ, 0, 0) direction).

The different elements can be derived for each of these three doublets by using Eq. (3.32)
or by differentiating the corresponding term in Eq. (3.29) using ∂/∂n as the derivative in
the direction of the three axes. The velocity potential due to such doublet elements, located
at (x0, y0, z0), is

�(x, y, z) = μ

4π
n · ∇

(
1

|r − r0|
)

= μ

4π

∂

∂n

(
1

|r − r0|
)

(3.35)

Taking ∂/∂n in the x , y, and z directions yields

�(x, y, z) = μ

4π

⎛
⎜⎜⎝

∂
∂x

∂
∂y

∂
∂z

⎞
⎟⎟⎠ 1√

(x − x0)2 + (y − y0)2 + (z − z0)2
(3.36)

Equation (3.34) shows that the doublet element does not have a radial symmetry but rather
has a directional property. Therefore, in Cartesian coordinates three elements are defined,
one for each direction: x , y, or z (see for example the element pointing in the x direction in
Fig. 3.5). After performing the differentiation in Eq. (3.36) in the x direction we obtain the
velocity potential:

�(x, y, z) = −μ

4π
(x − x0)[(x − x0)2 + (y − y0)2 + (z − z0)2]−3/2 (3.37)

The result of the differentiation in the y direction is

�(x, y, z) = −μ

4π
(y − y0)[(x − x0)2 + (y − y0)2 + (z − z0)2]−3/2 (3.38)

and the result in the z direction is

�(x, y, z) = −μ

4π
(z − z0)[(x − x0)2 + (y − y0)2 + (z − z0)2]−3/2 (3.39)

The velocity field, due to a x-directional point doublet (μ, 0, 0), is illustrated in Fig. 3.5.
The velocity potential is given by Eq. (3.34) and the velocity components due to such an
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element at the origin are easily described in spherical coordinates:

qr = ∂�

∂r
= μ cos θ

2πr3
(3.40)

qθ = 1

r

∂�

∂θ
= μ sin θ

4πr3
(3.41)

qϕ = 1

r sin θ

∂�

∂ϕ
= 0 (3.42)

The velocity components in Cartesian coordinates for this doublet at (x0, y0, z0) can be
obtained by differentiating the velocity potential in Eq. (3.37):

u = − μ

4π

(y − y0)2 + (z − z0)2 − 2(x − x0)2

[(x − x0)2 + (y − y0)2 + (z − z0)2]5/2
(3.43)

v = 3μ

4π

(x − x0)(y − y0)

[(x − x0)2 + (y − y0)2 + (z − z0)2]5/2
(3.44)

w = 3μ

4π

(x − x0)(z − z0)

[(x − x0)2 + (y − y0)2 + (z − z0)2]5/2
(3.45)

Again, this basic point element can be integrated over a line l, a surface S, or a volume V
to create the corresponding singularity elements that can be used, for example, to construct
panel elements. Consequently, these elements [e.g., for (μ, 0, 0)] can be established by the
following integrals:

�(x, y, z) = −1

4π

∫
l

μ(x0, y0, z0) · (x − x0) dl

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(3.46)

�(x, y, z) = −1

4π

∫
S

μ(x0, y0, z0) · (x − x0) dS

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(3.47)

�(x, y, z) = −1

4π

∫
V

μ(x0, y0, z0) · (x − x0) dV

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(3.48)

3.6 Basic Solution: Polynomials

Since Laplace’s equation is a second-order differential equation, a linear function
of position will be a solution, too:

� = Ax + By + Cz (3.49)

The velocity components due to such a potential are

u = ∂�

∂x
= A ≡ U∞, v = ∂�

∂y
= B ≡ V∞, w = ∂�

∂z
= C ≡ W∞ (3.50)

where U∞, V∞, and W∞ are constant velocity components in the x, y, and z directions.
Hence, the velocity potential due a constant free-stream flow in the x direction is

� = U∞x (3.51)

and in general

� = U∞x + V∞y + W∞z (3.52)
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Along the same lines, additional polynomial solutions can be sought and as an example let
us consider the second-order polynomial with A, B, and C being constants:

� = Ax2 + By2 + Cz2 (3.53)

To satisfy the continuity equation we must have

∇2� = A + B + C = 0

There are numerous combinations of constants that will satisfy this condition. However,
one combination where one of the constants is equal to zero (e.g., B = 0) describes an
interesting flow condition. Consequently

A = −C

and by substituting this result into Eq. (3.53) we get a velocity potential of

� = A(x2 − z2) (3.54)

The velocity components for this two-dimensional flow in the x–z plane are

u = 2Ax, v = 0, w = −2Az (3.55)

To visualize this flow, we need the streamline equation (Eq. (1.6a))

dx

u
= dz

w

Substitution of the velocity components yields

dx

2Ax
= dz

−2Az

Integration by separation of variables results in

xz = const. = D (3.56)

The streamlines for different constant values of D = 1, 2, 3 . . . are plotted in Fig. 3.6 and,
for example, if only the first quadrant of the x–z plane is considered, then the potential

Figure 3.6 Streamlines defined by xz = constant. Note that each quadrant describes a flow in a corner.
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describes the flow around a corner. If the upper half of the x–z plane is considered then
this flow describes a stagnation flow against a wall. Note that when x = z = 0, the velocity
components u = w = 0 vanish too, which means that a stagnation point is present at the
origin, and the coordinate axes x and z are also the stagnation streamline.

3.7 Two-Dimensional Version of the Basic Solutions

a. Source
We have seen in the three-dimensional case that a source element will have a radial

velocity component only. Thus, in the two-dimensional r , θ coordinate system the tangential
velocity component qθ = 0. The requirement that the flow be irrotational yields

ζy = 2ωy = −1

r

[
∂

∂r
(rqθ ) − ∂

∂θ
(qr )

]
= 1

r

∂

∂θ
(qr ) = 0

and therefore the velocity component in the r direction is a function of r only [qr =
qr (r )]. Also, the remaining radial velocity component must satisfy the continuity equa-
tion (Eq. (1.35))

∇ · q = dqr

dr
+ qr

r
= 1

r

d

dr
(rqr ) = 0

This indicates that rqr = const. = σ/2π , where σ is the area flow rate passing across a
circle of radius r , and the resulting velocity components for a source element at the origin
are

qr = ∂�

∂r
= σ

2πr
(3.57)

qθ = 1

r

∂�

∂θ
= 0 (3.58)

Integrating these equations we find the velocity potential

� = σ

2π
ln r + C (3.59)

and the constant C can be set to zero, as in the source potential used in Eq. (3.19).
The strength of the source is then σ , which represents the flux introduced by the source.

This can be shown by observing the flux across a circle with a radius R. The velocity at that
location, according to Eq. (3.57), is σ/2π R, and the flux is

qr 2π R = σ

2π R
2π R = σ

So the velocity, as in the three-dimensional case, is in the radial direction only (Fig. 3.3a)
and decays with a rate of 1/r . At r = 0, the velocity is infinite and this singular point must
be excluded from the region of the solution.

In Cartesian coordinates the corresponding equations for a source located at (x0, z0) are

�(x, z) = σ

2π
ln

√
(x − x0)2 + (z − z0)2 (3.60)

u = ∂�

∂x
= σ

2π

x − x0

(x − x0)2 + (z − z0)2
(3.61)

w = ∂�

∂z
= σ

2π

z − z0

(x − x0)2 + (z − z0)2
(3.62)
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In the two-dimensional case, the velocity components can be found as the derivatives of
the stream function for a source at the origin. Recalling these formulas (Eqs. (2.80a,b)) and
comparing with the velocity components we find

qθ = −∂


∂r
= 0 (3.63)

qr = 1

r

∂


∂θ
= σ

2πr
(3.64)

Integrating Eqs. (3.63) and (3.64) and setting the constant of integration to zero yields


 = σ

2π
θ (3.65)

The streamlines (Eq. (3.65)) and the perpendicular constant potential lines (Eq. (3.59)) for
the two-dimensional source resemble those of the three-dimensional case and are shown
schematically in Fig. 3.3a.

b. Doublet
The two-dimensional doublet can be obtained by letting a point source and a point

sink approach each other, such that their strength multiplied by their separation distance
becomes the constant μ (as in Section 3.5). Because of the logarithmic dependence of the
source potential, Eq. (3.32) becomes

�(r ) = −μ · r

2πr2
(3.66)

which can be derived directly by using Eq. (3.33),

�(r ) = − ∂

∂n

σ

2π
ln r (3.67)

and then replacing the source strength by μ. As an example, selecting n in the x direction
yields

μ = (μ, 0)

and Eq. (3.66) for a doublet at the origin becomes

�(r, θ ) = −μ

2π

cos θ

r
(3.68)

The velocity field due to this element can be obtained by differentiating the velocity potential:

qr = ∂�

∂r
= μ cos θ

2πr2
(3.69)

qθ = 1

r

∂�

∂θ
= μ sin θ

2πr2
(3.70)

The velocity potential in Cartesian coordinates for such a doublet at the point (x0, z0) is

�(x, z) = −μ

2π

x − x0

(x − x0)2 + (z − z0)2
(3.71)

and the velocity components are

u = μ

2π

(x − x0)2 − (z − z0)2

[(x − x0)2 + (z − z0)2]2
(3.72)

w = μ

2π

2(x − x0)(z − z0)

[(x − x0)2 + (z − z0)2]2
(3.73)
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Figure 3.7 Streamlines and equipotential lines due to a two-dimensional doublet at the origin, pointing
in the x direction.

To derive the stream function for this doublet element, located at the origin, write the
above velocity components in terms of the stream function derivatives

qθ = −∂


∂r
= μ sin θ

2πr2
(3.74)

qr = 1

r

∂


∂θ
= μ cos θ

2πr2
(3.75)

Integrating Eqs. (3.74) and (3.75) and setting the constant of integration to zero (see stream-
lines in Fig. 3.7) we obtain


 = μ sin θ

2πr
(3.76)

Note that a similar doublet element where μ = (0, μ) can be derived by using Eq. (3.66)
(or ( 3.67)).

3.8 Basic Solution: Vortex

The general solution to Laplace’s equation as stated in Eqs. (3.13) and (3.17)
consists of source and doublet distributions only. But, as indicated in Section 3.6, other
solutions to Laplace’s equation are possible, and based on the vortex flow of Section 2.10
we shall formulate the velocity potential and its derivatives for a point vortex (the three-
dimensional velocity field is then given by the Biot–Savart law of Section 2.11). Therefore,
it is desired to construct a singularity element with only a tangential velocity component,
as shown in Fig. 3.8a, whose magnitude will decay in a manner similar to the decay of
the radial velocity component of a two-dimensional source (e.g., will vary with 1/r ). The
velocity components are then

qr = 0

qθ = qθ (r, θ )

Substitution of these velocity components into the continuity equation (Eq. (1.35)) results
in qθ being a function of r only,

qθ = qθ (r )

For irrotational flow, we substitute these relations into the vorticity expression to get

ζy = 2ωy = −1

r

[
∂

∂r
(rqθ ) − ∂

∂θ
(qr )

]
= −1

r

∂

∂r
(rqθ ) = 0



P1: FNT

CB329-03 CB329/Katz September 13, 2000 17:26 Char Count= 0

3.8 Basic Solution: Vortex 59

Figure 3.8 (a) Streamlines and equipotential lines for a two-dimensional vortex at the origin.
(b) Radial variation of the tangential velocity component induced by a vortex.

Integrating with respect to r , we get

rqθ = const. = A

Thus the magnitude of the velocity varies with 1/r , similarly to the radial velocity component
of a source. The value of the constant A can be calculated by using the definition of the
circulation � as in Eq. (2.36):

� =
∮

q · dl =
∫ 0

2π

qθ · r dθ = −2π A

Note that positive � is defined according to the right-hand rule (positive clockwise); there-
fore, in the x–z plane as in Fig. 3.8 the line integral must be taken in the direction opposite
to that of increasing θ . The constant A is then

A = − �

2π

and the velocity field is

qr = 0 (3.77)

qθ = − �

2πr
(3.78)

As expected, the tangential velocity component decays at a rate of 1/r as shown in Fig. 3.8b.
The velocity potential for a vortex element at the origin can be obtained by integration of
Eqs. (3.77) and (3.78):

� =
∫

qθr dθ + C = − �

2π
θ + C (3.79)

where C is an arbitrary constant that can be set to zero. Equation (3.79) indicates too that the
velocity potential of a vortex is multivalued and depends on the number of revolutions around
the vortex point. So when integrating around a vortex we do find vorticity concentrated at
a zero-area point, but with finite circulation (see Sections 2.9 and 2.10). However, if we
integrate q · dl around any closed curve in the field (not surrounding the vortex) the value
of the integral will be zero (as shown at the end of Section 2.10 and in Fig. 2.11a). Thus,
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the vortex is a solution to the Laplace equation and results in an irrotational flow, excluding
the vortex point itself.

Equations (3.77) to (3.79) in Cartesian coordinates for a vortex located at (x0, z0) are

� = − �

2π
tan−1 z − z0

x − x0
(3.80)

u = �

2π

z − z0

(z − z0)2 + (x − x0)2
(3.81)

w = − �

2π

x − x0

(z − z0)2 + (x − x0)2
(3.82)

To derive the stream function for the two-dimensional vortex located at the origin, in
the x–z (or r–θ ) plane, consider the velocity components in terms of the stream function
derivatives

qθ = −∂�

∂r
= − �

2πr
(3.83)

qr = 1

r

∂�

∂θ
= 0 (3.84)

Integrating Eq. (3.83) and (3.84) and setting the constant of integration to zero we get

� = �

2π
ln r (3.85)

and the streamlines where � = const. are shown schematically in Fig. 3.8a.

3.9 Principle of Superposition

If �1, �2, . . . , �n are solutions of the Laplace equation (Eq. (3.1)), which is
linear, then

� =
n∑

k=1

ck�k (3.86)

is also a solution for that equation in that region. Here c1, c2, . . . , cn are arbitrary constants
and therefore

∇2� =
n∑

k=1

ck∇2�k = 0

This superposition principle is a very important property of the Laplace equation, paving
the way for solutions of the flowfield near complex boundaries. In theory, by using a set of
elementary solutions, the solution process (of satisfying a set of given boundary conditions)
can be reduced to an algebraic search for the right linear combination of these elementary
solutions.

3.10 Superposition of Sources and Free Stream: Rankine’s Oval

As a first example for using the principle of superposition, consider the two-
dimensional flow resulting from superimposing a source with a strength σ at x = −x0, a
sink with a strength −σ at x = +x0, both on the x axis, and a free stream flow with speed
U∞ in the x direction (Fig. 3.9). The velocity potential for this case will be

�(x, z) = U∞x + σ

2π
ln(r1) − σ

2π
ln(r2) (3.87)
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Figure 3.9 Combination of a free stream, a source, and a sink.

where r1 = [(x + x0)2 + z2]1/2 and r2 = [(x − x0)2 + z2]1/2. The stream function can be
obtained by adding the stream functions of the individual elements:

�(x, z) = U∞z + σ

2π
θ1 − σ

2π
θ2 (3.88)

where θ1 = tan−1[z/(x + x0)] and θ2 = tan−1[z/(x − x0)]. Substitution of r1, r2, θ1, and θ2

into the velocity potential and the stream function yields

�(x, z) = U∞x + σ

2π
ln

√
(x + x0)2 + z2 − σ

2π
ln

√
(x − x0)2 + z2 (3.87a)

�(x, z) = U∞z + σ

2π
tan−1 z

x + x0
− σ

2π
tan−1 z

x − x0
(3.88a)

The velocity field due to this potential is obtained by differentiating either the velocity
potential or the stream function:

u = ∂�

∂x
= U∞ + σ

2π

x + x0

(x + x0)2 + z2
− σ

2π

x − x0

(x − x0)2 + z2
(3.89)

w = ∂�

∂z
= σ

2π

z

(x + x0)2 + z2
− σ

2π

z

(x − x0)2 + z2
(3.90)

Because of the symmetry about the x axis the stagnation points are located along the x axis,
at points further out than the location of the source and sink, say at x = ±a (Fig. 3.10a).
The w component of the velocity at these points (and along the x axis) is automatically
zero, too. The distance a is then found by setting the u component of the velocity to zero:

u(±a, 0) = U∞ + σ

2π

1

(±a + x0)
− σ

2π

1

(±a − x0)
= U∞ − σ

π

x0(
a2 − x2

0

) = 0

and a is

a =
√

σ x0

πU∞
+ x2

0 (3.91)

Consider the stagnation streamline (which passes through the stagnation points). The
value of � for the stagnation streamline can be found by observing the value of Eq. (3.88)
on the left-side stagnation point (where θ1 = θ2 = π and z = 0). This results in � = 0,
which can be shown to be the same for the right-side stagnation point as well (where
θ1 = θ2 = 0). The equation for the stagnation streamline is therefore

�(x, z) = U∞z + σ

2π
tan−1 z

x + x0
− σ

2π
tan−1 z

x − x0
= 0 (3.92)



P1: FNT

CB329-03 CB329/Katz September 13, 2000 17:26 Char Count= 0

62 3 / General Solution of the Incompressible, Potential Flow Equations

Figure 3.10 (a) Streamlines inside and outside of a Rankine oval. (b) Velocity distribution (q2 =
u2 + w2) on the surface of 20% and 50% thick Rankine ovals.

The streamlines of this flow, including the stagnation streamline, are sketched in Fig. 3.10a
and the resulting velocity distribution is shown in Fig. 3.10b. Note that the stagnation
streamline includes a closed oval shape (called Rankine’s oval after W. J. M. Rankine, a
Scottish engineer who lived in the nineteenth century) and the x axis (excluding the segment
between x = ±a). This flow (source and sink) can therefore be considered to model the
flow past an oval of length 2a. (For this application, the streamlines inside the oval have no
physical significance.) The flow past a family of such ovals can be derived by varying the
parameters σ and x0 or a, and by plotting the corresponding streamlines.

3.11 Superposition of Doublet and Free Stream: Flow around a Cylinder

Consider the superposition of the free stream potential of Eq. (3.51), where x =
r cos θ in cylindrical coordinates, with the potential of a doublet (Eq. (3.68)) pointing in
the negative x direction [μ = (−μ, 0)]. The combined flow, as shown in Fig. 3.11, has the
velocity potential

� = U∞r cos θ + μ

2π

cos θ

r
(3.93)
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Figure 3.11 Addition of a uniform flow and a doublet to describe the flow around a cylinder.

The velocity field of this potential can be obtained by differentiating Eq. (3.93):

qr = ∂�

∂r
=

(
U∞ − μ

2πr2

)
cos θ (3.94)

qθ = 1

r

∂�

∂θ
= −

(
U∞ + μ

2πr2

)
sin θ (3.95)

If this flow combination is thought of as a limiting case of the flow in Section 3.10 with the
source and sink approaching each other, it is expected that the oval will approach a circle in
this limit. To verify this, note that qr = 0 for r = [μ/2πU∞]1/2 for all θ (from Eq. (3.94))
and the radial direction is normal to the circle. If we take r = R as the radius of the circle,
then the strength of the doublet is

μ = U∞2π R2 (3.96)

Substitution of this value of μ into Eqs. (3.93), (3.94), and (3.95) results in the flowfield
around a cylinder with a radius R:

� = U∞ cos θ

(
r + R2

r

)
(3.97)

qr = U∞ cos θ

(
1 − R2

r2

)
(3.98)

qθ = −U∞ sin θ

(
1 + R2

r2

)
(3.99)

For the two-dimensional case, evaluation of the stream function can readily provide the
streamlines in the flow (by setting � = const). These results for the cylinder in a free
stream can be obtained, too, by the superposition of the free stream and the doublet [with
(−μ, 0) strength] stream functions:

� = U∞r sin θ − μ

2π

sin θ

r
(3.100)

The stagnation points on the circle are found by letting qθ = 0 in Eq. (3.99) and thus are at
θ = 0 and θ = π . The value of � at the stagnation points θ = 0 and θ = π (and therefore
along the stagnation streamline) is found from Eq. (3.100) to be � = 0. This is equivalent to
requiring that qr (R, θ ) = 0, and the strength of μ again is given by Eq. (3.96). Substituting
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Figure 3.12 Streamlines due to the addition of a doublet and a uniform flow (flow around a cylinder).

μ in terms of the cylinder radius into Eq. (3.100) we obtain

� = U∞ sin θ

(
r − R2

r

)
(3.101)

This describes the streamlines of the flow around the cylinder with radius R (Fig. 3.12).
These lines are perpendicular to the potential lines of Eq. (3.97).

To obtain the pressure distribution over the cylinder, the velocity components are eval-
uated at r = R:

qr = 0, qθ = −2U∞ sin θ (3.102)

The pressure distribution at r = R is obtained now with Bernoulli’s equation

p∞ + ρ

2
U 2

∞ = p + ρ

2
q2

θ

Substitution of the value of qθ at r = R yields

p − p∞ = 1

2
ρU 2

∞(1 − 4 sin2 θ ) (3.103)

and the pressure coefficient is

C p = p − p∞
(1/2)ρU 2∞

= (1 − 4 sin2 θ ) (3.104)

It can be easily observed that at the stagnation points θ = 0 and π (where q = 0), C p = 1.
Also, the maximum speed occurs at the top and bottom of the cylinder (θ = π/2, 3π/2)
and the pressure coefficient there is −3.

To evaluate the components of the fluid dynamic force acting on the cylinder, the above
pressure distribution must be integrated. Let L be the lift acting in the z direction and D
the drag acting in the x direction. Integration of the components of the pressure force on an
element of length R dθ leads to

L =
∫ 2π

0
−pR dθ sin θ =

∫ 2π

0
−(p − p∞)R dθ sin θ

= −1

2
ρU 2

∞

∫ 2π

0
(1 − 4 sin2 θ )R sin θ dθ = 0 (3.105)

D =
∫ 2π

0
−pR dθ cos θ =

∫ 2π

0
−(p − p∞)R dθ cos θ

= −1

2
ρU 2

∞

∫ 2π

0
(1 − 4 sin2 θ )R cos θ dθ = 0 (3.106)
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Figure 3.13 Hydrogen bubble visualization of the separated water flow around a cylinder at a Reynolds
number of 0.2 × 106. (Courtesy of K. W. McAlister and L. W. Carr, U. S. Army Aeroflightdynamics
Directorate, AVSCOM.)

Here the pressure was replaced by the pressure difference p − p∞ term of Eq. (3.103),
and this has no effect on the results since the integral of a constant pressure p∞ around
a closed body is zero. A very interesting result of this potential flow is that the fore and
aft symmetry leads to pressure loads that cancel out. In reality the flow separates and will
not follow the cylinder’s rear surface, as shown in Fig. 3.13. The pressure distribution due
to this real flow, along with the results of Eq. (3.104), are plotted in Fig. 3.14. This shows
that at the front section of the cylinder, where the flow is attached, the pressures are well
predicted by this model. However, behind the cylinder, because of the flow separation, the
pressure distribution is different.

In this example, because of the symmetry in the upper and the lower flows (about the x
axis), no lift was generated. A lifting condition can be obtained by introducing an asymmetry,
in the form of a clockwise vortex with strength � situated at the origin. The velocity potential
for this case is

� = U∞ cos θ

(
r + R2

r

)
− �

2π
θ (3.107)

The velocity components are obtained by differentiating the velocity potential to get

qr = U∞ cos θ

(
1 − R2

r2

)
(3.108)

Figure 3.14 Theoretical pressure distribution (solid curve) around a cylinder compared with experi-
mental data at Reynolds number of 6.7 × 105 (chain curve) from Ref. 1.6.
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Figure 3.15 Streamlines for the flow around a cylinder with circulation �.

which is the same as for the cylinder without the circulation, and

qθ = −U∞ sin θ

(
1 + R2

r2

)
− �

2πr
(3.109)

This potential still describes the flow around a cylinder since at r = R the radial velocity
component becomes zero. The stagnation points can be obtained by finding the tangential
velocity component at r = R,

qθ = −2U∞ sin θ − �

2π R
(3.110)

and by solving for qθ = 0,

sin θs = − �

4π RU∞
(3.111)

These stagnation points (located at an angular position θs) are shown by the two dots in
Fig. 3.15 and lie on the cylinder as long as � ≤ 4π RU∞.

The lift and drag will be found by using Bernoulli’s equation, but because of the fore and
aft symmetry, no drag is expected from this calculation. For the lift, the tangential velocity
component is substituted into the Bernoulli equation and

L =
∫ 2π

0
−(p − p∞)R dθ sin θ

= −
∫ 2π

0

[
ρU 2

∞
2

− ρ

2

(
2U∞ sin θ + �

2π R

)2]
sin θ R dθ

= ρU∞�

π

∫ 2π

0
sin2 θ dθ = ρU∞� (3.112)

This very important result states that the force in this two-dimensional flow is directly
proportional to the circulation and acts normal to the free stream. A generalization of this
result was discovered independently by the German mathematician M. W. Kutta in 1902
and by the Russian physicist N. E. Joukowski in 1906. They observed that the lift per unit
span on a lifting airfoil or cylinder is proportional to the circulation. Consequently the
Kutta–Joukowski theorem (which will be derived in Chapter 6) states:

The resultant aerodynamic force in an incompressible, inviscid, irrotational flow in an
unbounded fluid is of magnitude ρQ∞� per unit width and acts in a direction normal to the
free stream. (Note that the speed of the free stream is taken to be Q∞ since in the general
case the stream may not be parallel to the x axis.)
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Figure 3.16 Notation used for the vector Kutta–Joukowski theorem.

Using vector notation, this can be expressed as

F = ρQ∞ × Γ (3.113)

where F is the aerodynamic force per unit width and acts in the direction determined by
the vector product, as shown schematically in Fig. 3.16. Note that positive Γ is defined
according to the right-hand rule.

3.12 Superposition of a Three-Dimensional Doublet and Free Stream:
Flow around a Sphere

The method of the previous section can be extended to study the case of the three-
dimensional flow over a sphere. The velocity potential is obtained by the superposition of
the free stream potential of Eq. (3.51) with a doublet pointing in the negative x direction
(Eq. (3.34)). The combined velocity potential is

� = U∞r cos θ + μ

4π

cos θ

r2
(3.114)

The velocity field of this potential can be obtained by differentiating Eq. (3.114):

qr = ∂�

∂r
=

(
U∞ − μ

2πr3

)
cos θ (3.115)

qθ = 1

r

∂�

∂θ
= −

(
U∞ + μ

4πr3

)
sin θ (3.116)

qϕ = 1

r sin θ

∂�

∂ϕ
= 0 (3.117)

At the sphere surface, where r = R, the zero normal flow boundary condition is enforced
(qr = 0), so that

qr =
(

U∞ − μ

2π R3

)
cos θ = 0 (3.118)

This condition is met at θ = π/2, 3π/2 and, in general, when the quantity in the parentheses
is zero. This second condition is used to determine the doublet strength

μ = U∞2π R3 (3.119)
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which means that qr = 0 at r = R, which is the radius of the sphere. Substituting the strength
μ into the equations for the potential and the velocity components results in the flowfield
around a sphere with a radius R:

� = U∞ cos θ

(
r + R3

2r2

)
(3.120)

qr = U∞ cos θ

(
1 − R3

r3

)
(3.121)

qθ = −U∞ sin θ

(
1 + R3

2r3

)
(3.122)

To obtain the pressure distribution over the sphere, the velocity components at r = R
are found:

qr = 0, qθ = −3

2
U∞ sin θ (3.123)

The stagnation points occur at θ = 0 and θ = π , and the maximum velocity occurs at
θ = π/2 or θ = 3π/2. The value of the maximum velocity is (3/2)U∞, which is smaller
than in the two-dimensional case.

The pressure distribution is obtained now with Bernoulli’s equation

p − p∞ = 1

2
ρU 2

∞

(
1 − 9

4
sin2 θ

)
(3.124)

and the pressure coefficient is

C p = p − p∞
(1/2)ρU 2∞

=
(

1 − 9

4
sin2 θ

)
(3.125)

It can be easily observed that at the stagnation points θ = 0 and π (where q = 0), C p = 1.
Also, the maximum velocity occurs at the top and bottom of the sphere (θ = π/2, 3π/2)
and the pressure coefficient there is −5/4.

Because of symmetry, lift and drag will be zero, as in the case of the flow over the cylinder.
However, the lift on a hemisphere is not zero (even without introducing circulation); this
case is of particular interest in the field of road vehicle aerodynamics. The flow past a sphere
can be interpreted to also represent the flow past a hemisphere on the ground since the x
axis is a streamline and can be replaced by a solid surface.

The lift force acting on the hemisphere’s upper surface is

L = −
∫

(p − p∞) sin θ sin ϕ dS (3.126)

and the surface element dS on the sphere is

dS = (R sin θ dϕ)(R dθ )

Substituting dS and the pressure from Eq. (3.124), we obtain the lift of the hemisphere:

L= −
∫ π

0

∫ π

0

1

2
ρU 2

∞

(
1 − 9

4
sin2 θ

)
R2 sin2 θ sin ϕ dθ dϕ

= −1

2
ρU 2

∞

∫ π

0

(
1 − 9

4
sin2 θ

)
2R2 sin2 θ dθ

= −ρR2U 2
∞

(
π

2
− 27π

32

)
= 11

32
πρR2U 2

∞ (3.127)
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The lift and drag coefficients due to the upper surface are then

CL ≡ L

(1/2)ρU 2∞(π/2)R2
= 11

8
(3.128)

CD ≡ D

(1/2)ρU 2∞(π/2)R2
= 0 (3.129)

For the complete configuration the forces due to the pressure distribution on the flat, lower
surface of the hemisphere must be included, too, in this calculation.

3.13 Some Remarks about the Flow over the Cylinder and the Sphere

The examples of the flow over a cylinder and a sphere clearly demonstrate the
principle of superposition as a tool for deriving particular solutions to Laplace’s equation.
From the physical point of view, these results fall in a range where potential flow based
calculations are inaccurate owing to flow separation. The pressure distribution around the
cylinder, as obtained from Eq. (3.104), is shown in Fig. 3.14 along with some typical
experimental results. Clearly, at the frontal stagnation point (θ = π ) the results of Eq. (3.104)
are close to the experimental data, whereas at the back the difference is large. This is a result
of the streamlines not following the surface curvature and separating from the cylinder’s
surface as shown in Fig. 3.13; this is called flow separation.

The theoretical pressure distribution (Eq. (3.125)) for the sphere, along with the results
for the cylinder, are shown in Fig. 3.17. Note that for the three-dimensional case the suction
pressures are much smaller (relieving effect). Experimental data for the sphere show that
the flow separates too but that the low pressure in the rear section is smaller. Consequently,
the actual drag coefficient of a sphere is less than that of an equivalent cylinder, as shown
in Fig. 3.18 (for Re > 2,000). These drag data are a result of the skin friction and flow
separation pattern, which is strongly affected by the Reynolds number. Clearly, for the
laminar flows (Re < 2,000) the drag is large owing to larger flow separation behind the
body; both this separation region and resulting drag are reduced as the turbulent flow

Figure 3.17 Pressure distribution over the surface of a cylinder and a sphere.
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Figure 3.18 Typical experimental results for the drag coefficient for cylinders and spheres as a
function of Reynolds number (from Ref. 1.6). Reproduced with permission of McGraw-Hill, Inc.

momentum transfer increases (Re > 105, see Schlichting,1.6 p. 17). Note that the inviscid
flow results do not account for flow separation and viscous friction near the body’s surface
and therefore the drag coefficient for both cylinder and sphere is zero. This fact disturbed the
French mathematician d’Alembert, in the middle of the seventeenth century, who arrived at
this conclusion that the drag of a closed body in two-dimensional, inviscid, incompressible
flow is zero (even though he realized that experiments result in a finite drag). Ever since
those early days of fluid dynamics this problem has been known as the d’Alembert’s paradox.

3.14 Surface Distribution of the Basic Solutions

The results of Sections 3.2 and 3.3 indicate that a solution to the flow over
arbitrary bodies can be obtained by distributing elementary singularity solutions over
the modeled surfaces. Prior to applying this method to practical problems, the nature
of each of the elementary solutions needs to be investigated. For simplicity, the two-
dimensional point elements will be distributed continuously along the x axis in the region
x1 → x2.

a. Source Distribution
Consider the source distribution of strength per length σ (x) along the x axis as

shown in Fig. 3.19. The influence of this distribution at a point P(x, z) is an integral of the
influences of all the point elements:

�(x, z) = 1

2π

∫ x2

x1

σ (x0) ln
√

(x − x0)2 + z2 dx0 (3.130)

u(x, z) = 1

2π

∫ x2

x1

σ (x0)
x − x0

(x − x0)2 + z2
dx0 (3.131)

w(x, z) = 1

2π

∫ x2

x1

σ (x0)
z

(x − x0)2 + z2
dx0 (3.132)
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Figure 3.19 Source distribution along the x axis. [Note that ∂�+
∂z ≡ ∂�

∂z (x, 0+).]

To investigate the properties of such a distribution for future modeling purposes, the type
of discontinuity across the surface needs to be examined. Since each source emits fluid in all
directions, intuitively we can see that the resulting velocity direction will point away from
the surface, as shown in Fig. 3.19. From the figure it is clear that there is a discontinuity in
the w component at z = 0. Note that as z → 0 the integrand in Eq. (3.132) is zero except
when x0 = x . Therefore, the value of the integral depends only on the contribution from
this point. Consequently, σ (x0) can be moved out of the integral and replaced by σ (x).
This suggests that the limits of integration do not affect the value of the integral and for
convenience can be replaced by ±∞. Also, from the z dependence of the integrand in
Eq. (3.132), the velocity component when approaching z = 0 from above the x axis, w+,
is in the opposite direction to w−, which is the component when approaching the axis from
below. For the velocity component w+, Eq. (3.132) becomes

w(x, 0+) = lim
z→0+

σ (x)

2π

∫ ∞

−∞

z

(x − x0)2 + z2
dx0 (3.133)

To evaluate this integral it is convenient to introduce a new integration variable λ:

λ = x − x0

z

dλ = −dx0

z

and the integration limits for z → 0+ become ±∞. The transformed integral becomes

w(x, 0+) = lim
z→0+

σ (x)

2π

∫ ∞

−∞

dλ

1 + λ2

= σ (x)

2π
tan−1 λ|∞−∞

= σ (x)

2π

[
π

2
−

(
−π

2

)]
= σ (x)

2
(3.134)

Therefore w(x, 0±) become

w(x, 0±) = ∂�

∂z
(x, 0±) = ±σ (x)

2
(3.135)

This element will be suitable to model flows that are symmetrical with respect to the x axis,
and the total jump in the velocity component normal to the surface of the distribution is

w+ − w− = σ (x) (3.136)
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Figure 3.20 Doublet distribution along the x axis.

The u component is continuous across the x axis, and its evaluation needs additional con-
siderations (e.g., as in Chapter 5).

b. Doublet Distribution
In a similar manner the influence of a two-dimensional doublet distribution, point-

ing in the z direction [μ = (0, μ)], at a point P(x, z) is an integral of the influences of the
point elements between x1 → x2 (Fig. 3.20):

�(x, z) = −1

2π

∫ x2

x1

μ(x0)
z

(x − x0)2 + z2
dx0 (3.137)

u(x, z) = 1

π

∫ x2

x1

μ(x0)
(x − x0)z

[(x − x0)2 + z2]2
dx0 (3.138)

w(x, z) = −1

2π

∫ x2

x1

μ(x0)
(x − x0)2 − z2

[(x − x0)2 + z2]2
dx0 (3.139)

Note that the velocity potential in Eq. (3.137) is identical in form to the w component of
the source (Eq. (3.132)). Approaching the surface, at z = 0±, this element creates a jump
in the velocity potential. This analogy yields

�(x, 0±) = ∓μ(x)

2
(3.140)

This leads to a discontinuous tangential velocity component given by

u(x, 0±) = ∂�

∂x
(x, 0±) = ∓1

2

dμ(x)

dx
(3.141)

Since the doublet distribution begins at x1 (e.g., μ(x ≤ x1) = 0), the circulation �(x) around
a path surrounding the segment x1 → x is

�(x) =
∫ x

x1

u(x0, 0+) dx0 +
∫ x1

x
u(x0, 0−) dx0 = −μ(x) (3.142)

which is equivalent to the jump in the potential

�(x) = �(x, 0+) − �(x, 0−) = −μ(x) = ��(x) (3.143)
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Figure 3.21 Vortex distribution along the x axis.

c. Vortex Distribution
In a similar manner the influence of a vortex distribution at a point P(x, z) is an

integral of the influences of the point elements between x1 → x2 (Fig. 3.21):

�(x, z) = − 1

2π

∫ x2

x1

γ (x0) tan−1 z

x − x0
dx0 (3.144)

u(x, z) = 1

2π

∫ x2

x1

γ (x0)
z

(x − x0)2 + z2
dx0 (3.145)

w(x, z) = − 1

2π

∫ x2

x1

γ (x0)
x − x0

(x − x0)2 + z2
dx0 (3.146)

Here the u component of the velocity is similar in form to Eqs. (3.132) and (3.137) and
there is a jump in this component as z = 0±. The tangential velocity component is then

u(x, 0±) = ∂�

∂x
(x, 0±) = ±γ (x)

2
(3.147)

The contribution of this velocity jump to the potential jump, assuming that � = 0 ahead
of the vortex distribution, is

��(x) = �(x, 0+) − �(x, 0−) =
∫ x

x1

γ (x0)

2
dx0 −

∫ x

x1

−γ (x0)

2
dx0

The circulation� is the closed integral of u(x, 0)dx , which is equivalent to that of Eq. (3.142).
Therefore,

�(x) = �(x, 0+) − �(x, 0−) = ��(x) (3.148)

Note that similar flow conditions can be modeled by either a vortex or a doublet distri-
bution and the relation between these two distributions is

� = −μ (3.149)

A comparison of Eq. (3.141) with Eq. (3.147) indicates that a vortex distribution can be
replaced by an equivalent doublet distribution such that

γ (x) = −dμ(x)

dx
(3.150)
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Problems

3.1. Consider a distribution of two-dimensional sources around a circle of radius R.
The source strength is f (θ ) per unit arc length. Find an analytic expression for the
velocity potential of this source ring.

3.2. Consider the two-dimensional flow of a uniform stream of speed U∞ past a source
of strength Q. Find the stagnation point(s) and the equation of the stagnation
streamline. Find the width of the generated semi-infinite body far downstream.

3.3. Consider the two-dimensional flow due to a uniform stream of speed U∞ in the
x direction, a clockwise vortex of circulation � at (0, b), and an equal strength
counterclockwise vortex at (0, −b). Find the stream function for the limit
b → 0, � → ∞, and where 2�b → N , a constant.

3.4. Consider the two-dimensional flow of a uniform stream of speed U∞ along a wall
with a semicircular bump of radius R. Find the lift on the bump.

3.5. Consider the two-dimensional flow of a uniform stream of speed U∞ past a circle
of radius R with circulation �. Find the lift force on the circle by an application
of the integral momentum theorem for the fluid region in between the circle and a
concentric circle at a large distance away.
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CHAPTER 4

Small-Disturbance Flow over
Three-Dimensional Wings:
Formulation of the Problem

One of the first important applications of potential flow theory was the study of
lifting surfaces (wings). Since the boundary conditions on a complex surface can consid-
erably complicate the attempt to solve the problem by analytical means, some simplifying
assumptions need to be introduced. In this chapter these assumptions will be applied to the
formulation of the three-dimensional thin wing problem and the scene for the singularity
solution technique will be set.

4.1 Definition of the Problem

Consider the finite wing shown in Fig. 4.1, which is moving at a constant speed
in an otherwise undisturbed fluid. A Cartesian coordinate system is attached to the wing
and the components of the free-stream velocity Q∞ in the x, y, z frame of reference are
U∞, V∞, and W∞, respectively. The angle of attack α is defined as the angle between the
free-stream velocity and the x axis

α = tan−1 W∞
U∞

and for the sake of simplicity the side slip condition is not included at this point (V∞ ≡ 0).
If it is assumed that the fluid surrounding the wing and the wake is inviscid, incom-

pressible, and irrotational, the resulting velocity field due to the motion of the wing can be
obtained by solving the continuity equation

∇2�∗ = 0 (4.1)

where �∗ is the velocity potential, as defined in the wing frame of reference. The boundary
conditions require that the disturbance induced by the wing will decay far from the wing:

lim
r→∞ ∇�∗ = Q∞ (4.2)

which is automatically fulfilled by the singular solutions such as for the source, doublet, or
the vortex elements (derived in Chapter 3). Also, the normal component of velocity on the
solid boundaries of the wing must be zero. Thus, in a frame of reference attached to the
wing,

∇�∗ · n = 0 (4.3)

where n is an outward normal to the surface (Fig. 4.1). So, basically, the problem reduces to
finding a singularity distribution that will satisfy Eq. (4.3). Once this distribution is found,
the velocity q at each point in the field is known and the corresponding pressure p will be
calculated from the steady-state Bernoulli equation:

p∞ + ρ

2
Q2

∞ = p + ρ

2
q2 (4.4)

75
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Figure 4.1 Nomenclature used for the definition of the finite wing problem.

The analytical solution of this problem, for an arbitrary wing shape, is complicated by
the difficulty of specifying the boundary condition of Eq. (4.3) on a complex shape surface
and by the shape of a wake. The need for a wake model follows immediately from the
Helmholtz theorems (Section 2.9), which state that vorticity cannot end or start in the fluid.
Consequently, if the wing is modeled by singularity elements that will introduce vorticity
(as will be shown later in this chapter), these need to be “shed” into the flow in the form of
a wake.

To overcome the difficulty of defining the zero normal flow boundary condition on an
arbitrary wing shape some additional simplifying assumptions are made in the next section.

4.2 The Boundary Condition on the Wing

To satisfy the boundary condition of Eq. (4.3), on the wing, geometrical infor-
mation about the shape of the solid boundaries is required. Let the wing solid surface be
defined as

z = η(x, y) (4.5)

and in the case of a wing with nonzero thickness two such functions will describe the upper
(ηu) and the lower (ηl) surfaces (Fig. 4.2). To find the normal to the wing surface, a function
F(x, y, z) can be defined such that

F(x, y, z) ≡ z − η(x, y) = 0 (4.6)

Figure 4.2 Definitions for wing thickness and upper, lower, and mean camberlines at an arbitrary
spanwise location y.
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and the outward normal on the wing upper surface is obtained by using Eq. (2.26):

n = ∇F

|∇F | = 1

|∇F |
(

−∂η

∂x
, −∂η

∂y
, 1

)
(4.7)

whereas on the lower surface the outward normal is −n.
The velocity potential due to the free-stream flow can be obtained by using the solution

of Eq. (3.52):

�∞ = U∞x + W∞z (4.8)

and, since Eq. (4.1) is linear, its solution can be divided into two separate parts:

�∗ = � + �∞ (4.9)

Substituting Eq. (4.7) and the derivatives of Eqs. (4.8) and (4.9) into the boundary condition
(Eq. (4.3)) requiring no flow through the wing’s solid boundaries results in

∇�∗ · n = ∇�∗ · ∇F

|∇F |

=
(

∂�

∂x
+ U∞,

∂�

∂y
,
∂�

∂z
+ W∞

)
· 1

|∇F |
(

−∂η

∂x
, −∂η

∂y
, 1

)
= 0

(4.10)

The intermediate result of this brief investigation is that the unknown is the perturbation
potential �, which represents the velocity induced by the motion of the wing in a stationary
frame of reference. Consequently, the equation for the perturbation potential is

∇2� = 0 (4.11)

and the boundary conditions on the wing surface are obtained by rearranging ∂�/∂z in
Eq. (4.10):

∂�

∂z
= ∂η

∂x

(
U∞ + ∂�

∂x

)
+ ∂η

∂y

(
∂�

∂y

)
− W∞ on z = η (4.12)

Now, introducing the classical small-disturbance approximation will allow us to further
simplify this boundary condition. Assume

|∂�/∂x |
Q∞

,
|∂�/∂y|

Q∞
,
|∂�/∂z|

Q∞
� 1 (4.13)

Then, from the boundary condition of Eq. (4.12), the following restrictions on the geometry
will follow:∣∣∣∣∂η

∂x

∣∣∣∣ � 1,

∣∣∣∣∂η

∂y

∣∣∣∣ � 1, and

∣∣∣∣W∞
U∞

∣∣∣∣ = tan α ≈ α � 1 (4.14)

This means that the wing must be thin compared to its chord. Also, near stagnation points
and near the leading edge (where ∂η/∂x is not small), the small perturbation assumption is
not valid.

Accounting for the above assumptions and recalling that for small α, W∞ ≈ Q∞α and
U∞ ≈ Q∞, we can reduce the boundary condition of Eq. (4.12) to a much simpler form,

∂�

∂z
(x, y, η) = Q∞

(
∂η

∂x
− α

)
(4.15)
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It is consistent with the above approximation to also transfer the boundary conditions
from the wing surface to the x–y plane. This is accomplished by a Taylor series expansion
of the dependent variable, that is,

∂�

∂z
(x, y, z = η) = ∂�

∂z
(x, y, 0) + η

∂2�

∂z2
(x, y, 0) + O(η2) (4.16)

Along with the above small-disturbance approximation, only the first term from the expan-
sion of Eq. (4.16) is used. Then the first-order approximation of the boundary condition,
Eq. (4.12) (neglecting products of small quantities), becomes

∂�

∂z
(x, y, 0) = Q∞

(
∂η

∂x
− α

)
(4.17)

A more precise treatment of the boundary conditions (for the two-dimensional air-
foil problem) including proceeding to a higher order approximation will be considered in
Chapter 7.

4.3 Separation of the Thickness and the Lifting Problems

At this point of the discussion, the boundary condition (Eq. (4.17)) is defined for
a thin wing and is linear. The shape of the wing is then defined by the contours of the upper
ηu and lower ηl surfaces as shown in Fig. 4.2,

z = ηu(x, y) (4.18a)

z = ηl(x, y) (4.18b)

This wing shape can also be expressed by using a thickness function ηt and a camber
function ηc, such that

ηc = 1

2
(ηu + ηl) (4.19a)

ηt = 1

2
(ηu − ηl) (4.19b)

Therefore, the upper and the lower surfaces of the wing can be specified alternatively by
using the local wing thickness and camberline (Fig. 4.2):

ηu = ηc + ηt (4.20a)

ηl = ηc − ηt (4.20b)

Now, the linear boundary condition (Eq. (4.17)) should be specified for both the upper and
lower wing surfaces,

∂�

∂z
(x, y, 0+) =

(
∂ηc

∂x
+ ∂ηt

∂x

)
Q∞ − Q∞α (4.21a)

∂�

∂z
(x, y, 0−) =

(
∂ηc

∂x
− ∂ηt

∂x

)
Q∞ − Q∞α (4.21b)

The boundary condition at infinity (Eq. (4.2)), for the perturbation potential �, now becomes

lim
r→∞ ∇� = 0 (4.21c)

Since the continuity equation (Eq. (4.11)) as well as the boundary conditions
(Eqs. (4.21a–c)) are linear, it is possible to solve three simpler problems and superimpose
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Figure 4.3 Decomposition of the thick cambered wing at an angle of attack into three simpler
problems.

the three separate solutions according to Eqs. (4.21a) and (4.21b), as shown schematically
in Fig. 4.3. Note that this decomposition of the solution is valid only if the small-disturbance
approximation is applied to the wake model as well. These three subproblems are:

1. Symmetric wing with nonzero thickness at zero angle of attack (effect of thickness):

∇2�1 = 0 (4.22)

with the boundary condition:

∂�1

∂z
(x, y, 0±) = ±∂ηt

∂x
Q∞ (4.23)

where + is for the upper and − is for the lower surfaces.
2. Zero-thickness, uncambered wing at angle of attack (effect of angle of attack):

∇2�2 = 0 (4.24)

∂�2

∂z
(x, y, 0±) = −Q∞α (4.25)

3. Zero-thickness, cambered wing at zero angle of attack (effect of camber):

∇2�3 = 0 (4.26)

∂�3

∂z
(x, y, 0±) = ∂ηc

∂x
Q∞ (4.27)

The complete solution for the cambered wing with nonzero thickness at an angle of
attack is then

� = �1 + �2 + �3 (4.28)

Of course, for Eq. (4.28) to be valid all three linear boundary conditions have to be fulfilled
at the wing’s projected area on the z = 0 plane.

4.4 Symmetric Wing with Nonzero Thickness at Zero Angle of Attack

Consider a symmetric wing with a thickness distribution of ηt (x, y) at zero angle
of attack, as shown in Fig. 4.4. The equation to be solved is

∇2� = 0 (4.29)

Here the subscript is dropped for simplicity. The approximate boundary condition to be
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Figure 4.4 Definition of wing thickness ηt at an arbitrary spanwise location y.

fulfilled at the z = 0 plane is

∂�

∂z
(x, y, 0±) = ±∂ηt

∂x
Q∞ (4.30)

The solution of this problem can be obtained by distributing basic solution elements
of Laplace’s equation. Because of the symmetry, as explained in Chapter 3, a source/sink
distribution placed at the wing section centerline, can be used to model the flow, as shown
in Fig. 4.5.

Recall that the potential due to such a point source element σ (Eq. (3.19))

� = −σ

4πr
(4.31)

where r is the distance from the point singularity located at (x0, y0, z0) (see Section 3.4),
that is,

r =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 (4.32)

Now if these elements are distributed over the wing’s projected area on the x–y plane
(z0 = 0), the velocity potential at an arbitrary point (x, y, z) will be

�(x, y, z) = −1

4π

∫
wing

σ (x0, y0) dx0 dy0√
(x − x0)2 + (y − y0)2 + z2

(4.33)

Note that the integration is done over the wing only (no wake). The normal velocity
component w(x, y, z) is obtained by differentiating Eq. (4.33) with respect to z:

w(x, y, z) = ∂�

∂z
= z

4π

∫
wing

σ (x0, y0) dx0 dy0

[(x − x0)2 + (y − y0)2 + z2]3/2
(4.34)

Figure 4.5 Method of modeling the thickness problem by a source/sink distribution.
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Figure 4.6 Segment of a source distribution on the z = 0 plane.

To find w(x, y, 0), a limit process is required (see Section 3.14) and the result is

w(x, y, 0±) = lim
z→0±

w(x, y, z) = ±σ (x, y)

2
(4.35)

where + is on the upper and − is on the lower surface of the wing, respectively.
This result can be obtained by observing the volume flow rate due to a 	x long and 	y

wide source element with a strength σ (x, y). A two-dimensional section view is shown in
Fig. 4.6. Following the definition of a source element (Section 3.4) the volumetric flow 


produced by this element is then


 = σ (x, y)	x	y

But as dz → 0 the flux from the sides becomes negligible (at z = 0±) and only the
normal velocity component w(x, y, 0±) contributes to the source flux. The above vol-
ume flow feeds the two sides (upper and lower) of the surface element and, therefore,

 = 2w(x, y, 0+)	x	y. So by equating this flow rate with that produced by the source
distribution


 = 2w(x, y, 0+)	x	y = σ (x, y)	x	y

we obtain again

w(x, y, 0±) = ±σ (x, y)

2
(4.35)

Substitution of Eq. (4.35) into the boundary condition results in

∂�

∂z
(x, y, 0±) = ±∂ηt

∂x
Q∞ = ±σ (x, y)

2

or

σ (x, y) = 2Q∞
∂ηt

∂x
(x, y) (4.36)

So in this case the solution for the source distribution is easily obtained after substituting
Eq. (4.36) into Eq. (4.33) for the velocity potential and differentiating to obtain the velocity
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field:

�(x, y, z) = −Q∞
2π

∫
wing

[∂ηt (x0, y0)/∂x] dx0 dy0√
(x − x0)2 + (y − y0)2 + z2

(4.37)

u(x, y, z) = Q∞
2π

∫
wing

[∂ηt (x0, y0)/∂x](x − x0) dx0 dy0

[(x − x0)2 + (y − y0) + z2]3/2
(4.38)

v(x, y, z) = Q∞
2π

∫
wing

[∂ηt (x0, y0)/∂x](y − y0) dx0 dy0

[(x − x0)2 + (y − y0) + z2]3/2
(4.39)

w(x, y, z) = Q∞
2π

∫
wing

[∂ηt (x0, y0)/∂x]z dx0 dy0

[(x − x0)2 + (y − y0) + z2]3/2
(4.40)

The pressure distribution due to this solution will be derived later, but it is easy to observe
that since the pressure field is symmetric, there is no lift produced due to thickness.

4.5 Zero-Thickness Cambered Wing at Angle of Attack–Lifting Surfaces

Here we shall solve the two linear problems of angle of attack and camber together
(Fig. 4.7). The problem to be solved is

∇2� = 0 (4.29)

with the boundary condition requiring no flow across the surface (evaluated at z = 0) as

∂�

∂z
(x, y, 0±) = Q∞

(
∂ηc

∂x
− α

)
(4.41)

This problem is antisymmetric with respect to the z direction and can be solved by a
doublet distribution or by a vortex distribution. These basic singularity elements are solu-
tions to Eq. (4.29) and fulfill the boundary condition (Eq. (4.2)) at infinity. As mentioned in
Section 2.9, vortex lines cannot begin and terminate in the fluid. This means that if the lifting
problem is to be modeled with vortex elements they cannot be terminated at the wing and
must be shed into the flow. So as not to generate force in the fluid, these free vortex elements
must be parallel to the local flow direction, at any point on the wake. (This observation is
based on the vector product Q × Γ in Eq. (3.113).)

In the following section two methods of representing lifting problems by a doublet or
vortex distribution are presented. Also, as a consequence of the small-disturbance approx-
imation, the wake is taken to be planar and placed on the z = 0 plane.

Figure 4.7 Nomenclature used for the definition of the thin, lifting-wing problem.
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Figure 4.8 Lifting-surface model of a three-dimensional wing.

a. Doublet Distribution
To establish the lifting surface equation in terms of doublets the various direc-

tional derivatives of the term 1/r in the basic doublet solution have to be examined (see
Section 3.5). The most suitable differentiation is with respect to z, which results in doublets
pointing in the z direction that create a pressure jump in this direction. Consequently, this
antisymmetric point element (Eq. (3.39)) placed at (x0, y0, z0) will be used:

�(x, y, z) = −μ(x0, y0)(z − z0)

4π [(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(4.42)

The potential at an arbitrary point (x, y, z) due to these elements distributed over the wing
and its wake, as shown in Fig. 4.8 (z0 = 0), is

�(x, y, z) = 1

4π

∫
wing+wake

−μ(x0, y0)z dx0 dy0

[(x − x0)2 + (y − y0)2 + z2]3/2
(4.43)

The velocity is obtained by differentiating Eq. (4.43) and letting z → 0 on the wing. The
limit for the tangential velocity components was derived in Section 3.14, whereas the limit
process for the normal velocity component is more elaborate (see Ashley and Landahl,4.1

p. 149). We obtain

u(x, y, 0±) = ∂�

∂x
= ∓1

2

∂μ

∂x

v(x, y, 0±) = ∂�

∂y
= ∓1

2

∂μ

∂y

w(x, y, 0±) = ∂�

∂z

= 1

4π

∫
wing+wake

μ(x0, y0)

(y − y0)2

[
1 + (x − x0)√

(x − x0)2 + (y − y0)2

]
dx0 dy0

(4.44)
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To construct the integral equation for the unknown μ(x, y), substitute Eq. (4.44) into the
left-hand side of Eq. (4.41) to get

1

4π

∫
wing+wake

μ(x0, y0)

(y − y0)2

[
1 + (x − x0)√

(x − x0)2 + (y − y0)2

]
dx0 dy0

= Q∞

(
∂ηc

∂x
− α

)
(4.45)

The strong singularity at y = y0 in the integrals in Eqs. (4.44) and (4.45) is discussed in
Appendix C.

b. Vortex Distribution
According to this model, vortex line distributions will be used over the wing and

the wake, as in the case of the doublet distribution. This model is physically very easy to
construct and the velocity 	q due a vortex line element dl with a strength of 	� will be
computed by the Biot–Savart law (r is defined by Eq. (4.32)):

	q = −1

4π

	�r × dl

r3
(2.68b)

Now if vortices are distributed over the wing and wake (Fig. 4.9), and if those elements
that point in the y direction are denoted as γy , and in the x direction as γx , then the component
of velocity normal to the wing (downwash), induced by these elements, is

w(x, y, z) = −1

4π

∫
wing+wake

γy(x − x0) − γx (y − y0)

r3
dx0 dy0 (4.46)

It appears that in this formulation there are two unknown quantities per point (γx , γy)
compared to one (μ) in the case of the doublet distribution. However, according to the
Helmholtz vortex theorems (Section 2.9) vortex strength is constant along a vortex line,
and if we consider the vortex distribution on the wing to consist of a large number of
infinitesimal vortex lines then at any point on the wing |∂γx/∂x | = |∂γy/∂y| and the final
number of unknowns at a point is reduced to one.

Figure 4.9 Possible vortex representation for the lifting-surface model.
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As was shown earlier (in Section 3.14) for a vortex distribution,

u(x, y, 0±) = ∂�

∂x
= ±γy(x, y)

2
(4.47)

v(x, y, 0±) = ∂�

∂y
= ∓γx (x, y)

2
(4.47a)

The velocity potential on the wing at any point x (y = y0 = const.) can be obtained by
integrating the x component of the velocity along an x-wise line beginning at the leading
edge (L.E.):

�(x, y0, 0±) =
∫ x

L .E .

u(x1, y0, 0±) dx1 (4.48)

and

	�(x, y0) =
∫ x

L .E .

γy(x1, y0) dx1 (4.49)

To construct the lifting surface equation for the unknown γ , the wing-induced downwash
of Eq. (4.46) must be equal and opposite in sign to the normal component of the free-stream
velocity:

−1

4π

∫
wing+wake

γy(x − x0) − γx (y − y0)

[(x − x0)2 + (y − y0)2]3/2
dx0 dy0 = Q∞

(
∂ηc

∂x
− α

)
(4.50)

Here again it is assumed that the boundary conditions and the vortices are placed on the
z = 0 plane.

Solution for the unknown doublet or vortex strength in Eq. (4.45) or in Eq. (4.50) allows
for the evaluation of the velocity distribution. The method of obtaining the corresponding
pressure distribution is described in the next section.

4.6 The Aerodynamic Loads

Solution of the aforementioned problems (e.g., the thickness or lifting problems)
results in the velocity field. To obtain the aerodynamic loads the pressures need to be re-
solved by using the Bernoulli equation (Eq. (4.4)). Also, the aerodynamic coefficients can be
derived either in the wing or in the flow coordinate system. In this case of small-disturbance
flow over wings, traditionally, the wing coordinates are selected as shown in Fig. 4.10.

Figure 4.10 Wing-attached coordinate system.



P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN

CB329-04 CB329/Katz September 20, 2000 14:28 Char Count= 0

86 4 / Small Disturbance Flow overThree-Dimensional Wings

The velocity at any point in the field is then a combination of the free-stream velocity and
the perturbation velocity:

q =
(

Q∞ cos α + ∂�

∂x
,
∂�

∂y
,
∂�

∂z
+ Q∞ sin α

)
(4.51)

Substituting q into the Bernoulli equation (Eq. (4.4)) and taking into account the small-
disturbance assumptions (Eqs. (4.13) and (4.14) and α � 1) we obtain

p∞ − p = ρ

2

(
q2 − Q2

∞
) = ρ

2

[
Q2

∞ cos2 α + 2Q∞ cos α
∂�

∂x
+

(
∂�

∂x

)2

+
(

∂�

∂y

)2

+
(

Q∞ sin α + ∂�

∂z

)2

− Q2
∞

]
= ρQ∞

∂�

∂x
(4.52)

The pressure coefficient C p can be defined as

C p ≡ p − p∞
(1/2)ρQ2∞

= 1 −
(

q

Q∞

)2

= −2
∂�/∂x

Q∞
(4.53)

Note that at a stagnation point q = 0 and C p = 1. In the undisturbed flow q = Q∞ and
C p = 0. The aerodynamic loads, then, can be calculated by integrating the pressures over
the wing surface:

F = −
∫

wing
pn dS (4.54)

When the surface shape is given as in Eq. (4.6) then the normal to the surface is given by
Eq. (4.7), which with the small-disturbance approximation becomes

n = 1

|∇F |
(

−∂η

∂x
, −∂η

∂y
, 1

)
≈

(
−∂η

∂x
, −∂η

∂y
, 1

)

Consequently, the components of the force F can be defined as axial, side, and normal force,

Fx =
∫

wing

(
pu

∂ηu

∂x
− pl

∂ηl

∂x

)
dx dy (4.55)

Fy =
∫

wing

(
pu

∂ηu

∂y
− pl

∂ηl

∂y

)
dx dy (4.56)

Fz =
∫

wing
(pl − pu) dx dy (4.57)

Here the subscripts u and l represent the upper and lower wing surfaces, respectively.
Aerodynamicists frequently refer to the forces in the free-stream coordinates (Fig. 4.10),
and therefore these forces must be transformed accordingly. For the small-disturbance case
the angle of attack is small and therefore the lift and drag forces are

D = Fx cos α + Fz sin α

L = −Fx sin α + Fz cos α ≈ Fz

Note that the evaluation of drag by integrating the pressure distribution is considered to be
less accurate than the above formulation for the lift.
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In the case when the wing is assumed to be thin, the pressure difference across the wing
	p is evaluated (positive 	p is in the +z direction) as

	p = pl − pu = p∞ − ρQ∞
∂�

∂x
(x, y, 0−) −

[
p∞ − ρQ∞

∂�

∂x
(x, y, 0+)

]

= ρQ∞

[
∂�

∂x
(x, y, 0+) − ∂�

∂x
(x, y, 0−)

]
(4.58)

If the singularity distribution is assumed to be placed on the x–y plane then the pressure
differences become as follows:

1. Source distribution: Because of symmetry, (∂�/∂x)(x, y, 0+) = (∂�/∂x)
(x, y, 0−) and

	p = ρQ∞

[
∂�

∂x
(x, y, 0+) − ∂�

∂x
(x, y, 0+)

]
= 0 (4.59a)

2. Doublet distribution: In this case (∂�/∂x)(x, y, 0±) = (∓1/2)∂μ(x, y)/∂x and
the pressure difference becomes

	p = ρQ∞
∂

∂x
	�(x, y) = −ρQ∞

∂μ(x, y)

∂x
(4.59b)

where 	� = �u − �l .
3. Vortex distribution: For the vortex distribution on the x–y plane the pressure jump

can be modeled with a vortex distribution γy(x, y) that points in the y direction,
such that (∂�/∂x)(x, y, 0±) = (±1/2)γy(x, y). Therefore, the pressure difference
becomes

	p = ρQ∞
∂

∂x
	�(x, y) = ρQ∞γy(x, y) (4.59c)

The aerodynamic moment can be derived in a similar manner and as an example the
pitching moment about the y axis for a wing placed at the z = 0 surface is

Mx=0 = −
∫

wing
	px dx dy (4.60)

Usually, the aerodynamic loads are presented in a nondimensional form. In the case of the
force coefficients where F is lift, drag, or side force the corresponding coefficients will
have the form

CF = F

(1/2)ρQ2∞S
(4.61)

where S is a reference area (wing planform area for wings). Similarly the nondimensional
moment coefficient becomes

CM = M

(1/2)ρQ2∞Sb
(4.62)

Here, again, M can be a moment about any arbitrary axis and b is a reference moment arm
(e.g., wing span).



P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN

CB329-04 CB329/Katz September 20, 2000 14:28 Char Count= 0

88 4 / Small Disturbance Flow overThree-Dimensional Wings

Figure 4.11 Possible solutions for the flow over an airfoil: (a) flow with zero circulation, (b) flow
with circulation that will result in a smooth flow near the trailing edge, (c) flow with circulation larger
than in case (b).

4.7 The Vortex Wake

The analysis followed up to this point suggests that by using distributions of the
elementary solutions of Laplace’s equation, the problem is reduced to finding a combina-
tion of these elements that will satisfy the zero normal flow boundary condition on solid
surfaces. However, as in the case of the flow over a cylinder (Section 3.11), the solution
is not unique and an arbitrary value can be selected for the circulation �. This problem is
illustrated for the airfoil in Fig. 4.11, where in case (a) the circulation is zero. In case (b)
the circulation is such that the flow at the trailing edge (T.E.) seems to be parallel at the
edge. In case (c) the circulation is even larger and the flow turns downward near the trailing
edge (this can be achieved, for example, by blowing). W. M. Kutta (the German mathe-
matician who was the first to use this trailing-edge condition in a theoretical paper in 1902)
suggested that from the physical point of view, case (b) seems to result in the right amount
of circulation. The Kutta condition thus states that: The flow leaves the sharp trailing edge
of an airfoil smoothly and the velocity there is finite. For the current modeling purposes
this can be interpreted that the flow leaves the T.E. along the bisector line there. Also, since
the trailing-edge angle is finite the normal component of the velocity, from both sides of
the airfoil, must vanish. For a continuous velocity, this is possible only if this is a stagnation
point. Therefore, it is useful to assume that the pressure difference there is also zero,

	pT.E. = 0 (4.63)

Additionally if the circulation is modeled by a vortex distribution, then this can be expressed
as

γT.E. = 0 (4.63a)
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Figure 4.12 Flow near cusped trailing edge.

For a cusped trailing edge (where the angle is zero, as in Fig. 4.12), Eq. (4.63) must hold
even though the trailing edge need not be a stagnation point.

Next, consider the lifting wing of Fig. 4.9. As was shown in the case of the cylinder,
circulation is needed to generate lift. Assume that the vortex distribution used to model
the lift is placed on the wing as the bound vortex γy(x, y), where the subscript designates
the direction of the circulation vector. But, according to Helmholtz’s theorem, a vortex line
cannot begin or end in the fluid and any change in γy(x, y) must be followed by an equal
change in γx (x, y). Consequently, the wing will be modeled by constant-strength vortex
lines, and if a change in the local strength of γy(x, y) is needed then an additional vortex
line will be added (or the vortex line is bent by ±90◦) such that

∣∣∣∣∂γx (x, y)

∂x

∣∣∣∣ =
∣∣∣∣∂γy(x, y)

∂y

∣∣∣∣ (4.64)

This condition can also be obtained by requiring that the flow above the wing be vorticity
free. Thus the vortex distribution induced velocity at a point slightly above (z = 0+) the
wing is

u(x, y, 0+) = γy(x, y)

2
(4.65a)

v(x, y, 0+) = −γx (x, y)

2
(4.65b)

For the flow resulting from this vortex distribution to be vorticity free requires that

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
= 1

4

(−∂γx (x, y)

∂x
− ∂γy(x, y)

∂y

)
= 0

which is exactly the same result of Eq. (4.64).
Physically this means that any change in vorticity in one direction must be followed by

a change in a normal direction (as shown in Fig. 4.13, where the wing and the vortex lines
are in the x–y plane). Consequently, all vortex lines must be either infinitely long lines
or closed vortex rings. In the case of the wing this means that the lifting vortices (bound
vortices) cannot end at the wing (e.g., at the tip) and must be extended behind the wing into
a wake. Furthermore, a lifting wing creates a starting vortex and this vortex may be located
far downstream (see Fig. 2.5).

Next, the wake shape must be considered. If the wake is to be modeled by a vortex sheet
(free vortex sheet) then from physical considerations it must be different from the bound
circulation by not creating loads. The pressure difference across the sheet is obtained by a
generalization (with vector notation) of Eq. (4.59c), and if there is no pressure difference
across the vortex sheet then

	p = ρq × γ = 0
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Figure 4.13 Since vortex lines cannot end in a fluid, the bound vortices are turned backward, parallel
to the free stream.

or

q × γ = 0 (4.66)

where γ = (γx , γy, γz). This means that the velocity on the wake must be parallel to the
wake vortices.

This consideration will be very helpful when proposing some simple models for the
lifting wing problem in the following chapters.

A small-disturbance approximation applied to the wake model results in

Q∞ × γw = 0 (4.66a)

implying that vortex lines in the wake are parallel to the free-stream, that is,

Q∞ ‖γw (4.66b)

4.8 Linearized Theory of Small-Disturbance Compressible Flow

The potential flow model was based so far on the assumption of an incompressible
fluid. In the case when the disturbance to the flow is small, it is possible to extend the
methods of incompressible potential flow to cover cases with small effects of compressibil-
ity (e.g., low-speed subsonic flows). To investigate this possibility, the continuity equation
(Eq. (1.21)) is rewritten in the form

−1

ρ

(
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
(4.67)

and the inviscid momentum equations (Eqs. (1.31)) are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(4.68a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
(4.68b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
(4.68c)
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For an isentropic fluid the propagation speed of the disturbance a (speed of sound) can be
defined as

a2 = ∂p

∂ρ
(4.69)

and consequently the pressure terms in the momentum equation can be replaced (e.g.,
∂p/∂x = a2∂ρ/∂x , in the x direction). Multiplying the momentum equations by u, v, and
w, respectively, and adding them together leads to

u
∂u

∂t
+ v

∂v

∂t
+ w

∂w

∂t
+ u2 ∂u

∂x
+ v2 ∂v

∂y
+ w2 ∂w

∂z
+ uv

∂u

∂y
+ uv

∂v

∂x
+ uw

∂u

∂z

+ uw
∂w

∂x
+ vw

∂v

∂z
+ vw

∂w

∂y
= −a2

ρ

(
u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)

Replacing the right-hand side with the continuity equation and recalling the irrotationality
condition (Eq. (2.12), ∇ × q = 0) we obtain(

1 − u2

a2

)
∂u

∂x
+

(
1 − v2

a2

)
∂v

∂y
+

(
1 − w2

a2

)
∂w

∂z
− 2

uv

a2

∂u

∂y
− 2

vw

a2

∂v

∂z
− 2

uw

a2

∂w

∂x

+ 1

ρ

∂ρ

∂t
− u

a2

∂u

∂t
− v

a2

∂v

∂t
− w

a2

∂w

∂t
= 0 (4.70)

Using the velocity potential � as defined in Eq. (2.19), and assuming that the free-stream
velocity Q∞ is parallel to the x axis (thus Q∞ becomes U∞i), and that the velocity pertur-
bations caused by the motion of the body in the fluid are small, we get∣∣∣∣∂�

∂x

∣∣∣∣,
∣∣∣∣∂�

∂y

∣∣∣∣,
∣∣∣∣∂�

∂z

∣∣∣∣ � U∞ (4.71)

Based on these assumptions, the velocity components, in term of the perturbation velocity
potential, are

u = U∞ + ∂�

∂x

v = ∂�

∂y
(4.72)

w = ∂�

∂z

Assuming steady-state flow (∂/∂t = 0), and neglecting the smaller terms in Eq. (4.70),
based on Eq. (4.71), we obtain(

1 − u2

a2

)
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0

Using the energy equation for an adiabatic flow, we can show that the local speed of sound
can be replaced by its free-stream value and the small-disturbance equation becomes

(
1 − M2

∞
)∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 0 (4.73)

For time-dependent flows the ∂ρ/∂t term in Eq. (4.70) needs to be evaluated by using the
Bernoulli equation (Eq. (2.32)), but the result will introduce additional time-dependent
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terms. However, in the case of steady-state flows, the effect of compressibility is easily
evaluated.

Using a simple coordinate transformation , called the Prandtl–Glauert rule (named after
the German and British scientists, Ludwig Prandtl and Herman Glauert, circa 1922–27),
we obtain for subsonic flow

xM = x√
1 − M2∞

yM = y (4.74)

zM = z

Equation (4.73) can be reduced to Laplace’s equation, and the results of incompressible
flow can be applied (by using ∂/∂xM = (1 − M2

∞)−1/2∂/∂x). The subscript ( )M represents
here the flow for M > 0.

For example, the pressure coefficient of Eq. (4.53) becomes

C p = −2
∂�/∂xM

Q∞
= −2

∂�/∂x

Q∞

1√
1 − M2∞

(4.75)

Similarly the lift and moment coefficients become

CL (M > 0) = CL (M = 0)√
1 − M2∞

(4.76)

CM (M > 0) = CM (M = 0)√
1 − M2∞

(4.77)

which indicates that at higher speeds the lift slope is increasing as shown by Fig. 4.14. Also,
note that according to Eq. (4.74) the x coordinate is being stretched as the Mach number
increases and therefore the results for M = 0 and M > 0 are for wings of different aspect
ratio.

Figure 4.14 Variation of two-dimensional lift-curve slope with Mach number using Prandtl–Glauert
formula.
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Based on the results of Fig. 4.14 (for a two-dimensional airfoil), for small-disturbance
flows the potential flow based models of this chapter are applicable at least up to M∞ = 0.5.

Reference

[4.1] Ashley, H., and Landahl, M., Aerodynamics of Wings and Bodies, Addison-Wesley, 1965.

Problems

4.1. Consider a two-dimensional parabolic camberline with ε being its maximum
height. The equation of the camberline is then

ηc(x) = 4ε
x

c

[
1 − x

c

]
and the free-stream components in the airfoil frame of reference are (U∞, W∞).
Derive the formula for the chordwise normal vector n and the exact boundary
conditions on the camberline (by using Eq. (4.10)).

4.2. A two-dimensional distribution of doublets oriented in the vertical direction, with
constant strength μ = (0, μ), is placed along the x axis (0 < x < x1). Show that
this doublet distribution is identical to a point vortex at the origin and at x = x1.
What is the strength of the point vortices?

4.3. Show that a vortex distribution of strength γ (x) along the x axis (x1 < x < x2) is
equivalent to a distribution of doublets oriented in the vertical direction (plus two
vortices at x = x1 and at x = x2) and that the strength of this doublet distribution
is

μ(x) =
∫ x

x1

γ (x0) dx0 x1 < x < x2

(Show that both singular distributions have the same velocity potential and velocity
field.)
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CHAPTER 5

Small-Disturbance Flow over
Two-Dimensional Airfoils

The strategy presented in Chapter 3 postulates that a solution to the potential flow
problem can be obtained by superimposing elementary solutions of Laplace’s equation.
Thus, the solution consists of finding the “right” combination of these elementary solu-
tions that will fulfill the zero normal flow boundary condition. Using this approach, in the
previous chapter the small-disturbance problem for a wing moving with a steady motion
was established. This treatment allowed us to separate the problem into the solution of two
linear subproblems, namely the thickness and lifting problems. In this chapter the simpler
two-dimensional case of both the airfoil with nonzero thickness at zero angle of attack
and the lifting zero-thickness airfoil will be solved, by using analytical techniques. These
solutions can then be added to yield the complete small-disturbance solution for the flow
past a thin airfoil.

5.1 Symmetric Airfoil with Nonzero Thickness at Zero Angle of Attack

Consider the two-dimensional symmetric airfoil, with a thickness distribution of
ηt (x), at zero angle of attack, as shown in Fig. 5.1. The velocity field will be obtained by
solving the continuity equation

∇2� = 0 (5.1)

with the boundary condition requiring that the flow normal to the airfoil upper (+ηt ) and
lower surface (−ηt ) be zero:

∂�

∂z
(x, 0±) = ±dηt

dx
Q∞ (5.2)

This equation actually states that the sum of the free-stream and the airfoil-induced normal
velocity components is zero on the surface w(x, 0±) ∓ (dηt/dx)Q∞ = 0. Equation (5.2)
is the two-dimensional version of the three-dimensional boundary condition (Eq. (4.30))
and � is the perturbation velocity potential. Recall that the boundary condition has been
transferred to the z = 0 plane. Also, the boundary condition requiring that the disturbance
due to the airfoil will decay far from it (Eq. (4.2)) is not stated because it is automatically
fulfilled by the basic source, doublet, or vortex elements.

Because of the symmetry of the problem (relative to the z = 0 plane) we use a source
distribution, which inherently has such a symmetric feature. These sources are placed on
the x axis from x = 0 to x = c, as shown in Fig. 5.2. The potential of a source distribution
can be obtained by observing the potential due to a single source element of strength σ0,
located at (x0, 0):

�σ0 = σ0

2π
ln r = σ0

2π
ln

√
(x − x0)2 + z2 = σ0

4π
ln[(x − x0)2 + z2] (5.3)

94
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Figure 5.1 Two-dimensional thin symmetric airfoil at zero angle of attack.

The local radial velocity component qr due to this element at an arbitrary point (x, z) is

qr = σ0

2πr
(5.4)

(Note that the tangential component is zero.)
In Cartesian coordinates this can be resolved into the x and z directions as (u, w) =

qr (cos θ, sin θ ). The same result can be obtained by differentiating Eq. (5.3):

u = ∂�σ0

∂x
= σ0

2π

x − x0

(x − x0)2 + z2
(5.5)

w = ∂�σ0

∂z
= σ0

2π

z

(x − x0)2 + z2
(5.6)

As shown in Fig. 5.2, the airfoil thickness effect is modeled by a continuous σ (x)
distribution along the x axis. The velocity potential and the resulting velocity field can
be obtained by integrating the contribution of the above point elements over the chord
(from x = 0 to x = c); however, now σ (x0) is the source strength per unit length. We thus
have

�(x, z) = 1

2π

∫ c

0
σ (x0) ln

√
(x − x0)2 + z2 dx0 (5.7)

Figure 5.2 Source distribution model for the thin symmetric airfoil.
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Figure 5.3 A �x long segment of a source distribution along the x axis.

u(x, z) = 1

2π

∫ c

0
σ (x0)

x − x0

(x − x0)2 + z2
dx0 (5.8)

w(x, z) = 1

2π

∫ c

0
σ (x0)

z

(x − x0)2 + z2
dx0 (5.9)

In order to substitute the velocity component w(x, 0) into the boundary condition
(Eq. (5.2)) the limit of Eq. (5.9) at z = 0 is needed. Following the results of Section 3.14,
we obtain

w(x, 0±) = lim
z→±0

w(x, z) = ±σ (x)

2
(5.10)

where + is on the upper and − is on the lower surface of the airfoil, respectively. Similarly
to the three-dimensional case, this result can be obtained by observing the volume flow rate
due to a �x long element with a strength σ (x), as shown in Fig. 5.3. As dz → 0, the flux
from the sides of the small element becomes negligible, compared to the flux due to the
w(x, 0±) component. The volumetric flow due to a �x wide source element is σ (x)�x ,
which must be equal to the flow rate fed by the two sides (upper and lower) of the surface,
2w(x, 0+)�x . Therefore,

2w(x, 0+)�x = σ (x)�x

and we obtain again

w(x, 0±) = ±σ (x)

2
(5.10)

Substitution of Eq. (5.10) into the boundary condition results in

∂�

∂z
(x, 0±) = ±dηt

dx
Q∞ = ±σ (x)

2

and therefore

σ (x) = 2Q∞
dηt

dx
(5.11)

Hence in this case the solution for the source distribution is easily obtained after substituting
Eq. (5.11) into Eqs. (5.7)–(5.9):

�(x, z) = Q∞
π

∫ c

0

dηt (x0)

dx
ln

√
(x − x0)2 + z2 dx0 (5.12)
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u(x, z) = Q∞
π

∫ c

0

dηt (x0)

dx

x − x0

(x − x0)2 + z2
dx0 (5.13)

w(x, z) = Q∞
π

∫ c

0

dηt (x0)

dx

z

(x − x0)2 + z2
dx0 (5.14)

It is clear from these equations that the u component of the velocity is symmetric, and the w

component is antisymmetric (with respect to the x axis). Therefore, the pressure distribution
is the same for the top and bottom surfaces and is evaluated at z = 0. The axial velocity
component at z = 0 is then

u(x, 0) = Q∞
π

∫ c

0

dηt (x0)

dx

1

(x − x0)
dx0 (5.15)

and the pressure is obtained by substituting this into the steady-state Bernoulli equation
(Eq. (4.52)):

p − p∞ = −ρQ∞
∂�

∂x
= −ρQ∞u(x, 0) (5.16)

and in terms of the pressure coefficient we have

C p = p − p∞
(1/2)ρQ2∞

= −2
u(x, 0)

Q∞
(5.17)

Evaluating the velocity at z = 0±, as in Eq. (5.15), we get the pressure coefficient as

C p = −2

π

∫ c

0

dηt (x0)

dx

1

(x − x0)
dx0 (5.18)

Since this pressure distribution is the same for the upper and for the lower surface the
pressure difference between the upper and lower surface is zero:

�p = pl − pu = 0 (5.19)

and the aerodynamic lift is

L =
∫ c

0
�p dx = 0 (5.20)

For the drag force calculation the contribution of the upper and lower surfaces needs to be
included using Eq. (4.55):

D =
∫ c

0
pu

dηt

dx
dx −

∫ c

0
pl

−dηt

dx
dx = 2

∫ c

0
pu

dηt

dx
dx (5.21)

Substituting the pressure from Eqs. (5.15) and (5.16) into Eq. (5.21) and observing that the
integral of a constant pressure p∞ over a closed body is zero we obtain

D = −2ρ
Q2

∞
π

∫ c

0

∫ c

0

[dηt (x0)/dx][dηt (x)/dx]

x − x0
dx0 dx (5.21a)

It can be shown, using the symmetry properties of the integrand (see Moran,5.1 pp. 87–88),
that the drag is zero:

D = 0 (5.21b)

This result can be obtained directly from the Kutta–Joukowski theorem (Section 3.11).
Thus, the symmetrical airfoil at zero angle of attack does not generate lift, drag, or pitching
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moment. Evaluation of the velocity distribution needs to be done only to add this thickness
effect to the lifting thin airfoil problem (as derived in the next section).

To obtain the velocity components from Eqs. (5.13) and (5.14) for points not lying on
the strip (0 < x < c, z = 0), the integrals can be evaluated numerically or in closed form
for certain simple geometries. However, when the axial component of the velocity or the
pressure coefficient is to be determined on the airfoil surface using Eqs. (5.15) and (5.18)
the integrands become infinite at x = x0 and the integrals are not defined. It is noted that
if the thickness is increasing at x = x0, the integrand goes to −∞ as x0 is approached from
the left and to +∞ as x0 is approached from the right (e.g., in Eq. (5.15)) and the integrand
is antisymmetric in the neighborhood of x = x0.

If the integral in Eq. (5.13) were evaluated at the actual airfoil surface the integrand
would not be singular. It is the transfer of the boundary condition to the chordline and
the subsequent result that the velocity components on the surface are equivalent to the
components on the chordline that has led to the appearance of the improper integral for the
surface pressure. We would expect from physical considerations that the surface pressure
should be determinable from Eq. (5.18) and aerodynamicists generally agree that the Cauchy
principal value of the integral is the appropriate one. The Cauchy principal value of the
improper integral

∫ b

a
f (x0) dx0

where

f (x0) → ∞ at x0 = x and a < x < b

is defined by
∫ b

a
f (x0) dx0 = lim

ε→0

[ ∫ x−ε

a
f (x0) dx0 +

∫ b

x+ε

f (x0) dx0

]

As an example, consider the following integral where the limits can be evaluated in
closed form:∫ c

0

dx0

x − x0
= lim

ε→0

[ ∫ x−ε

0

dx0

x − x0
−

∫ c

x+ε

dx0

x0 − x

]

= lim
ε→0

[− ln(x − x0)|x−ε
0 − ln(x0 − x)|cx+ε

]

= lim
ε→0

[− ln ε + ln x − ln(c − x) + ln ε] = ln
x

c − x

Note that in the second integral the sign was changed to avoid obtaining the logarithm of a
negative quantity.

In practice, if the integral can be evaluated in closed form the correct Cauchy principal
value can be obtained by simply ignoring the limit process as long as the arguments of all
logarithm terms are taken as their absolute values.

A frequently used principal value integral in many small-disturbance flow applications
is the Glauert integral (see Glauert,5.2 pp. 92–93), which has the form

∫ π

0

cos nθ0

cos θ0 − cos θ
dθ0 = π sin nθ

sin θ
, n = 0, 1, 2, . . . (5.22)
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Figure 5.4 Thin ellipse in a uniform flow.

Example: Flow Past an Ellipse

To demonstrate the features of the pressure distribution obtained from this small-
disturbance solution consider an ellipse with a thickness of t · c at zero angle of
attack (Fig. 5.4). The equation for the surface is then

[x − (c/2)]2

(c/2)2
+ η2

(tc/2)2
= 1

or

η = ±t
√

x(c − x) (5.23)

The derivative of the thickness function for the upper (+) and lower (−) surfaces
is then

dη

dx
= ± t

2

c − 2x√
x(c − x)

The velocity distribution on the ellipse is obtained by substituting this into Eq. (5.15)
(note that η here is ±ηt ):

u(x, 0) = Q∞
π

∫ c

0

t

2

c − 2x0√
x0(c − x0)

1

(x − x0)
dx0 (5.24)

This integral needs to be evaluated in terms of its principal value. To enable use
of Eq. (5.22) the following transformation is introduced:

x = c

2
(1 − cos θ ) (5.25)

and

dx = c

2
sin θ dθ (5.25a)

which transforms the straight chord line into a semicircle. The leading edge of the
ellipse (x = 0) is now at θ = 0 and the trailing edge (x = c) is at θ = π . With the
aid of this transformation dηt/dx becomes

dηt

dx
= t

2

c − c(1 − cos θ )√
(c/2)(1 − cos θ )

[
c − (c/2)(1 − cos θ )

] = t
cos θ

sin θ

Substituting this into the u component of the velocity (Eq. (5.24)),

u(x, 0) = t Q∞
π

∫ π

0

cos θ0

cos θ0 − cos θ
dθ0

and with the aid of Glauert’s integral (Eq. (5.22)) for n = 1, we can reduce the
axial velocity component to

u(x, 0) = t Q∞ (5.26)

The pressure coefficient thus becomes

C p = −2t (5.27)
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Figure 5.5 Calculated chordwise pressure distribution on a thin ellipse.

which indicates that the pressure coefficient is a constant. This result is plotted in
Fig. 5.5 and compared with the exact solution obtained by complex variables (by
Van Dyke,5.3 p. 52). The maximum of |−C p| is well predicted but the solution near
the front and rear stagnation points is incorrect. As the thickness ratio decreases
the pressure distribution becomes more flat with a smaller stagnation region and
therefore the accuracy of this solution improves.

5.2 Zero-Thickness Airfoil at Angle of Attack

It was demonstrated in Section 4.3 that the small-disturbance flow over thin airfoils
can be divided into a thickness problem and a lifting problem due to angle of attack and chord
camber. In this section the lifting problem will be addressed using the classical approach
(Glauert,5.2 pp. 87–93). To illustrate the problem, consider a thin cambered airfoil, at an
angle of attack α, as shown schematically by Fig. 5.6. The flow is assumed to be inviscid,

Figure 5.6 Thin cambered airfoil at an angle of attack.
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incompressible, and irrotational and the continuity equation is

∇2� = 0 (5.28)

The airfoil camberline is placed close to the x axis with the leading edge at x = 0 and the
trailing edge at x = c. The camberline of the airfoil is given by a known function ηc = ηc(x).
The boundary condition requiring no flow across the surface, as derived in Chapter 4 for
the small-disturbance flow case, will be transferred to the z = 0 plane:

∂�

∂z
(x, 0±) = Q∞

(
dηc

dx
cos α − sin α

)
≈ Q∞

(
dηc

dx
− α

)
(5.29)

This equation actually states that the sum of the free-stream and the airfoil induced normal
velocity components is zero on the surface w(x, 0±) − Q∞(dηc/dx − α) = 0. Also, note
that this boundary condition can be obtained by requiring that the flow stay tangent to the
camberline (see inset to Fig. 5.6). Thus, the slope of the local (total) velocity w∗/u∗ must
be equal to the camberline slope:

w∗

u∗ = ∂�∗/∂z

∂�∗/∂x
= dηc

dx

Recalling the definition of the total potential �∗ (Eq. (4.9)), and enforcing the small-
disturbance assumption (e.g., W∞ ≈ Q∞α, ∂�/∂x � U∞, and U∞ = Q∞ cos α ≈ Q∞)
reduces this to the same boundary condition as in Eq. (5.29). We can also use Eq. (4.10) to get(

∂�

∂x
+ U∞,

∂�

∂z
+ W∞

)
· (−dηc/dx, 1)√

(dηc/dx)2 + 1
= ∇�∗ · n = 0

where the normal vector n can be described in terms of the camberline ηc:

n = (−dηc/dx, 1)√
(dηc/dx)2 + 1

When considering a solution, based on a singularity element distribution, the antisym-
metric nature of the problem (relative to the x axis, as in Fig. 5.6) needs to be observed. In
Section 4.5, both doublet and vortex distributions were presented to model this antisymmet-
ric lifting problem. Traditionally, however, the solution based on the vortex distribution is
used, probably because of its easy derivation and physical descriptiveness. Also, the bound-
ary condition requiring that the disturbance due to the airfoil will decay far from it (Eq. (4.2))
is not stated since it is automatically fulfilled by either the vortex or doublet elements. Con-
sequently, a model based on the continuous vortex distribution (as shown in Fig. 5.7) is
suggested for the solution of this problem. Furthermore, the vortex elements are transferred
to the z = 0 plane, following the assumptions of small-disturbance flow where ηc � c.

To demonstrate the basic features of the proposed vortex distribution, consider a point
vortex in the x–z plane, located at a point (x0, 0) with a strength of γ0. Here γ0 = γ (x) dx at
x = x0 in Fig. 5.7. The velocity potential due to this element at a point (x, z) in the field is then

�γ0 = − γ0

2π
θ = − γ0

2π
tan−1

(
z

x − x0

)
(5.30)

The velocity due to a vortex points only in the tangential direction; thus

qθ = − γ0

2πr
, qr = 0 (5.31)
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Figure 5.7 Vortex distribution based model for the thin lifting airfoil.

where r = [(x − x0)2 + z2]
1
2 . The minus sign in qθ is a result of the angle θ being positive

counterclockwise in Fig. 5.7. In Cartesian coordinates the components of the velocity will
be (u, w) = qθ (sin θ, −cosθ ), or by simply differentiating Eq. (5.30),

u = ∂�γ0

∂x
= γ0

2π

z

(x − x0)2 + z2
(5.32a)

w = ∂�γ0

∂z
= − γ0

2π

x − x0

(x − x0)2 + z2
(5.32b)

Note that if the field point is placed on the x axis, then the velocity due to the above element,
normal to the x axis, is

w = −γ0

2π (x − x0)
(x 	=x0) (5.33)

As shown in Fig. 5.7, this problem is being modeled by a vortex distribution that is placed
on the x axis with the small-disturbance boundary conditions being fulfilled also on the x
axis. The velocity potential and the resulting velocity field, due to such a vortex distribution
(between the airfoil leading edge at x = 0 and its trailing edge at x = c) are

�(x, z) = −1

2π

∫ c

0
γ (x0) tan−1

(
z

x − x0

)
dx0 (5.34)

u(x, z) = 1

2π

∫ c

0
γ (x0)

z

(x − x0)2 + z2
dx0 (5.35)

w(x, z) = −1

2π

∫ c

0
γ (x0)

x − x0

(x − x0)2 + z2
dx0 (5.36)

Here, γ (x0) is the vortex strength per unit length at x0.
Since the boundary condition will be fulfilled at z = 0, it is useful to evaluate the velocity

components there. The x component of the velocity above (+) and below (−) a vortex
distribution was derived in Section 3.14:

u(x, 0±) = lim
z→±0

u(x, z) = ±γ (x)

2
(5.37)

for 0 < x < c, and this result is shown schematically in Fig. 5.8. The w component of the
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Figure 5.8 Tangential velocity and pressure difference due to a vortex distribution.

velocity at z = 0 can be obtained directly from Eq. (5.36) and is

w(x, 0) = −1

2π

∫ c

0
γ (x0)

dx0

x − x0
(5.38)

The unknown vortex distribution γ (x) has to satisfy the zero normal flow boundary
condition on the airfoil. Therefore, substitution of the normal velocity component from
Eq. (5.38) into the boundary condition (Eq. (5.29)) results in

∂�(x, 0)

∂z
= w(x, 0) = Q∞

(
dηc

dx
− α

)

or

−1

2π

∫ c

0
γ (x0)

dx0

x − x0
= Q∞

(
dηc

dx
− α

)
, 0 < x < c (5.39)

This is the integral equation for γ (x). However, the solution to this equation is not unique
and an additional physical condition has to be added to obtain a unique solution. Such a
condition will require that the flow leave the trailing edge smoothly and the velocity there
be finite, that is,

∇� < ∞ (at trailing edges) (5.40)

This is the Kutta condition discussed in Section 4.7. It can be interpreted now as a require-
ment for the pressure difference �p [or γ (x)] to be equal to zero at the trailing edge:

γ (x = c) = 0 (5.41)

Once the velocity field is obtained, the pressure distribution can be calculated by the
steady-state Bernoulli equation for small-disturbance flow over the airfoil (Eq. (5.16)):

p − p∞ = −ρQ∞u(x, 0±) = ∓ρQ∞
γ

2
(5.42)

We can now calculate the pressure difference across the airfoil �p (positive �p is in the
+z direction), where above the airfoil (∂�/∂x)(x, 0+) = +γ /2 and at the airfoil’s lower
surface (∂�/∂x)(x, 0−) = −γ /2:

�p = pl − pu = p∞ − ρQ∞

(
−γ

2

)
−

[
p∞ − ρQ∞

(
γ

2

)]
= ρQ∞γ (5.43)
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The pressure coefficient with the small-disturbance assumption then becomes

C p = p − p∞
1
2ρQ2∞

= ∓ γ

Q∞
(5.44)

and the pressure difference coefficient between the lower and upper surfaces is

�C p = 2
γ

Q∞
(5.44a)

5.3 Classical Solution of the Lifting Problem

The solution for the velocity distribution, pressure difference, and the aerodynamic
loads on the thin, lifting airfoil requires the knowledge of the vortex distribution γ (x) on the
airfoil. This can be obtained by solving the integral equation (Eq. (5.39)), which is a form of
the zero normal flow boundary condition. The classical approach (e.g., Glauert,5.2 p. 88) is
to approximate γ (x) by a trigonometric expansion and then the problem reduces to finding
the coefficient values of this expansion. Therefore, a transformation into trigonometric
variables is needed. Such a transformation is described by Fig. 5.9 and is

x = c

2
(1 − cos θ ) (5.45)

and

dx = c

2
sin θ dθ (5.45a)

Note that the airfoil leading edge is at x = 0 (θ = 0), and the trailing edge is at x = c (θ =
π ). Substitution of Eq. (5.45) into Eq. (5.39) results in the transformed integral equation

−1

2π

∫ π

0
γ (θ0)

sin θ0 dθ0

cos θ0 − cos θ
= Q∞

[
dηc(θ )

dx
− α

]
, 0 < θ < π (5.46)

This integration with θ0 should hold for each point x (or θ ) on the airfoil. The transformed
Kutta condition now has the form

γ (π ) = 0 (5.47)

The next step is to find a vortex distribution that will satisfy these last two equations. A
trigonometric expansion of the form

∞∑
n=1

An sin(nθ )

will satisfy the Kutta condition and is general enough that it can be used to represent the

Figure 5.9 Plot of the transformation x = (c/2)(1 − cos θ ).
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Figure 5.10 Schematic description of the first four terms in the series describing the circulation.

circulation distribution. However, experimental evidence shows a large suction peak at the
airfoil’s leading edge, which can be modeled by a function whose value is large at the leading
edge and reduces to 0 at the trailing edge. Such a trigonometric expression is the cotangent
function, which will be included, too, in the proposed vortex distribution:

A0 cot
θ

2
= A0

1 + cos θ

sin θ

The suggested solution for the circulation is shown graphically in Fig. 5.10. To cancel
the 2Q∞ term on the right-hand side of Eq. (5.46), the proposed function for the vortex
distribution will be multiplied by this constant:

γ (θ ) = 2Q∞

[
A0

1 + cos θ

sin θ
+

∞∑
n=1

An sin(nθ )

]
(5.48)

An additional advantage of the first term is that it induces a constant downwash on the airfoil,
as will be evident later on (see Eq. (5.53)). To determine the values of the An constants,
Eq. (5.48) is substituted into Eq. (5.46) to give

−1

2π

∫ π

0
2Q∞

[
A0

1 + cos θ0

sin θ0
+

∞∑
n=1

An sin(nθ0)

]
sin θ0 dθ0

cos θ0 − cos θ

= Q∞

[
dηc(θ )

dx
− α

]
(5.49)

In this equation, each point θ is influenced by all the vortex elements of the airfoil – this
requires the evaluation of the integral for each value of θ . Recalling Glauert’s integral∫ π

0

cos nθ0

cos θ0 − cos θ
dθ0 = πsin nθ

sin θ
, n = 0, 1, 2, . . . (5.22)

and replacing 1 by cos 0θ , the first term of the integral becomes

−1

π
A0

∫ π

0

cos 0θ0 + cos θ0

sin θ0

sin θ0 dθ0

cos θ0 − cos θ
= −1

π
A0(0 + π ) = −A0

whereas for the terms with the coefficients A1, A2, . . . , the following trigonometric relation
is used:

sin nθ0 sin θ0 = 1

2
[cos(n − 1)θ0 − cos(n + 1)θ0], n = 1, 2, 3, . . .

This allows the presentation of the nth term in the following form:

−1

π

∫ π

0
[An sin(nθ0)]

sin θ0 dθ0

cos θ0 − cos θ

= −An

2π

∫ π

0
[cos(n − 1)θ0 − cos(n + 1)θ0]

dθ0

cos θ0 − cos θ
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Using Glauert’s integral reduces this to

−An

2π
π

[
sin(n − 1)θ

sin θ
− sin(n + 1)θ

sin θ

]
= −An

2

[
−2

sin θ cos(nθ )

sin θ

]
= An cos(nθ )

Substitution of this into Eq. (5.49) yields

−A0 +
∞∑

n=1

An cos(nθ ) = dηc(θ )

dx
− α (5.50)

This is actually a Fourier expansion of the right-hand side of the equation that includes the
information on the airfoil geometry. Multiplying both sides of the equation by cos mθ and
performing an integration from 0 → π , for each value of n, will result in the cancellation
of all the nonorthogonal multipliers (where m 	=n). Consequently, for each value of n the
value of the corresponding coefficient An is obtained:

A0 = α − 1

π

∫ π

0

dηc(θ )

dx
dθ, n = 0 (5.51)

An = 2

π

∫ π

0

dηc(θ )

dx
cos nθ dθ, n = 1, 2, 3, . . . (5.52)

Note that Eq. (5.50) can be rewritten as an expansion of the downwash distribution
w = w(θ ) on the airfoil as

w

Q∞
= −A0 +

∞∑
n=1

An cos(nθ ) (5.53)

and it is clear that the downwash due to the first term (multiplied by A0) of the vortex
distribution is constant along the airfoil chord.

The slope dηc/dx can be expanded as a Fourier series such that

dηc(θ )

dx
=

∞∑
n=0

Bn cos(nθ ) (5.50a)

and a comparison with Eq. (5.50) indicates that

B0 = α − A0, Bn = An n = 1, 2, . . . , ∞
This allows the simplification of Eq. (5.53) such that the angle of attack and camber con-
tributions to the downwash are explicitly displayed. A replacement of the An coefficients
with the Bn coefficients in Eq. (5.53) results in

w

Q∞
= −α +

∞∑
n=0

Bn cos(nθ ) (5.53a)

5.4 Aerodynamic Forces and Moments on a Thin Airfoil

For a given airfoil geometry, the mean camberline ηc(x) is a known function and
the coefficients A0, A1, A2, . . . can be computed by Eqs. (5.51) and (5.52). The pressure
difference across the thin lifting surface �p(x) can be calculated by Eq. (5.43) and the
aerodynamic coefficients can be evaluated. These aerodynamic coefficients are usually
defined in the free-stream coordinate system such that the lift is normal and the drag force
is parallel to the free-stream flow. To determine the aerodynamic lift and drag, consider the



P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN

CB329-05 CB329/Katz September 13, 2000 16:47 Char Count= 0

5.4 Aerodynamic Forces and Moments on a Thin Airfoil 107

Figure 5.11 Fluid dynamic forces acting on a two-dimensional zero-thickness airfoil.

simple case shown in Fig. 5.11. The pressure difference can be evaluated by using Eq. (5.43)

�p(x) = ρQ∞γ (x)

and since the angle of attack is small Q∞ is used instead of Q∞ cos α. The normal force
Fz is then

Fz =
∫ c

0
�p(x) dx =

∫ c

0
ρQ∞γ (x) dx = ρQ∞


where


 =
∫ c

0
γ (x) dx (5.54)

Also, the flat plate of Fig. 5.11 is very thin and the x component of the force is zero:

Fx = 0

Based on this formulation, the lift and drag forces become

L = Fz, D = Fzα

However, the Kutta–Joukowski theorem in Section 3.11 clearly states that the lift is perpen-
dicular to the free-stream Q∞. Thus, the aerodynamic lift is

L = ρQ∞
 (5.55)

and the aerodynamic drag is

D = 0 (5.56)

Therefore, an additional force must exist to balance these two calculations. This force is
called the leading-edge suction force Fx .s and is a result of the very high suction forces
acting at the leading edge (where q → ∞ and the local leading-edge radius is approaching
zero). The strength of this leading-edge suction force is calculated in Section 6.5.2 using
the exact solution near the leading edge of the flat plate (which is similar to the treatment
of this problem by Lighthill5.4) and for the small angle of attack case is

Fx .s = −ρQ∞
α (5.57)

This force cancels the drag component of the thin lifting airfoil obtained by integrating the
pressure difference, so that the two-dimensional drag becomes zero. This result – that the
aerodynamic drag in two-dimensional inviscid incompressible flow is zero – was obtained
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in 1744 by the French mathematician d’Alembert and hence is known as d’Alembert’s
paradox (since actual airfoils will have nonzero viscous drag). Exact solutions and numerical
computations of the thick airfoil problem (where the velocity at the leading edge is finite)
will verify this result in the following chapters.

To evaluate the lift of the thin airfoil, the circulation of Eq. (5.54) is calculated:


 =
∫ c

0
γ (x) dx =

∫ π

0
γ (θ )

c

2
sin θ dθ

= 2Q∞
∫ π

0

[
A0

1 + cos θ

sin θ
+

∞∑
n=1

An sin(nθ )

]
c

2
sin θ dθ

If we recall that∫ π

0
(1 + cos θ ) dθ = π

and that the integral of sin nθ sin θ is nonzero only if n = 1
∫ π

0
sin nθ sin θ dθ =

(
π
2 when n = 1

0 when n 	=1

)

the circulation becomes


 = Q∞cπ

(
A0 + A1

2

)
(5.58)

The lift per unit span, obtained from Eq. (5.55), is

L = ρQ2
∞cπ

(
A0 + A1

2

)
(5.59)

This equation indicates that only the first two terms of the circulation (shown in Fig. 5.10)
will have an effect on the lift and the integration over the airfoil of the higher-order terms
will cancel out. Since the pitching moment about the y axis is positive for a clockwise
rotation, a minus sign needs to be included when calculating the moment M0 relative to the
airfoil’s leading edge:

M0 = −
∫ c

0
�px dx = −ρQ∞

∫ π

0
γ (θ )

c

2
(1 − cos θ )

c

2
sin θ dθ

= ρQ∞

[
− c

2

 + c2

4

∫ π

0
γ (θ ) sin θ cos θ dθ

]

After some trigonometric manipulations this results in

M0 = − c

2
L + ρ

c2

4
Q2

∞

(
A0π + A2

π

2

)
(5.60)

and substituting the results for the lift, we get

M0 = −ρQ2
∞π

c2

4

(
A0 + A1 − A2

2

)
(5.60a)

The moment M along the x axis can be described in terms of the lift and the moment at the
leading edge as

M = M0 + x · Fz ≈ M0 + x · L
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The center of pressure xcp is defined as the point where the moment is zero (this can be
considered to be the point where the resultant lift force acts):

M = M0 + xcp · L = 0

which yields

xcp = −M0

L
= c

4

A0 + A1 − (A2/2)

A0 + (A1/2)
(5.61)

Similarly the airfoil section aerodynamic coefficients can be derived:

Cl = L

(1/2)ρQ2∞c
= 2π

(
A0 + A1

2

)
(5.62)

Cd = D

(1/2)ρQ2∞c
= 0 (5.63)

Cm0 = M0

(1/2)ρQ2∞c2
= −π

2

[
A0 + A1 − A2

2

]
(5.64)

An observation of the coefficients of the circulation (Eqs. (5.51) and (5.52)) reveals that
only the first term A0 is a function of angle of attack α. Substitution of A0 into the lift
coefficient equation yields

Cl = 2π

(
α − 1

π

∫ π

0

dηc(θ )

dx
dθ + A1

2

)
(5.65)

Also, for a flat plate dηc/dx = 0 and thus all terms except for 2πα, in Eq. (5.65) will vanish.
Therefore, the terms including the effect of the camberline ηc are independent of angle of
attack and are a constant for a particular chordline shape. This allows us to write the lift
coefficient as

Cl = 2π (α − αL0) (5.66)

where αL0 is called the zero-lift angle and is a function of the camber. Further substitution
of the value of A1 from Eq. (5.52) yields

αL0 = − 1

π

∫ π

0

dηc

dx
(cos θ − 1) dθ (5.67)

By using the Bn coefficients of Eq. (5.50a) the lift coefficient becomes

Cl = 2π

(
α − B0 + B1

2

)
(5.62a)

Comparison with Eq. (5.66) indicates that the zero-lift angle can readily be obtained as

αL0 = B0 − B1

2
(5.67a)

The lift slope can be defined as

Clα ≡ ∂Cl

∂α
= 2π (5.68)

Equations (5.66)–(5.68) show that the lift slope of a two-dimensional airfoil is 2π and that
the camber will have an effect similar to an angle of attack increment �α but will not change
the lift slope.
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Figure 5.12 Free-stream and body coordinate systems for a flat plate at a small angle of attack.

Next, the pitching moment coefficient (Eq. (5.64)) can be rewritten, using the formula
for the lift coefficient (Eq. (5.62)). Thus

Cm0 = −Cl

4
+ π

4
(A2 − A1) (5.69)

Since the coefficients A1, A2 are independent of angle of attack, only the first term in this
equation depends on α. Therefore, if the moments are calculated relative to the airfoil
quarter-chord point the first term in this equation disappears and the moment at this point
becomes independent of angle of attack. This point is called the aerodynamic center xac and
according to thin airfoil theory it is located at the quarter chord. Consequently, the pitching
moment measured at this point is only due to the second term in Eq. (5.69):

Cmc/4 = π

4
(A2 − A1) (5.70)

The use of this formulation for some simple chordline shapes is demonstrated in the
following examples.

Example 1: Flat Plate

As a first example, consider the thin, lifting model of a symmetric airfoil repre-
sented by a flat plate (shown in Fig. 5.12a). For this particular case there is no
camber and ηc(x) = 0. Consequently, all terms having derivatives of the camber-
line will vanish, and the circulation coefficients become

A0 = α, A1 = A2 = · · · = An = 0 (5.71)

The circulation 
 for the flat plate airfoil is then


 = Q∞πcα (5.72)

and the lift and moment are obtained by substituting Eq. (5.71) into Eqs. (5.59)
and (5.60):

L = ρQ∞
 = ρQ2
∞πcα (5.73)

M0 = −ρQ2
∞π

c2

4
α (5.74)

The lift and pitching moment coefficients are

Cl = 2πα (5.75)

Cm0 = −π

2
α (5.76)

and the lift slope is again 2π as was shown in Eq. (5.66). The center of pressure
is at

xcp

c
= −Cm0

Cl
= 1

4
(5.77)
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Thus, for the symmetric thin airfoil, the center of pressure and the aerodynamic
center are located at the quarter-chord location.

Because of the transfer of the boundary condition to the z = 0 plane, the airfoil
trailing or leading edge can be at a certain small distance from this plane (as long as
η(x) � c). As an example, let us solve this problem in the free-stream coordinate
system, as shown in Fig. 5.12b. In this case the free-stream angle of attack is zero,
but the chord can be expressed as

η(x) = −αx =⇒ dη

dx
= −α

Substitution of this into Eqs. (5.51) and (5.52) yields

A0 = α and A1 = A2 = · · · = An = 0

which is the same result as in Eq. (5.71). Thus both methods will lead to the same
results.

For the symmetrical airfoil, the pressure coefficient difference �C p can be
found from Eq. (5.44a) by substituting A0 and the corresponding circulation:

�C p = 2
γ

Q∞
= 4

1 + cos θ

sin θ
α (5.78)

In terms of x (with Eq. (5.45)) this becomes

�C p = 4

√
c − x

x
α (5.79)

The result of this formulation is plotted in Fig. 5.13a. In Fig. 5.13b a comparison
is made with the results of a more accurate method (e.g., panel method) for a
NACA 0012 symmetric airfoil. This indicates that the pressure difference is closely
predicted over most of the airfoil. Near the leading edge, however, the flat plate
solution is singular and the model is not accurate there.

Figure 5.13 Typical chordwise pressure difference for a symmetric airfoil and the equivalent upper
and lower surface pressures for a NACA 0012 airfoil.



P1: JSN/FIO P2: JSN/UKS QC: JSN/UKS T1: JSN

CB329-05 CB329/Katz September 13, 2000 16:47 Char Count= 0

112 5 / Small-Disturbance Flow over Two-Dimensional Airfoils

Figure 5.14 Parabolic arc airfoil.

Example 2: Thin Airfoil with a Parabolic Camber

As an example for a simple nonsymmetric chordline shape consider the parabolic
camberline shown in Fig. 5.14, with ε being its maximum height. The equation of
the camberline is then

ηc(x) = 4ε
x

c

[
1 − x

c

]
(5.80)

and the camberline slope is

dηc(x)

dx
= 4

ε

c

[
1 − 2

x

c

]
(5.81)

Expressing this term by using the transformation x = c
2 (1 − cos θ ) we obtain

dηc(θ )

dx
= 4

ε

c

[
1 − 2

c

c

2
(1 − cos θ )

]
= 4

ε

c
cos θ (5.82)

The coefficients An can be found by substituting this into Eq. (5.51) and (5.52).
Because of the orthogonal nature of the integral

∫ π

0 cos nθ cos mθ dθ all terms
where m 	=n will vanish. So in this case, when m = 1,

A0 = α − 0

and only the first coefficient will be nonzero:

A1 = 4
ε

c
A2 = A3 = · · · = An = 0

This result can be found immediately by comparing Eq. (5.50a) with the cam-
berline slope

dηc(θ )

dx
=

∞∑
n=0

Bn cos(nθ ) = 4
ε

c
cos θ

Therefore, clearly B1 = 4 ε
c and the other Bn coefficients are zero.
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The lift and the moment of the parabolic camber airfoil can be obtained by
substituting these results into Eqs. (5.59) and (5.60). The result is

L = ρQ2
∞πc

(
α + 2

ε

c

)
(5.83)

M0 = −ρQ2
∞π

c2

4

(
α + 4

ε

c

)
(5.84)

and the corresponding aerodynamic coefficients are thus

Cl = 2π

(
α + 2

ε

c

)
(5.85)

Cm0 = −π

2

(
α + 4

ε

c

)
(5.86)

Comparing this result for the lift with Eq. (5.66) we find that the zero-lift angle is

αL0 = −2ε/c (5.87)

This means that this airfoil will have zero lift when it is pitched to a negative angle
of attack with a magnitude of 2ε/c.

The center of pressure is obtained by dividing the moment by the lift,

xcp

c
= 1

4

α + 4ε/c

α + 2ε/c
(5.88)

Note that at α = 0 the center of pressure is at the midchord and as the angle of
attack increases it moves toward the quarter chord.

Also, in this case the pitching moment about the aerodynamic center can be
calculated using Eq. (5.70):

Cmc/4 = π

4
(A2 − A1) = −π

ε

c
(5.89)

which indicates that the portion of the moment that is independent of angle of
attack increases with increased curvature (as ε/c increases) of the camberline.

Example 3: Flapped Airfoil

One of the most frequently used control devices is the trailing-edge flap. The reason
for mounting such a device at the trailing edge can be observed by examining
the (cos θ − 1) term in Eq. (5.67). This implies that the zero-lift angle is most
influenced by the trailing-edge region where θ → π ; therefore, relatively small
deflections of the flap at the trailing edge will have noticeable effect.

To demonstrate the effect of the trailing-edge flap consider the following simple
example. Here the main airfoil plane is placed on the x axis, and at a chordwise
position k · c the flap is deflected by δ f , as shown in Fig. 5.15 (for α = 0). Although
the trailing edge of the deflected airfoil is now not on the x axis, but because of the
small-disturbance approximation of the boundary condition, the error introduced
by using this coordinate system is within the accuracy of thin airfoil theory. It is
assumed that the airfoil is continuous, and there is no gap at the flap hinge point.
The slope of the camberline, for the case shown in the figure, is

dηc

dx
= 0 for 0 < x < kc (5.90a)

dηc

dx
= −δ f for kc < x < c (5.90b)
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Figure 5.15 Thin flapped airfoil (without a gap at point k · c).

Since the coefficients An are given as a function of the variable θ , the location of
the hinge point θk can be found by using Eq. (5.45):

kc = c

2
(1 − cos θk) =⇒ cos θk = 1 − 2k

The coefficients of Eqs. (5.51) and (5.52) are computed now only within the range
θk to π , resulting in

A0 = α + 1

π

∫ π

θk

δ f dθ = α + δ f

π
(π − θk) (5.91a)

An = − 2

π

∫ π

θk

δ f cos nθ dθ = 2δ f

π

sin nθk

n
(5.91b)

Substituting the values of the first three An coefficients into Eq. (5.62) and Eq. (5.64)
we obtain the lift and pitching moment coefficients:

Cl = 2π

{
α + δ f

[(
1 − θk

π

)
+ 1

π
sin θk

]}
(5.92)

Cm0 = −π

2

[
α + δ f

(
1 − θk

π

)
+ 2δ f

π
sin θk − δ f

2π
sin 2θk

]
(5.93)

Setting α = 0 allows the incremental effect of the flap to be obtained:

�Cl = [2(π − θk) + 2 sin θk] δ f (5.94)

�Cm0 = −1

2

[
(π − θk) + 2 sin θk − 1

2
sin2θk

]
δ f (5.95)

The increment in the moment at the aerodynamic center, c/4, due to the flap
deflection is obtained using Eq. (5.70) as

�Cmc/4 =
[

1

4
sin 2θk − 1

2
sin θk

]
δ f (5.96)

5.5 The Lumped-Vortex Element

Based on the results for the lifting symmetrical airfoil (flat plate), it is possible to
develop a simple “lifting element.” The vortex distribution on such a flat plate airfoil can
be obtained from Eq. (5.48) as

γ (θ ) = 2Q∞α
1 + cos θ

sin θ
(5.97)
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Figure 5.16 (a) Vortex distribution on a flat plate at angle of attack and (b) the equivalent “lumped-
vortex” representation (the circulation 
 is the same for both models).

which is shown schematically in Fig. 5.16a. From a far field point of view, this can be
replaced by a single vortex with the same strength 
 = ∫ c

0 γ (x) dx .
Since the lift of the symmetric airfoil

L = ρQ∞


acts at the center of pressure (at the quarter chord for the flat plate), the concentrated vortex
is placed there.

If the lifting flat plate is to be represented by only one vortex 
, then the boundary
condition requiring zero normal flow at the surface can be specified at only one point too.
Assuming that this point is at a distance k · c along the x axis (Fig. 5.16b) then we can
specify the boundary condition of zero normal velocity as

−


2π [kc − (1/4)c]
+ Q∞α = 0 (5.98)

For this model to simulate the results of the thin airfoil the corresponding value of the
circulation for a flat plate (Eq. (5.72)) must be substituted:


 = πcQ∞α

Thus

−πcQ∞α

2π [kc − (1/4)c]
+ Q∞α = 0

The solution of this equation provides the point at which the boundary condition needs to
be specified. This collocation point is

k = 3

4
(5.99)

Note that this representation is based on results that account for the Kutta condition at
the trailing edge. This is the main reason for some of the good approximations that can be
obtained when using this model. Some of the advantages of using this lifting element for
the estimation of some aerodynamic effects are shown in the following examples. However,
for the three interaction examples to follow, the lift force will be calculated with the use of
the generalized Kutta–Joukowski theorem to be developed later in Section 6.9 (instead of
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Figure 5.17 Lumped-vortex model for tandem airfoils.

the single-vortex case where L = ρQ∞
). This is necessary since the airfoils studied are
not in an unbounded fluid. The lift force on an airfoil is now (see Eq. (6.113))

L = ρQ∞


(
1 + Q∞ · qI

Q2∞

)
(5.100)

where qI is the velocity induced by other vortices at the airfoil vortex location.

Example 1: Tandem Airfoils

The useful application of this simple model can be demonstrated by investigating
the lift of the two-airfoil system, shown in Fig. 5.17. The circulations of the two
airfoils are represented by 
1 and 
2, and the two boundary conditions at the two
collocation points require that the normal velocity component will be zero: w1 =
w2 = 0. The normal velocity at each collocation point consists of the influence
of the two vortices and the free-stream normal component and when specified at
these points the two boundary conditions are

w1 = −
1

2πc/2
+ 
2

2πc
+ Q∞α = 0 (5.101a)

w2 = −
1

2π2c
+ −
2

2πc/2
+ Q∞α = 0 (5.101b)

The solution of this system is


1 = 4

3
πcQ∞α, 
2 = 2

3
πcQ∞α (5.102)

The force on each airfoil can be obtained from Eq. (5.100). Note that for the small-
angle approximation we are using here, the contribution of the streamwise velocity
component of the other vortex is proportional to α and can be neglected.

Thus, clearly, the front airfoil has a larger lift owing to the upwash induced by
the second airfoil, and because of the same but reversed interaction the second
airfoil will have less lift. Also, this effect is stronger when the airfoils are closer
and the interaction will disappear as the distance increases. The importance of this
result is that the immediate effects of the tandem airfoil configuration could be
estimated with minimum effort.

Example 2: Ground Effect

Another simple example is the airfoil near the ground, which is modeled by using
the mirror-image method (Fig. 5.18). In order to create a straight streamline at the
ground plane two symmetrically positioned airfoils are considered. Again, using
the lumped-vortex element, the normal velocity component at the collocation point
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Figure 5.18 Lumped-vortex model for an airfoil in ground effect.

due to the bound vortex is −
/2π (c/2). The influence of the image vortex, which
has the same strength but in the opposite direction and is located at a distance 2h
under the primary vortex, is calculated as follows. The velocity due to a vortex of
circulation 
 at (x0, z0) at the point (x, z) is given by Eqs. (3.81) and (3.82) as

(u, w) = 


2π

(z − z0, x0 − x)

(x − x0)2 + (z − z0)2
(5.103)

For the image vortex, x0 = 0 and z0 = −2h. For the collocation point x =
(c/2) cos α and z = −(c/2) sin α. The normal to the airfoil is

n = sin αi + cos αk (5.104)

The boundary condition at the collocation point is

− 


πc
+ qI · n + Q∞ sin α = 0 (5.105)

where the image vortex contribution is obtained using Eqs. (5.103) and (5.104).
Note that the circulation of the image vortex is (−
). After some manipulation,
the circulation is found as


 = π Q∞c sin α

(
1 − (c/2h) sin α + c2/16h2

1 − (c/4h) sin α

)
(5.106)

Note that 
 = π Q∞c sin α is the exact solution for the flat plate in the absence of
the ground plane (Eq. (6.36)). The lift force on the airfoil is given by Eq. (5.100)
as

L = ρQ∞


(
1 − 


4π Q∞h

)
(5.107)

To obtain the limit for the case when the airfoil is relatively far from the ground,
substitute Eq. (5.106) into Eq. (5.107) and let c/h approach zero to get

L = πρQ2
∞c sin α

[
1 − c

2h
sin α + c2

16h2
(1 + sin2 α) + O

(
c3

h3

)]
(5.108)

Corresponding results for a parabolic arc airfoil (see Eq. (5.80)) at zero angle of
attack in ground effect can be found in Coulliette and Plotkin.5.5 The circulation
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Figure 5.19 Lumped-vortex model for an airfoil between wind-tunnel walls.

for this case is


 = 2π Q∞ε

(
1 + c2/16h2

1 + ε/2h

)
(5.109)

where ε is the maximum camber as used in Eq. (5.80) and h is measured from
midchord. The lift force for large ground height is

L = 2πρQ2
∞ε

[
1 − ε

h
+ c2

16h2
+ 3

2

ε2

h2
+ O

(
1

h3

)]
(5.110)

Comparing the second terms in these two equations based on the single-vortex
model (e.g., ∼cα/2h in Eq. (5.108) and 2ε/2h in Eq. (5.110)) indicates a reduction
in the free-stream speed (for the lifting case) due to the induced velocity ∼
/4π2h
and the circulation (a trend that is reversed for inverted airfoils). The third term
(c2/16h2) increases the effect for either positive or negative lift airfoils, and it
becomes more pronounced for smaller values of h, as shown by Katz and Plotkin,5.6

(p. 137).

Example 3: Wind Tunnel Walls

To model the effect of wind-tunnel walls on the lift of a symmetrical airfoil, we
place a flat plate of chord c at angle of attack α between two parallel walls a
distance h apart. The quarter chord is at the center of the tunnel (see Fig. 5.19).
We will seek a small-disturbance solution in the limit as c/h approaches zero. For
small α, the collocation point is at (c/2, 0) and the boundary condition there is

w

(
c

2
, 0

)
+ Q∞α = 0 (5.111)

where w is the z component of velocity for the airfoil vortex (at the origin) plus
its image system. With the use of the complex potential for this configuration in
Eq. (6.89) we get

w

(
c

2
, 0

)
= 


4h

(
tanh

πc

4h
− coth

πc

4h

)
(5.112)

Now, for the hyperbolic functions, as A approaches zero, we have (see Gradshteyn
and Ryzhik,5.7 p. 35)

tanh(A) = A − A3

3
+ · · · (5.113a)

coth(A) = 1

A
− A

3
+ · · · (5.113b)
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Figure 5.20 Lift and pitching moment of a NACA 0009 airfoil.

Substituting Eq. (5.112) in the boundary condition (Eq. (5.111)) and with the use
of Eq. (5.113) we get




4h

(
2

3

πc

4h
− 4h

πc

)
+ Q∞α = 0 (5.114)

The circulation is then


 = πcQ∞α

1 − π2c2/24h2
≈ πcQ∞α

(
1 + π2

24

c2

h2

)
(5.115)

which is greater than the unbounded fluid result. For this small-disturbance
approximation the Kutta–Joukowski theorem (L = ρQ∞
) can be used for the
lift, which is therefore

L = πρcQ2
∞α

(
1 + π2

24

c2

h2

)
(5.116)

clearly showing the increase in lift as the wind-tunnel walls approach the airfoil.

Figure 5.21 Streamlines of the (a) attached and (b) separated flow over an airfoil.
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Figure 5.22 Schematic description of airfoil camber effect on the lift coefficient.

5.6 Summary and Conclusions from Thin Airfoil Theory

Up to this point, in order to be able to solve practical problems, the fluid dynamic
equations were considerably simplified and even the boundary conditions were approxi-
mated. However, in spite of these simplifications, some very important results were obtained
in this chapter:

1. The lift slope of a two-dimensional airfoil is 2π , as shown by Eq. (5.66).
2. The pitching moment at the aerodynamic center (at c/4) is independent of angle

of attack (excluding airfoil’s stalled conditions).
These two very important results are very close to experimental data in the low

angle of attack range, as shown in Fig. 5.20. When the angle of attack increases
beyond the limits of the small angle of attack assumption, the streamlines do
not follow the airfoil surface shape (Fig. 5.21) and the flow is considered to be
separated. This results in loss of lift, as indicated by the experimental data in
Fig. 5.20 (for α > 10◦) and this condition is called airfoil stall.

3. Airfoil camber does not change the lift slope and can be viewed as an additional
angle of attack effect (αL0 in Eq. (5.66)). This is shown schematically by Fig. 5.22.
The symmetric airfoil will have zero lift at α = 0 while the airfoil with camber
has an “effective” angle of attack that is larger by αL0.

4. The trailing-edge section has a larger influence on the above camber effect. There-
fore, if the lift of the airfoil needs to be changed without changing its angle of attack,
then changing the chordline geometry (e.g., by flaps or slats) at the trailing-edge
region is more effective than at the leading-edge region.

5. The effect of thickness on the airfoil lift is not treated in a satisfactory manner by
the small-disturbance approach, but this will be calculated more accurately in the
following two chapters.

6. The two-dimensional drag coefficient obtained by this model is zero and there
is no drag associated with the generation of two-dimensional lift. Experimental
airfoil data, however, include drag due to the viscous boundary layer on the airfoil,
and this should be included in engineering calculations. The experimental drag
coefficient values for the NACA 0009 airfoil are also plotted in Fig. 5.20 and for
example the “zero-lift” drag coefficient is close to Cd = 0.0055.
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Problems

5.1. Find the camberline shape that leads to a constant-pressure jump along the airfoil
chordline for zero angle of attack.

5.2. Consider the flow of a uniform stream of speed Q∞ at angle of attack α past a thin
airfoil whose camberline is given by

ηc = h

(
1 − x

c

)(
1 − λx

c

)
x

where h � 1 and λ is a constant. Show that

Cl = 2π (α + ε), Cm0 = 2

(
μ − πε

4

)
− Cl

4
where ε = (h/8)(4 − 3λ) and μ = (π/64)hλ.

Find the value of λ for the zero-lift angle to be zero.

5.3. Find the hinge moment for the flapped airfoil of Eq. (5.90).

5.4. Consider the flow of a uniform stream of speed Q∞ at angle of attack α past a
thin airfoil whose upper surface is given by the parabola in Eq. (5.80) and whose
lower surface is z = 0. Find the lift coefficient and moment coefficient about the
leading edge.

5.5. Consider the flow of a uniform stream of speed Q∞ at angle of attack α past a
biplane consisting of two flat plate airfoils of chord c located a distance h apart (no
stagger). Find the lift coefficient for each airfoil using a single vortex to represent
each one.
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CHAPTER 6

Exact Solutions with Complex Variables

Approximate solutions to the exact potential flow problem are obtained in this
book using both classical small-disturbance methods and numerical modeling. However,
it is important to have exact solutions available to test the accuracy of the approximations
and to assess their applicability. In this chapter complex variables will be used to obtain the
solution to three model problems: the flat plate, the circular arc, and a symmetrical airfoil.

6.1 Summary of Complex Variable Theory

Prior to applying complex variable methods to potential flow problems, some of
the principles are discussed briefly (for more details about the mathematics of complex
variables see Churchill6.1). To begin, first define the imaginary unit i by

i2 = −1 (6.1)

Then any complex number Y can be written as

Y = a + ib (6.2)

where a and b are real and are called the real and imaginary parts of Y , respectively.
Every complex number therefore can be thought of as representing an ordered pair of real
numbers (a, b) and as such may be represented geometrically by points in a plane. The
complex number Y = x + i z is shown in Fig. 6.1 in a Cartesian coordinate system with x
and z axes. A polar coordinate version of Y with coordinates r and θ is also shown in the
figure. Note that the absolute value of Y (|Y |) is defined as [x2 + z2]

1
2 and the argument

of Y (arg Y = θ ) is defined as tan−1 z/x . An exponential form of Y is expressed as

Y = reiθ (6.3)

if the exponential term is defined as

eiθ ≡ cos θ + i sin θ (6.4)

The complex conjugate of the complex number Y is defined as

Ȳ = x − i z

Otherwise the algebra of complex numbers is similar to the algebra of the term (a + b), but
note that i2 = −1. As an example, the multiplication of a complex number by its conjugate is

Y Ȳ = (x + i z)(x − i z) = x2 + z2

A function f of the complex variable Y can be written in terms of its real and imaginary
parts as

f (Y ) = g(x, z) + ih(x, z) (6.5)

Analytic functions of a complex variable are differentiable, which means that

df (Y )

dY
= lim

�Y→0

f (Y + �Y ) − f (Y )

�Y

122
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Figure 6.1 Complex plane.

exists for all possible paths �Y . Now consider the derivative of f (Y ) along the x axis

df (Y )

dY
= lim

�x→0

�g + i�h

�x
= ∂g

∂x
+ i

∂h

∂x

Similarly, the derivative in the z direction is

df (Y )

dY
= lim

i�z→0

�g + i�h

i�z
= 1

i

∂g

∂z
+ ∂h

∂z
= ∂h

∂z
− i

∂g

∂z

The derivatives must be independent of the direction of differentiation; therefore, equating
the real and imaginary parts of these derivatives results in

∂g

∂x
= ∂h

∂z
,

∂g

∂z
= −∂h

∂x
(6.6)

So, differentiability is guaranteed if the real and imaginary parts of f satisfy the above
equations, which are called the Cauchy–Riemann conditions. Also, if a function of a complex
variable is analytic, then the real and imaginary parts each satisfy Laplace’s equation. Points
in a region where f (Y ) is analytic are called regular points and points where f (Y ) is not
analytic are called singular points.

Consider the integration of a complex function. If the function is analytic and the region
is simply connected, then the integral∫ B

A
f (Y ) dY

from point A to point B is independent of the path of integration and the integral around
all closed paths is zero. The latter result is called the Cauchy integral theorem. Multiply
connected regions are of interest since they include the region exterior to a two-dimensional
airfoil as well as the region remaining once singular points are excluded by surrounding them
with closed curves. Consider the region in Fig. 6.2 that is exterior to n curves C1, C2, . . . , Cn

and consider a curve C that surrounds the n curves. An application of the Cauchy integral
theorem in this region for a function f that is analytic inside C and outside the n curves
yields the result that the integral around C is equal to the sum of the integrals around the n
curves where all integrations are in the same direction:∮

C
f (Y ) dY =

∮
C1

f (Y ) dY +
∮

C2

f (Y ) dY + · · · +
∮

Cn

f (Y ) dY (6.7)

Consider the following results for power series expansions of the function f (Y ). If f is
analytic at all points within a circle C0 with center at Y0, then at each point Y inside the
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Figure 6.2 Integration in a multiply connected region.

circle f can be represented by the Taylor series expansion

f (Y ) = f (Y0) + f ′(Y0)(Y − Y0) + · · · + f (n)(Y0)

n!
(Y − Y0)n + · · · (6.8)

Now consider the region exterior to the circle C1 whose center is at Y0 in Fig. 6.3. The
function f is analytic in the annular region between C1 and C2. Then f can be represented
by the Laurent series expansion

f (Y ) =
∞∑

−∞
An(Y − Y0)n (6.9)

Consider now the integration of a function with singularities. Let f (Y ) be analytic inside
the curve C except at Y0. Surround Y0 by the circle C0 (see Fig. 6.4) and represent f between
C0 and C by the Laurent series of Eq. (6.9). Then the integral around C becomes∮

C
f (Y ) dY =

∞∑
−∞

An

∮
C0

(Y − Y0)n dY = 2π i A−1 (6.10)

where A−1 is the coefficient of the term A−1/(Y − Y0) and is called the residue of f (Y )
at Y0. If f (Y ) is analytic inside C except at a finite number of singularities (N ), then a
generalization of Eq. (6.10) leads to the residue theorem:

∮
C

f (Y ) dY = 2π i
N∑

j=1

A−1(Y j ) (6.11)

Figure 6.3 Region for Laurent series expansion.
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Figure 6.4 Integration of a function with singularities.

Complex variable theory is a powerful tool for the solution of two-dimensional incom-
pressible potential flow problems through its mapping properties. Consider the function
f (Y ) that generates the pair of values (g, h) for each pair of values (x, z). Each value of
Y represents a point in the Y plane and each value of f can be thought of as representing
a corresponding point in the f plane. The function f (Y ) therefore geometrically maps or
transforms points (and also curves and regions) from the Y plane to the f plane (see Fig. 6.5).

When the mapping function f (Y ) is analytic, the mapping from the Y plane to the f
plane is called conformal and has the following special property. Consider a curve C through
the point Y0 in the Y plane and the corresponding curve D through the corresponding point
f0 in the f plane (Fig. 6.6). If f is analytic at Y0 and if f ′(Y0) �=0 then every curve through
Y0 in the Y plane is rotated by the amount arg f ′(Y0) when it is transformed into the f plane.
This is illustrated in Fig. 6.6, which shows the two curves C1 and C2 that intersect at Y0 in
the Y plane and the corresponding curves D1 and D2 that intersect at f0 in the f plane. For
this conformal mapping, it is observed that the angle of intersection between the curves is
preserved in the transformation. A point at which f ′(Y ) = 0 is called a critical point of the
mapping and at a critical point the above intersection angle is not preserved.

6.2 The Complex Potential

Consider a steady, incompressible, inviscid, irrotational two-dimensional flow. The
velocity potential and the stream function are related by the following equations (Eq. (2.81)):

∂�

∂x
= ∂�

∂z
,

∂�

∂z
= −∂�

∂x
(6.12)

Figure 6.5 Mapping with a function of a complex variable.
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Figure 6.6 Preservation of the angle between intersecting curves for a conformal transformation.

and both satisfy Laplace’s equation. Note that Eq. (6.12) yields the Cauchy Riemann condi-
tions for � and � to be the real and imaginary parts of an analytic function F of a complex
variable. We define the complex potential as

F = � + i� (6.13)

and note that its derivative

W (Y ) = F ′ = dF

dY
= u − iw (6.14)

is the complex conjugate of the velocity and is called the complex velocity. Any analytic
function of a complex variable can represent the complex potential of some flow.

6.3 Simple Examples

To evaluate the complex potential of two-dimensional flowfields, we shall apply
Eq. (6.13) to the results of some basic flows that were treated in Chapter 3.

6.3.1 Uniform Stream and Singular Solutions

The complex potential for the flow of a uniform stream of speed Q∞ in the x
direction is obtained by substituting the results for the velocity potential and stream function
into Eq. (6.13) to get

F = � + i� = Q∞(x + i z) = Q∞Y (6.15)

Now, consider the stream to be at an angle α to the x axis and repeat the process. The
complex potential becomes

F = Q∞(x cos α + z sin α) + i Q∞(−x sin α + z cos α)

= Q∞(cos α − i sin α)(x + i z) = Q∞Y e−iα (6.15a)

This illustrates the general result that the complex potential for one flowfield can be made
to represent the same flowfield rotated counterclockwise by α if Y is replaced by Y e−iα .

Consider a source of strength σ at the origin. Its complex potential can be obtained
similarly, and using polar coordinates we get

F = σ

2π
(ln r + iθ ) = σ

2π
ln Y (6.16)
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Note that it is easy to demonstrate that for a source at Y = Y0 = x0 + i z0, the complex
potential is

F = σ

2π
ln(Y − Y0) (6.16a)

and in general a flowfield can be translated by Y0 by replacing Y by Y − Y0 in the complex
potential. The complex potential for a vortex with clockwise circulation 
 at Y = Y0 is

F = i


2π
ln(Y − Y0) (6.17)

The complex potential of a doublet at the origin whose axis is in the x direction is

F = − μ

2π

1

Y
(6.18)

Using the above rules, we find the complex potential for a doublet at Y = Y0 with an axis
at an angle α to the x direction is given by

F = − μ

2π (Y − Y0)
eiα (6.18a)

6.3.2 Flow in a Corner

A second approach (inverse) is where the flowfield shape is sought for a given
complex potential F . For example, consider the complex potential

F = B Y π/α

where B is real. The stream function in polar coordinates is

� = B rπ/α sin
(πθ

α

)

It can be seen that � = 0 at θ = 0 and θ = α, and therefore this potential represents flow in
a corner as shown in Fig. 6.7. The complex velocity is

W = B
π

α
Y π−α/α

and at the corner Y = 0, the velocity is zero if α < π and infinite if α > π . If α = π/2,
the flow can be considered to be either the flow in a right-angle corner or flow against a
horizontal wall. This flow, called stagnation point flow, is shown in Fig. 3.6.

Figure 6.7 Flow in a corner.
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Figure 6.8 Coordinate system for use with Blasius formula.

6.4 Blasius Formula, Kutta–Joukowski Theorem

Consider the flow past a body whose contour is denoted by C (Fig. 6.8). Let
the components of the aerodynamic force acting on the body be X and Z in the x and z
directions, respectively. An integration of the pressure around the contour and an application
of Bernoulli’s equation then leads to the Blasius formula (see proof in Glauert,5.2 pp. 80–81):

X − i Z = iρ

2

∫
C

[W (Y )]2 dY (6.19)

Let the free-stream velocity be Q∞e−iα and let the circulation around C be 
 (see
Fig. 6.8). Then because the complex velocity is analytic outside of C (since the fluid is
unbounded), we can write W in a Laurent series about Y = 0 (which is taken inside C):

W (Y ) = Q∞e−iα + i


2πY
+ A2

Y 2
+ A3

Y 3
+ A4

Y 4
+ · · · (6.20)

Now substituting into the Blasius formula and using the residue theorem we get

X − i Z = −iρQ∞
e−iα = ρQ∞
e−i(π/2+α) (6.21)

or

X + i Z = ρQ∞
ei(π/2+α) (6.21a)

The force is seen to act perpendicular to the stream Q∞ and has the magnitude D = 0
and L = ρQ∞
. This result is called the Kutta–Joukowski theorem.

6.5 Conformal Mapping and the Joukowski Transformation

The method of solution for our model airfoil problem is to map the airfoil (which is
in the physical plane Y = x + i z) to a circular cylinder in the f = g + ih plane through the
conformal mapping Y = Y ( f ). The solution in the circle plane has already been obtained
(in Section 3.11). Let the complex potential in the circle plane be F( f ) and the complex
velocity W ( f ). Then the results in the physical plane are

F(Y ) = F[ f (Y )] (6.22)

W (Y ) = dF

dY
= dF

df

df

dY
= W ( f )

1
dY
d f

(6.23)
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Figure 6.9 Joukowski transformation: mapping of airfoil to circle.

The complex velocity in the physical plane is given as a function of the transformation
variable f . The following three model problems are all special cases of the Joukowski
transformation

Y = f + C2

16 f
(6.24)

where C will be shown to be the chord for a flat plate, for a circular arc, and approximately
for a symmetrical airfoil.

Consider the mapping from the airfoil to the circle shown in Fig. 6.9. The complex
velocity at infinity in both planes is Q∞e−iα and the transformation has two free param-
eters, the radius of the circle a and the center of the circle μ. The complex velocity in
the circle plane is obtained with the aid of the results of the flow over a cylinder from
Section 3.11:

W ( f ) = Q∞e−iα + i


2π

1

f − μ
− Q∞a2eiα

( f − μ)2
(6.25)

Since the airfoil has a sharp trailing edge and the circle has no corners, the transforma-
tion must have a critical point (dY/df = 0) at the point in the circle plane corresponding to
the airfoil trailing edge. Denote this point by fte. The Kutta condition requires the velocity
at the airfoil trailing edge to be finite and therefore from Eq. (6.23) it can only be satisfied if

W ( fte) = 0 (6.26)

In the circle plane fte = C/4 and the coordinate system is shown in Fig. 6.9. (Note that
f = −C/4 is also a critical point and must be placed inside the circle to avoid a velocity
singularity in the flowfield. The critical points f = ±C/4 transform to Y = ±C/2.) From
the figure, we see that

fte − μ = ae−iβ (6.27)

If this is substituted into Eq. (6.25) for W ( f ) and the Kutta condition is applied, we get

Q∞e−iα + i


2πa
eiβ − Q∞eiαe2iβ = 0

−2πaQ∞ie−i(α+β) + 
 + 2πaQ∞iei(α+β) = 0

and the circulation is


 = 4πaQ∞ sin(α + β) (6.28)
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The lift and lift coefficient are then given by

L = ρQ∞
 (6.29)

Cl = L

(1/2)ρQ2∞c
= 8π

a

c
sin(α + β) (6.29a)

Let the surface of the circle be given by

f = μ + aeiθ (6.30)

as shown in Fig. 6.9. The complex velocity on the circle is then obtained by substituting
Eqs. (6.28) and (6.30) in Eq. (6.25), which gives

W ( f ) = Q∞e−iα + 2i Q∞ sin(α + β)e−iθ − Q∞e−iαe−2iθ

= Q∞e−iθ
[
e−i(α−θ ) + 2i sin(α + β) − ei(α−θ )

]
= 2i Q∞[sin(α + β) − sin(α − θ )]e−iθ (6.31)

and the complex velocity on the airfoil surface is obtained from Eq. (6.23) as

W (Y ) = W ( f )

1 − C2/16 f 2
(6.31a)

To find the complex velocity at the airfoil trailing edge, L’Hospital’s rule must be applied
since both W ( f ) and dY/d f are zero there. At the trailing edge f = C/4 and θ = 2π − β,
and the complex velocity is therefore

W

(
Y = C

2

)
= lim

f → fte

dW/df

d2Y/df 2

= [−2iaQ∞ sin(α + β)/( f − μ)2] + [2a2 Q∞eiα/( f − μ)3]

2C2/16 f 3

Using fte − μ = aeiθ , we get

W

(
Y = C

2

)
= Q∞C

4a
e−2iθ

[−i sin(α + β) + ei(α−θ )
] = Q∞

C

4a
e2iβ cos(α + β)

(6.32)

6.5.1 Flat Plate Airfoil

Choose the circle with its center at the origin and a = C/4. Then from Eq. (6.27),

μ = β = 0 (6.33)

The circle is given by f = (C/4)eiθ and the corresponding airfoil is Y = (C/2) cos θ , which
is seen to be a flat plate of chord c = C (see Fig. 6.10). Note that 0 ≤ θ ≤ π represents
the top surface and π ≤ θ ≤ 2π represents the bottom. The complex velocity on the plate
surface is obtained using Eqs. (6.31) and (6.31a) as

W = 2i Q∞[sin α − sin(α − θ )]e−iθ

1 − e−2iθ
= 2i Q∞[sin α − sin(α − θ )]e−iθ

2i sin θe−iθ

= Q∞
[sin α − sin(α − θ )]

sin θ
(6.34)

and since x = (c/2) cos θ then sin θ = ±[1 − (2x/c)2]1/2, and we have

W

Q∞
= cos α + sin α

1 − cos θ

sin θ
= cos α ± sin α

√
1 − 2x/c

1 + 2x/c
(6.35)
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Figure 6.10 Flat plate airfoil mapping.

where the plus sign refers to the upper surface and the minus sign to the lower. Note that
the trailing-edge velocity is Q∞ cos α and that the disturbance to the stream vanishes as the
square root of distance from the trailing edge. Also, the velocity has a square root singularity
at the plate’s sharp leading edge.

For small α, Eq. (6.35) becomes

W

Q∞
= 1 + α

1 − cos θ

sin θ
(6.35a)

Note that with the use of Eqs. (5.37), (5.48), and (5.71) (and considering the different
definition of θ in Chapter 5), the solution is identical to the flat plate solution from thin
airfoil theory.

The streamline patterns in the circle and plate planes are shown schematically in Fig. 6.11.
Note that the forward stagnation point in the circle plane is at θ = π + 2α and therefore
the forward stagnation point on the plate is at x = −(c/2) sin 2α.

The circulation and lift force are given by Eqs. (6.28) and (6.29) as


 = πcQ∞ sin α (6.36)

L = πρcQ2
∞ sin α (6.37)

and the lift coefficient is (Eq. (6.29a))

Cl = 2π sin α (6.37a)

6.5.2 Leading-Edge Suction

In the previous section the force on a flat plate airfoil is obtained with the use of
the Kutta–Joukowski theorem and is seen to be perpendicular to the free-stream direction.

Figure 6.11 Schematic description of the streamlines in (a) circle and (b) flat plate airfoil planes.
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An apparent problem arises if we attempt to find the force by an integration of the pressure
distribution. On the surface of the plate the velocity is given in Eq. (6.35) and with the use
of the Bernoulli equation the pressure difference across the plate is given as

�p = 2ρQ2
∞ sin α cos α

√
1 − 2x/c

1 + 2x/c
(6.38)

The force Z is perpendicular to the plate and is obtained by integrating the pressure differ-
ence along the plate to get

Z =
∫ c/2

−c/2
�p dx = πρcQ2

∞ sin α cos α (6.39)

The force obtained by these two different approaches is not the same in either magnitude
or direction.

The difference can be explained by considering the flat plate as the limiting case of a thin
airfoil as its thickness goes to zero. In this limit the pressure at the leading edge increases
while the area upon which it acts decreases until in the flat plate limit the pressure is infinite
and the area is zero. In this limit there is a finite contribution to the force that must be added
to the result obtained by the pressure integration. To obtain this force we surround the plate
leading edge by a small circle and calculate the force with the use of the Blasius formula.

The complex velocity on the plate is given in Eqs. (6.31) and (6.31a). The velocity on
the circle at the leading edge is obtained by using Eq. (6.31) with β = 0 and θ = π and is

W ( f ) = −4i Q∞ sin α (6.40)

Near the leading edge f is approximately −c/4 and therefore we can take

W (Y ) = f 2W ( f )

f 2 − c2/16
= ic

2
Q∞ sin α

1

f + c/4
(6.41)

If the transformation in Eq. (6.24) is now inverted and Y is set approximately equal to −c/2,
the transformation becomes

f = 1

2
(Y +

√
Y 2 − c2/4) = − c

4
+ 1

2
i
√

c
√

Y + c/2 (6.42)

The complex velocity in the leading-edge region is therefore (from Eqs. (6.41) and (6.42))

W (Y ) = Q∞
√

c sin α√
Y + c/2

(6.43)

This velocity is now substituted into the Blasius formula (Eq. (6.19)) to yield

X − i Z = iρ

2

∫
W 2 dY = iρ

2
Q2

∞c sin2α

∫
dY

Y + c/2
= −πρcQ2

∞ sin2α (6.44)

This leading-edge force acts along the plate in the upstream direction (Fig. 6.12) and is
called the leading-edge suction force.

The total force is now obtained by the addition of the pressure force and the suction force
(Eqs. (6.39) and (6.44)) and the resultant force is seen to be perpendicular to the stream and
exactly equal to the result from the Kutta–Joukowski theorem (see Fig. 6.12).

A generalization of these results can be applied to the solution of the small-disturbance
version of the thin-airfoil problem. Assume that this solution has the following complex
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Figure 6.12 Forces due to pressure difference and leading-edge suction on the flat plate at angle of
attack. Note that the resultant force (lift) is normal to the free stream Q∞.

velocity in the neighborhood of the airfoil leading edge:

W (Y ) = A√
Y + c/2

(6.45)

where A is a constant. Then the leading-edge suction force in this situation is given by the
Blasius formula as

X = −πρ A2 (6.46)

6.5.3 Flow Normal to a Flat Plate

Another interesting solution that can be obtained by this method is the solution
for the flow normal to a flat plate. The complex potential for this flow in the circle plane
is obtained by adding the potentials of a stream in the z direction and an opposing doublet
(the flow is symmetric about midchord and has zero circulation) and is given by

F = −i Q∞

[
f − c2

16 f

]
(6.47)

On the surface of the circle f = c
4 eiθ and the complex potential becomes

F = −i Q∞

[
c

4
eiθ − c

4
e−iθ

]
= Q∞c

2
sin θ = ± Q∞c

2

√
1 − (2x/c)2 (6.48)

The complex potential on the surface is thus real and therefore it is equal to the velocity
potential. The jump in potential across the plate is therefore given by

�� = Q∞c
√

1 − (2x/c)2 (6.49)

Both an application of the Kutta–Joukowski theorem and a pressure integration yield
the result that there is no force acting on the plate (recall that this is a potential flow solution
without any flow separations!). Based on the results of the previous section, however, it is
expected that symmetrically placed tip forces may be acting on the tips of the plate and
these will be important in the slender wing application.
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Figure 6.13 Suction force at the two tips of a flat plate in a normal flow (the two opposite forces
cancel each other).

Consider the flow in the neighborhood of the left tip where f is approximately −c/4. The
complex velocity at the corresponding point on the circle is obtained by a differentiation of
the complex potential (Eq. (6.47)) as

W ( f ) = −2i Q∞ (6.50)

The analysis now proceeds in an identical fashion to the analysis in the previous section since
the transformation is the same and the complex velocity in the neighborhood of the tip is

W (Y ) = Q∞
√

c

2

1√
Y + c/2

(6.51)

The tip force is then calculated to be

X = −πρcQ2
∞

4
(6.52)

The force acts to the left and from symmetry a tip force of equal magnitude acts on the right
tip and points to the right (see Fig. 6.13).

6.5.4 Circular Arc Airfoil

The center of the circle is chosen on the imaginary axis in the f plane μ = im and
from Eq. (6.27) a = (C/4) sec β and m = a sin β. This choice results in the circular arc
airfoil shown in Fig. 6.14a with chord c = C . Note that since the circle passes through both
critical points A and D, the corresponding points on the airfoil are sharp. Also, points B [ f =
i(a + m)] and E [ f = −i(a − m)] on the circle, at the top and bottom, both transform to
the same point on the airfoil, Y = 2im. The schematic streamline pattern for the flow in
both the physical and circle planes is shown in Fig. 6.14b. Note that the forward stagnation
point on the circle occurs when θ = π + 2α + β and therefore the forward stagnation point
on the circular arc can be found from the transformation. The velocity at the trailing edge
is given by Eq. (6.32) as

W
(

Y = c

2

)
= Q∞ cos β cos(α + β) e2iβ (6.53)

The lift coefficient for the circular arc airfoil is given by Eq. (6.29a) as

Cl = 2π sin(α + β)

cos β
(6.54)
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Figure 6.14 (a) Circular arc airfoil mapping. (b) Streamlines in the circle and the circular arc airfoil
planes (at an angle of attack).

The zero-lift angle is seen to be equal to −β. The maximum camber ratio is defined as the
ratio of the maximum ordinate 2m to the chord c and is 1

2 tan β.
An interesting special case occurs when the circular arc is set at an angle of attack of

zero. From above, it appears that the forward stagnation point is at the leading edge but
since a critical point exists there, L’Hospital’s rule must be used again and with f = −c/4
and θ = π + β, the complex velocity at the leading edge is

W
(

Y = − c

2

)
= Q∞ cos2 βe−2iβ (6.55)

This is equal in magnitude to the velocity at the trailing edge and the flow is seen to be sym-
metric with respect to the z axis. This is an example of a lifting flow with no stagnation points
(see the streamline pattern in Fig. 6.15) and with a flow path of equal length for particles
traveling along the upper and lower surfaces. The pressure coefficient is plotted in Fig. 6.16.

6.5.5 Symmetric Joukowski Airfoil

Let the center of the circle be taken on the real axis

μ = −εC/4, ε > 0 (6.56)

so that from Eq. (6.27)

β = 0, a = C

4
(1 + ε) (6.56a)
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Figure 6.15 Streamlines for circular arc at zero angle of attack.

The circle is transformed into the airfoil shape shown in Fig. 6.17 (note that ε should be
small). The surface of the airfoil is given by (Eq. (6.24))

Y = −εC

4
+ C

4
(1 + ε)eiθ + C2

16[−εC/4 + (C/4)(1 + ε)eiθ ]

= C

4
[−ε + (1 + ε) cos θ + i(1 + ε) sin θ ]

×
{

1 + 1

[−ε + (1 + ε) cos θ ]2 + (1 + ε)2 sin2 θ

}
(6.57)

Note that Y (−θ ) = Ȳ and therefore the resulting airfoil is symmetric. The chord length c
is given by

c = Y (θ = 0) + |Y (θ = π )| = C

4

{
(1 + 2ε)

[
1 + 1

(1 + 2ε)2

]
+ 2

}

= C

4

{
3 + 2ε + 1

(1 + 2ε)

}
(6.58)

Figure 6.16 Pressure coefficient for circular arc at zero angle of attack.
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Figure 6.17 Symmetric Joukowski airfoil mapping.

For small ε, the chord length is approximated by

c ∼= C

4
{3 + 2ε + 1 − 2ε + 4ε2 + · · ·} = C{1 + 4ε2 + · · ·} (6.59)

We can therefore take c = C . The velocity at the cusped trailing edge is given by Eq. (6.32) as

W (Y = c/2) = Q∞ cos α

1 + ε
(6.60)

and the lift coefficient is (when C is the chord) given by Eq. (6.29a) as

Cl = 2π (1 + ε) sin α (6.61)

The thickness ratio is approximately equal to 1.299ε.

6.6 Airfoil with Finite Trailing-Edge Angle

The Joukowski airfoils have cusped trailing edges as has been seen for the flat plate,
circular arc, and symmetric examples. The cusped trailing edge presents some numerical
difficulties for panel method solutions since in the neighborhood of the trailing edge the
airfoil’s upper and lower surfaces coincide. Therefore, for the purpose of providing exact
solutions to test the results of the panel methods to be presented later, a mapping is introduced
here that takes a symmetrical airfoil with a finite trailing-edge angle in the Y plane to a circle
in the f plane. The transformation, which appeared in van de Vooren and de Jong,6.2 is

Y = ( f − a)k

( f − aε)k−1
+ � (6.62)

The center of the circle is at the origin of coordinates in the f plane and the radius is a (see
Fig. 6.18). Here ε is a thickness parameter, and k controls the trailing-edge angle while �

determines the chord length.

Figure 6.18 Mapping for airfoil with finite trailing-edge angle.
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Figure 6.19 Finite trailing-edge angle airfoil with 15% thickness (x, z coordinates are normalized
by airfoil semichord l).

For the circle f = aeiθ the transformation becomes

Y = [a(cos θ − 1) + ia sin θ ]k

[a(cos θ − ε) + ia sin θ ]k−1
+ � (6.63)

Note that θ = 0 corresponds to Y = �, the trailing edge. For θ = π , the leading edge is
given by

Y = −a2k

(1 + ε)k−1
+ � (6.64)

For the chord length to be c = 2�, we set Y = −� above to get

a = 2�(1 + ε)k−12−k (6.65)

It can be shown that the trailing-edge angle (Fig. 6.18) is given by

τ = π (2 − k) (6.66)

The airfoil with 15% thickness is shown in Fig. 6.19.
In Section 6.5 and this section mappings are presented that transform specific airfoil

shapes into circles so that exact solutions to the incompressible potential flow problem are
obtained. Theodorsen and Garrick6.3 developed a numerical conformal mapping procedure
to obtain solutions for arbitrary airfoil shapes and this procedure later became an integral
part of more recent techniques. A review of modern methods for numerical conformal
mapping can be found in Henrici.6.4

6.7 Summary of Pressure Distributions for Exact Airfoil Solutions

The exact solutions obtained in this chapter are very useful for the validation of
various numerical methods. Therefore, the methods of calculation of the accurate analytical
pressure distribution for several airfoil shapes are briefly summarized in this section.

a. Circular Arc Thin Airfoil
For an airfoil of chord c and camber ratio 2m/c = (1/2) tan β the radius of the

circle in the f plane is a (Fig. 6.14a), where

a =
√

m2 + c2

16
(6.67a)
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and

m = a sin β (6.67b)

The x, z coordinates of the circular arc airfoil are then obtained from Eqs. (6.24) and (6.30)
(where μ = im):

x = a cos θ

[
1 + c2

16a2(1 + 2 sin θ sin β + sin2 β)

]
(6.68a)

z = a(sin θ + sin β)

[
1 − c2

16a2(1 + 2 sin θ sin β + sin2 β)

]
(6.68b)

The velocity distribution is then calculated from Eqs. (6.30), (6.31), and (6.31a):

u = 2Q∞[sin(α + β) − sin(α − θ )]

×
[

a4 sin θ (A2 + B2) + a2(c2/16)(B cos θ − A sin θ )

(a2 A − c2/16)2 + a4 B2

]
(6.69a)

w = −2Q∞[sin(α + β) − sin(α − θ )]

×
[

a4 cos θ (A2 + B2) − a2(c2/16)(B sin θ + A cos θ )

(a2 A − c2/16)2 + a4 B2

]
(6.69b)

where

A = cos2 θ − sin2 θ − sin2 β − 2 sin β sin θ

B = 2 cos θ sin θ + 2 sin β cos θ

The pressure coefficient is then obtained directly from Bernoulli’s equation as

C p = 1 − u2 + w2

Q2∞
(6.70)

Note that for β = 0 the equations for the velocity components reduce to the flat plate case,
which is presented in Eq. (6.35).

b. Symmetric Joukowski Airfoil
For an airfoil of chord c and thickness parameter ε the radius of the circle in the f

plane is a (Fig. 6.17), where

a = C

4
(1 + ε) (6.56a)

where the airfoil chord c is

c = C

4

(
3 + 2ε + 1

1 + 2ε

)
(6.58)

The x, z coordinates of the airfoil are given in Eq. (6.57) as

x =
(

a cos θ − εC

4

) [
1 + C2/16

(a cos θ − εC/4)2 + a2 cos2 θ

]
(6.71a)

z = a sin θ

[
1 − C2/16

(a cos θ − εC/4)2 + a2 sin2 θ

]
(6.71b)
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The velocity distribution is obtained from Eqs. (6.30), (6.31), and (6.31a) (where μ =
−εC/4):

u = 2Q∞[sin α − sin(α − θ )]

×
[

(A2 − C2/16)(A sin θ − B cos θ ) + B(A cos θ + B sin θ )

(A − C2/16)2 + B2

]
(6.72a)

w = −2Q∞[sin α − sin(α − θ )]

×
[

(A2 − C2/16)(A cos θ + B sin θ ) − B(A sin θ − B cos θ )

(A − C2/16)2 + B2

]
(6.72b)

where

A =
(

a cos θ − εC

4

)2

− a2 sin2 θ

B = 2a sin θ

(
a cos θ − εC

4

)

and the pressure coefficient is calculated by using Eq. (6.70)

c. The van de Vooren Airfoil
The parameters for this airfoil are shown in Fig. 6.18 where the chord length is 2�

and is given from Eq. (6.65) as

2� = a2k

(1 + ε)k−1
(6.73)

Here ε is the thickness parameter, k is the trailing-edge angle parameter (see Eq. (6.66))
and a is the radius of the circle in the f plane.

The x, z coordinates of the Van de Vooren airfoil are then given in Eq. (6.63) as

x = rk
1

rk−1
2

[cos kθ1 cos (k − 1)θ2 + sin kθ1 sin (k − 1)θ2] (6.74a)

z = rk
1

rk−1
2

[sin kθ1 cos (k − 1)θ2 − cos kθ1 sin (k − 1)θ2] (6.74b)

where

r1 =
√

(a cos θ − a)2 + a2 sin2 θ

r2 =
√

(a cos θ − εa)2 + a2 sin2 θ

θ1 = tan−1 a sin θ

a cos θ − a
+ π

θ2 = tan−1 a sin θ

a cos θ − εa
+ n1π

Here n1 depends on the quadrant where θ2 is being evaluated. (It has a value of 0 in the first
quadrant, 1 in the second and third quadrants, and 2 in the fourth quadrant.)
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The velocity distribution is then given from the solution in the circle plane plus the
transformation (Eq. (6.62)) as

u = 2Q∞
rk

2

rk−1
1

sin α − sin(α − θ )

D2
1 + D2

2

(D1 sin θ + D2 cos θ ) (6.75a)

w = −2Q∞
rk

2

rk−1
1

sin α − sin(α − θ )

D2
1 + D2

2

(D1 cos θ − D2 sin θ ) (6.75b)

where

A = cos (k − 1)θ1 cos kθ2 + sin (k − 1)θ1 sin kθ2

B = sin (k − 1)θ1 cos kθ2 − cos (k − 1)θ1 sin kθ2

D0 = a(1 − k + kε)

D1 = A(a cos θ − D0) − Ba sin θ

D2 = A(a sin θ ) + B(a cos θ − D0)

The pressure distribution is again calculated by using Eq. (6.70).

6.8 Method of Images

Since the solution for the flow past bodies of aerodynamic interest can be repre-
sented by suitable distributions of singular solutions to Laplace’s equation, it is important to
study the representation of these singular solutions in the presence of additional boundaries,
mainly straight ones, to be able to deal with ground planes and wind-tunnel walls, etc.

As an example, consider a two-dimensional source of strength σ located a distance h
from a plane wall as shown in Fig. 6.20. Introduce a Cartesian coordinate system whose
origin is at the source and whose x axis is parallel to the wall. In the absence of the wall,
the velocity potential of the source is

� = σ

2π
ln

√
x2 + z2 (6.76)

Since we would expect that the only singularity in the flowfield is due to the source, we
look for a solution of the form

� = σ

2π
ln

√
x2 + z2 + �I (6.77)

Figure 6.20 Image of source in plane wall.
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Figure 6.21 Image of vortex and doublet in plane wall.

where �I satisfies Laplace’s equation, has no singularities for z > −h, decays at infinity,
and exactly cancels the normal component of velocity at the wall due to the source so that
the wall boundary condition is satisfied. The boundary condition on �I is therefore

∂�I

∂z
(x, −h) = σh

2π

1

x2 + h2
(6.78)

From symmetry considerations, an “image” source at (0, −2h) is investigated as a
possible solution. Its velocity potential is

�I = σ

2π
ln

√
x2 + (z + 2h)2 (6.79)

and substitution into the boundary condition at the wall shows that it is satisfied. Similar
image solutions for a doublet and a vortex are shown in Fig. 6.21. The complex potentials
for the original singularities plus their images are

Source:

F(Y ) = σ

2π
ln Y + σ

2π
ln(Y + 2ih) (6.80)

Doublet:

F(Y ) = − μ

2πY
eiα − μ

2π

1

(Y + 2ih)
ei(2π−α) (6.81)

Vortex:

F(Y ) = i


2π
ln Y − i


2π
ln(Y + 2ih) (6.82)

Next consider a source placed midway between two parallel walls set a distance h apart.
An image source at (0, h) will satisfy the boundary condition on the upper wall but now
both the original source and this image source must be canceled at the lower wall to satisfy
the boundary condition there. Images at (0,−h) and (0,−2h) will take care of the lower
wall but now two more images are needed for the upper wall and the process will continue
until the complete image system plus the original source consists of an infinite stack of
sources a distance h apart as shown in Fig. 6.22. The complex potential for this source stack
is

F(Y ) = σ

2π
[ln Y + ln(Y − ih) + ln(Y + ih) + ln(Y − 2ih) + ln(Y + 2ih) + · · ·]

(6.83)
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Figure 6.22 Image of source midway between parallel walls.

Each pair of images can be combined as

ln(Y − inh) + ln(Y + inh) = ln n2h2 + ln

(
1 + Y 2

n2h2

)

and if the constant terms are neglected, the complex potential becomes

F(Y ) = σ

2π
ln

[
Y

∞∏
n=1

(
1 + Y 2

n2h2

)]
(6.84)

The use of the following identity from Gradshteyn and Ryzhik (Ref. 5.7, p. 37),

sinh A = A
∞∏

k=1

(
1 + A2

k2π2

)
(6.85)

leads to the closed-form solution for the complex potential as

F(Y ) = σ

2π
ln

[
sinh

πY

h

]
(6.86)

For a clockwise vortex of circulation 
 between parallel walls, an application of the
iterative image procedure previously used for the source leads to the solution shown in
Fig. 6.23, which consists of a stack of clockwise vortices at Y = 0, ±2hi, ±4hi, . . . and
a stack of counterclockwise vortices at ±hi, ±3hi, ±5hi, . . . . From before, the complex
potential for the clockwise stack is

F(Y ) = 


2π
ln

[
sinh

πY

2h

]
(6.87)

The use of another identity from Gradshteyn and Ryzhik5.7 (p. 37),

cosh A =
∞∏

k=0

(
1 + 4A2

(2k + 1)2π2

)
(6.88)

results in the following complex potential for the vortex between walls:

F(Y ) = i


2π

[
ln

(
sinh

πY

2h

)
− ln

(
cosh

πY

2h

)]
= i


2π
ln

(
tanh

πY

2h

)
(6.89)
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Figure 6.23 Image of clockwise vortex midway between parallel walls.

We have considered images of the singular solutions in a plane wall (for ground-effect
applications) and between parallel walls (for wind-tunnel applications). Another possible
application is the interaction of an airfoil with its wake or the wake of another airfoil (for
unsteady motion) and since we have shown that an airfoil geometry can be transformed
through conformal mapping into a circle, the image system for a singular solution in the
presence of a circle will be studied.

The circle theorem due to Milne-Thomson6.5 states that if the complex potential F1(Y )
represents a flow without singularities for |Y | < a, then

F(Y ) = F1(Y ) + F̄1

(
a2

Y

)
(6.90)

represents the same flow at infinity with a circular cylinder of radius a at the origin. The
function F̄1(Y ) is defined in the following way: “If F1(x) is a function that takes complex
values for real values of x , then F̄1(x) is the function that takes the corresponding conjugate
complex values for the same real values of x , and F̄1(Y ) is obtained by writing Y instead of x .”

Consider the simple example where F1(Y ) = UY , a uniform stream in the x direction.
F̄1(Y ) is seen to be also UY and therefore the flow of the uniform stream with a circle at
the origin is given as

F(Y ) = UY + U
a2

Y
(6.91)

which is simply the stream plus doublet solution previously derived. Now let

F1(Y ) = σ

2π
ln(Y − Y0) (6.92)

which is the complex potential for a source of strength σ at Y = Y0. F̄1(Y ) is

F̄1(Y ) = σ

2π
ln(Y − Ȳ 0) (6.93)

and the complex potential for a source outside a circular cylinder becomes (Eq. (6.90))

F(Y ) = σ

2π

[
ln(Y − Y0) + ln

(
a2

Y
− Ȳ 0

)]
(6.94)



P1: FNT

CB329-06 CB329/Katz September 13, 2000 14:24 Char Count= 0

6.8 Method of Images 145

The following manipulation will put the above result in the form of a recognizable image
system:

F(Y ) = σ

2π

[
ln(Y − Y0) + ln

(
a2

Y
− Ȳ 0

)]

= σ

2π

[
ln(Y − Y0) + ln

Ȳ 0

Y
+ ln

(
Y − a2

Ȳ 0

)
(−1)

]

= σ

2π

[
ln(Y − Y0) − ln Y + ln

(
Y − a2

Ȳ 0

)]
(6.95)

where the constant terms have been neglected. It can be seen that the solution consists of
the original source, an image source of the same strength at the image point, and a sink of
the same strength at the origin. These three singularities line up along the same radial line
from the origin as can be seen by writing the location of the image point as

a2

Ȳ 0
= a2Y0

Ȳ 0Y0
=

(
a2

|Y0|2
)

Y0

For a clockwise vortex of circulation 
 at Y = Y0 outside a circle, the image system
consists of a counterclockwise image at the same image point as for the source and a
clockwise vortex at the origin. Both of these image systems are illustrated in Fig. 6.24.

As a final example, take

F1(Y ) = − μ

2π

eiα

Y − Y0
(6.96)

Figure 6.24 Image of source and vortex outside a circle.
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which is the complex potential for a doublet of strength μ at Y = Y0 whose axis is at an
angle α to the x direction. With the use of the result that

A

B
= Ā

B̄

then

F̄1(Y ) = − μ

2π

e−iα

Y − Ȳ 0
(6.97)

and the complex potential for the doublet outside of a circle becomes

F(Y ) = − μ

2π

[
eiα

Y − Y0
+ e−iα

a2/Y − Ȳ 0

]
(6.98)

The following manipulation will put the result in the form of a recognizable image
system:

F(Y ) = −μ

2π

[
eiα

Y − Y0
+ e−iα

( −Y/Ȳ 0

Y − a2/Ȳ 0

)]

= −μ

2π

[
eiα

Y − Y0
+ e−iα

( −Y

Ȳ 0(Y − a2/Ȳ 0)
+ a2/Ȳ 0 − a2/Ȳ 0

Ȳ 0(Y − a2/Ȳ 0)

)]

= −μ

2π

[
eiα

Y − Y0
− e−iα a2

Ȳ
2
0

1

(Y − a2/Ȳ 0)

]

= −μ

2π

[
eiα

Y − Y0
+ a2

|Y0|2(Y − a2/Ȳ 0)
ei(π−α+2 arg Y0)

]
(6.98a)

where the constant term has been neglected. The image of the doublet in a circle is therefore
seen to be another doublet inside the circle at the image point previously derived for the
source but with a reduced strength

μa2

|Y0|2
For the special case of a doublet pointing outward along the radial line from the origin,

arg Y0 = α, and the complex potential becomes

F(Y ) = −μ

2π

[
eiα

Y − Ȳ 0
+ a2

|Y 2
0 |

ei(π+α)

Y − a2/Ȳ 0

]
(6.99)

This doublet plus its image are shown in Fig. 6.25.

6.9 Generalized Kutta–Joukowski Theorem

For the study of interaction problems involving the flow past an airfoil in the
presence of additional boundaries (ground effect, wind-tunnel walls, etc.) or additional
airfoils (tandem, biplane, etc.), the airfoil is not in an unbounded fluid. The Kutta–Joukowski
theorem (Eq. (6.21a)) therefore does not apply. In this section we will develop a generalized
version of this theorem.
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Figure 6.25 Image of radial doublet outside a circle.

For simplicity, let us model the airfoil as a single vortex of circulation 
 (lumped-vortex
element). For interaction problems, the airfoil vortex will be in the presence of an image
vortex of circulation 
I . Let us place the airfoil vortex at the origin of a Cartesian coordinate
system and the image vortex at Y0 = a + ib. Consider the flow of a uniform stream of speed
Q∞ in the x direction past the airfoil. The complex potential for the stream and the two
vortices is

F = Q∞Y + i


2π
ln Y + i
I

2π
ln(Y − Y0) (6.100)

Let the curve C surround the airfoil vortex and the curve CI surround the image vortex
(see Fig. 6.26). The curve C∞, where Y → ∞, surrounds C and CI . Now, the Blasius
formula (Eq. (6.19)) provides the force on the airfoil

X − i Z = iρ

2

∫
C

W 2 dY (6.101)

where the complex velocity W is given by

W = Q∞ + i


2πY
+ i
I

2π (Y − Y0)
(6.102)

With the use of Eq. (6.7),∫
C∞

W 2 dY =
∫

C
W 2 dY +

∫
CI

W 2 dY (6.103a)

Figure 6.26 Nomenclature for the force on an airfoil in the presence of an additional vortex.
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and therefore∫
C

W 2 dY =
∫

C∞
W 2 dY −

∫
CI

W 2 dY (6.103b)

Let us first evaluate the integral on C∞. For Y → ∞,

1

Y − Y0
= 1

Y
(
1 − Y0

Y

) = 1

Y

(
1 + Y0

Y
+ Y 2

0

Y 2
+ · · ·

)

and

W = Q∞ + i

2π

(
 + 
I )

Y
+ · · ·

and therefore

W 2 = Q2
∞ + i Q∞

π

(
 + 
I )

Y
+ · · · (6.104)

With the use of the residue theorem (Eq. (6.11)), we get

iρ

2

∫
C∞

W 2 dY = −iρQ∞(
 + 
I ) (6.105)

Now consider the integral on CI . The complex velocity (Eq. (6.102)) is written as

W = f (Y ) + i

2π


I

Y − Y0
(6.106a)

where f (Y ) is

f (Y ) = Q∞ + i


2πY
(6.106b)

Squaring the velocity yields

W 2 = f 2 + i
I f

π (Y − Y0)
− 
2

I

4π2(Y − Y0)2
(6.107)

With the use of the residue theorem we get

iρ

2

∫
CI

W 2 dY = −iρ
I f (Y0) (6.108)

and with the use of Eq. (6.106b) this becomes

iρ

2

∫
CI

W 2 dY = −iρ
I

(
Q∞ + i


2πY0

)
(6.109)

If we use Eqs. (6.101), (6.103b), (6.105), and (6.109) and some manipulation the complex
force is obtained as

X − i Z = −iρQ∞


(
1 − i
I

2πY0 Q∞

)
(6.110)

The airfoil lift is therefore

Z = ρQ∞
 Real

(
1 − i
I

2πY0 Q∞

)
(6.111)
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To get an interpretation of this result, consider the complex velocity of the image vortex
evaluated at the location of the airfoil vortex (Y = 0):

W = − i
I

2πY0
(6.112)

The real part (see Eq. (6.111)) of this velocity is its component in the direction of the
uniform stream. We can therefore write the generalized Kutta–Joukowski theorem as

L = ρQ∞


(
1 + Q∞ · qI

Q2∞

)
(6.113)

where qI is the velocity of the image vortex evaluated at the location of the airfoil vortex.
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Problems

6.1. Consider the flow due to a doublet of strength μ at (a, 0) whose axis is in the x
direction and an equal doublet at (−a, 0) whose axis lies in the opposite direction.
Find the complex potential for the limiting case a → 0, μa → M . Sketch some
streamlines.

6.2. Consider the flow of a uniform stream of speed Q∞ in the x direction past two
sources of strength σ at (0, a) and (0, −a). (a) Find the stagnation point(s) and
discuss the significance of σ/2π Q∞a (b) Sketch some streamlines (including
the stagnation streamline) for the cases: a → 0, a → ∞, σ/2π Q∞a < 1, and
σ/2π Q∞a > 1.

6.3. Consider the flow of a uniform stream of speed Q∞ at an angle of attack α past
an ellipse of semi-axes a and b
(a) Show that the transformation

Y = f + a2 − b2

4 f

maps the ellipse into a circle of radius (a + b)/2 in the f plane.
(b) Sketch the streamlines of the flow. What are the values of θ for the stagnation

points in the circle plane? Use these values plus the results in (a) to find the
stagnation points on the ellipse.

(c) Plot the pressure distribution on the ellipse for a = 1, b = .25, and α = 30◦.

6.4. Consider the flow around a flat plate lying along the x axis from −c/2 < x <

c/2 due to the presence of a clockwise vortex of circulation 
 one chord length
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downstream of the trailing edge. Find the complex potential and sketch some
streamlines.

6.5. Consider the flow due to a source of strength σ between two parallel walls a
distance h apart. The source is situated a distance ah from the bottom wall. Find
the complex potential.

6.6. Consider the flow of a uniform stream of speed Q∞ past a circular cylinder of
radius a in the presence of a ground plane located a distance h from the center of
the circle. For a/h � 1, use the method of images to find the complex potential
(find the first few terms in the solution).
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CHAPTER 7

Perturbation Methods

For the small-disturbance solution techniques that are treated in this book,
approximations to the exact mathematical problem formulation are made to facilitate the
determination of a solution. Since for incompressible and irrotational flow the governing
partial differential equation is linear, the approximations are made to the body boundary
condition. For example, for the three-dimensional wing in Chapter 4, only terms linear in
thickness, camber, and angle of attack are kept and the boundary condition is transferred to
the x–y plane. The solution technique is therefore a “first-order” thin wing theory.

The small-disturbance methods developed here can be thought of as providing the first
term in a perturbation series expansion of the solution to the exact mathematical problem
and terms that were neglected in determining the first term will come into play in the solution
for the following terms. In this book we will follow the lead of Van Dyke5.3 and use the
thin-airfoil problem as the vehicle for the presentation of the ideas and some of the details of
perturbation methods and their applicability to aerodynamics. First, the thin-airfoil solution
will be introduced as the first term in a small-disturbance expansion and the mathematical
problem for the next term will be derived. An example of a second-order solution will be
presented and the failure of the expansion in the leading-edge region will be noted. A local
solution applicable in the leading-edge region will be obtained and the method of matched
asymptotic expansions will be used to provide a solution valid for the complete airfoil.
Finally, the thin airfoil between wind-tunnel walls will be studied to illustrate an expansion
within an expansion.

7.1 Thin-Airfoil Problem

Consider the two-dimensional airfoil problem as a special case of the three-
dimensional wing problem of Chapter 4. The dependent variables are now functions of
x and z and both the upper and lower airfoil surfaces are given by

f (x, z) = z − η(x) = 0,
−c

2
≤ x ≤ c

2
(7.1)

Note that the origin is at midchord and that the airfoil chord is c (Fig. 7.1). This choice of
the origin is made for convenience in the evaluation of the Cauchy principal value integrals
that will appear in the example problems.

The perturbation velocity potential � is defined in Section 4.2 by

�∗ = � + �∞ (7.2)

where

�∞ = U∞x + W∞z = x Q∞ cos α + zQ∞ sin α (7.3)

The exact airfoil boundary condition is the two-dimensional version of Eq. (4.12):

−dη

dx

(
∂�

∂x
+ Q∞ cos α

)
+ ∂�

∂z
+ Q∞ sin α = 0 on z = η (7.4)

151
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Figure 7.1 Coordinate system for airfoil problem.

with U∞ = Q∞ cos α and W∞ = Q∞ sin α. The small-disturbance approximations and
limitations on the geometry introduced in Chapter 4 apply and it is assumed that the order
of magnitude of the airfoil thickness ratio, camber ratio, and angle of attack can all be
represented by the small parameter ε.

Let us consider the following expansion for the perturbation velocity potential:

� = �1 + �2 + �3 + · · · (7.5)

where

�i = O(εi ), i = 1, 2, 3, . . . (7.6)

and the order symbol O(ε) is defined by

g(ε) = O(ε) as ε → 0 if lim
ε→0

g(ε)

ε
< ∞ (7.7)

In this chapter we will carry the analysis through to second order to illustrate the method.
Terms to O(ε2) will be kept and therefore the components of the free-stream flow are written
as

U∞ = Q∞ cos α = Q∞

[
1 − α2

2
+ O(α4)

]
(7.8a)

W∞ = Q∞ sin α = Q∞[α + O(α3)] (7.8b)

The boundary condition will be transferred to the chord line as in Eq. (4.16) and the complete
boundary condition with the above substitutions becomes

−dη

dx

[
Q∞ + ∂�1

∂x
(x, 0±)

]
+ Q∞α + ∂�1

∂z
(x, 0±)

+ η
∂2�1

∂z2
(x, 0±) + ∂�2

∂z
(x, 0±) = 0 (7.9)

For this equation to be valid for all values of the perturbation parameter ε, the terms of the
same order (ε, ε2) must individually be zero. To show this, divide the equation by ε and take
the limit as ε goes to zero. Then all of the terms of O(ε) must be zero. Now, subtract these
terms from the original equation and repeat the process. This shows that all of the terms of
O(ε2) must be zero.
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The boundary conditions for the first- and second-order problems then become

O(ε):
∂�1

∂z
(x, 0±) = Q∞

dη

dx
− Q∞α (7.10)

O(ε2):
∂�2

∂z
(x, 0±) = dη

dx

∂�1

∂x
(x, 0±) − η

∂2�1

∂z2
(x, 0±) (7.11)

If Laplace’s equation for �1 is used in the second-order condition, it becomes

∂�2

∂z
(x, 0±) = d

dx

[
η
∂�1

∂x
(x, 0±)

]
(7.12)

At this point it is noted that the first-order boundary condition is the one that was used in
the thin-airfoil treatment in Chapter 5. Now let us separate the problems at each order into
a nonlifting (symmetric or thickness) problem and a lifting (camber and angle of attack)
problem and introduce the camber and thickness functions

η = ηc ± ηt (7.13a)

�1 = �1L + �1T (7.13b)

�2 = �2L + �2T (7.13c)

Note that the lifting potentials (�1L , �2L ) are antisymmetric in z and the nonlifting potentials
(�1T , �2T ) are symmetric in z. Consequently, the z component of velocity w is continuous
across the chord for the lifting problems and discontinuous for the nonlifting problems.

With the above definitions, Eqs. (7.10)–(7.12) become

∂�1L

∂z
(x, 0±) = Q∞

dηc

dx
− Q∞α (7.14a)

∂�1T

∂z
(x, 0±) = ±Q∞

dηt

dx
(7.14b)

(7.15)

∂�2L

∂z
(x, 0±) = d

dx

[
ηc

∂�1T

∂x
(x, 0±) + ηt

∂�1L

∂x
(x, 0+)

]

∂�2T

∂z
(x, 0±) = ± d

dx

[
ηt

∂�1T

∂x
(x, 0±) + ηc

∂�1L

∂x
(x, 0+)

]
(7.16)

The complete mathematical problems that accompany the above boundary conditions
(Eqs. (7.14a,b), (7.15), and (7.16)) include Laplace’s equation for each velocity potential
and a velocity field that decays to zero at infinity. A Kutta condition must be applied in the
lifting problems and the nonlifting problems have zero circulation.

The solutions to the above mathematical problems can be obtained with the use of the
theory of singular integral equations (see Newman,7.1 Section 5.7). The first-order tangential
velocity component is

u1T ≡ ∂�1T

∂x
(x, 0±) = Q∞

π

∫ c/2

−c/2

dηt

dx
(x0)

dx0

x − x0
(7.17)

for the thickness problem and

u1L ≡ ∂�1L

∂x
(x, 0+) = Q∞

π

1√
c2/4 − x2

×
⎧⎨
⎩

∫ c/2

−c/2

[(dηc/dx)(x0) − α]
√

c2/4 − x2
0

x − x0
dx0 + �

2

⎫⎬
⎭ (7.18)
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for the lifting problem. A source distribution for �1T also leads to Eq. (7.17) (see Eq. (5.15)).
A vortex distribution solution for �1L leads to an integral equation for γ (Eq. (5.39)) and
the solution to this integral equation is given in Eq. (7.18) where γ = 2u1L .

The nonunique solution (of Eq. (5.39)) with arbitrary circulation is given because for
another application the solution with zero circulation will be needed. If the Kutta condition
is applied, then u1L (c/2) = 0, and using Eq. (7.18) we get

� = −2
∫ c/2

−c/2

[
dηc

dx
(x0) − α

]√
c2/4 − x2

0

c/2 − x0
dx0

= −2
∫ c/2

−c/2

[
dηc

dx
(x0) − α

]√
c/2 + x0

c/2 − x0
dx0

Substitution of this value of the circulation into Eq. (7.18) yields

u1L = Q∞
π

1√
c2/4 − x2

∫ c/2

−c/2

[
dηc

dx
(x0) − α

]√
c2

4
− x2

0

[
1

x − x0
− 1

c/2 − x0

]
dx0

= Q∞
π

1√
c2/4 − x2

∫ c/2

−c/2

[
dηc

dx
(x0) − α

]√
c2

4
− x2

0

c/2 − x

(x − x0)(c/2 − x0)
dx0

= Q∞
π

√
c/2 − x

c/2 + x

∫ c/2

−c/2

[
dηc

dx
(x0) − α

]√
c/2 + x0

c/2 − x0

dx0

x − x0

and finally the lifting solution becomes

u1L = Q∞

√
c/2 − x

c/2 + x

{
α + 1

π

∫ c/2

−c/2

√
c/2 + x0

c/2 − x0

dηc

dx
(x0)

dx0

x − x0

}
(7.19)

The x component of velocity on the airfoil surface is then given by u = Q∞ + u1T ± u1L

and the z component is obtained from the boundary conditions (Eq. (7.14a,b)).

7.2 Second-Order Solution

Consider the second-order solution. Define fictitious thickness and camber func-
tions as

ηc2 ≡ ηc
u1T

Q∞
+ ηt

u1L

Q∞
(7.20a)

ηt2 ≡ ηt
u1T

Q∞
+ ηc

u1L

Q∞
(7.20b)

This puts the second-order problem in the same form as the first-order one at zero angle
of attack (see boundary conditions in Eqs. (7.14)–(7.16)) and the solution can be written
as

u2T = Q∞
π

∫ c/2

−c/2

dηt2

dx
(x0)

dx0

x − x0
(7.21)

u2L = Q∞
π

√
c/2 − x

c/2 + x

∫ c/2

−c/2

√
c/2 + x0

c/2 − x0

dηc2

dx
(x0)

dx0

x − x0
(7.22)
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The x component of velocity on the airfoil surface is then given as

u = Q∞ − Q∞α2

2
+ u1T + u2T ± u1L ± u2L (7.23)

and the z component is obtained from the boundary conditions (Eqs. (7.15) and (7.16)).
The surface speed on the airfoil is the magnitude of the velocity and to obtain its value

at any order the velocity components at that order are substituted into

q =
√

u2 + w2

the expansion for the square root

(1 + x)1/2 = 1 + x

2
− x2

8
+ · · · for x < 1 (7.24)

is used, the results are evaluated in terms of values on the chordline, and only terms up to
the desired order are kept. The expressions for the surface speed correct to first and second
order are derived as follows. On the surface, to second order,

q2 = u2 + w2 =
[

Q∞

(
1 − α2

2

)
+ ∂�1

∂x
+ ∂�2

∂x

]2

+
[

Q∞α + ∂�1

∂z
+ ∂�2

∂z

]2

If the results are evaluated at z = 0 and terms up to second order are kept, we get

q2
2 = Q2

∞ + 2Q∞(u1T ± u1L + u2T ± u2L ) + 2Q∞η
∂

∂z

∂�1

∂x

+ (u1T ± u1L )2 + 2Q∞α
∂�1

∂z
(x, 0±) +

[
∂�1

∂z
(x, 0±)

]2

Note that (∂2�1/∂x∂z)(x, 0±) = (∂/∂x)(∂�1/∂z)(x, 0±) = Q∞ ∂
∂x (η′ − α) = Q∞η′′. Then,

q2
2

Q2∞
= 1 + 2

Q∞
(u1T ± u1L + u2T ± u2L ) + (u1T ± u1L )2

Q2∞
+ 2α(η′ − α) + 2ηη′′ + (η′ − α)2

= 1 + 2

Q∞
(u1T ± u1L + u2T ± u2L ) + (u1T ± u1L )2

Q2∞
− α2 + (η′)2 + 2ηη′′

With the use of Eq. (7.24) we get

q2

Q∞
= 1 + 1

2

[
2

Q∞
(u1T ± u1L + u2T ± u2L )

+ (u1T ± u1L )2

Q2∞
− α2 + (η′)2 + 2ηη′′

]
− 1

8

4

Q2∞
(u1T ± u1L )2

Therefore,

q1

Q∞
= 1 + u1T

Q∞
± u1L

Q∞
(7.25a)

q2

Q∞
= 1 + u1T

Q∞
± u1L

Q∞
+ u2T

Q∞
± u2L

Q∞
+ (ηc ± ηt )(η

′′
c ± η′′

t ) + 1

2
(η′

c ± η′
t )

2 − α2

2
(7.25b)
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The surface pressure coefficient (correct to second order) is obtained from Bernoulli’s
equation as follows:

C p = 1 − q2
2

Q2∞

Compare the expression for q2
2/Q2

∞ above to the expression for q2/Q∞ in Eq. (7.25b) to
observe that

q2
2

Q2∞
= 1 + 2

(
q2

Q∞
− 1

)
+ (u1T ± u1L )2

Q2∞
and therefore

C p = −2

(
q2

Q∞
− 1

)
−

(
u1T

Q∞
± u1L

Q∞

)2

(7.26)

The airfoil lift coefficient can then be determined from

Cl = 1

c

∫ c/2

−c/2
[C p(x, 0−) − C p(x, 0+)] dx (7.27)

and with the use of Eqs. (7.25b) and (7.26) is

Cl = 4

c

∫ c/2

−c/2

{
u1L

Q∞
+ u1T u1L

Q2∞
+ u2L

Q∞
+ ηtη

′′
c + ηcη

′′
t + η′

cη
′
t

}
dx (7.28)

To illustrate the results of second-order thin-airfoil theory, consider a symmetric airfoil
at angle of attack and the surface speed is to be calculated. The following thickness function
represents a symmetric Joukowski airfoil to second order in thickness ratio (see Van Dyke,5.3

p. 54):

ηt = cτ1

2

√
1 − 4x2

c2

(
1 − 2x

c

)
(7.29)

where τ1 = 4τ/3
√

3 and τ is the thickness ratio. To evaluate the Cauchy principal value
integrals appearing in the equations for the x component of velocity at various orders, it
will be advantageous to use Appendix A, which is reproduced from Ref. 7.2. Therefore,
lengths must be scaled by half the chord length to obtain the limits of integration from −1 to
+1. Introduce the nondimensional coordinate x̄ = x/(c/2). The nondimensional thickness
function for the Joukowski airfoil becomes

η̄t ≡ ηt

c/2
= τ1(1 − x̄)

√
1 − x̄2 (7.30)

The nondimensional versions of Eqs. (7.17) and (7.19) for this symmetric airfoil become

u1T

Q∞
= 1

π

∫ 1

−1

dη̄t

d x̄
(x̄0)

dx̄0

x̄ − x̄0
(7.31a)

u1L

Q∞
= α

√
1 − x̄

1 + x̄
(7.31b)

The slope of the nondimensional thickness function is

dη̄t

d x̄
= τ1(1 − x̄2)−1/2(−1 − x̄ + 2x̄2) (7.32)
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and the first-order x component of velocity becomes

u

Q∞
= 1 + τ1(1 − 2x̄) ± α

√
1 − x̄

1 + x̄
(7.33)

The nondimensional thickness and camber functions at second order (Eqs. (7.20a,b))
are then

η̄t2 = τ 2
1

√
1 − x̄2(1 − 3x̄ + 2x̄2) (7.34a)

η̄c2 = τ1α(1 − x̄)2 (7.34b)

and their nondimensional derivatives are

dη̄t2

dx̄
= 3τ 2

1√
1 − x̄2

(−1 + x̄ + 2x̄2 − 2x̄3) (7.35a)

dη̄c2

dx̄
= −2τ1α(1 − x̄) (7.35b)

The second-order result for the x component of velocity is obtained from the nondimensional
version of Eqs. (7.21), (7.22), and (7.23) and is

u

Q∞
= 1 − α2

2
+ τ1(1 − 2x̄) ± α

√
1 − x̄

1 + x̄
− 6τ 2

1 x̄

√
1 − x̄

1 + x̄
∓ 2τ1α x̄

√
1 − x̄

1 + x̄
(7.36)

The second-order result for the surface speed from Eq. (7.25b) is obtained with some
manipulation as

q2

Q∞
= 1 + τ1(1 − 2x̄) ± α

√
1 − x̄

1 + x̄

− 1

2
τ 2

1

1 − x̄

1 + x̄
(1 + 2x̄)2 ∓ 2τ1α x̄

√
1 − x̄

1 + x̄
− α2

2
(7.37)

The first- and second-order surface speeds for a 10% thick Joukowski airfoil are shown in
Fig. 7.2 and compared to the exact result from Chapter 6 for the case with zero angle of
attack. It is noted that the first-order solution is not singular at the leading edge but that the
leading-edge stagnation point and the acceleration region following it are not predicted by
the theory. This is not surprising since the approximations of the theory are invalid in the
neighborhood of a stagnation point and round edge. The deceleration region over the rear
of the airfoil appears to be predicted well by the theory. The second-order surface speed
improves the comparison with the exact results over most of the foil (including the maximum
speed) but is now singular at the leading edge. If we were to continue to higher order, the
solution would become more and more singular at the leading edge as the thin-airfoil theory
is not able to predict the correct behavior in this region.

7.3 Leading-Edge Solution

Van Dyke5.3 (pp. 50–52) shows that the perturbation expansion for the thin airfoil
breaks down in the neighborhood of the round leading edge in a region whose extent is
measured by the leading-edge or nose radius of the airfoil r (r is the radius of curvature
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Figure 7.2 Surface speed results for 10% thick symmetric Joukowski airfoil.

at the leading edge). Also, r is O(ε2). To illustrate the correct local solution in the neigh-
borhood of the leading edge, let us consider a symmetric airfoil at zero angle of attack.
Introduce the coordinate s = x + c/2, which is measured from the leading edge (Fig. 7.3).
Many symmetric low-speed airfoil sections are analytic in the leading-edge region and their
surfaces can be described by

z = ±T0s1/2 ± T1s3/2 ± · · · (7.38)

where T0, T1, . . . are constants. For small values of s (or for s = O(ε2)), the surface is given
by the first term

z = ±
√

T 2
0 s (7.39)

which is seen to be identical to the equation of a semi-infinite parabola, which can also be
given by

z = ±
√

2rs (7.40)

The local solution then is the symmetric flow past this parabola whose geometry is shown
in Fig. 7.3 and since this solution is not valid in the far field, let us for the moment denote
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Figure 7.3 Symmetric flow past semi-infinite parabola.

the stream speed as V . The method of conformal mapping will be used to obtain the surface
speed on the parabola. Consider the mapping

Y = − f 2 = η2 − ξ 2 − 2iξη (7.41)

where Y = x + i z and f = ξ + iη. Then it can be seen that the curve ξ = ξ0 in the f plane
maps into the parabola

z = ±
√

4ξ 2
0

(
x + ξ 2

0

)
(7.42)

in the Y plane and the corresponding flowfields in the two planes are shown in Fig. 7.4.
The flow in the f plane is seen to be stagnation point flow against the wall ξ = ξ0 and

its complex potential is

F = −V ( f − ξ0)2 (7.43)

The constant V has been chosen to provide the correct far field solution in the parabola
or physical plane. On the surface we have f = iη, ξ = ξ0, and the complex velocity be-
comes

W (Y ) = dF/df

dY/df
= −2V ( f − ξ0)

−2 f
= V iη

(ξ0 + iη)
(7.44)

Figure 7.4 Mapping from parabola flowfield to stagnation flowfield.
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Now, η = [x + ξ 2
0 ]

1
2 and if we introduce s = x + ξ 2

0 , the surface speed on the parabola is

q

V
=

√
s

s + ξ 2
0

(7.45)

Since the nose radius of the parabola is r = 2ξ 2
0 (Eq. (7.42) yields z = ±[4ξ 2

0 s]
1
2 ), the

desired local surface speed for the airfoil becomes

q

V
=

√
s

s + r/2
(7.46)

The corresponding local solution for the airfoil problem with camber and angle of attack is
given in Van Dyke.7.2 We therefore have available two incomplete solutions to the problem
we set out to solve at the beginning of the chapter. The thin-airfoil solution has been obtained
correct to second order but it is not correct in the neighborhood of the leading edge. The
local solution is exact in the neighborhood of the leading edge but does not describe the
flow in the far field and it also contains an undetermined constant.

7.4 Matched Asymptotic Expansions

We will use the method of matched asymptotic expansions to obtain a solution
that is uniformly valid over the airfoil surface. Our results will be presented essentially in
outline form and further details are available in Van Dyke.5.3 The success of the method
is predicated on the observation that the two solutions complement each other and it is
expected that in the limits of their applicability they approach each other (the limit of the
thin-airfoil solution as the leading edge is approached should somehow be equivalent to
the limit of the local solution as the distance from the leading edge is increased). The local
solution is called the inner solution and the thin-airfoil solution is called the outer solution.

The formal task of matching the inner and outer solutions is achieved through the asymp-
totic matching principle (Van Dyke,5.3 p. 90):

The m-term inner expansion of the n-term outer expansion = the n-term outer
expansion of the m-term inner expansion

Outer variables are scaled with the airfoil chord and inner variables are scaled with the
nose radius, and m and n are integers, not necessarily equal. The definition of the m-term
inner expansion of the n-term outer expansion is expressed in the following sequence of
steps:

1. Rewrite the n-term outer expansion in inner variables.
2. Expand in an asymptotic series for small ε (or τ ).
3. Keep m terms.

We will apply the above matching technique to the surface speed for the flow past a
symmetric Joukowski airfoil at zero angle of attack. The three-term (n = 3) outer expansion
in dimensionless coordinates is given in Eq. (7.37) as

q

Q∞
= 1 + τ1(1 − 2x̄) − τ 2

1

2

1 − x̄

1 + x̄
(1 + 2x̄)2 (7.47)

In terms of s̄ = 2s/c = x̄ + 1, Eq. (7.47) becomes

q = Q∞

[
1 + τ1(3 − 2s̄) − τ 2

1

2

2 − s̄

s̄
(2s̄ − 1)2

]
(7.47a)
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To second order in the thickness τ , the airfoil can be represented locally by the parabola so
that the two-term (m = 2) inner expansion is given in Eq. (7.46) as

q

V
=

√
s

s + r/2
=

√
s̄

s̄ + r/c
(7.48)

The Joukowski airfoil (Eq. (7.30)) becomes

z̄ = ±τ1(2 − s̄)
√

2s̄ − s̄2 (7.49)

and as s̄ → 0 we get the parabola z̄ = ±[8τ 2
1 s̄]1/2. From Eq. (7.40), the parabola is z̄ =

±[4s̄r/c]1/2. The nose radius is therefore r = 2cτ 2
1 .

Let us now do the matching for q .
For the two-term inner expansion (already in outer variables), we have

V

√
s̄

s̄ + 2τ 2
1

= V√
1 + 2τ 2

1 /s̄
(7.50a)

which when expanded for small τ1 gives

V

(
1 − τ 2

1

s̄

)
+ O

(
τ 4

1

)
(7.50b)

Its three-term outer expansion is

V

(
1 − τ 2

1

s̄

)
(7.50c)

For the three-term inner expansion, we have

Q∞

[
1 + τ1(3 − 2s̄) − τ 2

1

2

2 − s̄

s̄
(2s̄ − 1)2

]
(7.51a)

which, rewritten in inner variables (note that S̄ = s̄/τ 2
1 ), is

Q∞

[
1 + τ1

(
3 − 2τ 2

1 S̄
) − 1

2

2 − τ 2
1 S̄

S̄

(
2τ 2

1 S̄ − 1
)2

]
(7.51b)

and expanded for small τ1 gives

Q∞

[
1 + 3τ1 − 1

S̄

]
+ O

(
τ 2

1

)
(7.51c)

Its two-term inner expansion is

Q∞

[
1 − 1

S̄
+ 3τ1

]
= Q∞

[
1 + 3τ1 − τ 2

1

s̄

]
(7.51d)

The matching is complete when we equate the results for q from Eqs. (7.50c) and (7.51d)
to get V = Q∞(1 + 3τ1). The local solution therefore experiences a free-stream speed that
is larger than the actual one.

The final step in the analysis is to combine the inner and outer solutions to obtain a
solution valid over the complete airfoil surface. At best the solution will be as accurate as
either the inner or outer expansions in their regions of applicability. The combined solution
is called a composite expansion (Van Dyke,5.3 pp. 94–97) and we will use the additive
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composite

f (m,n)
c = f (m)

i + f (n)
o − [

f (n)
o

]m

i
, m = 2, n = 3 (7.52)

The additive composite expansion is the sum of the inner and outer expansions minus the
part they have in common (i refers to inner and o refers to outer). This common part, the
last term in Eq. (7.52), is obtained during the matching process and is given in Eq. (7.50c).
Our result is

q

Q∞
= (1 + 3τ1)

√
s̄

s̄ + 2τ 2
1

+ 1 + τ1(3 − 2s̄)

− τ 2
1

2

2 − s̄

s̄
(2s̄ − 1)2 −

[
1 + 3τ1 − τ 2

1

s̄

]
(7.53)

After some manipulations this result becomes

q

Q∞
= (1 + 3τ1)

√
s̄

s̄ + 2τ 2
1

− 2τ1s̄ + τ 2
1

2
(2s̄ − 3)2 (7.53a)

The important feature to note in the solution is that the singular part of the thin-airfoil
result in the neighborhood of the leading edge has been removed. (Figure 7.5 compares the
inner, outer, and composite expansions for a particular value of the thickness).

Figure 7.5 Inner, outer, and composite expansions for the symmetric Joukowski airfoil.
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Figure 7.6 Coordinate system for thin airfoil between wind-tunnel walls.

7.5 Thin Airfoil between Wind Tunnel Walls

The zero-thickness airfoil between wind-tunnel walls problem will be studied as
an example of a perturbation expansion for a case with two small parameters, the standard
thin-airfoil parameter (camber or angle of attack), and the chord to tunnel height ratio. A
thin airfoil is placed in a stream along the x axis (see Fig. 7.6) with its midchord in the center
of a wind tunnel of height h chords. We will consider a solution linear in camber and angle
of attack (first-order thin-airfoil theory) for h 
 1. It is convenient to use dimensionless
variables with lengths scaled by the semichord, speeds by the free stream speed, and the
velocity potential by the product of the two. For simplicity, we will drop the bars on the
dimensionless variables.

The airfoil boundary condition is transferred to the strip on the x axis with −1 ≤ x ≤ 1,
and the mathematical problem for the perturbation velocity potential becomes

∇2� = 0 (7.54)

∂�

∂z
(x, 0±) = dηc

dx
− α, − 1 ≤ x ≤ 1 (7.55)

∂�

∂z
(x, ±h) = 0 (7.56)

Equation (7.55) is the airfoil boundary condition from Eqs. (7.10) and (7.13a) and Eq. (7.56)
is the wind-tunnel walls boundary condition. A Kutta condition must be applied at the airfoil
trailing edge to complete the problem specification.

The solution is modeled by a distribution of vortices of circulation γ (x) per unit length
along the strip −1 ≤ x ≤ 1, z = 0 and corresponding image distributions are added (see
Eq. (6.89)) to satisfy Eq. (7.56). The complex perturbation velocity potential for this flow
is

f (Y ) = � + i� = i

2π

∫ 1

−1
γ (x0) ln tanh

π (Y − x0)

4h
dx0 (7.57)

Substitution of Eq. (7.57) in the airfoil boundary condition (Eq. (7.55)) results in an integral
equation for the unknown circulation density γ (x). This integral equation is written

∫ 1

−1
γ (x0)K (x − x0) dx0 = 2π

(
α − dηc

dx

)
(7.58)

where the kernel function is

K (x) = π

4h

(
coth

πx

4h
− tanh

πx

4h

)
(7.59)
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To solve the integral equation we use an approach due to Keldysh and Lavrentiev7.3 and
seek an expansion in 1/h of the following form:

K (x) = 1

x
+ h−1

∞∑
n=0

Kn

( x

h

)n
(7.60a)

γ (x) =
∞∑

n=0

h−nγn(x) (7.60b)

The expansion coefficients can be found with the use of Eqs. (5.113) and it is seen that only
Kn with odd subscripts are nonzero and the first two are

K1 = −π2

24
, K3 = 7π4

5760
(7.61)

Equations (7.60) are substituted into the integral equation (Eq. (7.58)) and terms with like
powers of 1/h are collected. The following system of thin-airfoil-like equations for the
unknown γn(x) is obtained:∫ 1

−1

γ0(x0)

x − x0
dx0 = 2π

[
α − dηc

dx

]
≡ f0(x) (7.62a)

∫ 1

−1

γn(x0)

x − x0
dx0 = −

∫ 1

−1

n−1∑
m=0

Km(x − x0)mγn−m−1(x0) dx0 ≡ fn(x) (7.62b)

The solution to Eqs. (7.62) that satisfies the Kutta condition is obtained with the help of
Eq. (7.19) as

γn(x) = 1

π2

√
1 − x

1 + x

∫ 1

−1

√
1 + x0

1 − x0

fn(x0)

x0 − x
dx0 (7.63)

The singular integrals are to be considered in the Cauchy principal value sense. For n = 0,
the unbounded fluid result is recovered:

γ0(x) = 2

√
1 − x

1 + x

[
α + 1

π

∫ 1

−1

√
1 + x0

1 − x0

dηc

dx
(x0)

dx0

x − x0

]
(7.64)

Let us find the first term in the expansions for the camber and angle of attack problems
separately. Note that each expansion has all odd terms so that the terms we neglect are two
orders smaller than the ones we keep. Since the camber problem requires the choice of a
particular airfoil to proceed, let us begin with the angle of attack problem.

The expansion for the circulation density has terms for n = 0, 2, 4, . . . , and for n = 2,
the function on the right-hand side of the integral equation (Eq. (7.62b)) is

f2 = −2K1α

∫ 1

−1

√
1 − x0

1 + x0
(x − x0) dx0

= π2α

12

∫ 1

−1

(1 − x0)(x − x0)√
1 − x2

0

dx0 = π3α

12
(x + 1/2) (7.65)

and the solution for the circulation density for n = 2 is found from Eq. (7.63) as

γ2 = πα

12

√
1 − x

1 + x

∫ 1

−1

√
1 + x0

1 − x0

x0 + 1/2

x0 − x
dx0 = π2α

12

√
1 − x

1 + x
(x + 3/2) (7.66)
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(Note that
∫ 1
−1[(1 + x0)/(1 − x0)]1/2[ f (x0)/(x0 − x)]dx0 = ∫ 1

−1[(1 + x0)/(1 − x2
0 )1/2]

[ f (x0)/(x0 − x)] dx0 is introduced so that the integrals in Appendix A can be used).
As an example to illustrate the camber effect, choose the parabolic arc camberline given

by

ηc = β(1 − x2)

where β = 2ε/c (see Eq. (5.80)). The expansion for the circulation density has terms for
n = 0, 2, 4, . . . , and the unbounded fluid result (n = 0) is found from Eq. (7.64) as

γ0(x) = −4β

π

√
1 − x

1 + x

∫ 1

−1
x0

√
1 + x0

1 − x0

dx0

x − x0
= 4β

√
1 − x2 (7.67)

For n = 2, the function on the right-hand side of the integral equation (Eq. (7.62b)) is

f2 = π2β

6

∫ 1

−1
(x − x0)

√
1 − x2

0 dx0 = π3βx

12
(7.68)

and the solution for the circulation density for n = 2 is found from Eq. (7.63) as

γ2 = πβ

12

√
1 − x

1 + x

∫ 1

−1
x0

√
1 + x0

1 − x0

dx0

x0 − x
= π2β

12

√
1 − x2 (7.69)

The lift coefficient for the airfoil is found from the nondimensional circulation density as

Cl =
∫ 1

−1
γ (x) dx (7.70)

since the Kutta–Joukowski theorem can be used for this small-disturbance approximation.
The lift coefficients for the separate angle of attack and camber effects that include the first
term in the expansion are obtained by substituting Eqs. (7.66) and (7.69) into Eq. (7.70) to
get

Angle of attack:

Cl = 2πα

[
1 + π2

24
h−2 + O(h−4)

]
(7.71a)

Parabolic arc camber:

Cl = 2πβ

[
1 + π2

48
h−2 + O(h−4)

]
(7.71b)

Note that the first term in Eq. (7.71a) is identical to the result obtained in Section 5.5
using a single-element lumped-vortex model. Additional terms for the angle of attack and
parabolic arc solutions may be found in Plotkin.7.4 It is seen that for these examples and for
the assumptions connected with the expansions the wind-tunnel walls increase the lift due
to angle of attack and camber.
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Problems

7.1. Find the second-order surface speed for the flow past a thin ellipse at zero angle
of attack.

7.2. Consider the flow of a uniform stream of speed Q∞ past a wavy wall given by
z = ε sin αx , where ε is small compared to the wavelength 2π/α. Find the second-
order perturbation velocity potential.

7.3. Consider the two-dimensional flow of a uniform stream of speed Q∞ normal to
the chordline of a thin symmetric body given by

z = ±ε f (x), − c

2
< x <

c

2
, ε � 1

The solution for the velocity potential can be written

� = �0 + ε�1 + ε2�2 + · · ·
where �0 represents the flow normal to a flat plate of length c and satisfies the
mathematical problem

∇2� = 0
∂�0

∂z
(x, 0±) = 0

�0 = Q∞z as z → ∞
(a) Write the mathematical problem for �1 (in terms of �0).
(b) Find �1.
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CHAPTER 8

Three-Dimensional Small-Disturbance
Solutions

In this chapter, three-dimensional small-disturbance solutions will be derived for
some simple cases such as the large aspect ratio wing, the slender pointed wing, and the
slender cylindrical body. Flow problems requiring more detailed geometries will be treated
in the forthcoming chapters.

8.1 Finite Wing: The Lifting Line Model

The three-dimensional lifting wing problem was formulated in Chapter 4, and it is
clear that obtaining an analytic solution of the integral equations is difficult. However, it is
possible to approximate the lifting properties of a wing by a single lifting line, an approx-
imation that will allow a closed-form solution. In spite of the considerable simplifications
in this model it captures the basic features of three-dimensional lifting flows and predicts
the reduction of lift slope and the increase in induced drag with decreasing aspect ratio.

8.1.1 Definition of the Problem

Consider a lifting, thin, finite wing (described in Section 4.5 and shown in Fig. 8.1)
that is moving at a constant speed in an otherwise undisturbed fluid. The free stream of speed
Q∞ has a small angle of attack α, relative to the coordinate system attached to the wing.

The velocity field for this potential flow problem can be obtained by solving Laplace’s
equation for the perturbation potential �:

∇2� = 0 (8.1)

Following Section 4.5, the boundary condition requiring no flow across the wing solid
surface will be approximated at z = 0, for the case of small angle of attack, by

∂�

∂z
(x, y, 0±) = Q∞

(
∂η

∂x
− α

)
(8.2)

where η = ηc(x, y) is the camber surface placed on the x–y plane and for simplicity the
subscript c is omitted in this chapter. For modeling the lifting surface, a vortex distribution
is selected (as formulated in Section 4.5). The unknown vortex distribution γx (x, y) and
γy(x, y) (shown in Fig. 4.9) is placed on the wing’s projected area at the z = 0 plane. The
resulting integral equation is

−1

4π

∫
wing+wake

γy(x − x0) − γx (y − y0)

[(x − x0)2 + (y − y0)2]3/2
dx0 dy0 = Q∞

(
∂η

∂x
− α

)
(8.3)

which should hold for any point on the wing. A proper (and unique) solution for the vortex
distribution will have to fulfill the Kutta condition along the trailing edge, such that the
vorticity component parallel to the trailing edge (γT.E.) is zero:

γT.E. = 0 (8.4)

167
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Figure 8.1 Far field horseshoe model of a finite wing.

Also, since vortex lines do not begin or end in a fluid (Eq. (4.64)), the solution must comply
with ∣∣∣∣∂γx

∂x

∣∣∣∣ =
∣∣∣∣∂γy

∂y

∣∣∣∣ (8.5)

8.1.2 The Lifting-Line Model

The simplest model that can be suggested to solve this problem is where the
chordwise circulation, at any spanwise station, is replaced by a single concentrated vortex.
Also, these local vortices of circulation �(y) will be placed along a single spanwise line.
Based on the results of Section 5.5 for the two-dimensional lumped-vortex element, this
vortex line will be placed at the wing’s quarter-chord line along the span, −b/2 < y < b/2
(this bound vortex line is assumed to be straight and parallel to the y axis, as shown in
Fig. 8.1). The above positioning of the vortex line at the wing’s quarter-chord line effectively
satisfies the Kutta condition of Eq. (8.4) as was shown in Section 5.5.

At this point, attention needs to be focused on the vortex theorems requiring that a
vortex line cannot start or end abruptly in a fluid (or Eq. (8.5)). Therefore, if any change
of the vortex line strength d�(y)/dy is introduced, it must be followed by introducing a
similar vorticity component in the other direction γx . In other words, the vortex line does
not terminate at this point but it changes direction, and its strength remains constant.

The most physical application of these principles is to “shed” these trailing vortices into
the flow and create a “wake” such that there will be no force acting on these free vortices.
Following Section 4.7, this requirement reduces to the condition that the flow along this
segment must be parallel to Γ (where positive Γ is according to the right-hand rule):

q × Γwake = 0 (8.6)

The most basic element that will fit these requirements will have the shape of a “horseshoe”
vortex (Fig. 8.1), which will have constant “bound vorticity” � along its quarter-chord line,
will turn backward at the wing tips and will continue far behind the wing, and eventually
will be closed by the starting vortex. It is assumed here that the flow is steady and therefore
the starting vortex is far downstream and its influence can be neglected.
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Figure 8.2 Lifting-line model consisting of horseshoe vortices. The bound vortex segment of all
vortices is placed on the y axis.

A more refined model of the finite wing was first proposed by the German scientist
Ludwig Prandtl (see Ref. 5.2) during World War 1 and it uses a large number of such
spanwise horseshoe vortices, as illustrated by Fig. 8.2 (the following analysis is in the spirit
of this early model). The straight bound vortex �(y) in this case is placed along the y axis
and at each spanwise station the leading edge is one-quarter chord ahead of this line and
the local trailing edge is three-quarter chord behind the vortex line. Now, let us examine the
integral equation (Eq. (8.3)) for the case of the flat lifting surface, where ∂η/∂x = 0. The
equation now simply states the boundary condition of Eq. (8.2):

∂�wing

∂z
+ ∂�wake

∂z
+ Q∞α = 0 (8.2a)

That is, the sum of the normal velocity components induced by the wing wb = ∂�wing/∂z
and wake vortices wi = ∂�wake/∂z, plus the normal velocity component of the free-stream
flow Q∞α, must be zero on the wing’s solid boundary:

wb + wi + Q∞α = 0 (8.7)

where w is considered to be positive in the +z direction. The subscripts ( )b and ( )i stand
for bound (on wing) and induced (by wake) influences, respectively.

The velocity component wb induced by the lifting line on the section with a chord
c(y) can be estimated by using the lumped-vortex model with the downwash calculated at
the collocation point located at the 3/4 chord. Consider the spanwise component (−y0 ≤
y ≤ y0) of a typical horseshoe vortex in Fig. 8.3 with strength 	�(y0) (where 	�(y0) =
−(d�(y0)/dy)dy0). The downwash 	wb at the collocation point (c/2, y) due to this segment
is given by Eq. (2.69) (see Fig. 2.15, which defines the angles β in this formula) as

	wb = −	�

4πd
(cos β1 − cos β2)

= −	�

4π [c(y)/2]

[
y + y0√

(c/2)2 + (y + y0)2
+ y0 − y√

(c/2)2 + (y0 − y)2

]
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Figure 8.3 Velocity induced by the segments of a typical horseshoe element.

For a wing of large aspect ratio, we can neglect (c/2)2 in the square root terms to get

	wb = −	�(y0)

4π [c(y)/2]
[1 + 1]

The result for the complete lifting line (evaluated at y) is obtained by summing the results
for all the horseshoe vortices and is

wb = −�(y)

2π [c(y)/2]
(8.8)

Note that this is identical to the result obtained by applying a locally two-dimensional
lumped-vortex model at each spanwise station, where the downwash wb is measured at the
3/4 chord due to a vortex �(y) placed at the 1/4 chord position (see inset in the left-hand
side of Fig. 8.2).

Next, the downwash due to the wing trailing vortices must be evaluated. Since a change
in the spanwise circulation �(y) is allowed, and since no vortex can begin or end in the flow,
the local change in this circulation is shed into the wake. Thus, the wake is now constructed
from semi-infinite vortex lines with the strength of (d�/dy)dy (Fig. 8.2). Before we proceed
with the solution, the velocity induced by a single, semi-infinite trailing vortex line with
a strength of 	� = −(d�(y0)/dy)dy0 is evaluated (note that for positive 	� on the +y
side of the wing, negative d�/dy is needed). The right-hand-side wake vortex line is
located at a spanwise location y0, as shown in Fig. 8.3, and the downwash induced by this
vortex at the collocation point (c/2, y) is given by the result for a semi-infinite vortex line
from Eq. (2.71). Since for a large aspect ratio wing β1 ≈ π/2, β2 ≈ π (in Fig. 2.15) and
therefore

w(y) = 	�(y0)

4π

1

(y − y0)
(8.9)

which is exactly one half of the velocity induced by an infinite (two-dimensional) vortex of
strength 	�(y0). With the aid of this equation the normal velocity component induced by
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Figure 8.4 Two-dimensional section (in the y = const. plane) of a three-dimensional wing. The angle
of attack α is reduced by the induced downwash of the trailing vortices by αi .

the trailing vortices of the wing becomes

wi = 1

4π

∫ b/2

−b/2

[−d�(y0)/dy] dy0

y − y0
(8.10)

(Note that since the trailing vortices are assumed to lie in the z = 0 plane, their induced
spanwise velocity component is zero from the Biot–Savart law, Eq. (2.68b).) Assuming that
the wing aspect ratio is large (b/c(y) � 1) has allowed us to treat a spanwise station as a
two-dimensional section and to transfer the boundary condition to the local three-quarter
chord. Substituting Eqs. (8.8) and (8.10) into Eq. (8.7) yields

−�(y)

2π [c(y)/2]
− 1

4π

∫ b/2

−b/2

[d�(y0)/dy] dy0

y − y0
+ Q∞α = 0 (8.11)

Dividing Eq. (8.11) by the free-stream speed Q∞ results in

−�(y)

πc(y)Q∞
− 1

4π Q∞

∫ b/2

−b/2

[d�(y0)/dy] dy0

y − y0
+ α = 0 (8.11a)

This is the Prandtl lifting-line integrodifferential equation for the spanwise load distri-
bution �(y). This equation can be viewed as a combination of the angles (as shown in
Fig. 8.4):

−αe − αi + α = 0 (8.12)

where the induced downwash angle is (note that w is positive in the positive z direction)

αi ≈ −wi

Q∞
(8.13)

Equation (8.12) can be rearranged as

αe = α − αi (8.12a)

This means that in the case of the finite wing the effective angle of attack of a wing section
αe (the angle between the modified free-stream velocity q in Fig. 8.4 and the chord) is
smaller than the actual geometric angle of attack α by αi , which is a result of the downwash
induced by the wake.
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It is possible to generalize the result of this equation by assuming that the two-dimensional
section has a local lift slope of m0 and its local effective angle of attack is αe. Now, if camber
effects are to be accounted for too, then this angle is measured from the zero-lift angle of
the section, such that

Cl(y) = ρQ∞�(y)

(1/2)ρQ2∞c(y)
= m0(y)αe(y) (8.14)

Consequently, Eq. (8.12a) becomes

αe = α − αi − αL0 (8.15)

where αL0 is the angle of zero lift due to the section camber (for cambered airfoils, usually
αL0 is a negative number). A more general form of Eq. (8.11a) that allows for section
camber and wing twist α(y) is now

−2�(y)

m0(y)c(y)Q∞
− 1

4π Q∞

∫ b/2

−b/2

[d�(y0)/dy] dy0

y − y0
+ α(y) − αL0(y) = 0 (8.16)

In this equation α(y) is the local angle of attack relative to Q∞ and αL0(y) is the airfoil
section zero-lift angle. If it is assumed that these geometrical quantities are known, then
�(y) becomes the unknown in this equation. Also, at the wing tips the pressure difference
[or the lift ρQ∞�(y = ±b/2)] must reduce to zero, that is,

�

(
y = ±b

2

)
= 0 (8.17)

8.1.3 The Aerodynamic Loads

The solution of Eq. (8.16) will provide the spanwise bound circulation distribution
�(y). To obtain the aerodynamic forces, the two-dimensional Kutta–Joukowski theorem
will be applied (in the y = const. plane). However, because of the wake-induced velocity,
the free-stream vector will be rotated by αi (y), as shown in Fig. 8.5. This angle can be
calculated for a known �(y) by using Eqs. (8.10) and (8.13):

αi = 1

4π Q∞

∫ b/2

−b/2

[d�(y0)/dy] dy0

y − y0
(8.18)

If we assume that αi is small, then cos αi ≈ 1 and sin αi ≈ αi , and the lift of the wing is
given by an integration of the local two-dimensional lift (see Eq. (3.113)) as

Figure 8.5 Tilting of the local (of section y = const.) lift vector by the angle αi induced by the trailing
vortices.
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L = ρQ∞
∫ b/2

−b/2
�(y) dy (8.19)

while the drag force, which is created by turning the two-dimensional lift vector by the
wake-induced flow, becomes

Di = ρQ∞
∫ b/2

−b/2
αi (y)�(y) dy (8.20)

This drag is called induced drag because it is induced by the trailing vortices. This finite
wing’s drag is directly related to the lift and will diminish as the wingspan increases (b → ∞).
Equation (8.20) can also be rewritten in terms of the wake-induced downwash wi :

Di = −ρ

∫ b/2

−b/2
wi (y)�(y) dy (8.20a)

From the engineering point of view, the total drag D of a wing includes the induced drag
Di and the viscous drag D0:

D = Di + D0

For example, the two-dimensional viscous drag of a NACA 0009 section is presented in
Fig. 5.20.

8.1.4 The Elliptic Lift Distribution

The spanwise circulation distribution �(y) for a given planform shape can be
obtained by solving Eq. (8.16). In the particular case of an elliptic distribution of the
circulation, the solution becomes rather simple since the downwash wi becomes constant
along the wing span. Also, as will be shown later, wings having such a spanwise distribution
will have minimum induced drag. The proposed distribution of �(y) is shown in Fig. 8.6
and is

�(y) = �max

[
1 −

(
y

b/2

)2]1/2

(8.21)

This must be substituted into Eq. (8.16) so that the constant �max can be evaluated. For
simplicity, let us first calculate the downwash integral (second term in Eq. (8.16)). The term

Figure 8.6 Elliptic spanwise distribution of the circulation �(y).
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d�(y)/dy is evaluated by differentiating Eq. (8.21):

d�(y)

dy
= �max

2

[
1 −

(
y

b/2

)2]−1/2(
−2

4

b2
y

)

and the downwash wi is obtained by substituting this result into Eq. (8.10):

wi (y) = �max

πb2

∫ b/2

−b/2

[
1 −

(
y0

b/2

)2]−1/2 y0

y − y0
dy0 (8.22)

Note that when y = y0, this integral is singular and therefore must be evaluated based on
Cauchy’s principal value. It is possible to arrive at Glauert’s integral (Eq. (5.22)) by the
transformation

y = b

2
cos θ (8.23)

dy = −b

2
sin θ dθ (8.23a)

and at the wingtips y = −b/2, θ = π and at y = b/2, θ = 0. This reduces Eq. (8.21) to

�(θ ) = �max[1 − cos2 θ ]1/2 = �max sin θ (8.21a)

Substituting Eq. (8.23) into Eq. (8.22) yields

wi = �max

πb2

∫ 0

π

[1 − cos2 θ0]−1/2 (b/2) cos θ0[(−b/2) sin θ0]dθ0

(b/2)(cos θ − cos θ0)

The principal value of this integral can be obtained by using the Glauert integral, Eq. (5.22):

wi = −�max

2πb

∫ π

0

cos θ0 dθ0

(cos θ0 − cos θ )
= −�max

2πb

π sin θ

sin θ

Consequently, wi and αi become

wi = −�max

2b
(8.24)

αi = �max

2bQ∞
(8.24a)

and are constant along the wing span.
Another feature of the elliptic distribution is that the spanwise integral is simply half the

area of an ellipse (with semi-axes �max and b/2):
∫ b/2

−b/2
�(y) dy = π

2
�max

b

2
= πb

4
�max (8.25)

Consequently, the lift and the drag of the wing can be evaluated as

L = ρQ∞
∫ b/2

−b/2
�(y) dy = πb

4
ρQ∞�max (8.26)

Di = ρQ∞
∫ b/2

−b/2
αi�(y) dy = αi L =

(
�max

2bQ∞

)
πb

4
ρQ∞�max = π

8
ρ�2

max (8.27)
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The lift and drag coefficients become

CL ≡ L

(1/2)ρQ2∞S
= π

2

b

S

�max

Q∞
(8.28)

CDi ≡ Di

(1/2)ρQ2∞S
= π

4S

�2
max

Q2∞
= 1

π

S

b2
C2

L (8.29)

Substituting the spanwise downwash (Eq. (8.24)) and the elliptic circulation distribution
(Eq. (8.21)) into Eq. (8.16) yields

−2�max

m0(y)c(y)Q∞

[
1 −

(
y

b/2

)2]1/2

− �max

2bQ∞
+ α(y) − αL0(y) = 0 (8.30)

This equation provides the relation between the local chord c(y) and the local angle of attack
α(y) for the wing with the elliptic circulation distribution. If the chord c(y) has an elliptic
form, too, the constant �max can be easily evaluated. Thus, assume

c(y) = c0

[
1 −

(
y

b/2

)2]1/2

(8.31)

where c0 is the root chord. Substituting Eq. (8.31) into Eq. (8.30) cancels the elliptic variation
and we have

−2�max

m0(y)c0 Q∞
− �max

2bQ∞
+ α(y) − αL0(y) = 0 (8.32)

For an elliptic planform with constant airfoil shape, all terms but α(y) in this equation are
constant, and therefore this wing with an elliptic planform and load distribution is untwisted
(α(y) = α = const.). The value of �max is then

�max = 2bQ∞(α − αL0)

1 + 4b/m0c0
(8.33)

The area S of the elliptic wing is

S = π
c0

2

b

2
(8.34)

Also, it is common to define the wing aspect ratio as

≡ b2

S
(8.35)

Using the and the area S for the elliptic wing and substituting into Eq. (8.33), we obtain

�max = 2bQ∞(α − αL0)

1 + π /m0
(8.33a)

With this expression for �max and using m0 = 2π , the lift coefficient (Eq. (8.28)) becomes

CL = 2π

1 + 2/
(α − αL0) ≡ CLα

(α − αL0) (8.36)

Here CLα
is the three-dimensional wing lift slope and the most important conclusion of this

analysis is that this slope becomes less as the wingspan becomes smaller due to the induced
downwash. This is illustrated by Fig. 8.7, where for a wing with given αL0 the effective
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Figure 8.7 The reduction of lift slope for three-dimensional wings.

angle of attack is reduced by αi according to Eq. (8.15). Consequently, for finite span wings,
more incidence is needed to achieve the same lift coefficient as the wingspan decreases.

The induced drag coefficient is obtained by substituting Eq. (8.35) into Eq. (8.29):

CDi = 1

π
C2

L (8.37)

which indicates that as the wing aspect ratio increases the induced drag becomes smaller.
Also, the induced drag for the finite elliptic wing will increase with a rate of C2

L as shown
in Fig. 8.8.

The lift slope CLα
versus for the elliptic wing (Eq. (8.36)) is shown in Fig. 8.9. The lift

slope of a two-dimensional wing is the largest (2π ) and as the wingspan becomes smaller
CLα

decreases too.
The spanwise loading L ′(y) (lift per unit span) of the elliptic wing is obtained by using

the Kutta–Joukowski theorem:

L ′(y) = ρQ∞�(y) = ρQ∞�max

[
1 −

(
y

b/2

)2]1/2

(8.38)

Figure 8.10 shows an elliptic planform and the spanwise lift distribution L ′(y) that is elliptic
too. As Eq. (8.24) indicated, the downwash of such a wing is constant, and, combined with

Figure 8.8 Lift polar for an elliptic wing.
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Figure 8.9 Variation of lift coefficient slope versus aspect ratio for thin elliptic wings.

the velocity induced by the bound vortex wb, must be equal to the upwash of the free-stream
Q∞α so that the combined normal velocity component is zero, according to Eq. (8.7). (Note
that it is possible to have elliptic loading with other than an elliptic planform, but in that
case, local twist or camber needs to be adjusted so that wi will remain constant.)

The section lift coefficient Cl is defined by using the local chord from Eq. (8.31) and is

Cl ≡ L ′(y)

(1/2)ρQ2∞c(y)
= 2�max

c0 Q∞
= CL

Figure 8.10 Chord and load distribution for a thin elliptic wing. Note that the induced downwash is
constant and combined with the downwash of the bound vortex is equal to the free-stream upwash,
resulting in zero velocity normal to the wing surface (Eq. (8.7)).
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Figure 8.11 Schematic description of the pressure difference and wake vortex distribution of a thin
elliptic wing.

Thus, for the elliptic wing, both section lift coefficient and wing lift coefficient are the same,
that is,

Cl = 2π

1 + 2/
(α − αL0) ≡ Clα (α − αL0) (8.39)

Similarly, the section induced drag coefficient is

Cdi ≡ L ′(y)αi

(1/2)ρQ2∞c(y)
= 1

π

S

b2
C2

l = CDi (8.40)

The strength of the circulation in the wake is simply the spanwise derivative of �(y) (see
Eq. (8.21)),

d�(y)

dy
= −4�max

b2

y√
[1 − (y/(b/2))2]

(8.41)

This spanwise wake vortex strength is shown schematically in Fig. 8.11. It is clear from this
figure that near the wingtips, where |�(y)/dy| is the largest, the wake vortex will be the
strongest. Therefore, owing to the induced velocity at the wake it will roll up, mostly near
the wingtips, to form two concentrated trailing vortices as shown by the flow visualization
in Fig. 8.12. The induced effect of this wake rollup on �(y) is assumed to be negligible in
this model; but this effect can be investigated by the numerical methods of later chapters.

8.1.5 General Spanwise Circulation Distribution

A more general solution for the spanwise circulation �(y) in Eq. (8.16) can be
obtained by describing the unknown distribution in terms of a trigonometric expansion.
Using the spanwise coordinate θ , as defined in Eq. (8.23), we select the following Fourier
expansion:

�(θ ) = 2bQ∞
∞∑

n=1

An sin nθ (8.42)

The shapes of the first three symmetric terms in this expansion are shown schematically in
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Figure 8.12 Flow visualization of the rollup of the trailing vortices behind an airplane (wing tip
vortices made visible by ejecting smoke at the wing tips of a Boeing 727 airplane). (Courtesy of
NASA.)

Fig. 8.13, and all terms fulfill Eq. (8.17) at the wingtips:

�(0) = �(π ) = 0 (8.43)

Substituting �(θ ) and d�(θ )/dy into Eq. (8.16) yields

−4b

m0(θ )c(θ )

∞∑
n=1

An sin nθ

+ −b

2π

∫ 0

π

∞∑
n=1

Ann cos nθ0[1/(−b/2) sin θ0][(−b/2) sin θ0dθ0]

(b/2)(cos θ − cos θ0)

+ α(θ ) − αL0(θ ) = −4b

m0(θ )c(θ )

∞∑
n=1

An sin nθ − 1

π

∫ π

0

∞∑
n=1

n An cos nθ0 dθ0

cos θ0 − cos θ

+ α(θ ) − αL0(θ ) = 0 (8.44)

Using Glauert’s integral (Eq. (5.22)) for the second term gives us

−4b

m0(θ )c(θ )

∞∑
n=1

An sin nθ −
∞∑

n=1

n An
sin nθ

sin θ
+ α(θ ) − αL0(θ ) = 0 (8.44a)

Comparing this result with Eq. (8.16) indicates that the first term is −αe and the second
term is −αi :

αi (θ ) =
∞∑

n=1

n An
sin nθ

sin θ
(8.45)
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Figure 8.13 Sine series representation of symmetric spanwise circulation distribution �(θ ), n =
1, 3, 5.

Therefore, the section lift and drag coefficients can be readily obtained:

Cl = ρQ∞�(θ )

(1/2)ρQ2∞c(θ )
= 4b

c(θ )

∞∑
n=1

An sin nθ (8.46)

Cdi = Clαi = 4b

c(θ )

∞∑
n=1

An sin nθ

( ∞∑
k=1

k Ak
sin kθ

sin θ

)
(8.47)

The wing aerodynamic coefficients are obtained by the spanwise integration of these
section coefficients:

CL =
∫ b/2

−b/2

Cl(y)c(y) dy

S
= 4b

S

∫ π

0

∞∑
n=1

An sin nθ
b

2
sin θ dθ (8.48)

CDi =
∫ b/2

−b/2

Cdi (y)c(y) dy

S
= 2b2

S

∫ π

0

∞∑
n=1

∞∑
k=1

k Ak An sin kθ sin nθ dθ (8.49)

Recall that∫ π

0
sin nθ sin kθ dθ =

(
0 for n 
=k

π/2 for n = k

)
(8.50)

and for the lift integral only the first term will appear. The lift coefficient becomes

CL = πb2 A1

S
= π A1 (8.51)

For the drag, only the terms where n = k will be left:

CDi = πb2

S

∞∑
n=1

n A2
n = π

∞∑
n=1

n A2
n (8.52)

Using the results for the lift, we can rewrite this as

CDi = π2 2 A2
1

π

[
1 +

∞∑
n=2

n A2
n

A2
1

]
= C2

L

π

[
1 +

∞∑
n=2

n A2
n

A2
1

]
= (CDi )elliptic(1 + δ1)

(8.53)
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where δ1 includes the higher order terms for n = 2, 3, . . . (only the odd terms are considered
for a symmetric load distribution). This clearly indicates that for a given wing aspect ratio,
the elliptic wing will have the lowest drag coefficient since for a generic wing planform
δ1 ≥ 0 and for the elliptic wing δ1 = 0.

Similarly, the lift coefficient for the general spanwise loading can be formulated as

CL = π A1 = m
(
α − αL0

)
(8.54)

Assume that the wing is untwisted and therefore α − αL0 = const. Following Glauert
(Ref. 5.2, p. 142) we define an equivalent two-dimensional wing that has the same lift
coefficient CL . This wing is now set at an angle of attack α∗ − αL0 such that

CL = 2π
(
α∗ − αL0

)
(8.55)

The difference between these two cases is due to the wake-induced angle of attack, which
is obtained from these two equations:

(
α − αL0

) − (
α∗ − αL0

) = CL

[
1

m
− 1

2π

]
≡ CL

π
(1 + δ2) (8.56)

and

1 + δ2 = π

[
α − αL0

π A1
− 1

2π

]

where δ2 > 0. Taking A1 from this relation and substituting into Eq. (8.51) results in

CL = 2π (α − αL0)

1 + (2/ )(1 + δ2)
(8.57)

Thus, for the elliptic wing δ2 = 0 and also its lift coefficient is higher than for wings with
other spanwise load distributions.

8.1.6 Twisted Elliptic Wing

The spanwise loading of wings can be varied by introducing twist to the wing
planform. To illustrate the effects of twist, consider a wing with an elliptic chord distribution.
For this purpose let us rearrange Eq. (8.44a) such that

∞∑
n=1

An sin nθ

[
4b

m0(θ )c(θ )
+ n

sin θ

]
= α(θ ) − αL0(θ ) (8.58)

This is the governing equation for the coefficients for the circulation distribution for
the general case that is described using lifting-line theory. Section 8.1.4 presents an exact
solution for an untwisted elliptic planform wing (elliptic loading), but solutions for other
cases must be obtained numerically using techniques that will be described in later sections.
It is of interest to study the effect of wing twist on the solution for a particular geometry
(geometric twist occurs for a spanwise variation of angle of attack and aerodynamic twist
occurs for a spanwise variation of the zero-lift angle ).

Filotas8.1 has found a closed-form solution for a wing with an elliptic planform and
arbitrary twist and that solution will be presented in what follows. Consider an elliptic
chord distribution as given in Eq. (8.31):

c = c0 sin θ (8.59)
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and for simplicity let m0 = 2π . Then Eq. (8.58) becomes

∞∑
n=1

An sin nθ

[
2

+ n

]
= [α(θ ) − αL0(θ )] sin θ

where the aspect ratio of the elliptic wing is = 4b/πc0. Note that the above equation is
a Fourier series representation for the right-hand side whose coefficients are given by

An = 2

π

1

/2 + n

∫ π

0
[α(θ ) − αL0(θ )] sin θ sin nθ dθ (8.60)

To find the wing lift coefficient, the coefficient A1 is obtained as

A1 = 2

π

1

/2 + 1

∫ π

0
[α(θ ) − αL0(θ )] sin2 θ dθ

= 4

π

1

+ 2

∫ π

0
[α(θ ) − αL0(θ )] sin2 θ dθ

and the lift is obtained by using Eq. (8.51):

CL = 4

+ 2

∫ π

0
[α(θ ) − αL0(θ )] sin2 θ dθ (8.61)

Example:

As an example consider a wing with a linear twist where

α(y) = α ± α0

∣∣∣∣ y

b/2

∣∣∣∣ = α ± α0| cos θ |

The effect of the twist can be analyzed by taking the variable part of α(y) only,
and adding the contribution of the constant angle of attack later. Therefore, let

α(y) = α0| cos θ |
and use Eq. (8.60) to compute the coefficients An as

An

α0
= 4

π

1

/2 + n

∫ π/2

0
cos θ sin θ sin nθ dθ

= 2

π

1

/2 + n

∫ π/2

0
sin 2θ sin nθ dθ

= 2

π

1

/2 + n

[
sin(n − 2)θ

2(n − 2)
− sin(n + 2)θ

2(n + 2)

]∣∣∣∣
π/2

0

= 1

π

1

/2 + n

[
sin(n − 2)π/2

(n − 2)
− sin(n + 2)π/2

(n + 2)

]

Evaluating the individual coefficients for a wing with = 6 and for a twist of α =
α0| cos θ | and substituting into Eq. (8.42) yields

�(θ ) = 2bQ∞α0

π

[
1

3
sin θ + 1

5
sin 3θ − 1

42
sin 5θ + 2

225
sin 7θ − · · ·

]
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Figure 8.14 Effect of wing twist on the spanwise loading of an elliptic wing.

For a twist of α = α0(−| cos θ |), the circulation is

�(θ ) = 2bQ∞α0

π

[
−1

3
sin θ − 1

5
sin 3θ + 1

42
sin 5θ − 2

225
sin 7θ − · · ·

]

These results, combined with an additional constant angle of attack α are plotted schemat-
ically in Fig. 8.14, which shows that having a larger angle of attack at the tip will increase
the load there. Similarly, larger angles of attack near the wing root will increase the loading
there.

8.1.7 Conclusions from Lifting-Line Theory

The most important result of the lifting-line theory is its ability to establish the
effect of wing aspect ratio on the lift slope and induced drag. Some of the more important
conclusions are:

1. The wing lift slope dCL/dα decreases as wing aspect ratio becomes smaller
(as shown by Eq. (8.36) for an elliptic wing and by Eq. (8.57) for a wing with
general spanwise circulation).

2. The induced drag of a wing increases as wing aspect ratio decreases (as shown by
Eq. (8.37) for an elliptic wing and by Eq. (8.53) for a wing with general spanwise
circulation).

3. A wing with elliptic loading will have the lowest induced drag and the highest lift,
as indicated by Eqs. (8.53) and (8.57).

4. This theory also provides valuable information about the wing’s spanwise loading
and about the existence of the trailing vortex wake.

5. The theory is limited to small disturbances and large aspect ratio and, for example,
Eq. (8.6), which requires that the wake be aligned with the local velocity, was not
addressed at all (because of the small angle of attack assumption).

6. There are possible modifications to this theory, such as the addition of wing sweep
(e.g., Weissinger8.2). However, the study of wings with more complex geometry is
difficult with this model whereas some of the more refined methods (introduced
in the following chapters) are clearly more capable in dealing with this problem.

7. Using the results of this theory we must remember that the drag of a wing includes
the induced drag portion (predicted by this model) plus the viscous drag, which
must be taken into account.
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Figure 8.15 Nomenclature for slender, thin, pointed wing.

8.2 Slender Wing Theory

In this chapter three-dimensional solutions that rely on the small disturbance ap-
proximation are presented. By assuming that the wing is long and narrow ( 
 1), and that
its angle of attack is small, the special case of slender-wing theory can be developed.

8.2.1 Definition of the Problem

Consider the slender wing of Fig. 8.15 with a span b(x) and root chord c, where
both the wing camberline η and its angle of attack are small, that is

tan α 
 1 and
η

c

 1

and we consider wings with no spanwise camber (∂η/∂y = 0). The flow is assumed to be
potential and therefore the equation for the perturbation velocity potential is

∇2� = 0 (8.62)

which must be solved together with the boundary condition requiring no flow across the
wing solid surface. This will be approximated at z = 0 for this case of small angle of attack
and the z component of the total velocity w∗(x, y, 0±) must be zero:

w∗(x, y, 0±) = ∂�

∂z
(x, y, 0±) − Q∞

(
∂η

∂x
− α

)
= 0 (8.63)

To solve this problem, we seek singularity elements that create antisymmetry (pressure
jump) in the z direction. The doublet solution based on the ∂/∂z derivative (see Eq. (3.36))
is the most suitable and it is developed for the general lifting surface in Section 4.5. By
distributing these doublet elements over the surface of the wing, we obtain the following
integral equation (Eq. (4.45)) for the boundary condition of zero normal flow:

1

4π

∫
wing + wake

μ(x0, y0)

(y − y0)2

[
1 + (x − x0)√

(x − x0)2 + (y − y0)2

]
dx0 dy0

− Q∞

(
∂η

∂x
− α

)
= 0 (8.64)

This integral is singular and its principal value must be evaluated. However, before pro-
ceeding further, the slender wing assumption allows us to make some simplifications. Since
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Figure 8.16 Streamlines of the crossflow as viewed in the x = const. plane.

for the slender wing x � y, z we can assume that the derivatives are inversely affected:

∂

∂x

 ∂

∂y
,

∂

∂z
(8.65)

Substituting this into the continuity equation (Eq. 8.62) allows us to consider the first term
as negligible, compared to the other derivatives:

∇2� ≈ ∂2�

∂y2
+ ∂2�

∂z2
= 0 (8.66)

This can be interpreted such that the cross-flow effect is dominant, and for any x = const.
plane a local two-dimensional solution is sufficient. This is described schematically in
Fig. 8.16. Also, for small-disturbance compressible flow (see Section 4.8), this implies
that the Mach number dependency is lost and these solutions are applicable to supersonic
potential flows as well.

Since the flowfield is now sought in the two-dimensional plane (x = const.), the angle
of attack and camber effects can be included in a local angle of attack α(x) such that

α(x) ≈ α − ∂η

∂x

If we recall the slenderness assumption that

|x − x0| � |y − y0|
the kernel in the integral of Eq. (8.64) becomes[

1 + (x − x0)√
(x − x0)2 + (y − y0)2

]
≈

(
2 for x > x0

0 for x < x0

)
(8.67)

The physical interpretation of this result is that portions of the wing ahead of a given x section
(x > x0) will have influence on the wing, whereas the influence of wing sections and the
flowfield behind this x section (x < x0) is negligible – thus the effect of the trailing wake
for slender wings is small! Substituting this result into the boundary condition (Eq. (8.64)),
and recalling that on the wing z = 0, we can reduce Eq. (8.64) to

1

2π

∫ b(x)/2

−b(x)/2

μ(x, y0)

(y − y0)2
dy0 = −Q∞α(x) (8.68)
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which must be solved for any x = const. wing station with local span b(x). Note that
by selecting the doublet distribution in the two-dimensional cross section, this boundary
condition can be independently derived by integrating the two-dimensional doublet induced
velocity (Section 3.14).

8.2.2 Solution of the Flow over Slender Pointed Wings

The integral equation (Eq. (8.68)) for the unknown doublet strength contains a
strong singularity at y = y0 (see Appendix C for a discussion of the principal value of this
integral). Recalling the results of Section 3.14 that a doublet distribution can be replaced
by an equivalent vortex distribution [e.g., dμ(y)/dy = −γ (y)] allows us to use some of
the results of thin-airfoil theory for the crossflow plane solution when the vortex distribu-
tion is used instead. The proposed vortex distribution consists of horseshoe-type vortices
distributed continuously over the wing. This vortex model is described schematically in the
right-hand side of Fig. 8.17, where for the purpose of illustration, discrete horseshoe ele-
ments are used instead of the continuous distribution. At any x = const. section the trailing
vortices form a two-dimensional vortex distribution of circulation per length γ (y) along the
strip −b(x)/2 < y < b(x)/2, z = 0 as shown in Fig. 8.18. Note that in the cross-flow plane,
owing to left/right symmetry, the total circulation is zero, and the lift is generated by the
spanwise segments of the horseshoe vortices (as shown in the left-hand side of Fig. 8.17).
The perturbation velocity potential for this two-dimensional cross-flow (modeled by the
vortex distribution shown in Fig. 8.18, and formulated in Section 3.14) at any x station is

� = 1

2π

∫ b(x)/2

−b(x)/2
γ (y0) tan−1 z

(y − y0)
dy0 (8.69)

Figure 8.17 Horseshoe model for the slender, thin, pointed wing.



P1: FNT

CB329-08 CB329/Katz September 13, 2000 17:6 Char Count= 0

8.2 Slender Wing Theory 187

Figure 8.18 Vortex distribution in the crossflow (x = const.) plane.

Observe that the positive vorticity vector in the y–z plane points in the positive x direction,
as shown in Fig. 8.18. The velocity components in the x = const. plane, due to this velocity
potential, are

v(x, y, 0±) = ∂�

∂y
= ∓γ (y)

2
(8.70)

w(x, y, 0±) = ∂�

∂z
= 1

2π

∫ b(x)/2

−b(x)/2
γ (y0)

dy0

(y − y0)
(8.71)

Because of the slender-wing assumption, only the local trailing vortex distribution (parallel
to the x axis) will affect the near field downwash. By substituting this vortex distribution
induced downwash into the wing boundary condition, Eq. (8.63) becomes

1

2π

∫ b(x)/2

−b(x)/2
γ (y0)

dy0

(y − y0)
= −Q∞α(x) (8.72)

Comparing this form of the boundary condition with the formulation for high aspect ratio
wings (Eq. (8.11)) clearly indicates that because the slender-wing assumption was used the
effect of the spanwise vortices was neglected.

The solution for the vortex distribution, at each x station, is reduced now to the solution
of this equation for γ (y) with the additional condition that

∫ b(x)/2

−b(x)/2
γ (y) dy = 0 (8.73)

Because of the similarity between this integral equation (Eq. (8.72)) and the lifting-line
equation (see Eqs. (8.10) and (8.11)), a solution of similar form is proposed. Let the spanwise
circulation �(x, y), at each x section, be an elliptic distribution as in Eq. (8.21):

�(x, y) ≡ �(y) = �max

[
1 −

(
y

b(x)/2

)2]1/2

(8.74)

The physical meaning of this circulation is best described by observing the horseshoe vortex
structure shown in Fig. 8.17, where the downwash induced by the spanwise segments of
the horseshoe vortices ahead of this x station is neglected when evaluating the boundary
conditions. Then if the total circulation ahead of an x = const. chordwise station is replaced
by a single spanwise vortex line, as shown in the left side of Fig. 8.17, then its strength will
be �(y).
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The spanwise distribution of the trailing vortices (shown in Fig. 8.18) is obtained by
differentiating with respect to y (as in Eq. (8.41)):

γ (y) = −d�(y)

dy
= 4�max

b(x)2

y√
[1 − (y/b(x)/2)2]

(8.75)

Substitution into the integral equation, Eq. (8.72), results in

1

2π

∫ b(x)/2

−b(x)/2

4�max

b(x)2

y0√
[1 − (y0/b(x)/2)2]

dy0

(y − y0)
= −Q∞α(x) (8.76)

But this integral has already been evaluated in this chapter (see Eq. (8.22)) and resulted in
a constant spanwise downwash. With the use of the results of Eqs. (8.22) and (8.24) the
spanwise integration yields

∫ b(x)/2

−b(x)/2

y0√
[1 − (y0/b(x)/2)2]

dy0

(y − y0)
= −πb(x)

2
(8.77)

and Eq. (8.76) becomes

�max

b(x)
= Q∞α(x) (8.78)

which shows that the spanwise induced downwash due to an elliptic circulation distribution
is constant and independent of y. The value of �max is easily evaluated now and is

�max = b(x)Q∞α(x) (8.79)

To establish the relation between the velocity potential and � consider a path of integration
along the local y axis (for a x = const. section),

�(x, y, 0±) =
∫ y

−b(x)/2

∓γ (y)

2
dy = ±�(y)

2

where the integration starts at the left leading edge of the x = const. station and the integra-
tion path is above (0+) or under (0−) the wing. Therefore, the potential jump (��) across
the wing and the lift of the wing portion ahead of this x station (ρQ∞�(y)) are elliptic too
and we have

��(x = const., y) = �(x, y, 0+) − �(x, y, 0−) = 2�(x, y, 0+)

= �(x = const., y) ≡ �(y) (8.80)

as shown in Fig. 8.19. Note that the local �(y) is equivalent to the sum of all the spanwise
bound vortex segments of the horseshoe elements ahead of it (see left side of Fig. 8.17) and
therefore is equivalent to the lift of the wing portion ahead of this x station.

Substituting γ (y) and �max into Eqs. (8.69)–(8.71), we can obtain the crossflow potential
and its derivatives:

�(x, y, 0±) = ±Q∞α(x)
b(x)

2

√
1 −

(
y

b(x)/2

)2

= ±Q∞α(x)

√[
b(x)

2

]2

− y2

(8.81)

u(x, y, 0±) = ∂�

∂x
(x, y, 0±) = ±Q∞

∂

∂x

{
α(x)

√[
b(x)

2

]2

− y2

}
(8.82)
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Figure 8.19 Elliptic spanwise loading of the slender thin wing.

This differentiation can be executed only if wing planform shape b(x) and angle of attack
α(x) are known. The spanwise velocity component is

v(x, y, 0±) = ∂�

∂y
(x, y, 0±) = ∓γ (y)

2
= ∓ Q∞yα(x)√

[b(x)/2]2 − y2
(8.83)

(Note that this result for γ (y) can also be obtained by a direct inversion of the integral equa-
tion (Eq. (8.72)), which is identical to the integral equation of thin-airfoil theory (Eq. (5.39))
with the camber term deleted. This inversion is given in Eq. (7.18) where the circulation is set
equal to zero and γ = 2u1L .) Based on the boundary conditions stated in Eqs. (8.71)–(8.72)
the downwash on the wing is

w(x, y, 0±) = ∂�

∂z
(x, y, 0±) = −Q∞α(x) (8.84)

The aerodynamic loads will be computed with the use of the linearized Bernoulli equation
(Eq. (4.52)). The pressure jump across the wing is given by

�p = p(x, y, 0−) − p(x, y, 0+) = ρQ∞
∂

∂x
�� (8.85)

and this pressure difference across the wing is then

�p = ρQ∞
∂

∂x
�� = 2ρQ2

∞
∂

∂x

{
α(x)

√[
b(x)

2

]2

− y2

}

= ρQ2
∞

∂

∂x

{
α(x)b(x)

[
1 −

(
y

b(x)/2

)2]1/2
}

(8.86)

For example, let us assume that the wing’s angle of attack is constant α(x) = α and for this
case the pressure difference becomes

�p(x, y) = ρ

2
Q2

∞α
b(x)db(x)/dx√
[b(x)/2]2 − y2

(8.87)
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Figure 8.20 Spanwise pressure difference distribution of the slender wing at an x = const. plane.

This spanwise pressure distribution is plotted in Fig. 8.20, and for a delta wing with straight
leading edges, the pressure is plotted in Fig. 8.21. It is clear from these figures that this
solution has an infinite suction peak along the wing leading edges. It seems as if the trailing
edges of a high aspect ratio wing (while being swept backward) were folded into the root-
chord and they are not visible, and consequently the lowest �p at each x station is at the
center chord. Also, since the trailing edge is not visible, the Kutta condition is not fulfilled
along the “real trailing edge,” which resembles the side edges of this imaginary high aspect
ratio wing.

The longitudinal wing loading is obtained by an integration of the spanwise pressure
difference. This may be simplified by recalling the approach used for Eq. (8.25), indicating

Figure 8.21 Pressure difference distribution on a slender delta wing.
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that the following integral is equal to half the area of the corresponding ellipse:
∫ b(x)/2

−b(x)/2

[
1 −

(
y

b(x)/2

)2]1/2

dy = πb(x)

4
(8.88)

Using this result for the spanwise integration we get

d L

dx
=

∫ b(x)/2

−b(x)/2
�p dy = ρQ2

∞
∂

∂x

{
α(x)b(x)

∫ b(x)/2

−b(x)/2

[
1 −

(
y

b(x)/2

)2]1/2

dy

}

= πρQ2
∞

4

∂

∂x
[α(x)b(x)2] (8.89)

The interesting conclusion from this equation is that if there is no change either in α(x)
or in b(x), there will be no lift due to this section. Also, for a wing with linear b(x) (delta
wing) and constant α the longitudinal loading is linear too.

The lift of the wing from the tip to a section x is obtained by integrating dL/dx along x :

L(x) =
∫ x

0

dL

dx
dx = π

4
ρQ2

∞[α(x)b(x)2] (8.90)

This means that the lift of the wing up to a given x station depends on the local α(x), b(x),
and db(x)/dx only. For the complete wing, therefore, it is a function of its maximum span
b and α (at this chordwise station):

L = π

4
ρQ2

∞αb2 (8.91)

When the wing extends behind its maximum span (and the slope db(x)/dx is negative) the
contribution to the lift due to this portion is excluded by this model. Therefore, by using
the maximum span in Eq. (8.91) the difficulties for wings having negative db(x)/dx near
the trailing edge are avoided.

The spanwise loading, at any x station, is obtained in a similar manner:

dL

dy
= ρQ∞�(y) = ρQ2

∞b(x)α(x)

{
1 −

[
y

b(x)/2

]2}1/2

(8.92)

which is an elliptic spanwise load distribution, as shown in Fig. 8.19. The lift up to any
section x can be obtained by the integration of the spanwise loading, as well:

L(x) =
∫ b/2

−b/2

dL

dy
dy = π

4
ρQ2

∞[α(x)b(x)2] (8.93)

The lift coefficient is obtained by using Eq. (8.91),

CL = π

2

b2

S
α = π

2
α (8.94)

and the induced drag coefficient (using Eq. (8.29)) for this elliptic distribution is

CDi = 1

π

S

b2
C2

L = CL
α

2
(8.95)

If the drag force is a result of the pressure distribution only then its magnitude is expected
to be CLα, but this result of Eq. (8.95) indicates that the “leading-edge suction” is reducing
the drag by a factor of two. This can be shown by observing the suction force acting along
the leading edges, as shown schematically in Figure 8.16, which is a result of the rapid
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turning of the flow at this point. The magnitude of this force was calculated in Section 6.5.3
(Eq. (6.52)) and is positive along the right leading edge,

Fy = πρb(x)

4
(Q∞α)2

and negative along the left leading edge (here, for simplicity, α(x) = α was assumed). Since
this force acts on both leading edges of the wing no net sideforce is created; however, these
forces will have a forward pointing component of magnitude Ts :

Ts = −2
∫ c

0
Fy

d(b(x)/2)

dx
dx = −π

4
ρQ2

∞α2
∫ c

0
b(x)

db(x)

dx
dx

= −π

4
ρQ2

∞α2 b2

2
= −L

α

2

Consequently the drag force is the pressure difference integral Lα minus the leading edge
thrust Lα/2 and is equal to only one half of Lα, as obtained in Eq. (8.95).

The pitching moment about the apex of the wing is

M0 = −
∫ c

0

dL

dx
x dx = −π

4
ρQ2

∞

∫ c

0
x

d

dx
[α(x)b(x)2] dx (8.96)

Again, to evaluate this integral, the angle of attack and span variation with x are needed.
As an example, consider a flat triangular delta wing with a constant angle of attack α where
the trailing edge span is bT.E., that is,

b(x) = bT.E.

x

c

Substituting this into Eq. (8.96) gives

M0 = −π

4
ρQ2

∞

∫ c

0
x

d

dx

[
α

x2

c2
b2

T.E.

]
dx = −π

4
ρQ2

∞αb2
T.E.

2c

3
= −L

2c

3
(8.97)

and the center of pressure is at the center of the area,

xcp

c
= − M0

Lc
= 2

3
(8.98)

8.2.3 The Method of R. T. Jones8.3

The results of slender wing theory were obtained by R. T. Jones in a rather sim-
ple and elegant manner in 1945. Here we shall follow some of the basic ideas of his
method.

First, let us examine the flowfield due to a slender pointed wing in the cross-flow plane
(as shown in Fig. 8.22). This plane of observation is fixed to a nonmoving frame of reference,
and as the wing moves across it, its momentary cross section increases. Since the flow is
attached to the wing, the flowfield in this two-dimensional observation plane is similar to
the case of a flow normal to a flat plate (see Fig. 8.23). The velocity potential difference
across the plate for this flow, as was shown earlier (Section 6.5.3), is

�� = bw

√
1 −

(
y

b/2

)2

(8.99)

where b is the span of the plate and w is the normal velocity component (in this case
w(x) = Q∞α(x)). However, this two-dimensional flow will not result in any forces because
of the symmetry between the upper and lower streamlines. The only way to generate force,
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Figure 8.22 A slender wing moving across a stationary plane.

in this situation (with zero net circulation), is to create a change with time (e.g., due to
the ρ(∂�/∂t) term in the unsteady Bernoulli equation, Eq. (2.35)). Consequently, the R.
T. Jones model suggests that the lift will be generated only if the fluid particles will be
accelerated, relative to a “ground-fixed” observer.

To demonstrate this principle, consider the two-dimensional plate of Fig. 8.24, as it is
being accelerated downward (causing an upwash w). The resulting force per unit length �x
will be

�L

�x
= ρ

∂

∂t

∫ b/2

−b/2
�� dy = ρ

∂

∂t

∫ b/2

−b/2
bw

√
1 −

(
y

b/2

)2

dy

= ρ
∂

∂t

[
wb2 π

4

]
(8.100)

This result can be viewed as the “added mass” of the fluid that is being accelerated by
the accelerating plate. Following Newton’s second law we can calculate the force due to
accelerating fluid with added mass m ′ by a massless plate as

�L

�x
= d(m ′w)

dt

Comparing this formulation with Eq. (8.100) we see that the added mass becomes

m ′ = ρb2 π

4
(8.101)

which is equivalent to the mass of a fluid cylinder with a diameter of b.
Now, after establishing the added mass approach it is possible to follow the method of

R.T. Jones for the slender pointed wing. The lift on the segment of the slender wing that is
passing across the plane of observation in Fig. 8.22 will be due to accelerating the added

Figure 8.23 Schematic description of the cross-flow streamlines.
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Figure 8.24 Two-dimensional flow resulting from the downward motion of a two-dimensional flat
plate.

mass of the fluid:

�L

�x
= d(m ′w)

dt
= d(m ′w)

dx

dx

dt
= Q2

∞α(x)
dm ′

dx

where w(x) = Q∞α(x), dα(x)/dx is negligible, and dx/dt = Q∞. Substituting the added
mass m ′ from Eq. (8.101) yields

�L

�x
= ρQ2

∞α(x)
π

4

db(x)2

dx
= ρQ2

∞α(x)
π

2
b(x)

db(x)

dx
(8.102)

This equation is equivalent to Eq. (8.89) and again states that there will be no lift if b(x) is
constant with x .

To obtain the lift, drag, and pitching moment, Eq. (8.102) is integrated, and this yields
the same results as presented in the previous section.

8.2.4 Conclusions from Slender Wing Theory

The slender wing solution presented here is based on the small-disturbance assump-
tion, which automatically restricts the range of wing angle of attack. But in this particular
case of slender wings, the incidence range is more limited than for high aspect ratio lifting
wings because of flow separation along the leading edges. This effect will be discussed in
Chapter 15, and in general, these leading-edge separated flow patterns will begin at angles
of attack of 5◦–10◦ (depending on leading-edge radius).

The main importance of this slender wing theory is that it provides a three-dimensional
solution for the limiting case of very small aspect ratio wings. These results can serve as
test cases for more complex panel codes, within the limit of small incidence angles.

The slenderness assumption, where one coordinate is larger than the other two, allowed
the local treatment of the two-dimensional cross-flow. This logic can be carried over to more
advanced methods and also for treating supersonic potential flows. This becomes clear when
examining Eq. (4.73), where by omitting the x derivatives, the Mach number dependency
is lost too.
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Figure 8.25 Nomenclature used for slender body theory.

The wake influence in this analysis was assumed to be small (negligible), which is, again,
a good test case for more advanced panel codes.

8.3 Slender Body Theory

As a final example of classical small-disturbance theories, consider the flow past
a slender body of revolution at a small angle of attack α, as shown in Fig. 8.25. It is
convenient to use the cylindrical coordinates x , r , θ and then the surface of the slender body
of revolution is given as

F ≡ r − R(x) = 0 (8.103)

If the length of the body is l, slenderness means that the ratio of body radius R(x) to length
is small and, for small disturbances, the angle of attack α is small as well, that is,

R(x)

l
� 1, α � 1,

∣∣∣∣dR(x)

dx

∣∣∣∣ � 1 (8.104)

Laplace’s equation for the perturbation potential (in cylindrical coordinates) is given by
Eq. (1.33) as

∇2� = ∂2�

∂x2
+ ∂2�

∂r2
+ 1

r

∂�

∂r
+ 1

r2

∂2�

∂θ2
= 0 (8.105)

where r = [y2 + z2]
1
2 .

In this coordinate system the free-stream velocity is

Q∞ = U∞ex + W∞ez = Q∞[cos αex + sin α(sin θer + cos θeθ )]

≈ Q∞[ex + α(sin θer + cos θeθ )] (8.106)

Following the method of Section 4.2, the zero normal velocity component boundary
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condition on the body surface is given by ∇�∗ · ∇F = 0, which yields:

∂�

∂r
+ Q∞α sin θ −

[
∂�

∂x
+ Q∞

]
dR(x)

dx
= 0 for r = R(x) (8.107)

The small-disturbance version of this boundary condition is obtained after neglecting the
smaller terms (according to Eq. (8.104)):

∂�

∂r
(x, R, θ ) = Q∞ R′(x) − Q∞α sin θ (8.108)

where R′(x) ≡ dR(x)/dx and it is noted that the boundary condition has not been transferred
to the body axis. The reason for this is that the velocity components of this flow are singular
at the axis and the application of the boundary condition must be performed with care.

At this point it can be seen that the small-disturbance flow past a slender body of revo-
lution at angle of attack can be replaced by two component flows, the axisymmetric flow
past the body at zero angle of attack with body boundary condition

∂�

∂r
(x, R, θ ) = Q∞ R′(x) (8.108a)

and the flow normal to the body axis with free-stream speed Q∞α and body boundary
condition

∂�

∂r
(x, R, θ ) = −Q∞α sin θ (8.108b)

In the next two sections these two linear subproblems will be formulated; the complete
solution is their sum.

8.3.1 Axisymmetric Longitudinal Flow Past a Slender Body of Revolution

The axisymmetric version of Laplace’s equation (Eq. (8.105)) is

∂2�

∂x2
+ ∂2�

∂r2
+ 1

r

∂�

∂r
= 0 (8.109)

and the body boundary condition is given by Eq. (8.108a). The solution is modeled by a dis-
tribution of sources of strength σ (x) per length along the body axis on the strip 0 ≤ x ≤ l,
z = 0 (Fig. 8.26), and the problem is essentially the axisymmetric version of the two-
dimensional thin-airfoil problem. The perturbation velocity potential and velocity compo-
nents for this distribution are obtained by integrating the equations of the point source (see

Figure 8.26 Source distribution along the x axis.
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Figure 8.27 Cross-sectional view of the source distribution.

Section 3.4) along the x axis:

�(r, x) = −1

4π

∫ l

0

σ (x0) dx0√
(x − x0)2 + r2

(8.110)

qr (r, x) = ∂�

∂r
= 1

4π

∫ l

0

σ (x0)r dx0

[(x − x0)2 + r2]3/2
(8.111)

qx (r, x) = ∂�

∂x
= 1

4π

∫ l

0

σ (x0)(x − x0) dx0

[(x − x0)2 + r2]3/2
(8.112)

To satisfy the body boundary condition (Eq. (8.108a)), which states that the flow is
tangent to the surface,

qr

Q∞
= R′(x) at r = R

we use the slenderness arguments developed in slender wing theory and consider a mass
balance in the cross-flow plane (see Fig. 8.27). Surround the body axis with a circle of
radius r . The volume flow (per unit length, �x) through this circle is equal to the source
strength

σ (x) = 2πrqr (8.113)

If Eq. (8.113) is evaluated at r = R and the boundary condition of Eq. (8.108a) is used, the
source strength is found to be

σ (x) = 2πRQ∞
dR

dx
= Q∞

dS(x)

dx
(8.114)

where S(x) is the body cross-sectional area. The potential and velocity components are then
found by substituting σ (x) into Eqs. (8.110)–(8.112):

�(r, x) = −Q∞
4π

∫ l

0

S′(x0) dx0√
(x − x0)2 + r2

(8.115)

qr (r, x) = ∂�

∂r
= Q∞

4π

∫ l

0

S′(x0)r dx0

[(x − x0)2 + r2]3/2
(8.116)

qx (r, x) = ∂�

∂x
= Q∞

4π

∫ l

0

S′(x0)(x − x0) dx0

[(x − x0)2 + r2]3/2
(8.117)
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8.3.2 Transverse Flow Past a Slender Body of Revolution

The governing equation for the perturbation velocity potential is Laplace’s equation
(Eq. (8.105))

∂2�

∂x2
+ ∂2�

∂r2
+ 1

r

∂�

∂r
+ 1

r2

∂2�

∂θ2
= 0 (8.105)

and the body boundary condition is given by Eq. (8.108b),

∂�

∂r
(x, R, θ ) = −Q∞α sin θ (8.108b)

The two-dimensional flow (in the y–z plane) of this problem resembles the flow past a cylin-
der, which was solved in Section 3.11. Therefore, the solution to this problem is modeled
by a distribution of doublets of strength μ(x) per length on the strip 0 ≤ x ≤ l, z = 0. The
doublet axes point in the negative z direction opposing the stream. The velocity potential
and velocity components are given by integration of the point elements (see Section 3.5)
along the body’s length:

�(r, θ, x) = 1

4π

∫ l

0

μ(x0)r sin θ dx0

[(x − x0)2 + r2]3/2
(8.118)

qr (r, θ, x) = ∂�

∂r
= 1

4π

∫ l

0

μ(x0) sin θ dx0

[(x − x0)2 + r2]3/2
− 3

4π

∫ l

0

μ(x0) sin θr2 dx0

[(x − x0)2 + r2]5/2

(8.119)

qθ (r, θ, x) = 1

r

∂�

∂θ
= 1

4π

∫ l

0

μ(x0) cos θ dx0

[(x − x0)2 + r2]3/2
(8.120)

qx (r, θ, x) = ∂�

∂x
= −3

4π

∫ l

0

μ(x0)(x − x0)r sin θ dx0

[(x − x0)2 + r2]5/2
(8.121)

To satisfy the body boundary condition consider the flow in the cross-flow plane
(as shown in Fig. 8.28). This is simply the flow past a circular cylinder, and its radial velocity
component from Section 3.11 is (μ(x)/2π )(sin θ/R2(x)). Thus the boundary condition at
r = R becomes

∂�

∂r
(R, θ ) = μ(x)

2π

sin θ

R2(x)
= −Q∞α sin θ

and the doublet strength is found to be

μ(x) = 2π Q∞αR2(x) = 2Q∞αS(x) (8.122)

For small values of r (including the body surface) the solution is the flow past the circle in
the cross-flow plane and the perturbation potential and velocity components are

�(r, θ, x) = Q∞αR2 sin θ

r
(8.123)

qr (r, θ, x) = −Q∞αR2 sin θ

r2
(8.124)

qθ (r, θ, x) = Q∞αR2 cos θ

r2
(8.125)

qx (r, θ, x) = ∂�

∂x
= 2Q∞αR R′ sin θ

r
(8.126)
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Figure 8.28 Cross-flow model using doublet distribution along the x axis and pointing in the −z
direction.

Note that since the doublet strength is a function of x , the streamwise (axial) velocity
component is unequal to zero.

8.3.3 Pressure and Force Information

The perturbation velocity field for the flow at angle of attack past a slender body
of revolution is obtained by adding the results from Sections 8.3.1 and 8.3.2. The velocity
field will be evaluated on the body surface for the determination of the forces and pitching
moment.

For the axisymmetric problem of Section 8.3.1, the radial velocity component is given
by the boundary condition (Eq. (8.108a)) as

qr = Q∞ R′(x) (8.127)

The axial component of velocity can be determined by taking the limit of Eq. (8.117) as the
radial coordinate approaches zero. Let us denote this component as

qx = qx A (8.128)

It is given in Karamcheti1.5 (p. 577) as

qx A = Q∞
2π

S′′(x) ln
r

2
+ Q∞

4π

∫ l

0
S′′′(x0) ln |x − x0| dx0 (8.128a)

The radial, tangential, and axial velocity components of the transverse problem of Sec-
tion 8.3.2 are found by substituting r = R in Eqs. (8.124)–(8.126). The complete velocity
distribution on the body surface is obtained by adding the free-stream components from
Eq. (8.106) to the perturbation components to get

q(x, r, θ ) = (Q∞ + qx , Q∞α sin θ + qr , Q∞α cos θ + qθ ) (8.129)
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Substituting Eq. (8.129) into the pressure coefficient equation yields

C p = 1 − q2

Q2∞
= − 2qx

Q∞
− 2α

Q∞
(qr sin θ + qθ cos θ ) − q2

r + q2
θ + q2

x

Q2∞
(8.130)

By an inspection of the velocity components we see that the magnitude of the squares
of the cross-flow plane components is comparable to the magnitude of the axial component
itself and therefore the only term in the pressure coefficient equation that can be neglected is
−q2

x /Q2
∞. The perturbation components from Eqs. (8.124)–(8.126) are substituted into

the modified Eq. (8.130) and after some manipulation the pressure coefficient becomes

C p = −2qx A

Q∞
− (R′)2 − 4αR′ sin θ + α2(1 − 4 cos2 θ ) (8.131)

The force acting on the slender body is given by

F = −
∫

S
pn d S = −

∫ l

0

∫ 2π

0
pnR dθ dx (8.132)

where dx is the slender-body approximation for the length element. The slender-body
approximation for the unit normal is

n = er − R′ex = −R′ex + cos θey + sin θez (8.133)

and substituting this into Eq. (8.133) yields the force components in the three coordinate
directions:

Fx =
∫ l

0

∫ 2π

0
R′ Rp dθ dx (8.134a)

Fy = −
∫ l

0

∫ 2π

0
Rp cos θ dθ dx (8.134b)

Fz = −
∫ l

0

∫ 2π

0
Rp sin θ dθ dx (8.134c)

The rate of change of the force components with respect to x is given by

dFx

dx
= −R′ R

∫ 2π

0
p dθ (8.135a)

dFy

dx
= −R

∫ 2π

0
p cos θ dθ (8.135b)

dFz

dx
= −R

∫ 2π

0
p sin θ dθ (8.135c)

To use the pressure coefficient from Eq. (8.131) in Eqs. (8.135) the pressure is written as

p = 1

2
ρQ2

∞C p + p∞ (8.136)

and after Eqs. (8.131) and (8.136) are substituted into Eqs. (8.135) and the integration is
performed, the axial rate of change of the force components becomes

dFx

dx
=

[
p∞ − 1

2
ρQ2

∞

(
α2 + qx A

Q∞
+ (R′)2

)]
S′ (8.137a)



P1: FNT

CB329-08 CB329/Katz September 13, 2000 17:6 Char Count= 0

8.4 Far Field Calculation of Induced Drag 201

dFy

dx
= 0 (8.137b)

dFz

dx
= ρQ2

∞αS′ (8.137c)

The side force distribution is zero and therefore the side force is also zero. The normal
force distribution is proportional to the angle of attack and rate of change of cross-sectional
area, a result obtained by Munk (see Sears8.4). An integration in x shows clearly that the
normal force on the body is zero if the body’s ends are pointed. A similar result can be
obtained for the axial force, which is also zero if the body’s ends are pointed (see Ward8.5).

The moment about the origin is given by

M = −
∫ l

0

∫ 2π

0
r × npR dθ dx (8.138)

where the position vector r is seen to be

r = xex + Rer = xex + R cos θey + R sin θez (8.139)

The components of the moment about the x and z axes are zero from symmetry considera-
tions and the pitching moment about the y axis is

My = 1

2
ρQ2

∞

∫ l

0

∫ 2π

0
(x + R R′) sin θ RC p dθ dx (8.140)

With the use of Eq. (8.135c) the pitching moment can be written as

My = −
∫ l

0
(x + R R′)

dFz

dx
dx (8.141)

The second term in the integrand is neglected as being second order and, after an integration
by parts, the pitching moment becomes

My = −ρQ2
∞α

∫ l

0
x S′ dx = −ρQ2

∞α

[
x S|l0 −

∫ l

0
S dx

]
= ρQ2

∞αV (8.142)

where V is the body volume

8.3.4 Conclusions from Slender Body Theory

The above results for the aerodynamic forces acting on slender bodies show that
for pointed bodies there is no lift and no drag force, but there is an aerodynamic pitching
moment. This important result is very useful when checking the accuracy of numerical
methods that calculate the lift and drag by integrating the surface pressure over the body
(and may result in lift and drag that are different from zero). Lift and drag forces are
possible only when the base is not pointed, and a base pressure exists that is different than
that predicted by potential flow theory (e.g., due to flow separations). Some methods for
the treatment of bodies with blunt bases are presented by Nielsen.8.6

8.4 Far Field Calculation of Induced Drag

It is possible to compute the forces acting on a body or wing by applying the
integral form of the momentum equation (Eq. (1.19)). For example, the wing shown in
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Figure 8.29 Far field control volume used for momentum balance.

Fig. 8.29 is surrounded by a large control volume, and for an inviscid, steady-state flow
without body forces, Eq. (1.19) reduces to∫

S
ρq(q · n)dS = F −

∫
S

pn dS (8.143)

where the second term in the right-hand side is the integral of the pressures. A coordinate
system is selected such that the x axis is parallel to the free-stream velocity U∞, and the
velocity vector, including the perturbation (u, v, w), becomes

q = (U∞ + u, v, w)

If the x component of the force (drag) is to be computed then Eq. (8.143) becomes

D = −
∫

S
ρ(U∞ + u)[(U∞ + u)dy dz + vdx dz + wdx dy] −

∫
S

pdy dz

The pressures are found by using Bernoulli’s equation:

p − p∞ = ρ

2
U 2

∞ − ρ

2
[(U∞ + u)2 + v2 + w2] = −ρuU∞ − ρ

2
(u2 + v2 + w2)

Substituting this result into the drag integral yields

D = −ρ

∫
S

U∞(U∞ + u) dy dz − ρ

∫
S
(U∞ + u)(u dy dz + v dx dz + w dx dy)

+ ρ

∫
S

uU∞ dy dz + ρ

2

∫
S
(u2 + v2 + w2) dy dz (8.144)

Note that the second integral will vanish as a result of the continuity equation for the
perturbation, and the first and the third will cancel out. Now if the control volume is large
then the perturbation velocity components will vanish everywhere but on the wake. If the
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Figure 8.30 Trefftz plane used for the calculation of induced drag.

flow is inviscid, then at this plane ST shown in Fig. 8.30 (called the Trefftz plane) the wake
is parallel to the local free stream and will result in velocity components only in the y and z
directions (thus u2 � v2, w2). Therefore, the drag can be obtained by integrating the v and
w component on this plane only:

D = ρ

2

∫
ST

(v2 + w2)dy dz = ρ

2

∫
ST

[(
∂�

∂y

)2

+
(

∂�

∂z

)2]
dy dz (8.145)

where � is the perturbation velocity potential. Use of the divergence theorem to transfer
the surface integral into a line integral (similar to Eq. (1.20)) results in

∫
ST

[(
∂�

∂y

)2

+
(

∂�

∂z

)2

+ �

(
∂2�

∂y2
+ ∂2�

∂z2

)]
dy dz =

∫
CT

�
∂�

∂n
dl

The third term in the first integral is canceled since in the two-dimensional Trefftz plane
∇2� = 0 and the integration is now limited to a path surrounding the wake (where a potential
jump exists). If the wake is modeled by a vortex (or doublet) distribution parallel to the x
axis, as in Fig. 8.30, the formulation of Section 3.14 for continuous singularity distributions
can be used. Because of the symmetry of the induced velocity above and under the vortex
sheet this integral can be reduced to a single spanwise line integral:

D = −ρ

2

∫ bw/2

−bw/2
��w dy = −ρ

2

∫ bw/2

−bw/2
�(y)w dy (8.146)

and the minus sign is a result of the ∂�/∂n direction pointing inside the circle of integration
and bw is the local wake span. In Eq. (8.146) a horseshoe vortex structure is assumed for
the lifting wing, but the wake span is allowed to be different than the wing’s span (e.g., due
to self-induced wake displacement).

Following the same methodology, the lift force can be derived as

L = ρU∞
∫ bw/2

−bw/2
�� dy = ρU∞

∫ bw/2

−bw/2
�(y) dy (8.147)
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The above drag formula may be useful in measuring the accuracy of data obtained by
numerical integration of the local pressures. As an example for the use of Eq. (8.146),
consider the elliptic lifting-line model of Section 8.1. The downwash at the lifting line
(point A in Fig. 8.30) due to the elliptic load distribution is constant (Eq. (8.24)):

wi = −Q∞αi = −�max

2b

This was a result observed on the lifting line due to the semi-infinite trailing vortex lines.
However, far downstream at a point B (in Fig. 8.30) the downwash is twice as much since
to an observer at this point the vortex sheet seems to be infinite in both directions. Using
the elliptic distribution �(y) of Eq. (8.21) and substituting wi into Eq. (8.146) we find that
the drag force becomes

D = −ρ

2
2wi

∫ b/2

−b/2
�(y) dy = −ρwi

πb

4
�max = π

8
ρ�2

max

which is exactly the same result as in Eq. (8.27). Also, in this case a rigid wake model is
used and the wake span bw was assumed to be equal to the wingspan b.
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Problems

8.1. Consider the Fourier coefficients for the lifting-line circulation in Eq. (8.42). Show
that for wing loading symmetrical about the midspan the even coefficients are zero
and for antisymmetrical loading the odd coefficients are zero.

8.2. The governing equation for the Fourier coefficients in Problem 8.1 is Eq. (8.58).
One method for the numerical solution of this equation is to set all coefficients
equal to zero for n greater than some value, say N , and to evaluate the equation for
N values of θ . The N linear equations for the unknown coefficients can then be
solved using standard techniques. This is called the collocation method. Use the
collocation method to find the Fourier coefficients for a flat rectangular wing of
aspect ratio 6 for N = 3, 5, 7 (two-, three-, and four-term expansions). Calculate
the lift and induced drag coefficients for these three cases.

8.3. Find the vortex distribution for slender wing theory by the direct integration of
Eq. (8.72) with the use of the results of Section 7.1.

8.4. Consider the flow past a flat elliptic planform wing at angle of attack α. A flap
whose extent covers the center half of the wing span is deflected such that the
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zero-lift angle distribution along the span is given by

αL0 = −β, −b

4
< y <

b

4

αL0 = 0, −b

2
< y < −b

4
and

b

4
< y <

b

2
where β is constant.

Find the wing lift coefficient and circulation distribution and plot the circulation
distribution to study its behavior at the tip of the flap. Use lifting-line theory.

8.5. Study the effect of ground proximity by examining two- and three-dimensional
vortex line models. For the two-dimensional case assume that the flat plate is at an
angle α to the free-stream U∞, but both the vortex and the collocation points of
the lumped-vortex element are elevated by h above the z = 0 plane.
a. Derive the “zero normal velocity” boundary condition at the collocation point

for this lumped-vortex model.
b. For the three-dimensional case use the vortex line model of Section 8.1.2 and

assume that the wing and its image lie in the z = ±h planes, respectively. Derive
an expression for the influence of the image wake system on the wing in terms
of h.

c. Modify the lifting-line equation (Eq. (8.11)) to include ground effect, based on
your finding in a and b.
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CHAPTER 9

Numerical (Panel) Methods

In the previous chapters the solution to the potential flow problem was obtained
by analytical techniques. These techniques (except in Chapter 6) were applicable only
after some major geometrical simplifications in the boundary conditions were made. In
most of these cases the geometry was approximated by flat, zero-thickness surfaces and
for additional simplicity the boundary conditions were transferred, too, to these simplified
surfaces (e.g., at z = 0).

The application of numerical techniques allows the treatment of more realistic geometries
and the fulfillment of the boundary conditions on the actual surface. In this chapter the
methodology of some numerical solutions will be examined and applied to various problems.
The methods presented here are based on the surface distribution of singularity elements,
which is a logical extension of the analytical methods presented in the earlier chapters. Since
the solution is now reduced to finding the strength of the singularity elements distributed
on the body’s surface this approach seems to be more economical, from the computational
point of view, than methods that solve for the flowfield in the whole fluid volume (e.g.,
finite difference methods). Of course this comparison holds for inviscid incompressible
flows only, whereas numerical methods such as finite difference methods were basically
developed to solve the more complex flowfields where compressibility and viscous effects
are not negligible.

9.1 Basic Formulation

Consider a body with known boundaries SB , submerged in a potential flow, as
shown in Fig. 9.1. The flow of interest is in the outer region V where the incompressible,
irrotational continuity equation, in the body’s frame of reference, in terms of the total
potential �∗ is

∇2�∗ = 0 (9.1)

Following Green’s identity, as presented in Section 3.2, we can construct the general
solution to Eq. (9.1) by a sum of source σ and doublet μ distributions placed on the
boundary SB (Eq. (3.13)):

�∗(x, y, z) = −1

4π

∫
SB

[
σ

(
1

r

)
− μn · ∇

(
1

r

)]
dS + �∞ (9.2)

Here the vector n points in the direction of the potential jump μ, which is normal to SB and
positive outside of V (Fig. 9.1), and �∞ is the free-stream potential written as

�∞ = U∞x + V∞y + W∞z (9.3)

This formulation does not uniquely describe a solution since a large number of source
and doublet distributions will satisfy a given set of boundary conditions (as discussed in
Chapter 3). Therefore, a choice has to be made in order to select the desirable combination

206
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Figure 9.1 Potential flow over a closed body.

of such singularity elements. It is clear from the previous examples (in Chapters 4–8) that
for simulating the effect of thickness, source elements can be used, whereas for lifting
problems, antisymmetric terms such as the doublet (or vortex) can be used. To uniquely
define the solution of this problem, first the boundary conditions of zero flow normal to
the surface must be applied. In the general case of three-dimensional flows, specifying the
boundary conditions will not immediately yield a unique solution because of two problems.
First, a decision has to be made in regard to the “right” combination of source and doublet
distributions. Second, some physical considerations need to be introduced to fix the amount
of circulation around the surface SB . These considerations deal mainly with the modeling
of the wakes and fixing the wake shedding lines and their initial orientation and geometry.
(This is the three-dimensional equivalent of a two-dimensional Kutta condition.) However,
based on the previous examples, it is likely that the wake will be modeled by thin doublet
or vortex sheets (Fig. 9.1) and therefore Eq. (9.2) can be rewritten as

�∗(x, y, z) = 1

4π

∫
body+wake

μn · ∇
(

1

r

)
dS − 1

4π

∫
body

σ

(
1

r

)
dS + �∞ (9.2a)

9.2 The Boundary Conditions

The boundary condition for Eq. (9.1) can directly specify a zero normal velocity
component ∂�∗/∂n = 0 on the surface SB , in which case this “direct” formulation is called
the Neumann problem. It is possible to specify �∗ on the boundary, so that indirectly the zero
normal flow condition will be met, and this “indirect” formulation is called the Dirichlet
problem. Of course, a combination of the above boundary conditions is possible, too, and
this is called a mixed boundary condition problem.

An additional approach would be to search for a singularity distribution that creates
enclosed streamlines, equivalent to the geometry of the surface SB . This method is useful in
two dimensions, where the stream function � is well defined (and hence the streamlines � =
const. can be easily derived as in Sections 3.10 and 3.11), but for complex, three-dimensional
geometries the implementation of this method is difficult and will not be dealt with here.

a. Neumann Boundary Condition
In this case it is required that ∂�∗/∂n will be specified on the solid boundary SB ,

that is,

∇(� + �∞) · n = 0 (9.4)

where � is the perturbation potential consisting of the two integral terms in Eq. (9.2a). From
this point and on, for convenience, the velocity potential will be split such that �∞ is the



P1: FNT

CB329-09 CB329/Katz September 13, 2000 15:22 Char Count= 0

208 9 / Numerical (Panel) Methods

free-stream velocity potential (Eq. (9.3)) relative to the origin of the coordinates attached
to the surface SB . The second boundary condition (at the distant, outer boundaries of the
flow) requires that the flow disturbance, due to the body’s motion through the fluid, should
diminish far from the body,

lim
r→∞ ∇� = 0 (9.5)

where r = (x, y, z). This condition is automatically met by all the singular solutions con-
sidered here. To satisfy the boundary condition of Eq. (9.4) directly, we use the velocity
field due to the singularity distribution of Eq. (9.2):

∇�∗(x, y, z) = 1

4π

∫
body+wake

μ∇
[

∂

∂n

(
1

r

)]
dS − 1

4π

∫
body

σ∇
(

1

r

)
dS + ∇�∞

(9.6)

If the singularity distribution strengths σ and μ are known, then Eq. (9.6) describes the
velocity field everywhere (of course special treatment is needed when the velocity is eval-
uated on the surface SB). Substitution of Eq. (9.6) into the boundary condition in Eq. (9.4)
results in{

1

4π

∫
body+wake

μ∇
[

∂

∂n

(
1

r

)]
dS − 1

4π

∫
body

σ∇
(

1

r

)
dS + ∇�∞

}
· n = 0

(9.7)

This equation is the basis for many numerical solutions and should hold for every point
on the surface SB . For example, a certain number of points (called collocation points) can
be selected on the surface SB . The boundary condition of Eq. (9.7) is then specified at
each of these points in terms of the unknown singularities at all the collocation points. This
approach reduces the integral equation (Eq. (9.7)) to a set of algebraic equations. As noted
in Chapter 3, the solution at this point is not unique, and the combination of sources and
doublets must be specified.

Note that if for an enclosed boundary (e.g., SB) ∂�∗/∂n = 0, as required by the boundary
condition in Eq. (9.4), then the potential inside the body (without internal singularities) will
not change (Lamb,9.1 p. 41), that is,

�∗
i = const. (9.8)

a constant that could be selected as zero. This observation is important since it allows us to
specify the boundary condition (Eq. (9.4)) in terms of the potential inside SB , which is the
Dirichlet problem (or Dirichlet boundary condition).

b. Dirichlet Boundary Condition
In this case, the perturbation potential � has to be specified everywhere on SB .

Equation (9.2a) does this exactly, and by distributing the singularity elements on the surface,
and placing the point (x, y, z) inside the surface SB , the inner potential �∗

i in terms of the
surface singularity distributions is obtained:

�∗
i (x, y, z) = 1

4π

∫
body+wake

μ
∂

∂n

(
1

r

)
dS − 1

4π

∫
body

σ

(
1

r

)
dS + �∞ (9.9)

Again, these integrals are singular when r → 0, and near this point, their principal value
must be evaluated. The zero flow normal to the surface boundary condition (Eq. (9.4)) is
defined now using Eq. (9.8). Therefore, the condition ∇(� + �∞) · n = 0, in terms of the
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velocity potential, becomes

�∗
i = (� + �∞)i = const.

or

�∗
i (x, y, z) = 1

4π

∫
body+wake

μ
∂

∂n

(
1

r

)
dS − 1

4π

∫
body

σ

(
1

r

)
dS + �∞ = const.

(9.10)

Equation (9.10) is the basis for methods utilizing the indirect boundary conditions. However,
even at this stage, there are many differences between the various methods of solution,
related to setting the value of the inner potential �∗

i (in addition to the differences in the
source/doublet combinations). For example, by setting �∗

i = (� + �∞)i = 0, Eq. (9.10)
can be solved on the surface SB , but the resulting singularity distribution will include �∞
and the strength will be large.

Other values (not necessarily constant) for the inner potential can be specified too and
when the inner potential is set to �∗

i = (� + �∞)i = �∞ (which is equivalent to speci-
fying Eq. (9.10) for the perturbation only in a “ground-fixed frame” where �∞ = 0) then
Eq. (9.10) reduces to a simpler form:

1

4π

∫
body+wake

μ
∂

∂n

(
1

r

)
dS − 1

4π

∫
body

σ

(
1

r

)
dS = 0 (9.11)

To justify the above, consider the Neumann boundary condition (Eq. (9.4)) ∂�∗/∂n = 0,
which is equivalent to

∂�

∂n
= −n · Q∞. (9.4a)

Recall that the value for the discontinuity in the normal derivative of the velocity potential
as given by Eq. (3.12) is

−σ = ∂�∗

∂n
− ∂�∗

i

∂n
= ∂�

∂n
− ∂�i

∂n

and since �i = 0 then also ∂�i/∂n = 0 on SB . Consequently, for Eq. (9.11) to be valid,
and with the aid of Eq. (9.4a) the source strength is required to be

σ = n · Q∞ (9.12)

where n points into the body as in Fig. 9.1.
To define this problem uniquely, the wake doublet distribution should be known or

related to the unknown doublets on SB (Kutta condition). To proceed with the solution, SB

is divided into discrete elements and at each of these elements Eq. (9.10) (or Eq. (9.11)) is
evaluated. This results in a set of algebraic equations for the unknown μ distribution. Note
that when evaluating the integrals at a point P on the element (r → 0) then �(P) = ∓μ/2
(see Section 3.14).

In this formulation, when Eq. (9.12) is used, the zero normal flow boundary condition
information is contained in the source terms and for very thin surfaces the integral may be
ill-conditioned and will cause numerical instabilities.

9.3 Physical Considerations

The above mathematical formulation, even after selecting a desirable combination
of sources and doublets, and after fulfilling the boundary conditions on the surface SB , is not
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Figure 9.2 Vorticity system created by a finite wing in steady forward flight.

unique. Previous examples showed that for describing the flow over thick bodies without lift
the source distribution was sufficient, but for the lifting cases the amount of the circulation
was not uniquely defined. Before proceeding further (and using the information developed
in Chapter 8), let us examine the case of a lifting wing, as viewed from a large distance
(Fig. 9.2). For simplicity, the bound vortex is represented by a concentrated vortex line with
the strength � (=�x = �y). According to the Helmholtz theorems (Section 2.9) a vortex
line cannot start in a fluid and similarly to Eq. (4.64) we can write

∂�x

∂x
= −∂�y

∂y
(9.13)

which for the simple case of Fig. 9.2 implies that the problem is modeled by one constant-
strength, closed vortex line. Also, the amount of the bound circulation is

� =
∫ 2

1
q · dl

where point 1 lies under and point 2 is above the (very) thin wake. These two arguments
clearly demonstrate that for the three dimensional lifting problem there is a need to model
a wake, since the bound vorticity needs to be continued beyond the wing. Also, as shown
in Fig. 9.2, for the wing to have circulation � at a spanwise location (see Section 3.14), a
discontinuity in the velocity potential near the trailing edge must exist:

�2 − �1 = �

where �1 is under and �2 is above the wake. Now we are in a position where the additional
physical conditions, required for a unique solution, can be established in relation to a wake
model. This model has to specify two additional conditions:

1. To set the wake strength at the trailing edge.
2. To set its shape and location.

a. Wake Strength
The simplest solution to this problem is to apply the two-dimensional Kutta con-

dition along the three-dimensional trailing edge (as shown in Fig. 9.3) such that

γT.E. = 0 (9.14)

Since, for example, in the two-dimensional case ∂μ(x)/∂x = −γ (x) (as in Section 3.14)
the above condition can be rewritten for the trailing-edge line, such that μ is constant in the



P1: FNT

CB329-09 CB329/Katz September 13, 2000 15:22 Char Count= 0

9.3 Physical Considerations 211

Figure 9.3 Implementation of the Kutta condition when using surface doublet distribution.

wake (μw) and equals the value at the trailing-edge (μT.E.), that is,

μT.E. = const. ≡ μW

or

μU − μL − μW = 0 (9.15a)

where μU and μL are the corresponding upper and lower surface doublet strengths at the
trailing edge, as shown in Fig. 9.3. An alternate formulation equates the upper and lower
velocities at the trailing edge:

∂μU

∂s
= ∂μL

∂s
(9.15b)

where s is a coordinate along the trailing-edge upper and lower surfaces. This formulation
is more useful for airfoils with very thin or even cusped trailing edges.9.2 As an example,
the specification of the Kutta condition in terms of constant-strength doublet elements (or
vortex rings) is shown in Fig. 9.4 (here for convenience a positive doublet points into the
wing). At the wing’s trailing edge, the trailing segment of the upper doublet will have a
strength of −�U , the leading vortex segment of the lower surface (which is now inverted)
will be +�L , and the leading segment of the wake vortex is +�W . Thus, the strength of the
wake panel in terms of the local circulation � is again

−�U + �L + �W = 0

or, exactly as in Eq. (9.15a),

�W = �U − �L (9.16)

In certain situations the shape of the trailing edge is also important. For example, Fig. 9.5a
shows a situation where the flow leaves the trailing edge smoothly and parallel to the cusped

Figure 9.4 Implementation of the Kutta condition when using vortex ring elements.
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Figure 9.5 Possible conditions that can be applied at (a) cusp and (b) finite angle trailing edges.

trailing edge. In such situations this point is not necessarily a stagnation point and if the
velocity formulation is used then only the qn = 0 condition can be used. In the case that
the trailing edge has a finite angle (Fig. 9.5b), then in order to have a continuous velocity at
this point the condition qt = 0 can also be used.

b. Wake Shape
In two dimensions, the trailing vortex segment of the wake is ignored since it

has zero vorticity (in steady flow) and it is sufficient to specify the location of the trailing
edge where the Kutta condition is met. In three dimensions, the wake influence is more
dominant and its geometry clearly affects the solution. To distinguish between the models
for bound circulation (which generate the lift) and the circulation shed into the wake, it is
logical to assume that the wake should not produce lift – since it is not a solid surface. As
an example, let us recall the formulation for the force 	F generated by a vortex sheet γ.
The Kutta–Joukowski theorem for lift (Section 3.11) states that

	F = ρq × γ (9.17)

For a three-dimensional case 	F = 0 only if the local flow is parallel to γ (we assume
γ �=0). So the condition for the wake geometry is

q × γW = 0 (9.18)

or

γW ‖q (9.18a)

that is, the vorticity vector is parallel to the local velocity vector.
An equivalent representation of the wake by a thin doublet sheet is obtained by noting

that γW = −∇μW (this will be demonstrated in Chapter 10). If no force is produced by this
lifting surface then Eq. (9.18) becomes

q × ∇μW = 0 (9.19)
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Figure 9.6 Effect of prescribed wake geometry on the aerodynamics of an = 1.5 wing.

So the condition for the wake panels, in terms of doublets, is

μW = const. (9.19a)

and the boundaries of these elements (which are really the vortex lines) should be parallel
to the local streamlines, as in Eq. (9.18a). This condition (Eq. (9.18a)) is difficult to satisfy
exactly since the wake location is not known in advance. In most cases it is sufficient to
assume that the wake leaves the trailing edge at a median angle δT.E./2, as shown in Figs. 9.3
and 9.4, whereas for portions of the wake far from the trailing edge, additional effort is
required to satisfy the condition of Eq. (9.18).

As an example of the dependence of the solution on the wake initial geometry, the results
for a cambered rectangular wing of aspect ratio 1.5 are shown in Fig. 9.6. The solution was
obtained by a first-order panel method (VSAERO9.3) with 600 panels per semispan and the
corresponding lift and drag coefficients are tabulated in the inset to the figure (incidentally,
case c is the closest to experimental results).

9.4 Reduction of the Problem to a Set of Linear Algebraic Equations

At this point it is assumed that the problem is unique and that a combination of
source/doublet distributions has been selected along with a wake model and the Kutta condi-
tion. For the following example �∗

i = �∞ along with Eq. (9.12) for the source strength will
be used and a constant-strength rectilinear panel is assumed (this approach is widely used in
many panel codes such as in Ref. 9.3). The body’s surface (see Fig. 9.7) is now divided into
N surface panels and into NW additional wake panels. The boundary condition (either Neu-
mann or Dirichlet) will be specified at each of these elements at a collocation point (which for
the Dirichlet boundary condition must be specified inside the body where�∗

i = �∞, e.g., at a
point under the center of the panel). In most cases, though, the point may be left on the surface
without moving it inside the body. Rewriting, for example, the Dirichlet boundary condition
for each of the N collocation points, we can transform Eq. (9.11) into the following form:

N∑
k=1

1

4π

∫
body panel

μn · ∇
(

1

r

)
dS +

NW∑
�=1

1

4π

∫
wake panel

μn · ∇
(

1

r

)
dS

−
N∑

k=1

1

4π

∫
body panel

σ

(
1

r

)
dS = 0 (9.20)
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Figure 9.7 Approximation of the body surface by panel elements.

That is, for each collocation point P (shown in Fig. 9.7) the summation of the influences
of all k body panels and � wake panels is needed. The integration in Eq. (9.20) is limited
now to each individual panel element representing the influence of this panel on point P .
For a unit singularity element (σ or μ), this influence depends on the panel’s geometry only.
The integration can be performed analytically or numerically, prior to this calculation, and
for example for a constant-strength μ element shown in Fig. 9.8 the influence of panel k
(defined by the four corners 1, 2, 3, and 4) at point P is

1

4π

∫
1,2,3,4

∂

∂n

(
1

r

)
dS

∣∣∣∣
k

≡ Ck (9.21)

and for a constant-strength σ element

−1

4π

∫
1,2,3,4

(
1

r

)
dS

∣∣∣∣
k

≡ Bk (9.21a)

These integrals are a function of the points 1, 2, 3, 4, and P and an “influence computing
routine” can be schematically defined as⎛

⎜⎜⎜⎜⎜⎜⎝

xP , yP , zP

x1, y1, z1

x2, y2, z2

x3, y3, z3

x4, y4, z4

μ

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒
⎛
⎝ influence

coefficient
calculation

⎞
⎠ ⇒

(
	u, 	v, 	w

	�

)
P

(9.22)

Of course, in this case 	�P = Ck . After computing the influence of each panel on each
other panel, Eq. (9.20) for each point P inside the body becomes

N∑
k=1

Ckμk +
NW∑
�=1

C�μ� +
N∑

k=1

Bkσk = 0 for each internal point P (9.23)
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Figure 9.8 Influence of panel k on point P .

This equation is the numerical equivalent of the boundary condition. If the strengths of
the sources are selected according to Eq. (9.12) and since the coefficients Bk , which are
computed in a manner similar to Eq. (9.22), are known, the source term can be moved to
the right-hand side of the equation. Also, by using the Kutta condition, the wake doublets
can be expressed in terms of the unknown surface doublets μk . For example, in Fig. 9.9 two
of the trailing edge (T.E.) doublets μr and μs (here r, s, and t are some arbitrary counters)
are related to the corresponding wake doublet μt by Eq. (9.15):

μt = μr − μs

and hence the influence of the wake element becomes

Ctμt = Ct (μr − μs)

Figure 9.9 Relation between trailing edge upper and lower panel doublet strength and the corre-
sponding wake doublet strength.
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This algebraic relation can be substituted into the Ck coefficients of the unknown surface
doublet such that

Ak = Ck if panel is not at T.E.

Ak = Ck ± Ct if panel is at T.E.

where the ± sign depends on whether the panel is at the upper or the lower side of the
trailing edge (Fig. 9.9). Consequently, for each collocation point P , a linear algebraic
equation containing N unknown singularity variables μk can be derived:

N∑
k=1

Akμk = −
N∑

k=1

Bkσk (9.24)

Evaluating Eq. (9.24) at each of the N collocation points ( j = 1 → N ) results in N equations
with the N unknown μk , in the following form:⎛

⎜⎜⎜⎝
a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
...

aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

b11, b12, . . . , b1N

b21, b22, . . . , b2N
...

...
...

bN1, bN2, . . . , bN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σ1

σ2
...

σN

⎞
⎟⎟⎟⎠ (9.25)

Note that for evaluating the influence of the panel on itself (akk, bkk) the integral of
the influence coefficients may be singular and its principal value must be evaluated. In
this formulation the unknown μ distribution is small (perturbation only) and the numerical
solution is believed to be more stable.9.3 The right-hand side of Eq. (9.25) can be computed
since the value of σk is known and Eq. (9.25) can be rewritten as⎛

⎜⎜⎜⎝
a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
...

aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

⎞
⎟⎟⎟⎠ (9.25a)

where the values of μk can be computed by solving this full-matrix equation.
Note that the relation σ = Q∞ · n of Eq. (9.12) contains the information on the zero

normal flow condition for the thickness problem and this formulation will be singular for
surfaces approaching zero thickness.

The derivation of the influence coefficient integrals depends on the shape of the panel
element (e.g., planar, curved, etc.) and on the singularity distribution (constant or linearly
varying strength, etc.). Some examples will be presented in the following chapters.

9.5 Aerodynamic Loads

Once Eq. (9.25) is solved the unknown singularity values are obtained (μk in this
example). The velocity components are evaluated now in terms of the panel local coordinates
(l, m, n) shown in Fig. 9.10. The two tangential perturbation velocity components are

ql = −∂μ

∂l
, qm = − ∂μ

∂m
(9.26)

where the differentiation is done numerically using the values on the neighbor panels.
The normal component of the velocity (in this example) is obtained from the local source
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Figure 9.10 Panel local coordinate system for evaluating the tangential velocity components.

strength:

qn = −σ (9.27)

The total velocity in the local (l, m, n) direction of panel k is

Qk = (Q∞l , Q∞m , Q∞n )k + (ql , qm, qn)k (9.28)

and of course the normal velocity component on a solid boundary is zero. The pressure
coefficient can now be computed for each panel using Eq. (4.53):

C pk = 1 − Q2
k

Q2∞
(9.29)

The contribution of this element to the nondimensional fluid dynamic loads is normal to
the panel surface and is

	CFk = 	Fk

(1/2)ρQ2∞S

where S is a reference area. In terms of the pressure coefficient the vector form for the panel
contribution to the fluid dynamic load becomes

	CFk = −C pk 	Sk

S
· nk (9.30)

The individual contributions of the panel elements now can be summed to compute the
desired aerodynamic forces and moments.

9.6 Preliminary Considerations, Prior to Establishing Numerical Solutions

Prior to establishing a numerical solution, some of the options need to be consid-
ered:

a. Type of singularity that will be used: The options usually include sources, doublets,
and vortices or any combination of the above.

b. Type of boundary conditions: Velocity or velocity-potential formulation may be
used and the corresponding Neumann, Dirichlet, or a combination of such bound-
ary conditions must be selected.

c. Wake models: How and where the Kutta condition will be specified. Also, the
shape of the wake is controlled by Eq. (9.18a) and can be set by
1. Programmer-specified shape based on intuition or on flow visualizations.
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Figure 9.11 Nonplanar surface element and its quadrilateral approximation.

2. Wake relaxation (where the wake points are moved with the local induced
velocity, e.g., in Ref. 9.3).

3. Time stepping (where the wake shape is developed by moving the wing from
an initial stand-still position, as will be presented in Chapter 13).

d. Method of discretizing surface and singularity distributions:
1. Discretization of geometry: The placing of a simple panel element on an arbi-

trary three-dimensional configuration is rather difficult. Figure 9.11 describes
such a curved surface element with a local coordinate system x, y, z. The shape
of the surface can be described as z = f (x, y), but for simplicity it is usually
approximated by a piecewise polynomial approximation. For example, if a first-
order polynomial is used then the average surface can be described by

z = a0 + b1x + b2 y

and for a second-order polynomial aproximation

z = a0 + b1x + b2 y + c1x2 + c2xy + c3 y2

and so on (where the coefficients a, b, c are constants). Figure 9.11 shows the
result of approximating a curved surface element by a first-order plane, while
Fig. 9.12 shows the possible consequence of representing a three-dimensional
curved surface by such quadrilateral elements. This representation of the ge-
ometry may result in difficulties in specifying the boundary conditions, since
the “leakage” between the panels can weaken the satisfaction of the zero flow
through the boundaries requirement. One possible solution is shown in Fig. 9.13
where the surface is described by five flat subelements (as in the PANAIR
code9.4).

2. Discretization of singularity distribution: The strength of the surface distribu-
tion of the singularity elements can be represented, too, in terms of a piecewise
polynomial approximation. For example, if the doublet distribution on the ele-
ment of Fig. 9.11 is constant such that

μ = a0 = const.
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Figure 9.12 Possible difficulty in representing a three-dimensional surface by an array of quadrilateral
surface elements.

then this is a zero-order approximation of μ. Similarly, a first-order (or linear)
approximation is

μ = a0 + b1x + b2 y

and a second-order (or parabolic) polynomial approximation is

μ = a0 + b1x + b2 y + c1x2 + c2xy + c3 y2

(Here the coefficients a, b, c are constants, too, and of course are different from
the coefficients of the surface approximation).

e. Considerations of numerical efficiency: It is clear from the brief discussion on
discretization that the computation of the influence coefficients (e.g., Eq. (9.21))
is elaborate. Many methods divide such calculations into near and far field where
the far field calculation treats the element as a point singularity (and not as a

Figure 9.13 Description of a nonplanar panel element by a set of flat subelements.
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surface distribution). Typically, the near field is assumed if the distance to a point
P is less than 2.5–5 times the larger diagonal of the panel. On the other hand
because of the 1/r characteristics of the singularity elements, when r → 0 the
value of 1/r → ∞; therefore, when the point P is too close to the panel (or to a
vortex line) cutoff distances are usually applied. (Only the aerodynamic aspects of
the numerics are discussed here; other important aspects, e.g., the matrix solver
efficiency, are not.)

9.7 Steps toward Constructing a Numerical Solution

When establishing a numerical solution for potential flow a sequence similar to
the following is recommended.

a. Selection of Singularity Element
The first and one of the most important decisions is the type of singularity element

or elements that will be used. This includes the selection of source, doublet, or vortex
representation and the method of discretizing these distributions (zero-, first-, second-order,
etc.). Also, all of the questions raised in the previous section need to be answered before
the actual formulation of the solution can be constructed. Once these decisions have been
made an influence routine, similar to the model of Eq. (9.22), needs to be established. This
influence computation is a direct function of the element geometry and such a routine outputs
the velocity components and the potential (	u, 	v, 	w, 	�) induced by the element. In
general, the implementation of Eq. (9.22) represents the core of most numerical solutions.
Therefore, in the next chapter some of the more frequently used singularity elements will
be formulated.

b. Discretization of Geometry (and Grid Generation)
Once the basic solution element is selected, the geometry of the problem has to

be subdivided (or discretized), such that it will consist of those basic solution elements. In
this grid generating process, the elements’ corner points and collocation points are defined.
The collocation points are points where the boundary conditions, such as the zero normal
flow on a solid surface, will be enforced. Figure 9.14a shows how the cambered thin airfoil
at an angle of attack can be discretized by using the lumped-vortex element. In this case
the camberline is divided into five panels and the locations of the collocation points and of
the vortex points are shown in the figure. Similarly, the subdivision of a three-dimensional
body into planar surface elements is shown in Fig. 9.14b. (The collocation points are not
shown but they are at the center of the panel and may be slightly under the surface.)

It is very important to realize that the grid does have an effect on the solution. Typically,
a good grid selection will enable convergence to a certain solution when the density is
increased (within reason). Moreover, a good grid selection usually will require some pre-
liminary understanding of the problem’s fluid dynamics, as will be shown in some of the
forthcoming examples.

c. Influence Coefficients
In this phase, for each of the elements, an algebraic equation (based on the boundary

condition) is derived at the collocation point. To generate the coefficients in an automatic
manner, a unit singularity strength is assumed and the element influence routine is called at
each of the collocation points (by a DO loop).



P1: FNT

CB329-09 CB329/Katz September 13, 2000 15:22 Char Count= 0

9.7 Steps toward Constructing a Numerical Solution 221

Figure 9.14 Discretization of (a) the geometry of a thin airfoil by using the lumped vortex element
and of (b) a three-dimensional body using constant-strength surface doublets and sources.

d. Establish RHS
The right-hand side of the matrix equation is the known portion of the free-stream

velocity or the potential and requires mainly the computation of geometric quantities (e.g.,
−Q∞α).

e. Solve Linear Set of Equations
The coefficients and the RHS of the algebraic equations were obtained in the

previous steps and now the equations are solved by standard matrix techniques. Here it
is assumed that the reader is familiar with such numerical solvers, which can be found in
textbooks (e.g., Ref. 9.5 or as the solvers appearing in the student computer programs of
Appendix D).

f. Secondary Computations: Pressures, Loads, Off-Body Velocity, Etc.
The solution of the matrix equation results in the singularity strengths and the

velocity field and any secondary information can be computed now. The pressures will be
computed by Bernoulli’s equation, and the loads and aerodynamic coefficients by adding up
the contributions of the elements. A typical flowchart for such a computer program is shown
in Fig. 9.15 where the sequence of computations is close to the above described methodology.

In the following example, the essence of the above steps will be clarified.
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Figure 9.15 Typical flowchart for the numerical solution of the surface singularity distribution prob-
lem.

9.8 Example: Solution of Thin Airfoil with the Lumped-Vortex Element

As a first example for demonstrating the principle of numerical solutions, let
us consider the solution for the symmetric, thin airfoil. Because the airfoil is thin, no
sources will be used, while the doublet distribution will be approximated by two constant-
strength doublet elements (μ1, μ2 pointing in the −z direction). This element is equivalent
to two concentrated vortices at the panel edges (see Fig. 9.16). However, the geometry
of the “lumped-vortex” model was developed in Chapter 5, and by placing the vortex at
the quarter chord and the collocation point at the three-quarter chord point of the panel
the Kutta condition is automatically satisfied. Using this knowledge the equivalent discrete-
vortex model (with only two elements) for the airfoil is shown in Fig. 9.17. Also, for the
thin lifting surface only the Neumann (velocity) boundary condition can be used, because
of the zero thickness of the airfoil. (Note that the doublet representation in Fig. 9.16 clearly
indicates the existence of a starting vortex, also shown in Fig. 9.17, at a large distance
behind the airfoil.)

a. Selection of Singularity Element
For this very simple example the lumped-vortex element is selected and its influ-

ence is derived in terms of the geometry involved. Such an element is depicted in Fig. 9.18a;
it consists of a concentrated vortex at the panel quarter chord and a collocation point and

Figure 9.16 Constant-strength doublet element representation of the flat plate at an angle of attack
(using two doublet panels pointing in the −z direction).



P1: FNT

CB329-09 CB329/Katz September 13, 2000 15:22 Char Count= 0

9.8 Example: Solution of Thin Airfoil with the Lumped-Vortex Element 223

Figure 9.17 Equivalent discrete-vortex model for the flow over a flat plate at an angle of attack (using
two elements).

normal vector n at the three-quarter chord. It is important to remember that this element is
a simplification of the two-dimensional continuous solution and therefore accounts for the
Kutta condition at the trailing edge of the airfoil.

If the vortex element of circulation � is located at (x0, z0), then the velocity induced by
this element at an arbitrary point P(x, z), according to the analysis in Section 3.8, will be

u = �

2π

(z − z0)

(x − x0)2 + (z − z0)2

w = −�

2π

(x − x0)

(x − x0)2 + (z − z0)2

and a matrix version of this equation, which is more useful for computations, is
(

u
w

)
= �

2πr2

(
0 1

−1 0

) (
x − x0

z − z0

)
(9.31)

where

r2 = (x − x0)2 + (z − z0)2

Figure 9.18 Nomenclature and flowchart for the influence of a panel element at a point P .
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This can be programmed as an influence coefficient subroutine in the manner shown in
Fig. 9.18b. Let us call this routine VOR2D. An algorithm based on Eq. (9.31) will then have
the form

(u, w) = VOR2D(�, x, z, x0, z0) (9.32)

b. Discretization of Geometry and Grid Generation
For this example, the thin airfoil case is being solved (Fig. 9.17). For simplicity,

only two elements will be used so that no computations are necessary. At this phase the
geometrical information on the grid has to be derived. This can be automated by computer
routines for more complex situations, but for this case the vortex point locations are

(x01, z01) = (c/8, 0)

(x02, z02) = (5c/8, 0)

and the collocation points are

(xc1, zc1) = (3c/8, 0)

(xc2, zc2) = (7c/8, 0)

The normal vectors n must be evaluated at the collocation points, and for an arbitrary
element i we write

ni = (sin βi , cos βi ) (9.33)

where the angle βi is defined in Fig. 9.18a. In this particular case, when the airfoil has no
camber and is placed on the z = 0 plane, both normals are identical:

n1 = n2 = (0, 1)

c. Influence Coefficients
Here the condition requiring zero velocity normal to the airfoil will be enforced.

This boundary condition, according to Eq. (9.4), is

(q + Q∞) · n = 0 (9.34)

The velocity q is induced by the unknown vortices, whereas the free-stream normal com-
ponent can be calculated directly and hence is moved to the right-hand side of the equation:

q · n = −Q∞ · n (9.34a)

Because, in this case, the airfoil was divided into two elements with two unknown
vortices of circulation �1, �2, two equations based on the zero flow normal to the airfoil
boundary condition will be derived at the collocation points. We define as positive � a
clockwise rotation, and calculate the velocity induced by a unit strength vortex at point 1
on collocation point 1 with Eq. (9.32):

(u11, w11) = VOR2D(1.0, xc1, zc1, x01, z01) =
(

0, − 1

2π · c/4

)

and the velocity induced at collocation point 1, by a unit vortex at point 2, is

(u12, w12) = VOR2D(1.0, xc1, zc1, x02, z02) =
(

0,
1

2π · c/4

)

The velocity induced at collocation point 2, by a unit vortex at point 1, is

(u21, w21) = VOR2D(1.0, xc2, zc2, x01, z01) =
(

0, − 1

2π · 3c/4

)
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and the velocity induced at collocation point 2, by a unit vortex at point 2, is

(u22, w22) = VOR2D(1.0, xc2, zc2, x02, z02) =
(

0, − 1

2π · c/4

)

The influence coefficients ai j are really the normal component of the flow velocity induced
by a unit strength vortex element � j at collocation point i :

ai j = qi j (� j = 1) · ni (9.35)

For the current problem, Eq. (9.35) is applied to collocation point 1 and to vortex point 1.
Thus

a11 = (u11, w11) · n1 =
(

0, − 1

2π · c/4

)
· (0, 1) = −2

πc

Similarly, for the second vortex, we have

a12 = (u12, w12) · (0, 1) = 2

πc

and for the second collocation point, we get

a21 = (u21, w21) · (0, 1) = −2

3πc

a22 = (u22, w22) · (0, 1) = −2

πc

Note that the left-hand side of Eq. (9.34a) can be described now as

q · n =
2∑

j=1

ai j� j for i = 1, 2 (9.36)

d. Establish RHS
The solution is based on enforcing the boundary condition of Eq. (9.34a) at the

collocation points. Since the product Q∞ · n is known it is transferred to the right-hand side
of the equation:

q · n = −Q∞ · n ≡ RHS (9.37)

It is useful to express the component of the free stream in vector form to allow easy vector
operations; for this particular case the right-hand side (RHS) is

RHSi = −(U∞, W∞) · ni (9.38)

where (U∞, W∞) = Q∞(cos α, sin α). Computing the RHS vector for the two collocation
points results in

RHS1 = −Q∞ sin α

RHS2 = −Q∞ sin α

e. Solve Linear Set of Equations
The results of the previous computations can be summarized as

2∑
j=1

ai j� j = RHSi i = 1, 2 (9.39)
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and explicitly, for this particular case,
( − 2

πc
2
πc

− 2
3πc − 2

πc

) (
�1

�2

)
= −Q∞ sin α

(
1
1

)

which can be solved by standard matrix methods

f. Secondary Computations: Pressures, Loads, Etc.
The solution of the above set of algebraic equations is

(
�1

�2

)
=

(
3
4

1
4

)
πcQ∞ sin α

The resulting pressures and loads can be computed by using the Kutta–Joukowski theorem
(Section 3.11):

	Li = ρQ∞�i

and by assuming a constant pressure distribution along the element, the pressure difference
becomes

	pi = ρQ∞�i/a

where a is the panel length. The lift and moment about the airfoil leading edge are then

L =
2∑

i=1

	Li = ρQ2
∞πc sin α (9.40)

M0 = −
2∑

i=1

	Li x0i = −ρQ2
∞π

c2

4
sin α (9.41)

and the nondimensional aerodynamic coefficients are

Cl = L
1
2ρQ2∞c

= 2π sin α (9.42)

Cm0 = M0
1
2ρQ2∞c2

= −π

2
sin α (9.43)

These results are similar to those for a zero-thickness symmetrical airfoil (Section 5.4) and
equal to the exact flat plate solution (Section 6.5.1). The method can easily be extended to
various camberline shapes and even multielement lifting airfoils.

Description of more complex numerical methods for solving the potential-flow problem
will be presented in the following chapters.

9.9 Accounting for Effects of Compressibility and Viscosity

The potential flow model presented in this chapter results in a very simple math-
ematical model that can be transformed into a very efficient and economical numerical
solution. This led to the development of three-dimensional “panel codes” for arbitrary ge-
ometries, and naturally, modifications were sought to improve these methods beyond the
limits of incompressible inviscid flows. Some of these modifications are listed here.
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a. Effects of Compressibility
The first and most straightforward modification to an incompressible potential-flow

based method is to incorporate the effects of “low-speed compressibility” (e.g., for M∞ <

0.6). This modification can be obtained by using the Prandtl–Glauert rule, as developed in
Section 4.8. Thus, small-disturbance flow is assumed, and a compressibility factor β can
be defined as

β =
√

1 − M2∞ (9.44)

If the free stream is parallel to the x coordinate then the x coordinate is being stretched with
increased Mach number while the y and z coordinates remain unchanged. Consequently,
an equivalent incompressible potential �M∞=0 can be defined such that

�M∞=0 = �M∞

(
x

β
, y, z

)
(9.45)

Once the x coordinate is transformed, the equivalent incompressible potential problem is
solved as described previously. This procedure results in an increase in the aerodynamic
forces (as noted in Section 4.8) which may be approximated by

CL (M∞ > 0) = CL (M∞ = 0)

β
(9.46)

CM (M∞ > 0) = CM (M∞ = 0)

β
(9.47)

b. Effects of Thin Boundary Layers
When analyzing high Reynolds number flows in Section 1.8, it was assumed that

the boundary layer is thin and that the boundary conditions are specified on the actual
surface of the body. However, by neglecting the viscosity terms in the momentum equation,
the information for calculating the viscous surface friction drag is lost too.

It is possible to account for the viscosity effects such as displacement thickness and
friction drag by using a boundary layer solution that can be matched with the potential-flow
solution (see Chapter 14). Two of the most common methods for combining these two
solutions are as follows.

1. The first approach is to use a boundary layer solution, usually a two-dimensional
model along a streamline, which is quite effective for simple wings and bodies.
The solution begins by solving the inviscid potential flow, which results in the
velocity field and the pressure distribution. These data are fed into two-dimensional
boundary layer solutions that provide the local wall friction coefficient and the
boundary layer thickness (see definitions in Chapter 14). The friction coefficient
can then be integrated over the body surface for computing the friction drag. If the
displacement thickness effect is sought, then a second iteration of the potential flow
computation is needed, but now with modified surface geometry. This modification
can be obtained by displacing the body panels according to the local boundary layer
displacement, and the procedure can be reiterated until a satisfactory solution is
obtained. Some of the principles of a computer program (e.g., the MCAIR panel
code) that uses this method are presented in Ref. 9.6.

2. The second approach to incorporate boundary layer solutions into panel codes is to
follow the procedure described above, but to account for the displacement effects
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by a modification of the boundary conditions instead of a change of the surface
geometry. In this case, at each panel the normal flow is given a certain blowing
value that accounts for the local boundary layer displacement thickness δ∗ (see
definition in Chapter 14). The formulation can be derived using the properties of
the source distribution of Section 4.4, and the incremental “transpiration velocity”

	σi = ∂

∂s
(qδ∗) (9.48)

is simply added to the source strength obtained from the inviscid model. Here
q is the local streamwise velocity component of the potential flow (outside the
boundary layer) and the differentiation takes place along a streamline s. Note
that as a result of the added transpiration velocity qni = 	σi , the normal velocity
component on the actual surface of the body is nonzero. For more details on this
approach see Chapter 14.

c. Models for Wake Rollup, Jets, and Flow Separations
The vortices in the thin wake behind lifting wings tend to follow the local velocity

induced by the lifting surface and its wakes. Consequently, the condition stated by Eq. (9.18)
results in the wake rollup. This condition causes the shape of the wake to be unknown when
the boundary conditions for the potential flow are established. Traditionally, the shape of the
wake is assumed to be known (e.g., planar vortex sheet) and after the solution is obtained,
the validity of the initial wake shape can be rechecked. In Chapter 15 two methods used by
two panel codes will be presented to calculate the wake shape (VSAERO-wake relaxation9.3

and PMARC-time stepping9.7,9.8).
Since the wake is modeled by a doublet/vortex distribution, it is possible to extend this

method for modeling jets and even shear layers of separated flows. Details about models to
represent the effect of jets can be found in Refs. 9.3 and 9.7; models to treat some effects
of flow separation will be presented in Chapter 15.
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Problems

9.1. Solve the problem of a flat plate at an angle of attack α using the lumped-vortex
element. Divide the chord into five equal panels of length a, as shown in Fig. 9.19.
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Figure 9.19 Discrete-vortex model for the flat plate at angle of attack.

a. Calculate the influence coefficient matrix ai j . Is this a diagonally dominant
matrix?

b. Calculate the lift and moment coefficients. How do these compare with the
analytical results of Chapter 5?

9.2. Calculate the lift and moment coefficient (about the origin, x = 0) of the two flat
plates shown in Fig. 9.20. Use a single-element lumped-vortex model to represent
each plate and investigate the effect of the distance between the two plates on their
lift (repeat your calculation with gap values of c/2, c, 2c, 4c).

Figure 9.20 Lumped-vortex model for the tandem wing problem.
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CHAPTER 10

Singularity Elements and
Influence Coefficients

It was demonstrated in the previous chapters that the solution of potential flow
problems over bodies and wings can be obtained by the distribution of elementary solutions.
The strengths of these elementary solutions of Laplace’s equation are obtained by enforcing
the zero normal flow condition on the solid boundaries. The steps toward a numerical solution
of this boundary value problem are described schematically in Section 9.7. In general, as
the complexity of the method is increased, the “element’s influence” calculation becomes
more elaborate. Therefore, in this chapter, emphasis is placed on presenting some of the
typical numerical elements upon which some numerical solutions are based (the list is not
complete and an infinite number of elements can be developed). A generic element is shown
schematically in Fig. 10.1. To calculate the induced potential and velocity increments at an
arbitrary point P(xP , yP , zP ) requires information on the element geometry and strength
of singularity.

For simplicity, the symbol � is dropped in the following description of the singularity
elements. However, it must be clear that the values of the velocity potential and velocity
components are incremental values and can be added up according to the principle of
superposition.

In the following sections some two-dimensional elements will be presented, whose
derivation is rather simple. Three-dimensional elements will be presented later and their
complexity increases with the order of the polynomial approximation of the singularity
strength. Also, the formulation is derived in the panel frame of reference and when these
formulas are used in any other “global coordinate system,” the corresponding coordinate
transformations must be used (for rotations and translations).

10.1 Two-Dimensional Point Singularity Elements

These elements are probably the simplest and easiest to use and also the most
efficient in terms of computational effort. Consequently, even when higher order elements
are used, if the point of interest is considered to be far from the element, then point ele-
ments can be used to describe the “far field” effect. The three point elements that will be
discussed are source, doublet and vortex, and their formulation is given in the following
sections.

10.1.1 Two-Dimensional Point Source

Consider a point source singularity at (x0, z0), with a strength σ , as shown in
Fig. 10.2. The increment to the velocity potential �� at a point P (following Section 3.7)
is then

�(x, z) = σ

2π
ln

√
(x − x0)2 + (z − z0)2 (10.1)

230
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Figure 10.1 Schematic description of a generic panel influence coefficient calculation.

and after differentiation of the potential, the velocity components are

u = ∂�

∂x
= σ

2π

x − x0

(x − x0)2 + (z − z0)2
(10.2)

w = ∂�

∂z
= σ

2π

z − z0

(x − x0)2 + (z − z0)2
(10.3)

10.1.2 Two-Dimensional Point Doublet

Consider a doublet that is oriented in the z direction [μ = (0, μ)] as in Section 3.7.
If the doublet is located at the point (x0, z0), then its incremental influence at point P
(Fig. 10.2) is

�(x, z) = −μ

2π

z − z0

(x − x0)2 + (z − z0)2
(10.4)

and the velocity component increments are

u = ∂�

∂x
= μ

π

(x − x0)(z − z0)

[(x − x0)2 + (z − z0)2]2
(10.5)

w = ∂�

∂z
= −μ

2π

(x − x0)2 − (z − z0)2

[(x − x0)2 + (z − z0)2]2
(10.6)

In the case when the basic singularity element is given in a system (x, z) rotated by the
angle β relative to the (x∗, z∗) system, as shown in Fig. 10.3, then the velocity components
can be found by the transformation(

u∗

w∗

)
=

(
cos β −sinβ

sin β cos β

) (
u
w

)
(10.7)

10.1.3 Two-Dimensional Point Vortex

Consider a point vortex with the strength � located at (x0, z0). Again using the
definitions of the points, as in Fig. 10.2, and the results of Section 3.8, we find that the

Figure 10.2 The influence of a point singularity element at point P .
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Figure 10.3 Transformation from panel to global coordinate system.

increment to the velocity potential at a point P is

� = − �

2π
tan−1 z − z0

x − x0
(10.8)

and the increments in the velocity components are

u = �

2π

z − z0

(x − x0)2 + (z − z0)2
(10.9)

w = −�

2π

x − x0

(x − x0)2 + (z − z0)2
(10.10)

Note that all these point elements fulfill the requirements presented in Fig. 10.1. That
is, the increments of the velocity components and potential at P depend on the geometry
(x, z, x0, z0) and the strength of the element.

10.2 Two-Dimensional Constant-Strength Singularity Elements

The discretization of the source, doublet, or vortex distributions in the previous
section led to discrete singularity elements that are clearly not a continuous surface rep-
resentation. A more refined representation of these singularity element distributions can
be obtained by dividing the solid surface boundary into elements (panels). One such el-
ement is shown schematically in Fig. 10.4, and both the surface shape and the shape of
the singularity strength distribution is approximated by a polynomial. In this section, for
the surface representation, a straight line will be used. For the singularity strength, only the
constant, linearly varying, and quadratically varying strength cases are presented, but the
methodology of this section can be applied to higher order elements.

In this section, too, three examples will be presented (source, doublet, and vortex) for
evaluating the influence of the generic panel of Fig. 10.4 at an arbitrary point P . For

Figure 10.4 A generic surface distribution element.
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Figure 10.5 Constant-strength source distribution along the x axis.

simplicity, the formulation is derived in a panel-attached coordinate system, and the results
need to be transformed back into the global coordinate system of the problem.

10.2.1 Constant-Strength Source Distribution

Consider a source distribution along the x axis as shown in Fig. 10.5. It is assumed
that the source strength per length is constant such that σ (x) = σ = const. The influence of
this distribution at a point P is an integral of the influences of the point elements (described
in the previous section) along the segment x1 → x2:

� = σ

2π

∫ x2

x1

ln
√

(x − x0)2 + z2 dx0 (10.11)

u = σ

2π

∫ x2

x1

x − x0

(x − x0)2 + z2
dx0 (10.12)

w = σ

2π

∫ x2

x1

z

(x − x0)2 + z2
dx0 (10.13)

The integral for the velocity potential (Eq. (10.11)) appears in Appendix B (Eq. (B.11))
(note that ln r2 = 2 ln r is used in the derivation) and in terms of the corner points (x1, 0),
(x2, 0) of a generic panel element (Fig. 10.6), the distances r1, r2, and the angles θ1, θ2 it

Figure 10.6 Nomenclature for the panel influence coefficient derivation.
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becomes

� = σ

4π

[
(x − x1) ln r2

1 − (x − x2) ln r2
2 + 2z(θ2 − θ1)

]
(10.14)

where

θk = tan−1 z

x − xk
, k = 1, 2 (10.15)

rk =
√

(x − xk)2 + z2, k = 1, 2 (10.16)

The velocity components are obtained by differentiating the potential, and following Ap-
pendix B (Eqs. (B.5) and (B.9)), they are

u = σ

2π
ln

r1

r2
= σ

4π
ln

r2
1

r2
2

(10.17)

w = σ

2π
(θ2 − θ1) (10.18)

Returning to x, z variables we obtain

� = σ

4π

{
(x − x1) ln[(x − x1)2 + z2] − (x − x2) ln[(x − x2)2 + z2]

+ 2z

(
tan−1 z

x − x2
− tan−1 z

x − x1

)}
(10.19)

u = σ

4π
ln

(x − x1)2 + z2

(x − x2)2 + z2
(10.20)

w = σ

2π

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(10.21)

Of particular interest is the case when the point P is on the element (usually at the center).
In this case z = 0± and the potential becomes

�(x, 0±) = σ

4π
[(x − x1) ln(x − x1)2 − (x − x2) ln(x − x2)2] (10.22)

and at the center of the element it becomes

�

(
x1 + x2

2
, 0±

)
= σ

4π
(x2 − x1) ln

(
x2 − x1

2

)2

(10.22a)

The x component of the velocity at z = 0 becomes

u(x, 0±) = σ

2π
ln

(x − x1)

|(x − x2)| (10.23)

which is zero at the panel center and infinite at the panel edges.
For evaluating the w component of the velocity, it is important to distinguish between

the conditions when the panel is approached from its upper or from its lower side. For the
case of P being above the panel, θ1 = 0, while θ2 = π . These conditions are reversed on
the lower side and therefore

w(x, 0±) = ±σ

2
(10.24)

This is the same result obtained in Section 3.14 for the source distribution.
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Figure 10.7 Constant-strength doublet distribution along the x axis.

10.2.2 Constant-Strength Doublet Distribution

Consider a doublet distribution along the x axis consisting of elements pointing in
the z direction [μ = (0, μ)], as shown in Fig. 10.7. The influence at a point P(x, z) is an
integral of the influences of the point elements between x1 and x2:

�(x, z) = −μ

2π

∫ x2

x1

z

(x − x0)2 + z2
dx0 (10.25)

and the velocity components are

u(x, z) = μ

π

∫ x2

x1

(x − x0)z

[(x − x0)2 + z2]2
dx0 (10.26)

w(x, z) = −μ

2π

∫ x2

x1

(x − x0)2 − z2

[(x − x0)2 + z2]2
dx0 (10.27)

Note that the integral for the w component of the source distribution is similar to the
potential integral of the doublet. Therefore, the potential at P (by using Eq. (10.21)) is

� = −μ

2π

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(10.28)

Comparison of this expression to the potential of a point vortex (Eq. (10.8)) indicates that
this constant doublet distribution is equivalent to two point vortices with opposite sign at
the panel edges such that � = −μ (see Fig. 10.8). Consequently, the velocity components

Figure 10.8 Equivalence between a constant-strength doublet panel and two point vortices at the edge
of the panel.
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are readily available by using Eqs. (10.9) and (10.10):

u = −μ

2π

[
z

(x − x1)2 + z2
− z

(x − x2)2 + z2

]
(10.29)

w = μ

2π

[
x − x1

(x − x1)2 + z2
− x − x2

(x − x2)2 + z2

]
(10.30)

When the point P is on the element (z = 0, x1 < x < x2) then, following Section 3.14,
we have

�(x, 0±) = ∓μ

2
(10.31)

and the velocity components become

u(x, 0±) = ∓dμ(x)

dx
= 0 (10.32)

w(x, 0±) = −μ

2π

[
1

(x − x1)
− 1

(x − x2)

]
(10.33)

and hence the w velocity component is singular at the panel edges.

10.2.3 Constant-Strength Vortex Distribution

Once the influence terms of the constant-strength source element are obtained,
owing to the similarity between the source and the vortex distributions, the formulation for
this element becomes simple. The constant-strength vortex distribution γ (x) = γ = const.
is placed along the x axis as shown in Fig. 10.9. The influence of this distribution at a
point P is an integral of the influences of the point elements between x1 and x2. So we
have

� = − γ

2π

∫ x2

x1

tan−1 z

x − x0
dx0 (10.34)

u = γ

2π

∫ x2

x1

z

(x − x0)2 + z2
dx0 (10.35)

w = − γ

2π

∫ x2

x1

x − x0

(x − x0)2 + z2
dx0 (10.36)

Details of the integral for the velocity potential appear in Appendix B (Eq. (B.14)), and
in terms of the distances and angles of Eqs. (10.15) and (10.16) (as shown in Fig. 10.6) the

Figure 10.9 Constant-strength vortex distribution along the x axis.
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potential becomes

� = − γ

2π

[
(x − x1)θ1 − (x − x2)θ2 + z

2
ln

r2
1

r2
2

]
(10.37)

which in terms of the x , z coordinates is

� = − γ

2π

[
(x − x1)tan−1 z

x − x1
− (x − x2)tan−1 z

x − x2
+ z

2
ln

(x − x1)2 + z2

(x − x2)2 + z2

]

(10.38)

Following the formulation used for the constant-source element, and observing that the
u and w velocity components for the vortex distribution are the same as the corresponding
w and u components of the source distribution, we obtain

u = γ

2π

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(10.39)

w = γ

4π
ln

(x − x2)2 + z2

(x − x1)2 + z2
(10.40)

The influence of the element on itself at z = 0± and (x1 < x < x2) can be found by
approaching from above the x axis. In this case θ1 = 0, θ2 = π , and

�(x, 0+) = − γ

2π
[(x − x1)0 − (x − x2)π ] = γ

2
(x − x2) (10.41a)

Similarly, when the element is approached from below then

�(x, 0−) = −γ

2
(x − x2) (10.41b)

The x component of the velocity can be found by observing Eq. (10.24) for the source
or by recalling Section 3.14:

u(x, 0±) = ±γ

2
(10.42)

and the w velocity component is similar to the u component of the source (Eq. (10.23)):

w(x, 0±) = γ

4π
ln

(x − x2)2

(x − x1)2
(10.43)

In most situations the influence is sought at the center of the element where |r1| = |r2| and
consequently w(panel − center, 0±) = 0.

10.3 Two-Dimensional Linear-Strength Singularity Elements

The representation of a continuous singularity distribution by a series of constant-
strength elements results in a discontinuity of the singularity strength at the panel edges.
To overcome this problem, a linearly varying strength singularity element can be used.
The requirement that the strength of the singularity remains the same at the edge of two
neighbor elements results in an additional equation. Therefore with this type of element,
for N collocation points 2N equations will be formed (see examples in Chapter 11).
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Figure 10.10 Decomposition of a generic linear strength element to constant-strength and linearly
varying strength elements.

10.3.1 Linear Source Distribution

Consider a linear source distribution along the x axis (x1 < x < x2) with a source
strength of σ (x) = σ0 + σ1(x − x1), as shown in Fig. 10.10. Based on the principle of
superposition, this can be divided into a constant-strength element and a linearly varying
strength element with the strength σ (x) = σ1x . Therefore, for the general case (as shown
in the left-hand side of Fig. 10.10) the results of this section must be added to the results of
the constant-strength source element.

The influence of the simplified linear distribution source element, where σ (x) = σ1x , at
a point P is obtained by integrating the influences of the point elements between x1 and x2

(see Fig. 10.11):

� = σ1

2π

∫ x2

x1

x0 ln
√

(x − x0)2 + z2 dx0 (10.44)

u = σ1

2π

∫ x2

x1

x0(x − x0)

(x − x0)2 + z2
dx0 (10.45)

w = σ1

2π

∫ x2

x1

x0z

(x − x0)2 + z2
dx0 (10.46)

Details of the integration are presented in Appendix B (Eq. (B.17)), and the results are

� = σ1

4π

[
x2 − x2

1 − z2

2
ln r2

1 − x2 − x2
2 − z2

2
ln r2

2 + 2xz(θ2 − θ1) − x(x2 − x1)

]

(10.47)

Figure 10.11 Nomenclature for calculating the influence of linearly varying strength source.
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where r1, r2, θ1, and θ2 are defined by Eqs. (10.15) and (10.16). The velocity components
are obtained by differentiating the velocity potential (Appendix B, Eqs. (B.18) and (B.19)),
which gives

u = σ1

2π

[
x

2
ln

r2
1

r2
2

+ (x1 − x2) + z(θ2 − θ1)

]
(10.48)

w = σ1

4π

[
z ln

r2
2

r2
1

+ 2x(θ2 − θ1)

]
(10.49)

Substitution of rk and θk from Eqs. (10.16) and (10.17) results in

� = σ1

4π

[
x2 − x2

1 − z2

2
ln [(x − x1)2 + z2] − x2 − x2

2 − z2

2
ln [(x − x2)2 + z2]

+ 2xz

(
tan−1 z

x − x2
− tan−1 z

x − x1

)
− x(x2 − x1)

]
(10.50)

u = σ1

2π

[
x

2
ln

(x − x1)2 + z2

(x − x2)2 + z2
+ (x1 − x2) + z

(
tan−1 z

x − x2
− tan−1 z

x − x1

)]

(10.51)

w = σ1

4π

[
z ln

(x − x1)2 + z2

(x − x2)2 + z2
+ 2x

(
tan−1 z

x − x2
− tan−1 z

x − x1

)]
(10.52)

When the point P lies on the element (z = 0±, x1 < x < x2), then Eq. (10.50) reduces to

� = σ1

4π

[(
x2 − x2

1

)
ln (x − x1) − (

x2 − x2
2

)
ln |(x − x2)|− x(x2 − x1)

]
(10.53)

At the center of the element this reduces to

� = σ1

4π

(
x2

2 − x2
1

)(
ln

x2 − x1

2
− 1

2

)
(10.53a)

Also, on the element

u = σ1

2π

[
x ln

x − x1

|x − x2| + (x1 − x2)

]
(10.54)

w = ±σ1

2
x (10.55)

and at the center of the element

u = σ1

2π
(x1 − x2) (10.54a)

and

w = ±σ1

4
(x2 − x1) (10.55a)

10.3.2 Linear Doublet Distribution

Consider a doublet distribution along the x axis with a strength μ(x) = μ0 +
μ1(x − x1), consisting of elements pointing in the z direction [μ = (0, μ)], as shown in
Fig. 10.12. In this case, too, only the linear term (μ(x) = μ1x) is considered and the
influence at a point P(x, z) is an integral of the influences of the point elements between
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Figure 10.12 Linearly varying strength doublet element.

x1 and x2:

�(x, z) = −μ1

2π

∫ x2

x1

x0z

(x − x0)2 + z2
dx0 (10.56)

u(x, z) = μ1

π

∫ x2

x1

x0(x − x0)z

[(x − x0)2 + z2]2
dx0 (10.57)

w(x, z) = −μ1

2π

∫ x2

x1

[(x − x0)2 − z2]x0

[(x − x0)2 + z2]2
dx0 (10.58)

The integral for the velocity potential is similar to the w velocity component of the linear
source (Eq. (10.46)). Therefore, following Eq. (10.49), we obtain

� = −μ1

4π

[
2x(θ2 − θ1) + z ln

r2
2

r2
1

]
(10.59)

and in Cartesian coordinates

� = −μ1

4π

[
2x

(
tan−1 z

x − x2
− tan−1 z

x − x1

)
+ z ln

(x − x2)2 + z2

(x − x1)2 + z2

]
(10.60)

To obtain the velocity components we observe the similarity between Eq. (10.59) and
the potential of a constant-strength vortex distribution (Eq. (10.37)). Replacing μ1 with −γ

in Eq. (10.38) yields

�∗∗ = μ1

4π

[
2(x − x1) tan−1 z

x − x1
− 2(x − x2) tan−1 z

x − x2
+ z ln

(x − x1)2 + z2

(x − x2)2 + z2

]

(10.38a)

and therefore the potential of the linear doublet distribution of Eq. (10.60) is

� = �∗∗ + μ1

2π
(x1θ1 − x2θ2) (10.61)

and the two last terms are potentials of point vortices with strengths μ1x1 and μ1x2 (see
Eq. (10.8)). The velocity components therefore are readily available, either by differentiation
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of this velocity potential or by using Eqs. (10.39) and (10.9):

u = − μ1

2π

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
+ μ1x2

2π

z

(x − x2)2 + z2

− μ1x1

2π

z

(x − x1)2 + z2
(10.62)

and for the w component using Eqs. (10.40) and (10.10) we get

w = − μ1

4π
ln

(x − x2)2 + z2

(x − x1)2 + z2
+ μ1x1

2π

x − x1

(x − x1)2 + z2
− μ1x2

2π

x − x2

(x − x2)2 + z2

(10.63)

The values of the potential and the velocity components on the element (z = 0, x1 <

x < x2) are

� = ∓μ1

2
x (10.64)

u = ∓μ1

2
(10.65)

w = − μ1

4π

[
ln

(x − x2)2

(x − x1)2
+ 2x1

x − x1
− 2x2

x − x2

]
(10.66)

and the w velocity component at the center of the element becomes

w = −μ1

π

[
x2 + x1

x2 − x1

]
(10.66a)

and hence the velocity is singular at the panel edges because of the point vortices there.
Note that for the general element, where μ(x) = μ0 + μ1(x − x1), the potential becomes

� = �∗∗ − μ0

2π
(θ2 − θ1) + μ1

2π
(x1 − x2)θ2 (10.67)

and because of the potential jump at the edges of this doublet distribution two concentrated
vortices exist. The vortex at x1 will have a strength of −μ0 while the one at x2 will have a
strength of [μ1(x2 − x1) + μ0], as shown schematically in Fig. 10.12.

10.3.3 Linear Vortex Distribution

In this case the strength of the vortex distribution varies linearly along the element,

γ (x) = γ0 + γ1(x − x1)

Again, for simplicity consider only the linear portion where γ (x) = γ1x and γ1 is a constant.
The influence of this vortex distribution at a point P in the x–z plane is obtained by
integrating the influences of the point elements between x1 and x2:

� = − γ1

2π

∫ x2

x1

x0 tan−1 z

x − x0
dx0 (10.68)

u = γ1

2π

∫ x2

x1

x0z

(x − x0)2 + z2
dx0 (10.69)

w = − γ1

2π

∫ x2

x1

x0(x − x0)

(x − x0)2 + z2
dx0 (10.70)
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Using the integral in Appendix B (Eq. (B.22)) we get

� = − γ1

2π

[
xz

2
ln

r2
1

r2
2

+ z

2
(x1 − x2) + x2 − x2

1 − z2

2
θ1 − x2 − x2

2 − z2

2
θ2

]

(10.71)

The velocity components are similar to the integrals of the linear source (Eqs. (10.51) and
(10.52)) and are

u = − γ1

4π

[
z ln

(x − x1)2 + z2

(x − x2)2 + z2
− 2x

(
tan−1 z

x − x2
− tan−1 z

x − x1

)]
(10.72)

w = − γ1

2π

[
x

2
ln

(x − x1)2 + z2

(x − x2)2+ z2
+ (x1 − x2) + z

(
tan−1 z

x − x2
− tan−1 z

x − x1

)]

(10.73)

When the point P lies on the element (z = 0±, x1 < x < x2), then Eq. (10.71) reduces
to

� = ±γ1

4

(
x2 − x2

2

)
(10.74)

At the center of the element this reduces to

� = ± γ1

16

(
x2

1 + 2x1x2 − 3x2
2

)
(10.74a)

Also, on the element

u = ±γ1

2
x (10.75)

w = γ1

2π

[
x ln

x − x1

|x − x2| + (x1 − x2)

]
(10.76)

and at the center of the element (above +, under −)

u = ±γ1

4
(x1 + x2) (10.75a)

w = − γ1

2π
(x1 − x2) (10.76a)

10.3.4 Quadratic Doublet Distribution

As indicated by Eq. (3.150) in Section 3.14, a quadratic doublet distribution can
be replaced by an equivalent linear vortex distribution presented in the previous section.
However, in situations when the Dirichlet type boundary condition is applied, it is more
convenient to use the corresponding doublet distribution (instead of the linear vortex dis-
tribution). Thus, a quadratic doublet distribution along the x axis (x1 < x < x2) will have
a strength distribution of

μ(x) = μ0 + μ1(x − x1) + μ2(x − x1)2

where the doublet elements pointing in the z direction [μ = (0, μ)] are selected as shown
in Fig. 10.13. Since the contribution of the constant and linear strength terms were eval-
uated in the previous sections only the third term (μ(x) = μ2x2) is considered and the
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Figure 10.13 Quadratic-strength doublet element.

influence at a point P(x, z) is an integral of the influences of the point elements between
x1 and x2:

�(x, z) = −μ2

2π

∫ x2

x1

x2
0 z

(x − x0)2 + z2
dx0 (10.77)

u(x, z) = μ2

π

∫ x2

x1

(x − x0)zx2
0

[(x − x0)2 + z2]2
dx0 (10.78)

w(x, z) = −μ2

2π

∫ x2

x1

[(x − x0)2 − z2]x2
0

[(x − x0)2 + z2]2
dx0 (10.79)

The integral for the velocity potential is obtained by introducing the variable X = x − x0

(thus dX = −dx0), which transforms Eq. (10.77) to the form

� = μ2

2π

∫ x−x2

x−x1

(x2 − 2x X + X2)z

X2 + z2
dX

The three integrals formed by the terms appearing in the numerator are evaluated in
Gradshteyn and Ryzhik5.7 (pp. 68–69) and yield

�(x, z) = μ2

2π

[
(x2 − z2)(θ1 − θ2) − xz ln

r2
2

r2
1

+ z(x1 − x2)

]
(10.80)

where the variables r1, r2, θ1, and θ2 are shown in Fig. 10.13.
Note that Eq. (10.80) can be rewritten as

�(x, z) = �∗∗ + μ2

2π

(
x2

1θ1 − x2
2θ2

)
(10.81)

such that �∗∗ is the potential of the equivalent linear vortex distribution of Eq. (10.71) (with
μ2 = −γ1/2):

�∗∗ = μ2

2π

[
−xz ln

r2
2

r2
1

+ z(x2 − x1) + (x2 − z2)(θ1 − θ2)

]
+ μ2

2π

[
x2

2θ2 − x2
1θ1

]

(10.81a)

Therefore, Eq. (10.81) states that the potential of a quadratic doublet distribution is equiv-
alent to the velocity potential of a linearly varying strength vortex distribution plus two
concentrated vortices at the panel edges, as shown schematically in Fig. 10.13.

To obtain the velocity components we can use the similarity between Eq. (10.80) and
the potential of a linearly varying strength vortex distribution (Eqs. (10.72) and (10.73)).
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Replacing μ2 with −γ1/2 in Eqs. (10.72) and (10.73) and adding the velocity components
of the two point vortices yields

u = μ2

2π

[
z ln

r2
1

r2
2

− 2x(θ2 − θ1) + zx2
2

(x − x2)2 + z2
− zx2

1

(x − x1)2 + z2

]
(10.82)

and the w component of the velocity is

w = μ2

π

[
x

2
ln

r2
1

r2
2

+ (x1 − x2) + z(θ2 − θ1) + x2
1

2

x − x1

(x − x1)2 + z2
− x2

2

2

x − x2

(x − x2)2 + z2

]

(10.83)

The value of the potential on the element (z = 0±, x1 < x < x2) becomes

�(x, 0±) = μ2x2

2π
(θ1 − θ2)

and above the element θ1 − θ2 = −π whereas under the element θ1 − θ2 = π . Conse-
quently,

�(x, 0±) = ∓μ2x2

2
(10.84)

Similarly the velocity components become

u(x, 0±) = μ2

2π
(−2x)(θ2 − θ1) = ∓μ2x (10.85)

w(x, 0±) = μ2

π

[
x

2
ln

(x − x1)2

(x − x2)2
+ x1 − x2 + x2

1

2(x − x1)
− x2

2

2(x − x2)

]
(10.86)

and hence the velocity is singular at the panel edges because of the point vortices there.
Note that for the general element, where μ(x) = μ0 + μ1(x − x1) + μ2(x − x1)2, the

potential jump at the edges of this doublet distribution results in two concentrated vortices.
The vortex at x1 will have a strength of −μ0 while the one at x2 will have a strength of
[μ0 + μ1(x2 − x1) + μ2(x2 − x1)2], as shown schematically in Fig. 10.13.

10.4 Three-Dimensional Constant-Strength Singularity Elements

In the three-dimensional case, as in the two-dimensional case, the discretiza-
tion process includes two parts: discretization of the geometry and of the singularity el-
ement distribution. If these elements are approximated by polynomials (both geometry
and singularity strength) then a first-order approximation to the surface can be defined as
a quadrilateral1 panel, a second-order approximation will be based on parabolic curve-
fitting, while a third-order approximation may use a third-order polynomial curve-fitting.
Similarly, the strength of the singularity distribution can be approximated (discretized) by
constant-strength (zero-order), linearly varying (first-order), or by parabolic (second-order)
functions.

The simplest and most basic three-dimensional element will have a quadrilateral geom-
etry and a constant-strength singularity. When the strength of this element (a constant) is

1 A quadrilateral is a flat surface with four straight sides. A rectilinear panel has straight but not necessarily
flat sides and can be twisted!
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Figure 10.14 Quadrilateral constant-strength source element.

unknown a panel code using N panels can be constructed to solve for these N constants.
In the following section, such constant-strength elements will be described.

The derivation is again performed in a local frame of reference, and for a global coordinate
system a coordinate transformation is required.

10.4.1 Quadrilateral Source

Consider a surface element with a constant-strength source distribution σ per area
bounded by four straight lines as described in Fig. 10.14. The element corner points are
designated as (x1, y1, 0), . . . , (x4, y4, 0) and the potential at an arbitrary point P(x, y, z),
due to this element, is

�(x, y, z) = −σ

4π

∫
S

d S√
(x − x0)2 + (y − y0)2 + z2

(10.87)

The velocity components can be obtained by differentiating the velocity potential, that is,

(u, v, w) =
(

∂�

∂x
,
∂�

∂y
,
∂�

∂z

)
(10.88)

Execution of the integration within the area bounded by the four straight lines requires a
lengthy process and is derived by Hess and Smith.10.1 Using their results, we can obtain the
potential for a planar element as

� = −σ

4π

{[
(x − x1)(y2 − y1) − (y − y1)(x2 − x1)

d12
ln

r1 + r2 + d12

r1 + r2 − d12

+ (x − x2)(y3 − y2) − (y − y2)(x3 − x2)

d23
ln

r2 + r3 + d23

r2 + r3 − d23

+ (x − x3)(y4 − y3) − (y − y3)(x4 − x3)

d34
ln

r3 + r4 + d34

r3 + r4 − d34

+ (x − x4)(y1 − y4) − (y − y4)(x1 − x4)

d41
ln

r4 + r1 + d41

r4 + r1 − d41

]
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− |z|
[

tan−1

(
m12e1 − h1

zr1

)
− tan−1

(
m12e2 − h2

zr2

)

+ tan−1

(
m23e2 − h2

zr2

)
− tan−1

(
m23e3 − h3

zr3

)

+ tan−1

(
m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)

+ tan−1

(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]}
(10.89)

where

d12 =
√

(x2 − x1)2 + (y2 − y1)2 (10.90a)

d23 =
√

(x3 − x2)2 + (y3 − y2)2 (10.90b)

d34 =
√

(x4 − x3)2 + (y4 − y3)2 (10.90c)

d41 =
√

(x1 − x4)2 + (y1 − y4)2 (10.90d)

and

m12 = y2 − y1

x2 − x1
(10.91a)

m23 = y3 − y2

x3 − x2
(10.91b)

m34 = y4 − y3

x4 − x3
(10.91c)

m41 = y1 − y4

x1 − x4
(10.91d)

and

rk =
√

(x − xk)2 + (y − yk)2 + z2, k = 1, 2, 3, 4 (10.92)

ek = (x − xk)2 + z2, k = 1, 2, 3, 4 (10.93)

hk = (x − xk)(y − yk), k = 1, 2, 3, 4 (10.94)

The velocity components, based on the results of Ref. 10.1, are

u = σ

4π

[
y2 − y1

d12
ln

r1 + r2 − d12

r1 + r2 + d12
+ y3 − y2

d23
ln

r2 + r3 − d23

r2 + r3 + d23

+ y4 − y3

d34
ln

r3 + r4 − d34

r3 + r4 + d34
+ y1 − y4

d41
ln

r4 + r1 − d41

r4 + r1 + d41

]
(10.95)

v = σ

4π

[
x1 − x2

d12
ln

r1 + r2 − d12

r1 + r2 + d12
+ x2 − x3

d23
ln

r2 + r3 − d23

r2 + r3 + d23

+ x3 − x4

d34
ln

r3 + r4 − d34

r3 + r4 + d34
+ x4 − x1

d41
ln

r4 + r1 − d41

r4 + r1 + d41

]
(10.96)
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w = σ

4π

[
tan−1

(
m12e1 − h1

zr1

)
− tan−1

(
m12e2 − h2

zr2

)

+ tan−1

(
m23e2 − h2

zr2

)
− tan−1

(
m23e3 − h3

zr3

)

+ tan−1

(
m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)

+ tan−1

(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]
(10.97)

The u and v components of the velocity are defined everywhere, but at the edges of
the quadrilateral they become infinite. In practice, usually the influence of the element on
itself is sought, and near the centroid these velocity components approach zero. The jump
in the normal velocity component as z → 0 inside the quadrilateral is similar to the results
of Section 4.4:

w(z = 0±) = ±σ

2
(10.98)

When the point of interest P lies outside of the quadrilateral then

w(z = 0±) = 0 (10.99)

Far Field: For improved computational efficiency, when the point of interest P is far
from the center of the element (x0, y0, 0) then the influence of the quadrilateral element
with an area of A can be approximated by a point source. The term “far” is controlled by the
programmer but usually if the distance is more than 3–5 times the average panel diameter
then the simplified approximation is used. Following the formulation of Section 3.4 (in
the panel frame of reference) we can calculate the point source influence for the velocity
potential as

�(x, y, z) = −σ A

4π
√

(x − x0)2 + (y − y0)2 + z2
(10.100)

The velocity components of this source element are

u(x, y, z) = σ A(x − x0)

4π [(x − x0)2 + (y − y0)2 + z2]3/2
(10.101)

v(x, y, z) = σ A(y − y0)

4π [(x − x0)2 + (y − y0)2 + z2]3/2
(10.102)

w(x, y, z) = σ A(z − z0)

4π [(x − x0)2 + (y − y0)2 + z2]3/2
(10.103)

A student algorithm for calculating the influence of a quadrilateral constant-strength source
element is given in Appendix D, Program No. 12.

10.4.2 Quadrilateral Doublet

Consider the quadrilateral element with a constant doublet distribution shown in
Fig. 10.15. Using the doublet element that points in the z direction we can obtain the velocity
potential by integrating the point elements:

�(x, y, z) = −μ

4π

∫
S

z d S

[(x − x0)2 + (y − y0)2 + z2]3/2
(10.104)
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Figure 10.15 Quadrilateral doublet element and its vortex ring equivalent.

This integral for the potential is the same integral as the w velocity component of the
quadrilateral source and consequently

� = μ

4π

[
tan−1

(
m12e1 − h1

zr1

)
− tan−1

(
m12e2 − h2

zr2

)

+ tan−1

(
m23e2 − h2

zr2

)
− tan−1

(
m23e3 − h3

zr3

)

+ tan−1

(
m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)

+ tan−1

(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]
(10.105)

As z → 0

� = ∓μ

2
(10.106)

The velocity components can be obtained by differentiating the velocity potential,

(u, v, w) =
(

∂�

∂x
,
∂�

∂y
,
∂�

∂z

)

and following Hess and Smith10.1 we get

u = μ

4π

[
z(y1 − y2)(r1 + r2)

r1r2{r1r2 − [(x − x1)(x − x2) + (y − y1)(y − y2) + z2]}

+ z(y2 − y3)(r2 + r3)

r2r3{r2r3 − [(x − x2)(x − x3) + (y − y2)(y − y3) + z2]}

+ z(y3 − y4)(r3 + r4)

r3r4{r3r4 − [(x − x3)(x − x4) + (y − y3)(y − y4) + z2]}

+ z(y4 − y1)(r4 + r1)

r4r1{r4r1 − [(x − x4)(x − x1) + (y − y4)(y − y1) + z2]}
]

(10.107)
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v = μ

4π

[
z(x2 − x1)(r1 + r2)

r1r2{r1r2 − [(x − x1)(x − x2) + (y − y1)(y − y2) + z2]}

+ z(x3 − x2)(r2 + r3)

r2r3{r2r3 − [(x − x2)(x − x3) + (y − y2)(y − y3) + z2]}

+ z(x4 − x3)(r3 + r4)

r3r4{r3r4 − [(x − x3)(x − x4) + (y − y3)(y − y4) + z2]}

+ z(x1 − x4)(r4 + r1)

r4r1{r4r1 − [(x − x4)(x − x1) + (y − y4)(y − y1) + z2]}
]

(10.108)

w = μ

4π

[
[(x − x2)(y − y1) − (x − x1)(y − y2)](r1 + r2)

r1r2{r1r2 − [(x − x1)(x − x2) + (y − y1)(y − y2) + z2]}

+ [(x − x3)(y − y2) − (x − x2)(y − y3)](r2 + r3)

r2r3{r2r3 − [(x − x2)(x − x3) + (y − y2)(y − y3) + z2]}

+ [(x − x4)(y − y3) − (x − x3)(y − y4)](r3 + r4)

r3r4{r3r4 − [(x − x3)(x − x4) + (y − y3)(y − y4) + z2]}

+ [(x − x1)(y − y4) − (x − x4)(y − y1)](r4 + r1)

r4r1{r4r1 − [(x − x4)(x − x1) + (y − y4)(y − y1) + z2]}
]

(10.109)

On the element, as z → 0

u = 0

v = 0

and the z component of the velocity can be computed by the near field formula, which
reduces to

w = μ

4π

[
[(x − x2)(y − y1) − (x − x1)(y − y2)](r1 + r2)

r1r2{r1r2 − [(x − x1)(x − x2) + (y − y1)(y − y2)]}

+ [(x − x3)(y − y2) − (x − x2)(y − y3)](r2 + r3)

r2r3{r2r3 − [(x − x2)(x − x3) + (y − y2)(y − y3)]}

+ [(x − x4)(y − y3) − (x − x3)(y − y4)](r3 + r4)

r3r4{r3r4 − [(x − x3)(x − x4) + (y − y3)(y − y4)]}

+ [(x − x1)(y − y4) − (x − x4)(y − y1)](r4 + r1)

r4r1{r4r1 − [(x − x4)(x − x1) + (y − y4)(y − y1)]}
]

(10.109a)

(Note that here, too, zk = 0 must be used in the rk terms of Eq. (10.92).)
In Section 10.2.2 it was shown that a two-dimensional constant-strength doublet is equiv-

alent to two equal (and opposite direction) point vortices at the edge of the element. Similarly,
in the next section we will show that the constant-strength doublet element is equivalent to
a constant-strength vortex ring placed at the panel edges. Therefore, the above formulas for
the velocity potential and its derivatives are valid for twisted panels as well (but in this case
when the point P lies on the element the u, v velocity components may not be zero).

Far Field: The far field formulas for a quadrilateral doublet with area A can be obtained
by using the results of Section 3.5 and are

�(x, y, z) = −μA

4π
z[(x − x0)2 + (y − y0)2 + z2]−3/2 (10.110)

u = 3μA

4π

(x − x0)z

[(x − x0)2 + (y − y0)2 + z2]5/2
(10.111)
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v = 3μA

4π

(y − y0)z

[(x − x0)2 + (y − y0)2 + z2]5/2
(10.112)

w = −μA

4π

(x − x0)2 + (y − y0)2 − 2z2

[(x − x0)2 + (y − y0)2 + z2]5/2
(10.113)

An algorithm for calculating the influence of this quadrilateral constant-strength doublet
panel is given in Appendix D, Program No. 12.

10.4.3 Constant Doublet Panel Equivalence to Vortex Ring

Consider the doublet panel of Section 10.4.2 with constant strength μ. Its potential
(Eq. (10.104)) can be written as

� = − μ

4π

∫
S

z d S

r3

where r = [(x − x0)2 + (y − y0)2 + z2]1/2. The velocity is

q = ∇� = − μ

4π

∫
S
∇ z

r3
d S = μ

4π

∫
S

[
i

∂

∂x0

z

r3
+ j

∂

∂y0

z

r3
− k

(
1

r3
− 3z2

r5

)]
d S

where we have used (∂/∂x)(1/r3) = −(∂/∂x0)(1/r3) and (∂/∂y)(1/r3) = −(∂/∂y0)(1/r3).
Now, let C represent the curve bounding the panel in Fig. 10.15 and consider a vortex

filament of circulation � along C . The velocity due to the filament is obtained from the
Biot–Savart law (Eq. (2.68)) as

q = �

4π

∫
C

dl × r

r3

and for dl = (dx0, dy0) and r = (x − x0, y − y0, z) we get

q = �

4π

∫
C

{
i

z

r3
dy0 − j

z

r3
dx0 + k

[
(y − y0)

r3
dx0 − (x − x0)

r3
dy0

]}

Stokes’s theorem for the vector A is∮
C

A · dl =
∫

S
n · ∇ × A d S

and with n = k this becomes∮
C

A · dl =
∫

S

(
∂ Ay

∂x0
− ∂ Ax

∂y0

)
d S

Using Stokes’s theorem on the above velocity integral we get

q = �

4π

∫
S

[
i

∂

∂x0

z

r3
+ j

∂

∂y0

z

r3
− k

(
∂

∂x0

x − x0

r3
+ ∂

∂y0

y − y0

r3

)]
d S

Upon performing the differentiation, we see that the velocity of the filament is identical to
the velocity of the doublet panel if � = μ.

The above derivation is a simplified version of that by Hess (in Appendix A, Ref. 12.4),
who relates a general surface doublet distribution to a corresponding surface vortex distri-
bution

q = − 1

4π

∫
S
(n × ∇μ) × r

r3
d S + 1

4π

∫
C

μ
dl × r

r3
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whose order is one less than the order of the doublet distribution plus a vortex ring whose
strength is equal to the edge value of the doublet distribution.

10.4.4 Comparison of Near and Far Field Formulas

To demonstrate the possible range of applicability of the far field approximation,
the induced velocity for a unit strength rectangular source or doublet element, shown in
Fig. 10.16, is calculated and presented in Figs. 10.17–10.22 (figures based on Browne and
Ashby10.2). The computed results for the radial velocity component versus distance r/a
(where a is the panel length as shown in Fig. 10.16) clearly indicate that the far field and
exact formulas converge at about r/a > 2 (e.g., Figs. 10.17 or 10.18).

Similar computations for the total velocity induced by a doublet panel are presented in
Fig. 10.18, and at r/a > 2 the two results seem to be identical.

A velocity survey above the panel (as shown in Fig. 10.16) is presented in Figs. 10.19–
10.22. Here the total velocity survey is done in a horizontal plane at an altitude of z/a = 0.75
and 3.0, along lines parallel to the panel median and diagonal.

These diagrams clearly indicate that at a height of z/a = 0.75 the far field formula (point
element) is insufficient for both the doublet and source elements. However, at a distance
greater than z/a = 3 the difference is small and numerical efficiency justifies the use of the
far field formulas.

10.4.5 Constant-Strength Vortex Line Segment

Early numerical solutions for lifting flows were based on vortex distribution solu-
tions of the lifting surface equations (Section 4.5). The three-dimensional solution of such
a problem is possible by using constant-strength vortex-line segments, which can be used to
model the wing or the wake. The velocity induced by such a vortex segment of circulation
� was developed in Sections 2.11 and 2.12 and Eq. (2.68b) states

�q = �

4π

dl × r

r3
(10.114)

Figure 10.16 Survey lines for the velocity induced by a rectangular, flat element.
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Figure 10.17 Comparison between the velocity induced by a rectangular source element and an
equivalent point source versus height r/a.

Figure 10.18 Comparison between the velocity induced by a rectangular doublet element and an
equivalent point doublet versus height r/a.

Figure 10.19 Comparison between the velocity induced by a rectangular source element and an
equivalent point source along a horizontal survey line (median).

252
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Figure 10.20 Comparison between the velocity induced by a rectangular doublet element and an
equivalent point doublet along a horizontal survey line (median).

If the vortex segment points from point 1 to point 2, as shown in Fig. 10.23, then the
velocity at an arbitrary point P can be obtained by Eq. (2.72):

q1,2 = �

4π

r1 × r2

|r1 × r2|2 r0 ·
(

r1

r1
− r2

r2

)
(10.115)

For numerical computation in a Cartesian system where the (x, y, z) values of the points
1, 2, and P are given, the velocity can be calculated by the following steps:

1. Calculate r1 × r2:

(r1 × r2)x = (yp − y1) · (z p − z2) − (z p − z1) · (yp − y2)

(r1 × r2)y = −(x p − x1) · (z p − z2) + (z p − z1) · (x p − x2)

(r1 × r2)z = (x p − x1) · (yp − y2) − (yp − y1) · (x p − x2)

Figure 10.21 Comparison between the velocity induced by a rectangular source element and an
equivalent point source along a horizontal survey line (diagonal).
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Figure 10.22 Comparison between the velocity induced by a rectangular doublet element and an
equivalent point doublet along a horizontal survey line (diagonal).

Also, the absolute value of this vector product is

|r1 × r2|2 = (r1 × r2)2
x + (r1 × r2)2

y + (r1 × r2)2
z

2. Calculate the distances r1, r2:

r1 =
√

(x p − x1)2 + (yp − y1)2 + (z p − z1)2

r2 =
√

(x p − x2)2 + (yp − y2)2 + (z p − z2)2

3. Check for singular conditions.
(Since the vortex solution is singular when the point P lies on the vortex a special

treatment is needed in the vicinity of the vortex segment–which for numerical
purposes is assumed to have a very small radius ε.)

IF (r1, or r2, or |r1 × r2|2 < ε)

THEN u = v = w = 0

Figure 10.23 Influence of a straight vortex line segment at point P .
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where ε is the vortex core size (which can be as small as the truncation error) or
else u, v, w can be estimated by assuming solid body rotation or any other (more
elaborate) vortex core model (see Section 2.5.1 of Ref. 10.3).

4. Calculate the dot product:

r0 · r1 = (x2 − x1)(x p − x1) + (y2 − y1)(yp − y1) + (z2 − z1)(z p − z1)

r0 · r2 = (x2 − x1)(x p − x2) + (y2 − y1)(yp − y2) + (z2 − z1)(z p − z2)

5. The resulting velocity components are

u = K · (r1 × r2)x

v = K · (r1 × r2)y

w = K · (r1 × r2)z

where

K = �

4π |r1 × r2|2
(

r0 · r1

r1
− r0 · r2

r2

)

For computational purposes these steps can be included in a subroutine (e.g., VORTXL –
vortex line) that will calculate the induced velocity (u, v, w) at a point P(x, y, z) as a
function of the vortex line strength and its edge coordinates, such that

(u, v, w) = VORTXL (x, y, z, x1, y1, z1, x2, y2, z2, �) (10.116)

As an example for programming this algorithm see subroutine VORTEX (VORTEX ≡
VORTXL) in Program No. 13 in Appendix D.

10.4.6 Vortex Ring

Based on the subroutine of Eq. (10.116), a variety of elements can be defined.
For example, the velocity induced by a rectilinear vortex ring (shown in Fig. 10.24) can be
computed by calling this routine four times for the four segments. Note that this velocity
calculation is equivalent to the result for a constant-strength doublet.

Figure 10.24 Influence of a rectilinear vortex ring.
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To obtain the velocity induced by the four segments of a rectilinear vortex ring with
circulation � calculate

(u1, v1, w1) = VORTXL (x, y, z, x1, y1, z1, x2, y2, z2, �)

(u2, v2, w2) = VORTXL (x, y, z, x2, y2, z2, x3, y3, z3, �)

(u3, v3, w3) = VORTXL (x, y, z, x3, y3, z3, x4, y4, z4, �)

(u4, v4, w4) = VORTXL (x, y, z, x4, y4, z4, x1, y1, z1, �)

and the induced velocity at P(x, y, z) is

(u, v, w) = (u1, v1, w1) + (u2, v2, w2) + (u3, v3, w3) + (u4, v4, w4)

This can be programmed into a subroutine such that

⎛
⎝ u

v

w

⎞
⎠ = VORING

⎛
⎜⎜⎜⎜⎜⎜⎝

x y z
x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

�

⎞
⎟⎟⎟⎟⎟⎟⎠

(10.117)

In most situations the vortex rings are placed on a patch with i, j indices, as shown in
Fig. 10.25. In this situation the input to this subroutine can be abbreviated by identifying
each panel by its i, j-th corner point:

(u, v, w) = VORING (x, y, z, i, j, �i j ) (10.117a)

From the programming point of view this routine simplifies the scanning of the vortex
rings on the patch. However, the inner vortex segments are scanned twice, which makes the
computation less efficient. This can be improved for larger codes when computer run time
is more important that programming simplicity.

Note that this formulation is valid everywhere (including the center of the element) but
is singular on the vortex ring. Such a routine is used in Program No. 13 in Appendix D.

10.4.7 Horseshoe Vortex

A simplified case of the vortex ring is the horseshoe vortex. In this case the vortex
line is assumed to be placed in the x–y plane as shown in Fig. 10.26. The two trailing vortex
segments are placed parallel to the x axis at y = ya and at y = yb, and the leading segment
is placed parallel to the y axis between the points (xa, ya) and (xa, yb). The induced velocity

Figure 10.25 The method of calculating the influence of a vortex ring by adding the influence of the
straight vortex segment elements.
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Figure 10.26 Nomenclature used for deriving the influence of a horseshoe vortex element.

in the x–y plane will have only a component in the negative z direction and can be computed
by using Eq. (2.69) for a straight vortex segment:

w(x, y, 0) = −�

4πd
(cos β1 − cos β2) (10.118)

where the angles and their cosines are shown in Fig. 10.26. The negative sign is a result of
the θ velocity component pointing in the −z direction. For the vortex segment parallel to
the x axis, and beginning at y = yb, the corresponding angles are given by

cos β1 = x − xa√
(x − xa)2 + (y − yb)2

cos β2 = cos π = −1

For the finite-length segment, parallel to the y axis,

cos β1 = y − ya√
(x − xa)2 + (y − ya)2

cos β2 = −cos(π − β2) = y − yb√
(x − xa)2 + (y − yb)2

For the lower segment beginning at y = ya the angles are

cos β1 = cos 0 = 1

cos β2 = x − xa√
(x − xa)2 + (y − ya)2

The downwash due to the horseshoe vortex is now

w(x, y, 0) = −�

4π

{
1

x − xa

[
yb − y√

(x − xa)2+ (y − yb)2
+ y − ya√

(x − xa)2 + (y − ya)2

]

+ 1

yb − y

[
1 + x − xa√

(x − xa)2 + (y − yb)2

]

+ 1

y − ya

[
1 + x − xa√

(x − xa)2 + (y − ya)2

]}
(10.119)
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After some manipulations we get

w(x, y, 0) = −�

4π (y − ya)

[
1 +

√
(x − xa)2 + (y − ya)2

x − xa

]

+ �

4π (y − yb)

[
1 +

√
(x − xa)2 + (y − yb)2

x − xa

]
(10.119a)

When x = xa , the limit of Eq. (10.119) becomes

w(xa, y, 0) = −�

4π

[
1

y − ya
+ 1

yb − y

]
(10.119b)

where the finite-length segment does not induce downwash on itself.
The velocity potential of the horseshoe vortex may be obtained by reducing the results of

a constant-strength doublet panel (Section 10.4.2) or by integrating the potential of a point
doublet element. The potential of such a point doublet placed at (x0, y0, 0) and pointing in
the z direction, as derived in Section 3.5 (or in Eq. (10.110)), is

� = −�

4π

z

r3

where r = [(x − x0)2 + (y − y0)2 + z2]1/2. To obtain the potential due to the horseshoe
element at an arbitrary point P , this point doublet must be integrated over the area enclosed
by the horseshoe element:

� = −�

4π

∫ yb

ya

dy0

∫ ∞

xa

z dx0

[(x − x0)2 + (y − y0)2 + z2]3/2

The result is given by Moran5.1 (p. 445) as

� = −�

4π

∫ yb

ya

z(x0 − x) dy0

[(y − y0)2 + z2][(x − x0)2 + (y − y0)2 + z2]1/2

∣∣∣∣∣
∞

xa

= −�

4π

∫ yb

ya

z dy0

[(y − y0)2 + z2]

[
1 + x − xa

[(x − xa)2 + (y − y0)2 + z2]1/2

]

= −�

4π

{
tan−1 y0 − y

z
+ tan−1 (y0 − y)(x − xa)

z[(x − xa)2 + (y − y0)2 + z2]1/2

}∣∣∣∣∣
yb

ya

= −�

4π

{
tan−1 z

y − yb
− tan−1 z

y − ya

+ tan−1 (y0 − y)(x − xa)

z[(x − xa)2 + (y − y0)2 + z2]1/2

∣∣∣∣∣
yb

ya

}
(10.120)

Note that we have used Eq. (B.10) from Appendix B to evaluate the limits of the first term.

10.5 Three-Dimensional Higher Order Elements

The surface shape and singularity strength distribution over an arbitrarily shaped
panel can be approximated by a polynomial of a certain degree. The surface of such an
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Figure 10.27 Approximation of a curved panel by five flat subpanels.

arbitrary panel as shown in Fig. 10.27a can be approximated by a “zero-order” flat plane

z = a0

by a first-order surface

z = a0 + b1x + b2 y

by a second-order surface

z = a0 + b1x + b2 y + c1x2 + c2xy + c3 y2

or by any higher order approximations. Evaluation of the influence coefficients in a closed
form is possible,10.1 though, only for flat surfaces, and an approximation of a curved panel
by five flat subpanels is shown in Fig. 10.27b. This approach is used in the code PANAIR,9.4

and for demonstrating a higher order element let us describe this element.
For the singularity distribution a first-order source and a second-order doublet is used,

and in the following paragraph the methodology is briefly described.

a. Influence of Source Distribution
The source distribution on this element is approximated by a first-order polynomial:

σ (x0, y0) = σ0 + σx x0 + σy y0 (10.121)

where (x0, y0) are the panel local coordinates, σ0 is the source strength at the origin, and
σ0, σx , and σy are three constants. The contribution of this source distribution to the potential
�� and to the induced velocity �(u, v, w) (in the panel frame of reference) can be evaluated
by performing the integral

��(x, y, z) = 1

4π

∫
panel

−σ (x0, y0) d S√
(x − x0)2 + (y − y0)2 + z2

(10.122)

and then differentiating to get the velocity components

�(u, v, w) =
(

∂��

∂x
,
∂��

∂y
,
∂��

∂z

)
(10.123)

The result of this integration depends solely on the geometry of the problem and can be
evaluated for an arbitrary field point. Some details of this calculation are provided by
Johnson9.4 and can be reduced to a form that depends on the panel corner point values (the
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corner point numbering sequence is shown in Fig. 10.27b). Thus, in terms of these corner
point values the influence of the panel becomes

�� = FS(σ1, σ2, σ3, σ4, σ9) = fS(σ0, σx , σy) (10.124)

�(u, v, w) = GS(σ1, σ2, σ3, σ4, σ9) = gS(σ0, σx , σy) (10.125)

where the functions FS, GS, fS , and gS are linear matrix manipulations and σ5, σ6, σ7, and
σ8 are not used. Also, note that σ0, σx , and σy are the three basic unknowns for each panel
and σ1, . . . , σ9 can be evaluated based on these values (so that for each panel only three
unknown values are left).

b. Influence of Doublet Distribution
To model the two components of vorticity on the panel surface a second-order

doublet is used:

μ(x0, y0) = μ0 + μx x0 + μy y0 + μxx x2
0 + μxy x0 y0 + μyy y2

0 (10.126)

The potential due to a doublet distribution whose axis points in the z direction (see Sec-
tion 3.5) is

��(x, y, z) = −1

4π

∫
S

μ(x0, y0) · z d S

[(x − x0)2 + (y − y0)2 + z2]3/2
(10.127)

and the induced velocity is

(u, v, w) =
(

∂��

∂x
,
∂��

∂y
,
∂��

∂z

)
(10.128)

These integrals can be evaluated (see Johnson9.4) in terms of the panel corner points
(points 1–9 in Fig. 10.27b) and the result can be presented as

�� = FD(μ1, μ2, μ3, μ4, μ5, μ6, μ7, μ8, μ9)

= fD(μ0, μx , μy, μxx , μxy, μyy) (10.129)

�(u, v, w) = G D(μ1, μ2, μ3, μ4, μ5, μ6, μ7, μ8, μ9)

= gD(μ0, μx , μy, μxx , μxy, μyy) (10.130)

where the functions FD, G D, fD , and gD are linear matrix manipulations, which depend on
the geometry only. Also, note that μ0, μx , μy, μxx , μxy , and μyy are the five basic unknowns
for each panel and μ1, . . . , μ9 can be evaluated based on these values (so that for each panel
only five unknown doublet parameters are left).

For more details on higher order elements, see Ref. 9.4.
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Problems

10.1. Find the x component of velocity u for the constant-strength source distribution
by a direct integration of Eq. (10.12).

10.2. Find the velocity potential for the constant doublet distribution by a direct integra-
tion of Eq. (10.25).

10.3. Consider the horseshoe vortex of Section 10.4.7 lying in the x–y plane. For the case
where the leading segment lies on the x axis (xa = 0) find the velocity induced at a
point, whose coordinates are x, y, and z, that lies above the plane of the horseshoe.
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CHAPTER 11

Two-Dimensional Numerical Solutions

The principles of singular element based numerical solutions were introduced in
Chapter 9 and the first examples are provided in this chapter. The following two-dimensional
examples will have all the elements of more refined three-dimensional methods, but because
of the simple two-dimensional geometry, the programming effort is substantially less. Con-
sequently, such methods can be developed in a short time for investigating improvements
in larger codes and are also suitable for homework assignments and class demonstrations.

Based on the level of approximation of the singularity distribution, surface geometry,
and type of boundary conditions, numerous computational methods can be constructed,
some of which are presented in Table 11.1. We will not attempt to demonstrate all the
possible combinations but will try to cover some of the most frequently used methods
(denoted by the word “example” in Table 11.1), including discrete singular elements and
constant-strength, linear, and quadratic elements (as an example for higher order singularity
distributions). The different approaches in specifying the zero normal velocity boundary
condition will be exercised and mainly the outer Neumann normal velocity and the internal
Dirichlet boundary conditions will be used (and there are additional options, e.g., an internal
Neumann condition). In terms of the surface geometry, for simplicity, only the flat panel
element will be used here and in areas of high surface curvature the solution can be improved
by using more panels.

In this chapter and in the following ones the primary concern is the simplicity of the
explanation and the ease of constructing the numerical technique, while numerical effi-
ciency considerations are secondary. Consequently, the numerical economy of the methods
presented can be improved (with some compromise in regard to the ease of code read-
ability). Also, the methods are presented in their simplest form and each can be further
developed to match the requirements of a particular problem. Such improvement can be ob-
tained by changing grid spacing and density, location of collocation points, or wake model,
or altering the method of enforcing the boundary conditions and of enforcing the Kutta
condition.

Also, it is recommended that one read this chapter sequentially since the first methods
will be described with more details. As the chapter evolves, some redundant details are
omitted and the description may appear inadequate without reading the previous sections.

11.1 Point Singularity Solutions

The basic idea behind point singularity solutions is presented schematically in
Fig. 11.1. If an exact solution in a form of a continuous singularity distribution (e.g., a vortex
distribution γ (x)) exists, then it can be divided into several finite segments (e.g., the segment
between x1 and x2). The local average strength of the element is then �0 = ∫ x2

x1
γ (x)dx and

it can be placed at a point x0 within the interval x1–x2. A discrete element numerical solution
can be obtained by specifying N such unknown element strengths and then establishing N
equations for their solution. This can be done by specifying the boundary conditions at N

262
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Table 11.1. List of possible two-dimensional panel methods and of those tested in
this chapter

Boundary conditions

Neumann Dirichlet Surface paneling
Singularity distribution (external) (internal) flat/high-order

Point source example flat
doublet
vortex example flat

Constant strength source example example flat
doublet example example flat
vortex example flat

Linear strength source example example flat
doublet example example flat
vortex

Quadratic strength source
doublet example flat
vortex

collocation points along the boundary. Furthermore, when constructing the solution, some
of the considerations mentioned in Section 9.3 (e.g., in regard to the Kutta condition and
the wake) must be addressed.

As a first example for this very simple approach the lifting and thickness problems of
thin airfoils are solved based on models (such as the lumped-vortex element) generated
during examination of the analytical solutions in Chapter 5.

11.1.1 Discrete Vortex Method

The discrete vortex method presented here for solving the thin lifting airfoil prob-
lem is based on the lumped-vortex element and serves for solving numerically the integral
equation (Eq. (5.39)) presented in Chapter 5. The advantage of the numerical approach is
that the boundary conditions can be specified on the airfoil’s camber surface without a need
for the small-disturbance approximation. Also, two-dimensional interactions, such as those
due to ground effect or multielement airfoils, can be studied with great ease.

Figure 11.1 Discretization of a continuous singularity distribution.
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This method was introduced as an example in Section 9.8 and therefore its principles
will be discussed here only briefly. To establish the procedure for the numerical solution,
the six steps presented in Section 9.7 are followed.

a. Choice of Singularity Element
For this discrete vortex method the lumped-vortex element is selected and its

influence is given by Eq. (9.31) (or Eqs. (10.9) and (10.10)):(
u
w

)
= � j

2πr2
j

(
0 1

−1 0

) (
x − x j

z − z j

)
(11.1)

where

r2
j = (x − x j )

2 + (z − z j )
2

Thus, the velocity at an arbitrary point (x, z) due to a vortex element of circulation � j

located at (x j , z j ) is given by Eq. (11.1). This can be included in a subroutine, which will
be called VOR2D:

(u, w) = VOR2D(� j , x, z, x j , z j ) (11.2)

Such a subroutine is included in Program No. 2 in Appendix D.

b. Discretization and Grid Generation
At this phase the thin-airfoil camberline (Fig. 11.2) is divided into N subpanels,

which may be equal in length. The N vortex points (x j , z j ) will be placed at the quarter-
chord point of each planar panel (Fig. 11.2). The zero normal flow boundary condition can
be fulfilled on the camberline at the three-quarter point of each panel. These N collocation
points (xi , zi ) and the corresponding N normal vectors ni along with the vortex points can be
computed numerically or supplied as an input file. Note that by discretizing the camberline
as shown in Fig. 11.2, we end up with only the panel edges remaining on the original
camberline. For convenience, the normal vector is evaluated at the actual camberline and
the effect of this choice will be investigated at the end of this section. Consequently, the
normal vectors ni , pointing outward at each of these points, are approximated by using the

Figure 11.2 Discrete vortex representation of the thin, lifting airfoil model.
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Figure 11.3 Nomenclature used in defining the geometry of a point singularity based surface panel.

surface shape η(x), as shown in Fig. 11.3:

ni = (−dη/dx, 1)√
(dη/dx)2 + 1

= (sin αi , cos αi ) (11.3)

where the angle αi is defined as shown in Fig. 11.3. Similarly the tangential vector ti is

ti = (cos αi , − sin αi ) (11.3a)

Since the lumped-vortex element is based on the Kutta condition, the last panel will
inherently fulfill this requirement, and no additional specification of this condition is needed.

c. Influence Coefficients
The normal velocity component at each point on the camberline is a combination

of the self-induced velocity and the free-stream velocity. Therefore, the zero normal flow
boundary condition can be presented as

q · n = 0 on solid surface

Division of the velocity vector into the self-induced and free-stream components yields

(u, w) · n + (U∞, W∞) · n = 0 on solid surface (11.4)

where the first term is the velocity induced by the singularity distribution on itself (hence
“self-induced part”) and the second term is the free-stream component Q∞ = (U∞, W∞),
as shown in Fig. 11.2.

The self-induced part can be represented by a combination of influence coefficients, while
the free-stream contribution is known and will be transferred to the right-hand side of the
boundary condition. To establish the self-induced portion of the normal velocity, at each col-
location point, consider the velocity induced by the j th vortex element at the first collocation
point (in order to get the influence due to a unit strength � j assume � j = 1 in Eq. (11.2)):

(u, w)1 j = VOR2D(� j = 1, x1, z1, x j , z j ) (11.2a)

The influence coefficient ai j is defined as the velocity component normal to the surface,
due to a unit strength singularity element. Consequently, the contribution of a unit strength
singularity element j , at collocation point 1, is

a1 j = (u, w)1 j · n1 (11.5)

The induced normal velocity component qn1, at point 1, due to all the elements is therefore

qn1 = a11�1 + a12�2 + a13�3 + · · · + a1N �N

Note that the strength of � j is unknown at this point.
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Fulfillment of the boundary condition on the surface requires that at each collocation
point the normal velocity component will vanish. Specification of this condition (as in
Eq. (11.4)) for the first collocation point yields

a11�1 + a12�2 + a13�3 + · · · + a1N �N + (U∞, W∞) · n1 = 0

But, as mentioned earlier, the last term (free-stream component) is known and can be
transferred to the right-hand side of the equation. Consequently, the right hand side (RHS)
is defined as

RHSi = −(U∞, W∞) · ni (11.6)

Specifying the boundary condition for each of the N collocation points results in the fol-
lowing set of algebraic equations:

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1N

a21 a22 . . . a2N

a31 a32 . . . a3N
...

...
. . .

...
aN1 aN2 . . . aN N

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�1

�2

�3
...

�N

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2

RHS3
...

RHSN

⎞
⎟⎟⎟⎟⎟⎠

This influence coefficient calculation procedure can be accomplished by using two “DO
loops” where the outer loop scans the collocation points and the inner scans the vor-
tices.

DO 1 i = 1, N (collocation point loop)
DO 1 j = 1, N (vortex point loop)

(u, w)i j = VOR2D(� = 1.0, xi , zi , x j , z j )
ai j = (u, w)i j · ni

1 CONTINUE
C END DO LOOP

d. Establish RHS Vector
The right-hand side vector, which is the normal component of the free stream, can

be computed within the outer loop of the previously described DO loops by using Eq. (11.6),

RHSi = −(U∞, W∞) · ni

where (U∞, W∞) = Q∞(cos α, sin α). If we use the formulation of Eq. (11.3) for the normal
vector, the RHS becomes

RHSi = −Q∞(cos α sin αi + sin α cos αi ) = −Q∞[sin(α + αi )] (11.6a)

Note that α is the free-stream angle of attack (Fig. 11.2) and αi is the i th panel inclination.

e. Solve Linear Set of Equations
The results of the previous computations can be summarized (for each collocation

point i) as

N∑
j=1

ai j� j = RHSi (11.7)
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Figure 11.4 Representation of a lifting flat plate by five discrete vortices.

For example consider the case of a flat plate (shown in Fig. 11.4) where only five equal
length elements (�c = c/5) were used. Equation (11.7) for the five panels becomes

1

π�c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1
3

1
5

1
7

− 1
3 −1 1 1

3
1
5

− 1
5 − 1

3 −1 1 1
3

− 1
7 − 1

5 − 1
3 −1 1

− 1
9 − 1

7 − 1
5 − 1

3 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�1

�2

�3

�4

�5

⎞
⎟⎟⎟⎟⎠ = −Q∞ sin α

⎛
⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎠

This linear set of algebraic equations is diagonally dominant and can be solved by standard
matrix methods. Its solution is

⎛
⎜⎜⎜⎜⎝

�1

�2

�3

�4

�5

⎞
⎟⎟⎟⎟⎠ = π�cQ∞ sin α

⎛
⎜⎜⎜⎜⎝

2.46092
1.09374
0.70314
0.46876
0.27344

⎞
⎟⎟⎟⎟⎠

and is shown schematically in Fig. 11.5. Note that the total circulation is πcQ∞ sin α, which
is the exact result.

f. Secondary Computations: Pressures, Loads, Velocities, Etc.
The resulting pressures and loads for this case can be computed by using the

Kutta–Joukowski theorem for each panel j . Thus the lift and pressure difference are

�L j = ρQ∞� j (11.8)

�p j = ρQ∞
� j

�c
(11.9)

where �c is the panel length. The total lift and moment (about the leading edge) per unit



P1: FHB

CB329-11 CB329/Katz October 5, 2000 11:27 Char Count= 0

268 11 / Two-Dimensional Numerical Solutions

Figure 11.5 Graphic representation of the computed vorticity distribution with a five-element
discrete-vortex method.

span are obtained by summing the contribution of each element:

L =
N∑

j=1

�L j (11.10)

M0 = −
N∑

j=1

�L j (x j cos α) (11.11)

while the nondimensional coefficients become

Cl = L

(1/2)ρQ2∞c
(11.12)

Cm0 = M0

(1/2)ρQ2∞c2
(11.13)

The following examples are presented to demonstrate possible applications of this method.

Example 1: Thin Airfoil with Parabolic Camber

Consider the thin airfoil with parabolic camber of Section 5.4, where the camberline
shape is

η(x) = 4ε
x

c

[
1 − x

c

]

For small values of ε < 0.1c the numerical results are close to the analytic results
as shown in Fig. 11.6 (here actually ε = 0.1 was used). This example can also
be used to investigate the effect of the small-disturbance approximation (for the
boundary conditions) on the pressure distribution, as shown by Figs. 11.7 and 11.8.
For the numerical solution the vortices were placed on the camberline where the
boundary condition was satisfied. For the analytical solution (and for the second
numerical solution, aimed at simulating the analytical solution) the vortex distri-
bution and the boundary condition were specified on the x axis. The analytical
pressure distribution can be obtained by substituting the coefficients A0 and A1

from Section 5.4 into Eqs. (5.44a) and (5.48), which gives

�C p = 2γ

Q∞
= 4

[
1 + cos θ

sin θ
α + 4ε

c
sin θ

]



P1: FHB

CB329-11 CB329/Katz October 5, 2000 11:27 Char Count= 0

11.1 Point Singularity Solutions 269

Figure 11.6 Chordwise pressure difference for a thin airfoil with parabolic camber at zero angle of
attack (ε = 0.1).

This can be rewritten in terms of the x coordinate by using Eq. (5.45) (e.g., sin θ =
2[(x/c)(1 − x/c)]1/2 and cos θ = 1 − 2x/c):

�C p = 4

√
c − x

x
α + 32

ε

c

√
x

c

(
1 − x

c

)

The effect of angle of attack is shown in Fig. 11.8 where a fairly large angle
(α = 10◦) is used. Note the large suction peak at the leading edge, which is exag-
gerated by the thin airfoil solution. In general, Figs. 11.7 and 11.8 demonstrate that
both thin-airfoil theory and the lumped-vortex panel method yield similar results.
A simple computer program using the principles of this section is presented in
Appendix D, Program No. 2.

Figure 11.7 Effect of small-disturbance boundary condition on the computed pressure difference on
a thin parabolic camber airfoil (α = 0, ε = 0.1).
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Figure 11.8 Effect of small-disturbance boundary condition on the computed pressure difference on
a thin parabolic camber airfoil (α = 10◦, ε = 0.1).

Example 2: Two-Element Airfoil

The advantage of this numerical solution technique is that it is not limited to the
restrictions of small-disturbance boundary conditions. For example, a two-element
airfoil with large deflection can be analyzed (and the results will have physical
meaning when the actual flow is attached).

Figure 11.9 shows the geometry of the two-element airfoil made up of circu-
lar arcs and the pressure difference distributions. The interaction is shown by the
plots of the close and separated elements (far from each other). When the ele-
ments are apart, the lift of the first element decreases while that of the second
increases.

Example 3: Sensitivity to Grid

After this first set of numerical examples, some possible pitfalls of the numerical
approach can be observed (and hopefully avoided later).

First note the method of paneling the gap region in the previous example of the
two-element airfoil (Fig. 11.10). If very few elements are used, then it is always
advised to align the vortex points with vortex points and collocation points with
collocation points. We must remember that a numerical solution depends on the
model and the grid (and hence is not unique). The convergence of a method can
be tested by increasing the number of panels, which should result in a converging
solution. Therefore, it is always advisable to use smaller panels than the typical
length of the geometry that we are modeling. In the case of the two-element airfoil,
the typical distance is the gap clearance, and (if possible with the more refined
methods) paneling this area by elements of at least one-tenth the size of the gap is
recommended.
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Figure 11.9 Effect of airfoil/flap proximity on their chordwise pressure difference. �H is the vertical
spacing between the two elements.

Another important observation can be made by trying to calculate the velocity
induced by the five-element vortex representation of the flat plate of Fig. 11.4.
If the velocity survey is performed at z = 0.05c, then the wavy lines shown in
Fig. 11.11 are obtained. This waviness will disappear at larger distances, and in
any computation careful investigation is needed for the near and far field effects
of a particular singular element distribution.

Figure 11.10 Method of paneling the gap region of a two-element airfoil (discrete-vortex model).
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Figure 11.11 Survey of induced normal velocity above a thin airfoil (as shown in Fig. 11.4) modeled
by discrete vortices.

Of course, in the previous examples, fairly accurate solutions were obtained with very
few panels. This is because the lumped-vortex element induces the same downwash at the
collocation point (3a/4, 0) of a panel of length a as the exact flat plate solution, as depicted
by Fig. 11.12.

11.1.2 Discrete Source Method

Based on the principles of the previous section, let us develop a discrete source
method for solving the symmetric, nonzero-thickness airfoil problem of Section 5.1 (at
α = 0). For developing this method, too, let us follow the six steps suggested in Section 9.7
and apply them to the solution of the thin symmetric airfoil.

a. Selection of Singularity Element
The results of Chapter 5 indicate that the solution of the thin symmetric airfoil

problem can be based on (discrete) source elements. The velocity induced by such an
element placed at (x j , z j ) and with a strength of σ j is given by Eqs. (10.2) and (10.3) and

Figure 11.12 Downwash induced by a lumped-vortex element.
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Figure 11.13 Discrete source model of symmetric airfoil at zero angle of attack.

can be expressed in matrix form as(
u
w

)
= σ j

2πr2
j

(
1 0
0 1

) (
x − x j

z − z j

)
(11.14)

where

r2
j = (x − x j )

2 + (z − z j )
2

The above calculation can be included in a subroutine such that

(u, w) = SORC2D(σ j , x, z, x j , z j ) (11.15)

and (x, z) is the field point of interest.

b. Discretization of Geometry
First and most important is the definition of the coordinate system, which is shown

in Fig. 11.13. Since the problem is symmetric, the unknown σ j elements are placed along
the x axis, at the center of N equal segments at x j=1, x j=2, x j=3, . . . , x j=N .

Next, the collocation points need to be specified. In this case it is possible to leave
these points on the airfoil surface as shown in Fig. 11.13, and the values of these points
(xi=1, zi=1), (xi=2, zi=2), . . . , (xi=N , zi=N ) need to be established. The normal ni pointing
outward, at each of these points, is found from the surface shape η(x), as defined by
Eq. (11.3). As is demonstrated by the example at the end of this section, the solution
can be improved considerably by moving the first and the last collocation points toward the
leading and trailing edges, respectively (see Fig. 11.14).

c. Influence Coefficients
In this phase the zero normal flow boundary condition is implemented in a manner

depicted by Eq. (11.4). For example, the velocity induced by the j th source element at the
first collocation point can be obtained by using Eq. (11.15) and is

(u, w)1 j = SORC2D(σ j , x1, z1, x j , z j ) (11.16)

The influence coefficient ai j is defined as the self-induced velocity component, of a unit
strength source, normal to the surface. Consequently, the contribution of a unit strength
singularity element σ j = 1, at collocation point 1, is

a1 j = (u, w)1 j · n1
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Figure 11.14 Relocation of the first and last collocation point to improve numerical solution with the
discrete source method.

The induced normal velocity component qn1, at point 1, due to all the elements is then

qn1 = a11σ1 + a12σ2 + a13σ3 + · · · + a1N σN

and the strength of σ j is unknown at this point.

d. Establish Boundary Condition (RHS)
Fulfilling the boundary condition on the surface requires that at each collocation

point the normal velocity component will vanish. Specifying this condition for the first
collocation point yields

a11σ1 + a12σ2 + a13σ3 + · · · + a1N σN + (U∞, W∞) · n1 = 0

where of course W∞ = 0. But the last term (free-stream component) is known and can be
transferred to the right-hand side of the equation. Using the definition of Eq. (11.6) for the
right hand side we get

RHSi = −(U∞, W∞) · ni = −U∞ sin αi (11.6b)

If we specify the boundary condition for each of the collocation points we obtain a set of
algebraic equations similar to those of the previous discrete vortex example:⎛

⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1N

a21 a22 . . . a2N

a31 a32 . . . a3N
...

...
. . .

...
aN1 aN2 . . . aN N

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3
...

σN

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2

RHS3
...

RHSN

⎞
⎟⎟⎟⎟⎟⎠

This procedure is automated by a double DO loop where the collocation points are
scanned first and then at each collocation point the influences of the singularity elements
are scanned.

e. Solve Equations
The above set of algebraic equations can be solved for σi by using standard methods

of linear algebra. It is assumed here that the reader is familiar with such methods, and as
an example a direct solver can be found in the computer programs of Appendix D.
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f. Calculation of Pressures and Loads
Once the strength of the sources σ j is known, the total tangential velocity Qt at

each collocation point can be calculated using Eq. (11.15) and Eq. (11.3a):

Qti =
[

N∑
j=1

(u, w)i j + (U∞, W∞)

]
· ti (11.17)

The pressure coefficient then becomes

C p = 1 − Q2
t

Q2∞
(11.18)

Since this flow is symmetric, neither lift nor drag will be produced (based on the con-
clusions of Section 5.1). Therefore, no further load calculations are included for this case.
Also, note that for a closed body the net flow generated inside the body must be zero
(
∑N

i=1 σi = 0), and this condition may be useful for evaluating numerical results.

Example 1: Fifteen-Percent-Thick Symmetric Airfoil

The above method is applied to the 15%-thick van de Vooren airfoil of Section 6.6.
If the collocation points are left above the source points, as in Fig. 11.13, then the
results shown by the triangles in Fig. 11.15 are obtained. This solution, clearly, is
highly inaccurate near the leading edge. However, by moving the front collocation
point more forward (to the 0.1 panel length location) and the rear collocation point
closer to the trailing edge (to the 0.9 panel length location), as shown in Fig. 11.14
(and not moving the source points), we obtain a much improved solution. This solu-
tion, when compared with the exact solution of Section 6.6, is satisfactory over most
of the region, excluding some minor problems near the trailing edge (Fig. 11.15).

Figure 11.15 Calculated and analytical chordwise pressure coefficient on a symmetric airfoil (α = 0):
� with collocation points above source points (triangles), and + with front collocation point moved
forward and rear collocation point moved backward by 0.9 panel length, respectively.
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Figure 11.16 Constant-strength singularity approximation for a continuous strength distribution.

11.2 Constant-Strength Singularity Solutions (Using the Neumann B.C.)

A more refined discretization of a continuous singularity distribution is the element
with a constant strength. This type of element is shown schematically in Fig. 11.16, and it is
assumed that σ ≈ 1/(x2 − x1)

∫ x2

x1
σ (x)dx , and as (x2 − x1) → 0 the approximation seems

to improve. In this case, too, only one constant (the strength of the element) is unknown,
and by dividing the surface into N panels and specifying the boundary conditions on each
of the collocation points, N linear algebraic equations can be constructed.

In principle, the point singularity methods are satisfactory in estimating the zero-
thickness camberline lift, but they are inadequate near the stagnation points of a thick
airfoil. The constant-strength methods are capable of more accuracy near the stagnation
points and can be used to model closed surfaces with thickness resulting in a more detailed
pressure distribution, which is essential for airfoil shape design.

11.2.1 Constant Strength Source Method

The constant-strength source methods that will be presented here are capable of
calculating the pressures on a nonlifting thick airfoil and were among the first successful
codes used.10.1 For explaining the method, we shall follow the basic six step procedure.

a. Selection of Singularity Element
Consider the constant-strength source element of Section 10.2.1, where the panel

is based on a flat surface element. To establish a normal-velocity boundary condition based
method, only the induced velocity formulas are used (Eqs. (10.17) and (10.18)). The param-
eters θ and r are shown in Fig. 11.17, and the velocity components (u, w)p in the directions
of the panel coordinate system are

u p = σ

4π
ln

r2
1

r2
2

(11.19)

wp = σ

2π
(θ2 − θ1) (11.20)

In terms of the panel x , z variables these equations become

u p = σ

4π
ln

(x − x1)2 + z2

(x − x2)2 + z2
(panel coordinates) (11.21)

wp = σ

2π

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(panel coordinates) (11.22)
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Figure 11.17 Nomenclature for a planar surface panel.

Note that for simplicity, the subscript p was omitted in these equations since in general it
is obvious that the panel coordinates must be used (however, when the equations depend
on the r, θ variables only, as in this case, the global x, z coordinates can be used as well).
This approach will be taken in all following sections when presenting the influence terms
of the panels. To transform these velocity components into the directions of the x , z global
coordinates, a rotation by the panel orientation angle αi is performed such that(

u
w

)
=

(
cos αi sin αi

− sin αi cos αi

) (
u p

wp

)
(11.23)

For later applications when the coordinates of the point P must be transformed into the
panel coordinate system the following transformation can be used:(

x
z

)
p

=
(

cos αi − sin αi

sin αi cos αi

) (
x − x0

z − z0

)
(11.23a)

In this case (x0, z0) are the coordinates of the panel origin in the global coordinate system
x , z and the subscript p stands for panel coordinates.

This procedure (e.g., Eqs. (11.21) and (11.22) and the transformation of Eq. (11.23))
can be included in an induced-velocity subroutine SOR2DC (where C stands for constant),
which will compute the velocity (u, w) at an arbitrary point (x, z) in the global coordinate
system due to the j th element whose endpoints are identified by the j and the j + 1 counters:

(u, w) = SOR2DC(σ j , x, z, x j , z j , x j+1, z j+1) (11.24)

b. Discretization of Geometry
As an example for this method, the 15%-thick symmetric airfoil of Section 6.6 is

considered. In most cases involving thick airfoils, a more dense paneling is used near the
leading and trailing edges. A frequently used method for dividing the chord into panels with
larger density near the edges is shown in Fig. 11.18. If ten chordwise panels are needed, then
the semicircle is divided by this number; thus �β = π/10. The corresponding x stations
are found by using the following cosine spacing formula:

x = c

2
(1 − cos β) (11.25)
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Figure 11.18 “Full-cosine” method of spacing the panels on the airfoil’s surface.

Once the x axis is divided into N panels with strength σ j , the N + 1 panel corner points
(x j=1, z j=1), (x j=2z j=2), . . . , (x j=N+1, z j=N+1) are computed. The collocation points can
be placed at the center of each panel (shown by the x mark on the airfoil surface in Fig. 11.18)
and the values of these points (xi=1, zi=1), (xi=2, zi=2), . . . , (xi=N , zi=N ) are computed too.
The normal ni , which points outward at each of these points, is found from the surface
shape η(x), as defined by Eq. (11.3).

c. Influence Coefficients
In this phase the zero normal flow boundary condition is implemented. For ex-

ample, the velocity induced by the j th source element at the first collocation point can be
obtained by using Eq. (11.24) and is

(u, w)1 j = SOR2DC(σ j , x1, z1, x j , z j , x j+1, z j+1) (11.26)

The influence coefficient ai j is defined as the velocity component normal to the surface.
Consequently, the contribution of a unit strength singularity element j , at collocation point
1, is

a1 j = (u, w)1 j · n1 (11.27)

Note that a closer observation of Eqs. (11.3) and (11.23) shows that the normal velocity
component at the i th panel is found by rotating the velocity induced by a unit strength j
element by (α j − αi ); therefore

a1 j = [−sin(α j − α1), cos(α j − α1)]

(
u1 j

w1 j

)
p

(11.27a)

Here the velocity components (u, w)p are obtained from Eqs. (11.21) and (11.22). To
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evaluate the influence of the element on itself, recall Eq. (10.24):

wp(x, 0±) = ±σ

2
(11.28)

Based on this equation, the boundary condition (e.g., in Eq. (11.4)) will be specified at a
point slightly above the surface (z = 0+ in the panel frame of reference). Consequently,
when i = j the influence coefficient becomes

aii = 1

2
(11.29)

d. Establish Boundary Condition (RHS)
Specifying the boundary condition, as stated in Eq. (11.4), at collocation point 1,

results in the following algebraic equation:

1

2
σ1 + a12σ2 + a13σ3 + · · · + a1N σN + (U∞, W∞) · n1 = 0

where of course W∞ = 0 for the symmetric airfoil case. The free-stream normal velocity
component is transferred to the right-hand side and the vector RHSi is found, as in the
previous example (by using Eq. (11.6b)):

RHSi = −U∞ sin αi

Both the influence coefficients and the RHS vector can be computed by a double DO loop
where the collocation points are scanned first (and the RHSi vector is calculated) and then
at each collocation point the influences of the singularity elements are scanned.

e. Solve Equations
Specifying the boundary condition for each (i = 1 → N ) of the collocation points

results in a set of algebraic equations with the unknown σ j ( j = 1 → N ). These equations
will have the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 a12 . . . . . . a1N

a21
1
2 . . . . . . a2N

a31 a32
1
2 . . . a3N

...
... . . .

. . .
...

aN1 aN2 . . . . . . 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3
...

σN

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2

RHS3
...

RHSN

⎞
⎟⎟⎟⎟⎟⎠

The above set of algebraic equations has a well-defined diagonal and can be solved for
σ j by using standard methods of linear algebra.

f. Calculation of Pressures and Loads
Once the strength of the sources σ j is known, the velocity at each collocation point

can be calculated using Eq. (11.24) and the pressure coefficient can be calculated by using
Eq. (11.18).

Note that this method is derived here for nonlifting shapes and the Kutta condition is not
used. Consequently, the circulation of the airfoil will be zero and hence no lift and drag will
be produced. However, the pressure distribution is well predicted as shown in the following
Example 1.
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Figure 11.19 Pressure distribution on a symmetric airfoil (at α = 0).

The numeric formulation presented here does not assume a symmetric solution. But,
as it appears, the solution is symmetric (about the x axis) and the number of unknowns
can be reduced to N/2 by a minor modification in the process of the influence coefficient
calculation (in Eq. (11.27)). In this case the velocity induced by the panel (u, w)i j and by
its mirror image (u, w)i

i j will be calculated by using Eq. (11.24):

(u, w)i j = SOR2DC(σ j = 1, xi , zi , x j , z j , x j+1, z j+1)

(u, w)i
i j = SOR2DC(σ j = 1, xi , zi , x j , −z j , x j+1, −z j+1)

and the influence coefficient ai j is then

ai j = [
(u, w)i j + (u, w)i

i j

] · ni

The rest of the procedure is unchanged, but with this modification we end up with only N/2
unknowns σ j (e.g., for the upper surface only).

Example 1: Pressure Distribution on a Symmetric Airfoil

The above method is applied to the 15%-thick symmetric van de Vooren airfoil
of Section 6.6. The computed pressure distribution is shown by the triangles in
Fig. 11.19 and they agree well with the exact analytical results, including those at
the leading and trailing edge regions.

Note that in this case, too, for a closed body the sum of the sources must be zero
(
∑N

i=1 σi = 0), and this condition may be useful for evaluating numerical results.
A sample student computer program used for this calculation is provided in

Appendix D (Program No. 3).

11.2.2 Constant-Strength Doublet Method

The simplest two-dimensional panel code that can calculate the flow over thick
lifting airfoils is based on the constant-strength doublet. The surface pressure distribution
computed by this method is satisfactory on the surface, but since this element is equivalent
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to two concentrated vortices at the edges of the element, near-field off-surface velocity
computations will have the same fluctuations as shown in Fig. 11.11 (but the velocity
calculated at the collocation point and the resulting pressure distribution are correct).

a. Selection of Singularity Element
Consider the constant-strength doublet element of Section 10.2.2 pointing in the

positive z direction, where the panel is based on a flat element. To establish a normal-
velocity boundary condition based method, the induced velocity formulas of Eqs. (10.29)
and (10.30) are used (which are equivalent to two point vortices with a strength μ at the
panel edges):

u p = μ

2π

[
z

(x − x1)2 + z2
− z

(x − x2)2 + z2

]
(panel coordinates) (11.30)

wp = −μ

2π

[
x − x1

(x − x1)2 + z2
− x − x2

(x − x2)2 + z2

]
(panel coordinates) (11.31)

Here, again, the velocity components (u, w)p are in the direction of the panel local coordi-
nates, which need to be transformed back to the x , z system by Eq. (11.23).

This procedure can be included in an induced-velocity subroutine DUB2DC (where C
stands for constant), which will compute the velocity (u, w) at an arbitrary point (x, z) due
to the j th element:

(u, w) = DUB2DC(μ j , x, z, x j , z j , x j+1, z j+1) (11.32)

b. Discretization of Geometry
The panel corner points and collocation points are generated exactly as in the

previous section (see Fig. 11.18). However, in this lifting case, a wake panel (shown in
Fig. 11.20) has to be specified. This doublet element will have a strength μW and extends
to x = ∞. In practice, the far portion (starting vortex) of the wake will have no influence
and can be “placed” far downstream (e.g., at (∞, 0)).

c. Influence Coefficients
To obtain the normal component of the velocity at a collocation point (e.g., the

first point) due to the j th doublet element, Eq. (11.32) is used:

(u, w)1 j = DUB2DC(μ j , x1, z1, x j , z j , x j+1, z j+1) (11.33)

Figure 11.20 Schematic description of constant-strength doublet panel elements near an airfoil’s
trailing edge.
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The influence coefficients ai j are defined as the velocity components normal to the surface.
Consequently, the contribution of a unit strength singularity element j , at collocation point
1, is

a1 j = (u, w)1 j · n1

Similarly to the case of the constant-source method, the influence coefficients can be found
by using Eq. (11.27):

a1 j = [−sin(α j − α1), cos(α j − α1)]

(
u1 j

w1 j

)
p

(11.27)

where α1 and α j are the first and the j th panel angles, as defined in Fig. 11.17, and (u1 j , w1 j )p

are the velocity components of Eqs. (11.30) and (11.31) due to a unit strength element, as
measured in the panel frame of reference.

To evaluate the influence of the element on itself, at the center of the panel, we recall
Eqs. (10.32) and (10.33):

u p(x, 0±) = 0 (11.34)

wp(x, 0±) = −μ

π

2

(x2 − x1)
(11.35)

Consequently, when i = j the influence coefficient becomes

aii = −2

π�ci
(11.35a)

where �ci is the i th panel chord.

d. Establish Boundary Condition (RHS)
The free-stream normal velocity component RHSi is found as in the previous

examples (e.g., by using Eq. (11.6)).

e. Solve Equations
Specification of the boundary condition of Eq. (11.4) for each (i = 1 → N ) of the

collocation points results in a set of algebraic equations with the unknown μ j ( j = 1 → N ).
However, the equivalent vortex representation in Fig. 11.20 reveals that the strength of
the vortex at the trailing edge is −� = μ1 − μN . Since the Kutta condition requires the
circulation at the trailing edge to be zero, we must add a wake panel to cancel this vortex:

(μ1 − μN ) + μW = 0 (11.36)

A combination of this equation with the N boundary conditions results in N + 1 linear
equations:⎛

⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1N a1W

a21 a22 . . . a2N a2W
...

...
. . .

...
...

aN1 aN2 . . . aN N aN W

1 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2
...

μN

μW

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

0

⎞
⎟⎟⎟⎟⎟⎠

This system of equations is the numerical equivalent of the boundary condition (Eq. (11.4))
and is well defined and will have a stable solution.
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f. Calculation of Pressures and Loads
Once the strength of the doublets μ j is known, the perturbation tangential velocity

component at each collocation point can be calculated by summing the induced velocities
of all the panels, using Eq. (11.33). The tangential velocity at collocation point i is then

qti =
N+1∑
j=1

(u, w)i j · ti (11.37)

where (u, w)i j is the result of Eq. (11.33), ti is the local tangent vector defined by Eq. (11.3a),
and the (N + 1)-th component is due to the wake. Note that to evaluate the tangential velocity
component induced by a panel on itself Eq. (3.141) can be used:

qt = −1

2

∂μ(l)

∂l
on panel (11.38)

where l represents distance along a surface line. So when evaluating the tangential compo-
nent of the perturbation velocity the result of Eq. (11.38) must be included (when i = j in
Eq. (11.37)). The pressure coefficient can be computed by using Eq. (11.18),

C p j = 1 − (Qt∞ + qt )2
j

Q2∞
(11.39)

where

(Qt∞ ) j = t j · Q∞ (11.39a)

Note that the local lift can be calculated, too, by using the Kutta–Joukowski formula for a
point vortex:

�L j = ρQ∞� j = −ρQ∞(μ j+1 − μ j ) (11.40)

where the minus sign is used for doublet panels pointing outside the airfoil. This formulation
should be equivalent to the result that we get by assuming constant pressure on the panel,
namely

�Cl j = −C p j �l j cos α j/c (11.41)

where �l j and α j are shown in Fig. 11.21. The total lift and moment are obtained by
summing the contribution of each element:

L =
N∑

j=1

�L j (11.42)

M0 = −
N∑

j=1

�L j (x j cos α) (11.43)

and the nondimensional coefficients can be calculated by using Eqs. (11.12) and (11.13).
Note that by observing the wake vortex at x = ∞ in Fig. 11.20 and recalling Kelvin’s
theorem (Eq. (2.16)), we can compute the total lift simply from the wake doublet strength as

L = −ρQ∞μW (11.42a)

Example: Lifting Thick Airfoil

The above method was used for computing the pressure distribution over the 15%-
thick van de Vooren airfoil of Section 6.6, as shown in Fig. 11.22. The data agree
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Figure 11.21 Typical segment of constant-strength doublet panels on the airfoil’s surface.

satisfactorily with the analytic solution for both the 0◦ (Fig. 11.22a) and 5◦ angle-of-
attack conditions (Fig. 11.22b). A slight disagreement is visible near the maximum
suction area and near the rear stagnation point. These results can be improved by
moving the grid and the collocation points near these areas, but such an optimiza-
tion procedure is not carried out here. The solution near the trailing edge can also be
improved by using the velocity formulation (Eq. (9.15b)) for the Kutta condition.

The computer program used for this example is included in Appendix D (Pro-
gram No. 4).

11.2.3 Constant-Strength Vortex Method

The constant-strength vortex distribution was shown to be equivalent to a linear-
strength doublet distribution (Section 10.3.2) and therefore is expected to improve the
solution of the flow over thick bodies. However, this method is more difficult to use suc-
cessfully compared to the other methods presented here. One of the problems arises from
the fact that the self-induced effect (Eq. (10.43)) of this panel is zero at the center of the
element (and the influence coefficient matrix, without a pivoting scheme, will have a zero
diagonal). Also, when using the Kutta condition at an airfoil’s trailing edge (Fig. 11.23)
the requirement that γ1 + γN = 0 eliminates the lift of the two trailing-edge panels. Con-
sequently, if N panels are used, then only N − 2 independent equations can be used and
the scheme can not work without certain modifications to the method. One such modi-
fication is presented in Ref. 5.1 (pp. 281–282) where additional conditions are found by
minimizing a certain error function. In this section, we try to use an approach similar
to the previous source and doublet methods, and only the specifications of the boundary
conditions will be modified. We will follow the basic six-step procedure of the previous
sections.

a. Selection of Singularity Element
Consider the constant-strength vortex element of Section 10.2.3, where the panel

is based on a flat surface element. To establish a normal-velocity boundary condition based
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Figure 11.22 Chordwise pressure distribution on a symmetric airfoil at angles of attack of 5◦ and 0◦.

Figure 11.23 Constant-strength vortex panels near the trailing edge of an airfoil.
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method, only the induced-velocity formulas are used (Eqs. (10.39) and (10.40)):

u p = γ

2π

[
tan−1 z − z2

x − x2
− tan−1 z − z1

x − x1

]
(panel coordinates) (11.44)

wp = − γ

4π
ln

(x − x1)2 + (z − z1)2

(x − x2)2 + (z − z2)2
(panel coordinates) (11.45)

Here, again, the velocity components (u, w)p are in the direction of the panel local coordi-
nates, which need to be transformed back to the x , z system by Eq. (11.23).

This procedure can be included in an induced-velocity subroutine VOR2DC (where C
stands for constant), which will compute the velocity (u, w) at an arbitrary point (x, z) due
to the j th element:

(u, w) = VOR2DC(γ j , x, z, x j , z j , x j+1, z j+1) (11.46)

b. Discretization of Geometry
To generate the panel corner points (x j=1, z j=1), (x j=2, z j=2), . . . , (x j=N+1,

z j=N+1), collocation points (xi=1, zi=1), (xi=2, zi=2), . . . , (xi=N , zi=N ) placed at the cen-
ter of each panel, and the normal vectors ni , the procedure of the previous section can be
used (see Fig. 11.18).

c. Influence Coefficients
A possible modification of the boundary condition, which will eliminate the zero

self-induced effect, is to use an internal zero tangential velocity boundary condition. This
is based on Eq. (9.8), which states that inside an enclosed body �∗

i = const. Consequently,
the normal and tangential derivatives of the total potential inside the body are zero:

∂�∗

∂n
= ∂�∗

∂l
= 0 (11.47)

In this particular case the inner tangential velocity condition will be used and at each panel

(U∞ + u, W∞ + w)i · (cos αi , −sin αi ) = 0 (11.47a)

To specify this condition at each of the collocation points (which are now at the center
of the panel and slightly inside), the tangential velocity component is obtained by using
Eq. (11.46). For example, the velocity at a collocation point 1 due to the j th vortex element is

(u, w)1 j = VOR2DC(γ j , x1, z1, x j , z j , x j+1, z j+1) (11.48)

The influence coefficient ai j is now defined as the velocity component tangent to the surface.
Consequently, the contribution of a unit strength singularity element j , at collocation point
1, is

a1 j = (u, w)1 j · (cos α1, −sin α1)

where α1 is the orientation of the panel (of the collocation point) as shown in Fig. 11.17.
The general influence coefficient is then

ai j = (u, w)i j · (cos αi , −sin αi ) (11.49)
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Use of this boundary condition ensures a nonzero value for the self-induced influence of
the panel. At the center of the panel, Eqs. (10.42) and (10.43) are recalled,

u p(x, 0±) = ±γ

2
wp(x, 0±) = 0

Consequently, when i = j the influence coefficient becomes

aii = −1

2
(11.50)

d. Establish Boundary Condition (RHS)
The free-stream tangential velocity component RHSi is found by

RHSi = −(U∞, W∞) · (cos αi , −sin αi ) (11.51)

Note that in this case the free stream may have an angle of attack. The numerical procedure
(using the double DO loop routine) for calculating the influence coefficients and the RHSi

vector is the same as for the previous methods.

e. Solve Equations
Specifying the boundary condition for each (i = 1 → N ) of the collocation points

results in a set of algebraic equations with the unknowns γ j ( j = 1 → N ). In addition the
Kutta condition needs to be specified at the trailing edge:

γ1 + γN = 0 (11.52)

But now we have N + 1 equations with only N unknowns. Therefore, one of the equations
must be deleted (e.g., the kth equation) and by adding the Kutta condition the following
matrix equation is obtained:⎛

⎜⎜⎜⎜⎜⎝

a11 . . . . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aN−1,1 aN−1,2 . . . aN−1,N

1 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

γ1

γ2

γ3
...

γN

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN−1

0

⎞
⎟⎟⎟⎟⎟⎠

f. Calculation of Pressures and Loads
Once the strength of the vortices γ j is known, the velocity at each collocation point

can be calculated using Eq. (11.48) and the pressure coefficient can be calculated by using
Eq. (11.18) (note that the tangential perturbation velocity at each panel is γ j/2):

C p = 1 −
[

Q∞ cos(α + α j ) + γ j/2

Q∞

]2

(11.53)

where Q∞ · t j = Q∞ cos(α + α j ). The aerodynamic loads can be calculated by adding the
pressure coefficient or by using the Kutta–Joukowski theorem. Thus the lift of the j th panel
is

�L j = ρQ∞γ j�c j
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Figure 11.24 Chordwise pressure distribution on a symmetric airfoil at angle of attack of 5◦ using
constant-strength vortex panels.

where �c j is the panel length. The total lift and moment are obtained by summing the
contribution from each element,

L =
N∑

j=1

�L j (11.54)

M0 = −
N∑

j=1

�L j (x j cos α) (11.55)

and the nondimensional coefficients can be calculated by using Eqs. (11.12) and (11.13).

Example: Symmetric Thick Airfoil at Angle of Attack

The above method is applied to the 15%-thick, symmetric, van de Vooren airfoil
of Section 6.6. The computed pressure distribution is shown by the triangles in
Fig. 11.24 and they agree fairly well with the exact analytical results. The point
where the computations disagree is where one equation was deleted. This can easily
be corrected by a local smoothing procedure, but the purpose of this example is to
highlight this problem. From the practical point of view it is better to use panels
with a higher order (e.g., linear) vortex distribution or any of the following methods.

The sample student computer program used for this calculation is provided in
Appendix D (Program No. 5).

11.3 Constant-Potential (Dirichlet Boundary Condition) Methods

In the previous examples the direct, zero normal velocity (Neumann) boundary
condition was used. In this section similar methods will be formulated based on the constant-
potential method (Dirichlet boundary condition). This condition was described in detail in
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Figure 11.25 Methods of fulfilling the zero normal velocity boundary condition on a solid surface.

Section 9.2 and in principle it states that if ∂�∗/∂n = 0 on the surface of a closed body
then the internal potential �∗

i must stay constant (Fig. 11.25a):

�∗
i = const. (11.56)

It is possible to specify this boundary condition in terms of the stream function �

(Fig. 11.25b) and in this case the body shape is enclosed by the stagnation streamline
where � = const. (which may be selected as zero). Many successful numerical methods
are based on the stream function and they are very similar to the methods described in this
chapter. Also, the stream function can describe flows that are rotational, but an equivalent
three-dimensional formulation of such methods is nonexistent. Because of the lack of three-
dimensional capability, only the velocity potential based solutions will be discussed here.

Following Chapter 9, the velocity potential can be divided into a free-stream potential
�∞ and perturbation potential �, and the zero normal velocity boundary condition on a
solid surface (internal Dirichlet condition) is

�∗
i = (� + �∞)i = const.

If we place the singularity distribution on the boundary S (and following the two-dimensional
equivalent of Eq. (9.10) – see Eq. (3.17)) this internal boundary condition becomes

�∗
i (x, z) = 1

2π

∫
S

[
σ ln r − μ

∂

∂n
(ln r )

]
d S + �∞ = const. (11.57)

and when the point (x, z) is on the surface then the coefficient 1/2π becomes 1/π .
This formulation is not unique and the combination of source and doublet distributions

must be fixed. For example, source-only or doublet-only solutions can be used with this
internal boundary condition, but when using both types of singularity, the strength of one
must be prescribed. Also, any vortex distribution can be replaced by an equivalent doublet
distribution, and therefore solutions based on vortices can be used too.

To construct a numerical solution the surface S is divided into N panels and the integration
is performed for each panel such that

N∑
j=1

1

2π

∫
panel

σ ln r d S −
N∑

j=1

1

2π

∫
panel

μ
∂

∂n
(ln r ) d S + �∞ = const.

The integration is limited now to each individual panel element, and for constant, linear,
and quadratic strength elements this was done in Chapter 10. For example, in the case of
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constant-strength singularity elements on each panel the influence of panel j at a point P is

− 1

2π

∫
panel

∂

∂n
(ln r ) d S| j ≡ C j (11.58)

In the case of a doublet distribution and for a source distribution

1

2π

∫
panel

(ln r ) d S| j ≡ B j (11.59)

Once these influence integrals have been evaluated (as in Chapter 10) the boundary condition
inside the surface (at any point) becomes

N∑
j=1

B jσ j +
N∑

j=1

C jμ j + �∞ = const. for each collocation point (11.60)

Specifying this boundary condition on N collocation points allows N linear equations to
be created.

11.3.1 Combined Source and Doublet Method

As the first example for this approach let us use the combination of source and
doublet elements on the surface. This means that each panel will have a local source and
doublet strength of its own. Since Eq. (11.60) is not unique, either the source or the doublet
values must be specified. Here the inner potential is selected to be equal to �∞ and for this
case the source strength is given by Eq. (9.12) as

σ j = n j · Q∞ (11.61)

Since the value of the inner perturbation potential was set to zero (or �∗
i = �∞) Eq. (11.60)

reduces to

N∑
j=1

B jσ j +
N∑

j=1

C jμ j = 0 (11.62)

and μ j represents the jump in the perturbation potential. This equation (boundary condition)
is specified at each collocation point inside the body, providing a linear algebraic equation
for this point. The steps toward establishing such a numerical solution are as follows:

a. Selection of Singularity Element
The velocity potential at an arbitrary point P (not on the surface) due to a constant-

strength source was derived in the panel’s frame of reference in Eq. (10.19):

� = σ

4π

{
(x − x1) ln[(x − x1)2 + z2] − (x − x2) ln[(x − x2)2 + z2]

+ 2z

(
tan−1 z

x − x2
− tan−1 z

x − x1

)}
(panel coordinates) (11.63)

and that due to a constant-strength doublet in Eq. (10.28):

� = −μ

2π

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(panel coordinates) (11.64)
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These equations can be included in two subroutines that calculate the potential at point
(x, z) due to the source and doublet element j :

��s = PHICS(σ j , x, z, x j , z j , x j+1, z j+1) (11.65)

��d = PHICD(μ j , x, z, x j , z j , x j+1, z j+1) (11.66)

These subroutines will include the transformation of the point (x, z) into the panel coordi-
nates (e.g., in Eq. (11.23a)) and it is assumed that these potential increments are expressed
in terms of the global x , z coordinates. However, since the influence coefficients depend on
view angles and distances between points (see Fig. 10.6), the transformation of �� back
to the global coordinate system can be skipped.

b. Discretization of Geometry
The N + 1 panel corner points and N collocation points are generated in a manner

similar to the previous example of the constant-strength source (Fig. 11.18). However, now
the internal Dirichlet boundary condition will be applied and therefore the collocation points
must be placed inside the body. (Usually an inward displacement of 0.05 panel lengths is
sufficient, but attention is needed near the trailing edge so that the collocation point is
not placed outside the body. In the case where the self-induced influence is specified by a
separate formula, then for simplicity, the collocation point can be left at the center of the
panel surface without the inward displacement.)

c. Influence Coefficients
The increment in the velocity potential at collocation point i due to a unit strength

constant-source element of panel j is obtained by using Eq. (11.65):

bi j = PHICS(σ j = 1, xi , zi , x j , z j , x j+1, z j+1) (11.67)

and that due to the same panel but with a unit strength doublet is

ci j = PHICD(μ j = 1, xi , zi , x j , z j , x j+1, z j+1) (11.68)

Note that this calculation is simpler (requiring less algebraic operations) than comparable
calculations using the velocity boundary condition, which require the computation of two
velocity components and a multiplication by the local normal vector.

Also, the influence of the doublet panel on itself (using Eq. (10.31)) is

cii = 1

2
(11.69)

and for the source the self-induced effect can be calculated by using Eq. (11.67).
Determination of the influence of the doublets at each of the collocation points will result

in an N × N influence matrix, with N + 1 unknowns (where the wake doublet μW is the
(N + 1)-th unknown). The additional equation is provided by using the Kutta condition (see
Fig. 11.20):

(μ1 − μN ) + μW = 0 (11.36)

Combining this equation with the influence matrix will result in N + 1 linear equations for
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the influence of the doublets:

N+1∑
j=1

Ci jμ j =

⎛
⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1N c1W

c21 c22 . . . c2N c2W
...

...
. . .

...
...

cN1 cN2 . . . cN N cN W

1 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2
...

μN

μW

⎞
⎟⎟⎟⎟⎟⎠

If we replace μW with μN − μ1 from Eq. (11.36), we can reduce the order of the above
matrix to N . The first row, for example, will have the form

(c11 − c1W )μ1 + c12μ2 + · · · + (c1N + c1W )μN

and only the first and the N th columns will change because of the term ±ciW . We can
rewrite the doublet influence such that

ai j = ci j , j �=1, N

ai1 = ci1 − ciW , j = 1 (11.70)

ai N = ci N + ciW , j = N

With this definition of the doublet coefficients and with the bi j coefficients of the source
influence, Eq. (11.62), specified for each collocation point 1 → N , the matrix equation will
have the form⎛

⎜⎜⎜⎝
a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
...

aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

b11, b12, . . . , b1N

b21, b22, . . . , b2N
...

...
...

bN1, bN2, . . . , bN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σ1

σ2
...

σN

⎞
⎟⎟⎟⎠ = 0

(11.71)

d. Establish RHS Vector
If we specify the source strength at the collocation point, according to Eq. (11.61),

the second matrix multiplication can be executed. Then this known part is moved to the
right-hand side of the equation. Thus⎛

⎜⎜⎜⎝
RHS1

RHS2
...

RHSN

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

b11, b12, . . . , b1N

b21, b22, . . . , b2N
...

...
...

bN1, bN2, . . . , bN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σ1

σ2
...

σN

⎞
⎟⎟⎟⎠ (11.72)

e. Solve Equations
At this phase the N equations will have the form⎛
⎜⎜⎜⎝

a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
...

aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

⎞
⎟⎟⎟⎠ (11.73)

with N unknown values μ j , which can be computed by solving this full-matrix equation.
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Figure 11.26 Doublet panels on the surface of a solid boundary.

f. Calculation of Pressures and Loads
Once the strength of the doublets μ j is known, the potential outside the surface can

be calculated. This is shown schematically in Fig. 11.26, which indicates that the internal
perturbation potential �i is constant (and equal to zero) and the external potential �u is
equal to the internal potential plus the local potential jump −μ across the solid surface,

�u = �i − μ (11.74)

The local external tangential velocity component above each collocation point can be cal-
culated by differentiating the velocity potential along the tangential direction:

Qt = ∂�∗
u

∂l
(11.75)

where l is a line along the surface. For example, the simplest numerical interpretation of
this formula is

Qt j = μ j − μ j+1

�l j
+ Qt∞ (11.76)

where �l j is the distance between the two adjacent collocation points, as shown in the
figure. This formulation is more accurate at the j th panel second corner point and can be
used to calculate the velocity at this point. The pressure coefficient can be computed by
using Eq. (11.18):

C p j = 1 −
Q2

t j

Q2∞
(11.77)

The contribution to the lift coefficient is then

�Cl j = −C p j �l j cos α j/c (11.78)

where �l j and α j are shown in Fig. 11.21. The total lift and moment are obtained by
summing the contribution of each element:

L =
N∑

j=1

�L j (11.79)

M0 = −
N∑

j=1

�L j (x j cos α) (11.80)

and the nondimensional coefficients can be calculated by using Eqs. (11.12) and (11.13).
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Figure 11.27 Chordwise pressure distribution on a symmetric airfoil, using 10 and 90 panels (com-
bined source/doublet method with Dirichlet boundary condition).

Example: Lifting Thick Airfoil

A short computer program (Program No. 9 in Appendix D) was prepared to demon-
strate the above method and the same airfoil geometry was used as for the previous
examples. Table 11.2 shows the numeric equivalent of Eq. (11.71) for N = 10 pan-
els, along with the RHS vector and the solution vector (of the doublet strengths).
These results are plotted in Fig. 11.27, which shows that even with such a low
number of panels a fairly reasonable solution is obtained. When using a larger
number of panels (N = 90) the solution is very close to the analytic solution, both
at the leading and trailing edges. As mentioned earlier, the potential based influ-
ence computations (Eqs. (11.67) and (11.68)) and the pressure calculations (of
Eq. (11.76) or Eq. (11.38)) seem to be computationally more efficient than those
of the previous methods.

11.3.2 Constant-Strength Doublet Method

An even simpler method for lifting airfoils can be derived by setting the source
strengths to zero in Eq. (11.60). The value of the constant for the internal potential is selected
to be zero (since a choice similar to that of the previous section of �i = �∞ will result in
the trivial solution). Consequently, the boundary condition describing the internal potential
(Eq. (11.60)) reduces to

N∑
j=1

C jμ j + �∞ = 0 (11.81)

where

�∞ = U∞x + W∞z (11.82)
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Table 11.2. Influence matrix for the airfoil shown in Fig. 11.27 using ten panels (α = 5◦,
constant-strength source and doublets with the Dirichlet boundary conditions)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.48 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.43
−0.02 0.50 0.01 0.01 0.01 0.01 0.02 0.06 0.34 0.06
−0.02 0.01 0.50 0.02 0.02 0.03 0.07 0.27 0.08 0.03
−0.01 0.01 0.02 0.50 0.04 0.08 0.23 0.10 0.03 0.02

0.00 0.01 0.02 0.06 0.50 0.24 0.12 0.03 0.01 0.01
0.01 0.01 0.03 0.12 0.24 0.50 0.06 0.02 0.01 0.00
0.02 0.03 0.10 0.23 0.08 0.04 0.50 0.02 0.01 −0.01
0.03 0.08 0.27 0.07 0.03 0.02 0.02 0.50 0.01 −0.02
0.06 0.34 0.06 0.02 0.01 0.01 0.01 0.01 0.50 −0.02
0.43 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.48

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1

μ2

μ3

μ4

μ5

μ6

μ7

μ8

μ9

μ10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.08 0.00 0.09 0.10 0.05 0.05 0.10 0.09 0.00 −0.06
0.00 −0.11 0.04 0.08 0.04 0.04 0.08 0.04 −0.05 0.00
0.04 0.03 −0.11 0.02 0.03 0.03 0.03 −0.02 0.04 0.04
0.05 0.09 0.03 −0.11 0.00 0.00 −0.02 0.04 0.10 0.05
0.06 0.12 0.08 −0.02 −0.07 −0.04 0.00 0.08 0.12 0.06
0.06 0.12 0.08 0.00 −0.04 −0.07 −0.02 0.08 0.12 0.06
0.05 0.10 0.04 −0.02 0.00 0.00 −0.11 0.03 0.09 0.05
0.04 0.04 −0.02 0.03 0.03 0.03 0.02 −0.11 0.03 0.04
0.00 −0.05 0.04 0.08 0.04 0.04 0.08 0.04 −0.11 0.00

−0.06 0.00 0.09 0.10 0.05 0.05 0.10 0.09 0.00 −0.08

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.07
−0.05

0.02
0.18
0.61
0.46
0.00

−0.15
−0.22
−0.24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

σi

= 0

The solution is:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1

μ2

μ3

μ4

μ5

μ6

μ7

μ8

μ9

μ10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1795420
−0.1691454
−0.1914112
−0.2294960
−0.2296733
−7.9113595 × 10−2

9.1565706 × 10−2

0.2577208
0.3524704
0.3651389

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RHSi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8
0.7
0.01

−0.07
−0.13
−0.12
−0.05

0.03
0.08
0.09

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that now μ will represent the potential jump from zero to �u on the boundary (see
Fig. 11.26) and therefore �u is the local total potential (whereas in the previous example μ

was the jump in the perturbation potential only).
Equation (11.81) can be specified at each collocation point inside the body, providing

a linear algebraic equation for this point. The steps toward establishing such a numeric
solution are very similar to the previous method.

a. Selection of Singularity Element
For this case a constant-strength doublet element is used and the potential at an ar-

bitrary point P (not on the surface) due to a constant-strength doublet is given by Eq. (11.64)
and by the routine of Eq. (11.66):

��d = PHICD(μ j , x, z, x j , z j , x j+1, z j+1) (11.66)
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b. Discretization of Geometry
The N + 1 panel corner points and N collocation points are generated in a manner

similar to the previous example and a typical grid is shown in Fig. 11.18. Since in this
case the internal Dirichlet boundary condition is used the collocation points must be placed
inside the body with a small inward displacement under the panel center (although this
inward displacement can be skipped if the self-induced influence is specified separately).

c. Influence Coefficients
The increment in the velocity potential at collocation point i due to a unit strength

constant doublet element of panel j is given by Eq. (11.68):

ci j = PHICD(μ j = 1, xi , zi , x j , z j , x j+1, z j+1) (11.68)

The construction of the doublet influence matrix and the inclusion of the Kutta condition
(and the wake doublet μW ) is exactly the same as in the previous example. Thus, after
substituting the Kutta condition (μW = μN − μ1), the ci j influence coefficients become the
ai j coefficients (see Eq. (11.70)). If we use these results, Eq. (11.81), when specified at each
collocation point, will have the form⎛

⎜⎜⎜⎝
a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
...

aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

�∞1

�∞2

...
�∞N

⎞
⎟⎟⎟⎠ = 0 (11.83)

d. Establish RHS Vector
The second term in this equation is known and can be transferred to the right-hand

side of the equation. The RHS vector then becomes⎛
⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

�∞1

�∞2

...
�∞N

⎞
⎟⎟⎟⎠ (11.84)

and the �∞ j term is calculated by using Eq. (11.82).

e. Solve Equations
At this phase the N equations will have the form similar to Eq. (11.73) and can be

solved for the N unknown values μ j .

f. Calculation of Pressures and Loads
Once the strength of the doublets μ j is known, the potential outside the surface can

be calculated based on the principle shown schematically in Fig. 11.26 (but now �∗
i = 0).

Equation (11.75) is still the basis for calculating the local velocity but now the external
potential �u is equal to the local total potential jump −μ across the solid surface. Thus,
the local external tangential velocity above each collocation point can be calculated by
differentiating the velocity potential along the tangential direction, and Eq. (11.76) will
have the form

Qt j = μ j − μ j+1

�l j
(11.85)
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Table 11.3. Influence matrix for the airfoil shown in Fig. 11.27 using ten panels (α = 5◦,
constant-strength doublets only, with the Dirichlet boundary conditions)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.50 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.40 0.02
0.00 0.50 0.01 0.01 0.01 0.01 0.02 0.06 0.34 0.04 0.02
0.00 0.01 0.50 0.02 0.02 0.03 0.07 0.27 0.08 0.01 0.02
0.00 0.01 0.02 0.50 0.04 0.08 0.23 0.10 0.03 0.01 0.01
0.00 0.01 0.02 0.06 0.50 0.24 0.12 0.03 0.01 0.00 0.00
0.00 0.01 0.03 0.12 0.24 0.50 0.06 0.02 0.01 0.00 0.00
0.01 0.03 0.10 0.23 0.08 0.04 0.50 0.02 0.01 0.00 −0.01
0.01 0.08 0.27 0.07 0.03 0.02 0.02 0.50 0.01 0.00 −0.02
0.04 0.34 0.06 0.02 0.01 0.01 0.01 0.01 0.50 0.00 −0.02
0.40 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.50 −0.02

−1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 −1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1

μ2

μ3

μ4

μ5

μ6

μ7

μ8

μ9

μ10

μw

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.88
0.49

−0.08
−0.61
−0.92
−0.91
−0.59
−0.06
0.50
0.88
0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By substituting μw = μ10 − μ1 we get
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.48 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.43
−0.02 0.50 0.01 0.01 0.01 0.01 0.02 0.06 0.34 0.06
−0.02 0.01 0.50 0.02 0.02 0.03 0.07 0.27 0.08 0.03
−0.01 0.01 0.02 0.50 0.04 0.08 0.23 0.10 0.03 0.02

0.00 0.01 0.02 0.06 0.50 0.24 0.12 0.03 0.01 0.01
0.01 0.01 0.03 0.12 0.24 0.50 0.06 0.02 0.01 0.00
0.02 0.03 0.10 0.23 0.08 0.04 0.50 0.02 0.01 −0.01
0.03 0.08 0.27 0.07 0.03 0.02 0.02 0.50 0.01 −0.02
0.06 0.34 0.06 0.02 0.01 0.01 0.01 0.01 0.50 −0.02
0.43 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.48

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1

μ2

μ3

μ4

μ5

μ6

μ7

μ8

μ9

μ10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.88
0.49

−0.08
−0.61
−0.92
−0.91
−0.59
−0.06

0.50
0.88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The solution is:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1

μ2

μ3

μ4

μ5

μ6

μ7

μ8

μ9

μ10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.6970030
−0.3259878

0.2767572
0.8576335
1.182451
1.016438
0.5045773

−0.2092538
−0.8805848
−1.270261

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

μw = μ10 − μ1 = −0.5732538

The pressure coefficient and the fluid dynamic loads can be calculated now using the
formulation of the previous section (Eqs. (11.77)–(11.80)).

Example 1: Lifting Thick Airfoil

This constant-strength doublet method is applied to the same problem of the pre-
vious section and the resulting pressure distribution with 10 and 90 panels is
very close to the results presented in Fig. 11.27. It seems that this method is as
effective as the combined source and doublet method and it does not have the
matrix multiplication of the source matrix (less numerics). The influence coef-
ficients for the N = 10 panel case are presented in Table 11.3 along with the
solution vector. This information is presented since it was found that such data
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Figure 11.28 Effect of flap deflection on the chordwise pressure distribution of a two-element airfoil.
(Triangles represent lower surface results for both flap angles.)

(as in Tables 11.2 and 11.3) are extremely useful in the early stages of code de-
velopment and validation. Table 11.3 presents the doublet influence coefficients
before and after the inclusion of the Kutta condition and also the magnitude of
the solution vector μ j , which is larger in this case than in the case shown in
Table 11.2. This is a result of the unknowns μ j representing here the total veloc-
ity potential whereas in the combined doublet/source case the doublet represents
the perturbation potential only. Maskew9.3 claims that since the unknown μ j are
larger in the doublet-only solution, there is a numerical advantage (in terms of
convergence for a large number of panels) for using the combined source/doublet
method.

Example 2: Two-Element Airfoil

To model multielement airfoils the Kutta condition must be specified, separately,
for each element. This method is then applied to the two-element airfoil shown in
Fig. 11.28. The effect of a 5◦ flap deflection on the chordwise pressure distribution
is shown in the lower part of the figure. In general the effect of flap deflection is
to increase the lift of the main planform more than the lift of the flap itself.

A sample student computer program for this method is presented in Appendix
D (Program No. 8).

11.4 Linearly Varying Singularity Strength Methods
(Using the Neumann B.C.)

As an example of higher order paneling methods using the Neumann boundary
condition, the linear source and vortex formulations will be presented. Since the linear
doublet distribution is equal to the constant-strength vortex distribution, only the above two
methods will be studied. Here the panel surface is assumed to be planar and the singularity
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Figure 11.29 Nomenclature for a linear-strength surface singularity element.

will change linearly along the panel. Consequently, the singularity strength on each panel
includes two unknowns and additional equations need to be formulated.

11.4.1 Linear-Strength Source Method

The source-only based method will be applicable only to nonlifting configurations
and is considered to be a more refined model than the one based on constant-strength source
elements. The basic six step procedure follows.

a. Selection of Singularity Element
A segment of the discretized singularity distribution on a solid surface is shown in

Fig. 11.29. To establish a normal-velocity boundary condition based method (see Eq. (11.4)),
the induced-velocity formulas of a constant- and a linear-strength source distribution are
combined (Eqs. (10.17) and (10.48), and Eqs. (10.18) and (10.49)). The parameters θ and
r are shown in Fig. 11.29, and the velocity (u, w)p, measured in the panel local coordinate
system (x, z)p, has components

u p = σ0

4π
ln

r2
1

r2
2

+ σ1

2π

[
x − x1

2
ln

r2
1

r2
2

+ (x1 − x2) + z(θ2 − θ1)

]

(in panel coordinates) (11.86)

wp = σ0

2π
(θ2 − θ1) + σ1

4π

[
z ln

r2
2

r2
1

+ 2(x − x1)(θ2 − θ1)

]

(in panel coordinates) (11.87)

where the subscripts 1 and 2 refer to the panel edges j and j + 1, respectively. In these
equations σ0 and σ1 are the source strength values, as shown in Fig. 11.30. If the strength
of σ at the beginning of each panel is set equal to the strength of the source at the end point
of the previous panel (as shown in Fig. 11.29), a continuous source distribution is obtained.
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Figure 11.30 Decomposition of a generic linear-strength singularity element.

Now, if the unknowns are the panel edge values of the source distribution (σ j , σ j+1, . . .

as in Fig. 11.29) then for N surface panels on a closed body the number of unknowns is
N + 1. The relation between the source strengths of the elements shown in Fig. 11.30 and
the panel edge values is

σ j = σ0 (11.88a)

σ j+1 = σ0 + σ1a (11.88b)

where a is the panel length, and for convenience the induced-velocity equations are rear-
ranged in terms of the panel-edge source strengths σ j and σ j+1 (and the subscripts 1 and 2
are replaced with the j and j + 1 subscripts, respectively):

u p = σ j (x j+1 − x j ) + (σ j+1 − σ j )(x − x j )

2π (x j+1 − x j )
ln

r j

r j+1

− z

2π

(
σ j+1 − σ j

x j+1 − x j

)[
(x j+1 − x j )

z
+ (θ j+1 − θ j )

]
(panel coordinates)

(11.89)

wp = − z

2π

(
σ j+1 − σ j

x j+1 − x j

)
ln

r j+1

r j

+ σ j (x j+1 − x j ) + (σ j+1 − σ j )(x − x j )

2π (x j+1 − x j )
(θ j+1 − θ j ) (panel coordinates)

(11.90)

Note that Eqs. (11.89) and (11.90) can be divided into velocity induced by σ j and by σ j+1

such that

(u, w)p = (ua, wa)p + (ub, wb)p (11.91)

where the superscript ( )a and ( )b represent the contribution due to the leading and trailing
singularity strengths, respectively. If we rearrange Eqs. (11.89) and (11.90) we can separate
the ( )a part of the velocity components,

ua
p = σ j (x j+1 − x)

2π (x j+1 − x j )
ln

r j

r j+1
+ z

2π

(
σ j

x j+1 − x j

)[
(x j+1 − x j )

z
+ (θ j+1 − θ j )

]

(11.92a)

wa
p = z

2π

(
σ j

x j+1 − x j

)
ln

r j+1

r j
+ σ j (x j+1 − x)

2π (x j+1 − x j )
(θ j+1 − θ j ) (11.92b)
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from the ( )b part of the velocity components,

ub
p = σ j+1(x − x j )

2π (x j+1 − x j )
ln

r j

r j+1
− z

2π

(
σ j+1

x j+1 − x j

)[
(x j+1 − x j )

z
+ (θ j+1 − θ j )

]

(11.92c)

wb
p = − z

2π

(
σ j+1

x j+1 − x j

)
ln

r j+1

r j
+ σ j+1(x − x j )

2π (x j+1 − x j )
(θ j+1 − θ j ) (11.92d)

To transform these velocity components back to the x , z coordinates, a rotation by the
panel orientation angle αi is performed as given by Eq. (11.23):(

u
w

)
=

(
cos αi sin αi

−sin αi cos αi

) (
u
w

)
p

(11.23)

This procedure can be included in an induced-velocity subroutine SOR2DL (where L
stands for linear), which will compute the velocity (u, w) at an arbitrary point (x, z) in the
global coordinate system due to the j th element:⎛

⎝ u, w

ua, wa

ub, wb

⎞
⎠ = SOR2DL(σ j , σ j+1, x, z, x j , z j , x j+1, z j+1) (11.93)

The four additional velocity components (ua, wa, ub, wb) will be a byproduct of subroutine
SOR2DL.

b. Discretization of Geometry
The panel corner points, collocation points, and normal vectors are computed as

in the previous methods.

c. Influence Coefficients
In this phase the zero normal flow boundary condition is implemented. For exam-

ple, the velocity induced by the j th element with a unit strength σ j and σ j+1, at the first
collocation point, can be obtained by using Eq. (11.93):⎛

⎝ u, w

ua, wa

ub, wb

⎞
⎠

1 j

= SOR2DL(σ j = 1, σ j+1 = 1, x1, z1, x j , z j , x j+1, z j+1) (11.93a)

where the superscripts ( )a and ( )b represent the contributions due to the leading and trailing
singularity strengths, respectively. This example indicates that the velocity at each collo-
cation point is influenced by the two edges of the j th panel. Thus, adding the influence of
the ( j + 1)-th panel and each subsequent panel gives the local induced velocity at the first
collocation point

(u, w)1 = (ua, wa)11σ1 + [(ub, wb)11 + (ua, wa)12]σ2

+ [(ub, wb)12 + (ua, wa)13]σ3 + · · ·
+ [(ub, wb)1,N−1 + (ua, wa)1N ]σN + (ub, wb)1N σN+1

This equation can be reduced to a form

(u, w)1 = (u, w)11σ1 + (u, w)12σ2 + · · · + (u, w)1,N+1σN+1
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such that for the first and last terms

(u, w)11 = (ua, wa)11σ1 (11.94a)

(u, w)1,N+1 = (ub, wb)1N σN+1 (11.94b)

and for all other terms

(u, w)1, j = [(ub, wb)1, j−1 + (ua, wa)1, j ]σ j (11.94c)

From this point on the procedure is similar to the constant-strength source method. The
influence coefficient is calculated when σ j = 1 and

ai j = (u, w)i, j · ni (11.95)

For each collocation point there will be N + 1 such coefficients and unknowns σ j .

d. Establish Boundary Condition (RHS)
The free-stream normal velocity component RHSi is found, as in the case of the

discrete source (by using Eq. (11.6b)), at the collocation point:

RHSi = −U∞ sin αi

where αi is the panel inclination angle depicted by Fig. 11.3.

e. Solve Equations
Specification of the boundary condition for each (i = 1 → N ) of the collocation

points results in N linear algebraic equations with the unknowns σ j ( j = 1 → N + 1). The
additional equation can be found by requiring that the flow leaves parallel to the trailing
edge; thus

σ1 + σN+1 = 0 (11.96)

Another option that will yield similar results is to establish an additional collocation point
slightly behind the trailing edge and require that the velocity will be zero there (stagna-
tion point for finite-angle trailing edges). Consequently, the set of equations to be solved
becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1,N+1

a21 a22 . . . a2,N+1

a31 a32 . . . a3,N+1
...

...
. . .

...
aN1 aN2 . . . aN ,N+1

1 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3
...

σN

σN+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2

RHS3
...

RHSN

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The above set of algebraic equations has a well-defined diagonal and can be solved for
σ j by using standard methods of linear algebra.

f. Calculation of Pressures and Loads
Once the strength of the sources σ j is known, the velocity at each collocation point

can be calculated using Eq. (11.93) and the pressure coefficient can be calculated by using
Eq. (11.18).

The formulation presented here is for a nonlifting symmetric wing or body. For this
case, the number of unknowns can be reduced to N/2 (e.g., to the number of upper surface
elements only) by the minor modification presented at the end of Section 11.2.1.
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Note that for a closed body the sum of the sources must be zero. However, this con-
dition is not an independent one and cannot be used instead of the additional equation
(Eq. (11.96)).

A computer program based on this method is presented in Appendix D (Program No.
6) and the computed pressure coefficients for the airfoil of Section 6.6 result in a pressure
distribution similar to that of Fig. 11.19.

11.4.2 Linear-Strength Vortex Method

The constant-strength vortex method of Section 11.2.3 posed some difficulties that
can be corrected by using the linear-strength vortex element. To describe the method let us
follow the basic six-step procedure:

a. Selection of Singularity Element
The linearly varying source distribution shown in Fig. 11.29 includes the same

nomenclature that is used for the linearly varying strength vortex panel. The velocity com-
ponents (u, w)p in the direction of the panel coordinates were obtained in Sections 10.2 and
10.3 (Eqs. (10.39), (10.40), (10.72), and (10.73)):

u p = γ0

2π

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(panel coordinates)

+ γ1

4π

[
z ln

(x − x1)2 + z2

(x − x2)2 + z2
+ 2x

(
tan−1 z

x − x2
− tan−1 z

x − x1

)]
(11.97)

wp = − γ0

4π
ln

(x − x1)2 + z2

(x − x2)2 + z2
(panel coordinates)

− γ1

2π

[
x

2
ln

(x − x1)2 + z2

(x − x2)2 + z2
+ (x1 − x2)

+ z

(
tan−1 z

x − x2
− tan−1 z

x − x1

)]
(11.98)

where the subscripts 1 and 2 refer to the panel edges j and j + 1, respectively. As in the
case of the linearly varying strength source, it is useful to rearrange these equations in terms
of their edge vortex strengths γ j and γ j+1 (see Eqs. (11.88a, b)) and to use the subscripts j
and j + 1 instead of 1 and 2:

u p = z

2π

(
γ j+1 − γ j

x j+1 − x j

)
ln

r j+1

r j

+ γ j (x j+1 − x j ) + (γ j+1 − γ j )(x − x j )

2π (x j+1 − x j )
(θ j+1 − θ j ) (panel coordinates)

(11.99)

wp = −γ j (x j+1 − x j ) + (γ j+1 − γ j )(x − x j )

2π (x j+1 − x j )
ln

r j

r j+1

+ z

2π

(
γ j+1 − γ j

x j+1 − x j

)[
(x j+1 − x j )

z
+ (θ j+1 − θ j )

]
(panel coordinates)

(11.100)
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These two equations combined with the transformation of Eq. (11.23) can be included in a
subroutine VOR2DL such that⎛

⎝ u, w

ua, wa

ub, wb

⎞
⎠

i j

= VOR2DL(γ j , γ j+1, xi , zi , x j , z j , x j+1, z j+1) (11.101)

where the superscripts ( )a and ( )b represent the contributions due to the leading and trailing
singularity strengths, respectively. For simplicity, this procedure is not repeated here but
can be obtained simply by taking all terms multiplied by γ j in Eqs. (11.99) and (11.100) to
produce the ( )a component and all terms multiplied by γ j+1 to produce the ( )b component
(as was done in the case of the linearly varying strength source – see Eqs. (11.91) and
(11.92)). This decomposition of the velocity components is automatically calculated by the
subroutine described by Eq. (11.101), and

(u, w) = (ua, wa) + (ub, wb)

b. Discretization of Geometry
The panel corner points, collocation points, and normal vectors are computed as

in the previous methods.

c. Influence Coefficients
In this phase the zero normal flow boundary condition (Eq. (11.4)) is implemented.

For example, the self-induced velocity due to the j th element with a unit strength γ j and
γ j+1, at the first collocation point, can be obtained by using Eq. (11.101):⎛

⎝ u, w

ua, wa

ub, wb

⎞
⎠

1 j

= VOR2DL(γ j = 1, γ j+1 = 1, x1, z1, x j , z j , x j+1, z j+1) (11.102)

Similarly to the case of the linearly varying strength source the velocity at each collocation
point is influenced by the two edges of the j th panel. Thus adding the influence of the
( j + 1)-th panel and each subsequent panel gives the local self-induced velocity at the first
collocation point

(u, w)1 = (ua, wa)11γ1 + [(ub, wb)11 + (ua, wa)12]γ2

+ [(ub, wb)12 + (ua, wa)13]γ3 + · · ·
+ [(ub, wb)1,N−1 + (ua, wa)1N ]γN + (ub, wb)1N γN+1

This equation can be reduced to a form

(u, w)1 = (u, w)11γ1 + (u, w)12γ2 + · · · + (u, w)1,N+1γN+1

such that for the first and last terms

(u, w)11 = (ua, wa)11γ1 (11.103a)

(u, w)1,N+1 = (ub, wb)1N γN+1 (11.103b)

and for all other terms

(u, w)1, j = [(ub, wb)1, j−1 + (ua, wa)1, j ]γ j (11.103c)
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From this point on the procedure is similar to the linearly varying strength source method.
The influence coefficient is calculated when γ j = 1 and

ai j = (u, w)i, j · ni (11.104)

For each collocation point there will be N + 1 such coefficients and unknowns γ j .

d. Establish Boundary Condition (RHS)
The free-stream normal velocity component RHSi is found as in the case of discrete

vortex (by using Eq. (11.6a)):

RHSi = −(U∞, W∞) · (cos αi , −sin αi )

e. Solve Equations
Specification of the boundary condition for each (i = 1 → N ) of the collocation

points results in N linear algebraic equations with the unknowns γ j ( j = 1 → N + 1). The
additional equation can be found by specifying the Kutta condition at the trailing edge:

γ1 + γN+1 = 0 (11.105)

Consequently, the set of equations to be solved becomes⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1,N+1

a21 a22 . . . a2,N+1

a31 a32 . . . a3,N+1
...

...
. . .

...
aN1 aN2 . . . aN ,N+1

1 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ1

γ2

γ3
...

γN

γN+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2

RHS3
...

RHSN

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The above set of algebraic equations has a well-defined diagonal and can be solved for
γ j by using standard methods of linear algebra.

f. Calculation of Pressures and Loads
Once the strength of the vortices γ j is known, the perturbation velocity at each col-

location point can be calculated using the results for a vortex distribution (e.g., Eq. (3.147)):

Qt j = (Qt∞ ) j + γ j + γ j+1

4
(11.106)

and the pressure coefficient can be calculated by using Eq. (11.18):

C p = 1 − Q2
t

Q2∞
The lift of the panel can be computed from this pressure distribution or by using the Kutta–
Joukowski theorem:

�L j = ρQ∞
γ j + γ j+1

2
�c j (11.107)

where �c j is the panel length. The total lift and moment are obtained by summing the
contribution of the individual elements (as in Eqs. (11.54) and (11.55)).

A computer program based on this method is presented in Appendix D (Program No. 7),
and the computed pressure coefficients for the same airfoil of Section 6.6, used for the
previous examples, at an angle of attack of 5◦ are presented in Fig. 11.31.
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Figure 11.31 Chordwise pressure distribution along a symmetric airfoil (using the linearly varying
strength vortex method).

11.5 Linearly Varying Singularity Strength Methods (Using the Dirichlet B.C.)

In this section linearly varying strength doublet and source elements will be used
to formulate methods based on the Dirichlet boundary condition. Since a linear vortex
distribution is equivalent to a quadratic doublet distribution (which will be described in
Section 11.6), such vortex methods are not presented here.

11.5.1 Linear Source/Doublet Method

For this example, the approach of Section 11.3 is used and a combination of
linearly varying strength sources and doublets will be distributed on the solid boundaries
S (Fig. 11.32). Following Section 11.3.1 we select the velocity potential within the volume
enclosed by S as �∗

i = �∞ and the boundary condition at each collocation point is reduced
to the form given by Eq. (11.62):

N1∑
j=1

B jσ j +
N1∑
j=1

C jμ j = 0 (11.62)

where N1 is the number of singularity strength parameters. To establish a solution based on
this equation using linearly varying singularity distributions, let us follow the basic six-step
procedure.

Figure 11.32 Linear-strength singularity element model for a closed body.
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a. Selection of Singularity Element
The potential at an arbitrary point P (not on the surface) due to a linearly varying

strength source σ (x) = σ0 + σ1x was derived in Eqs. (10.14) and (10.47) (in the panel
coordinate system) and is

� = σ0

4π

[
(x − x1) ln r2

1 − (x − x2) ln r2
2 + 2z(θ2 − θ1)

]

+ σ1

4π

[
x2 − x2

1 − z2

2
ln r2

1 − x2 − x2
2 − z2

2
ln r2

2

+ 2xz(θ2 − θ1) − x(x2 − x1)

]
(panel coordinates) (11.108)

Of particular interest is the case when the point P lies on the element (usually at the
center). In this case z = 0± and the potential becomes

�

(
x1 + x2

2
, 0±

)
= σ0

2π
(x2 − x1) ln

(
x2 − x1

2

)2

+ σ1

4π

(
x2

2 − x2
1

) (
ln

x2 − x1

2
− 1

2

)
(panel coordinates)

(11.108a)

Using the transformation of Eq. (11.23a) (from panel to global coordinates and back) and
the above equations for the velocity potential we can formulate a subroutine (e.g., PHILS).
From the computational point of view it is more useful to evaluate the panel influence based
on its edge values. Since the source values are assumed to be known, based on Fig. 11.30
we can write for the j th panel

σ0 j = σ j (11.109)

σ1 j = σ j+1 − σ j

x j+1 − x j
(11.109a)

where σ j and σ j+1 are the source values at the panel’s two edges. So based on the formulas for
the velocity potential (Eqs. (11.108) and (11.108a), including the transformation between
the panel and global coordinate systems as in Eq. (11.23a)), and on the substitution of
Eqs. (11.109) and (11.109a) the influence subroutine for the linearly varying source is
defined as

�S = PHILS(σ j , σ j+1, x, z, x j , z j , x j+1, z j+1) (11.110)

Here the potential due to the j th element is a function of the coordinates and the panel edge
singularity strengths.

Next, the potential at an arbitrary field point P due to the linearly varying strength doublet
μ(x) = μ0 + μ1x is obtained by combining Eqs. (10.28) and (10.59):

� = −μ0

2π
(θ2 − θ1) − μ1

4π

[
2x(θ2 − θ1) + z ln

r2
2

r2
1

]
(panel coordinates)

(11.111)

When the point P is on the element (z = 0, x1 < x < x2), this reduces to the results of
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Eqs. (10.31) and (10.64):

�(x, 0±) = ∓
(

μ0

2
+ μ1

2
x

)
(panel coordinates) (11.111a)

Similarly to the source case, a substitution for the doublet strength parameters μ0 and
μ1, in terms of the panel edge values, gives

μ0 j = μ j (11.112)

μ1 j = μ j+1 − μ j

x j+1 − x j
(11.112a)

These equations combined with Eq. (11.111) result in

� = −μ j

2π
(θ j+1 − θ j ) − μ j+1 − μ j

4π (x j+1 − x j )

[
2x(θ j+1 − θ j ) + z ln

r2
j+1

r2
j

]

(panel coordinates) (11.113)

and now the panel influence depends on the leading and trailing singularity strengths
μ j , μ j+1. It is useful to rearrange this equation so that the first term �a is a function
of μ j and the second part �b is a function of μ j+1. Thus Eq. (11.113) is rewritten as

� = �a + �b (11.113a)

and

�a = −μ j

2π

{
θ j+1 − θ j − 1

(x j+1 − x j )

[
x(θ j+1 − θ j ) + z

2
ln

r2
j+1

r2
j

]}

(panel coordinates) (11.114)

�b = −μ j+1

2π (x j+1 − x j )

[
x(θ j+1 − θ j ) + z

2
ln

r2
j+1

r2
j

]
(panel coordinates) (11.115)

Again, using the transformation of Eq. (11.23a) (from global to panel coordinates) and
the above equations for the velocity potential we can formulate an influence subroutine such
that ⎛

⎝ �

�a

�b

⎞
⎠

D

= PHILD(μ j , μ j+1, x, z, x j , z j , x j+1, z j+1) (11.116)

These subroutines (for the source and doublet elements) compute the potential at a point
P due to the j th panel and the superscripts ( )a and ( )b in the case of the doublet element
represent the panel influence contributions due to the leading and trailing doublet strengths,
respectively.

b. Discretization of Geometry
The N + 1 panel corner points and N collocation points are generated in a manner

similar to the previous examples (see Fig. 11.18). In this case of the internal Dirichlet
boundary condition the collocation points must be placed inside the body. This small inward
displacement of the collocation point can be skipped if the panel self-induced influence is
specified in a separate formula.
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c. Influence Coefficients
The increment in the velocity potential at collocation point i due to a linearly

varying strength doublet (of panel j) is computed by using Eq. (11.116):

⎛
⎝ �

�a

�b

⎞
⎠

D

= PHILD[(μ j = 1, μ j+1 = 1), xi , zi , x j , z j , x j+1, z j+1] (11.116a)

Note that the contribution due to the panel edge singularity strengths is automatically
computed (as in Eqs. (11.114) and (11.115)). Thus, for the first collocation point the doublet
influence due to the first panel is

�a
11μ1 + �b

11μ2

and the influence due to all the doublet panels is

�D1 = (
�a

11μ1 + �b
11μ2

) + (
�a

12μ2 + �b
12μ3

) + · · ·
+(

�a
1N μN + �b

1N μN+1
) + �1W μW (11.117)

where μW is the constant-strength wake doublet element (as in Section 11.3.1). The strength
of this wake doublet element is set by applying the Kutta condition at the trailing edge such
that

μW = μN+1 − μ1 (11.118)

It is possible to add additional conditions at the trailing edge such as the requirement that
the tangential velocity components on the upper and lower surfaces will be equal (or the
upper and lower doublet gradients will be equal and opposite in sign). In terms of the four
nearest (to the trailing edge ) corner-point doublet values this condition becomes

μ1 − μ2 = μN − μN+1 (11.118a)

Equation (11.117) for the potential can be formulated for each collocation point resulting
in N equations (for N panels). But a closer examination of the problem reveals that at
this phase we have N equations with N + 2 unknowns μ1, . . . , μN+1, μW . An additional
equation is obtained by specifying the Kutta condition at the trailing edge (Eq. (11.118)).
The last “missing” equation can be obtained by specifying the �∗

i = �∞ Dirichlet condition
on an additional point inside the body. This equation will have the form of the regular N
boundary conditions (e.g., as in Eq. (11.62)) and for best results it should be specified near
the trailing edge (e.g., on the camberline, inside a thick airfoil, or between the upper and
lower trailing edge collocation points).

To construct the influence coefficient matrix the potential at any point inside the body
due to the doublet distribution can be expressed in terms of the influence coefficients ci j ,
as in Eq. (11.62), such that the first term in each row (as in Eq. (11.117)) is

ci1 = �a
i1

the (N + 1)-th term in each row is

ci,N+1 = �b
i N
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and the last, (N + 2)-th, term is the wake contribution:

ci,N+2 ≡ ciW = �iW

(Since the wake is modeled by a constant-strength doublet panel its influence coefficient is
calculated by using Eq. (11.66), which is presented in Section 11.3.1.) All the other elements
will include the influence of the two neighbor panels:

ci, j = �b
i, j−1 + �a

i, j , i �=1, N + 1, N + 2

These N + 1 influence equations and the (N + 2)-th Kutta condition can be summarized
in a matrix as

N+2∑
j=1

Ci jμ j =

⎛
⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
cN+1,1 cN+1,2 . . . cN+1,N+1 cN+1,W

1 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎠
(11.119)

It is possible to substitute the last equation (the Kutta condition) into the previous equations
as was done in Section 11.3.1 and reduce the order of the matrix by one to N + 1 (but for
simplicity it is not done for this case).

In this example for the (N + 1)-th equation, the boundary condition was specified at an
additional collocation point inside the body. It is possible to use Eq. (11.118a) instead of
this alternative and then Eq. (11.119) will have the form

N+2∑
j=1

Ci jμ j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
...

cN ,1 cN ,2 . . . cN ,N+1 cN ,W

1 0 0 . . . −1 1
−1 1 0 . . . 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1

μ2
...
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.119a)

Here the first N equations are a statement of the doublet contribution to the Dirichlet
boundary condition on the N collocation points and the last two equations are forms of the
Kutta condition (Eqs. (11.118) and (11.118a)).

d. Establish RHS Vector
The combination of source and doublet distributions of Eq. (11.62) is not unique

and as in Section 11.3.1 the strength of the sources will be specified by using Eq. (11.61)
(note that in this case the panel edge source values σ j are evaluated at the panel edges),

σ j = n j · Q∞ (11.61)

Since the source contribution to the velocity potential is now known, the potential due to
all the N panels can be computed by using Eq. (11.110) such that

RHSi = −
N∑

j=1

PHILS(σ j , σ j+1, xi , zi , x j , z j , x j+1, z j+1) (11.120)
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The right-hand side vector RHSi is now evaluated at the N collocation points plus at the
(N + 1)-th point (which is needed when using Eq. (11.119) and was selected inside the
body and near the trailing edge).

e. Solve Equations
Substituting the influence coefficients of the doublets and the RHS vector into the

boundary condition (Eq. (11.62)) and when using an additional collocation point based
equation we get⎛

⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
...

cN+1,1 cN+1,2 . . . cN+1,N+1 cN+1,W

1 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN+1

0

⎞
⎟⎟⎟⎟⎟⎠

(11.121)

In the case that both of Eqs. (11.118) and (11.118a) are applied at the trailing edge then
with the use of Eq. (11.119a) the equations to be solved become

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
...

cN ,1 cN ,2 . . . cN ,N+1 cN ,W

1 0 0 . . . −1 1
−1 1 0 . . . 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1

μ2
...
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11.121a)

Either of these full-matrix equations with N + 2 unknown values μ j can be solved by
standard matrix solvers.

f. Calculation of Pressures and Loads
Once the values of the doublet parameters (μ1, . . . , μN+1) are known, the tangen-

tial velocity component at each collocation point can be calculated by differentiating the
local potential:

Qt j = (Qt∞ ) j + μ j − μ j+1

x j+1 − x j
(11.122)

and the pressure coefficient can be calculated by using Eq. (11.18):

C p = 1 − Q2
t

Q2∞
(11.18)

The lift and pitching moment of the panel can be obtained by using the method described
by Eqs. (11.78)–(11.80).

A computer program based on this method was formulated and the computed pressure
coefficients for the airfoil of Section 6.6 at an angle of attack of 5◦ are very similar to the
data presented in Fig. 11.31. The linearly varying strength doublet portion of this method
can be found in Program No. 10 in Appendix D.

As an additional example, the pressure distribution on a four-element airfoil was cal-
culated by using this method and is presented in Fig. 11.33. Experimental data (which are
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Figure 11.33 Effect of angle of attack on the chordwise pressure distribution of a four-element airfoil.

not presented here) agrees well with these results excluding the large suction peak at the
leading edge (which was near C p = −13 in the experimental data). The effect of an angle
of attack change is depicted in this figure and it seems that mostly the forward elements are
affected by such a change.

11.5.2 Linear Doublet Method

The method of the previous section can be further simplified by equating the
source strengths to zero in Eq. (11.60). The value of the constant for the internal potential is
selected to be zero and consequently the boundary condition describing the internal potential
(Eq. (11.60)) reduces to

N1∑
j=1

C jμ j + �∞ = 0 (11.81)

where N1 is the number of singularity strength parameters and

�∞ = U∞x + W∞z (11.82)

Again, note that now −μ will represent the potential jump from zero to �u on the
boundary (see Fig. 11.26) and therefore �u is the local total potential (whereas in the
previous example −μ was the jump in the perturbation potential only).

Equation (11.81) can be specified at each collocation point inside the body, providing
a linear algebraic equation for this point. The steps toward establishing such a numeric
solution are very similar to the previous method:
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a. Selection of Singularity Element
The potential at an arbitrary point P due to the j th linearly varying strength doublet

element with the two edge values of μ j and μ j+1 is given by Eq. (11.116):⎛
⎝ �

�a

�b

⎞
⎠

D

= PHILD(μ j , μ j+1, x, z, x j , z j , x j+1, z j+1) (11.116)

Recall that the superscripts ( )a and ( )b represent the panel influence contributions due
to the leading and trailing doublet strengths, respectively.

b. Discretization of Geometry
The N + 1 panel corner points and N collocation points are generated in a manner

similar to the previous examples (see Fig. 11.18). In this case of the internal Dirichlet
boundary condition the collocation points must be placed inside the body. This small inward
displacement of the collocation point can be skipped if the panel self-induced influence is
specified in a separate formula.

c. Influence Coefficients
The influence of this doublet panel is calculated exactly as in the previous section.

The velocity potential at each point is the sum of all the individual panel influences. For
example, for the first panel it is given by Eq. (11.117):

�D1 = (
�a

11μ1 + �b
11μ2

) + (
�a

12μ2 + �b
12μ3

) + · · ·
+ (

�a
1N μN + �b

1N μN+1
) + �1W μW (11.117)

where μW is the constant-strength wake doublet element (as in Section 11.3.1). The strength
of this wake doublet element is set by applying the Kutta condition at the trailing edge and
is given by Eq. (11.118).

Defining the influence coefficients ci j as in the previous section we can summarize the
following N + 1 influence relations (where the (N + 1)-th equation is based on an additional
boundary condition inside the body) and the (N + 2)-th Kutta condition in a matrix as in
Eq. (11.119):

N+2∑
j=1

Ci jμ j =

⎛
⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
...

cN+1,1 cN+1,2 . . . cN+1,N+1 cN+1,W

1 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎠
(11.119)

Substituting this into the boundary condition (Eq. (11.81)) results in⎛
⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
...

cN+1,1 cN+1,2 . . . cN+1,N+1 cN+1,W

1 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

�∞1

�∞2

...
�∞N+1

0

⎞
⎟⎟⎟⎟⎟⎠

= 0

(11.123)
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d. Establish RHS Vector
The second term in this equation is known and can be transferred to the right-hand

side of the equation. The RHS vector then becomes⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN+1

0

⎞
⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎝

�∞1

�∞2

...
�∞N+1

0

⎞
⎟⎟⎟⎟⎟⎠

(11.124)

and the �∞ j term is calculated by using Eq. (11.82).

e. Solve Equations
Substituting the influence coefficients of the doublets and the RHS vector into

boundary condition of Eq. (11.81) we get⎛
⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
...

cN+1,1 cN+1,2 . . . cN+1,N+1 cN+1,W

1 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

μ1

μ2
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN+1

0

⎞
⎟⎟⎟⎟⎟⎠

(11.125)

In the case that both of Eqs. (11.118) and (11.118a) are applied at the trailing edge then
the boundary condition is specified only at the N collocation points (see previous section).
Consequently, with the use of Eq. (11.119a) the equations to be solved become

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 . . . c1,N+1 c1W

c21 c22 . . . c2,N+1 c2W
...

...
. . .

...
...

cN ,1 cN ,2 . . . cN ,N+1 cN ,W

1 0 0 . . . −1 1
−1 1 0 . . . 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1

μ2
...
...

μN+1

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11.125a)

Either of these full-matrix equations with N + 2 unknown values μ j can be solved by
standard matrix solvers. Note that in this case, too (compared to Eq. (11.121)), the doublet
represents the jump in the total potential (and not the perturbation only).

f. Calculation of Pressures and Loads
Once the values of the doublet parameters (μ1, . . . , μN+1) are known, the tangen-

tial velocity component at each collocation point can be calculated by differentiating the
local potential. For example, such a two-point formula is

Qt j = μ j − μ j+1

x j+1 − x j
(11.126)

and the pressure coefficient can be calculated by using Eq. (11.18). The lift and pitching
moment of the panel can be obtained by using the method described by Eqs. (11.78)–(11.80).

This method seems to involve less numerical calculations than the equivalent linear
doublet/source method and therefore will require somewhat less computational time. (A
computer program based on this method is presented in Appendix D, Program No. 10).
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11.6 Methods Based on Quadratic Doublet Distribution
(Using the Dirichlet B.C.)

To demonstrate some of the techniques needed for higher order methods, the
linearly varying elements were used in the previous section. The last method to be tested
then should be a linearly varying strength vortex panel based method using the Dirichlet
boundary condition. However, such a linearly varying vortex element is equivalent to a
quadratic doublet distribution, which will be used to formulate the next two methods.

Also, for the constant-strength singularity distribution based elements, for N panel ele-
ments, N boundary condition based equations were constructed. Combined with the Kutta
condition a set of N + 1 algebraic equations were obtained, including the last unknown,
which was the wake doublet strength μW . For higher order methods, the number of un-
knowns increase with the order of approximation and, therefore, additional equations must
be specified. In the case of the linear methods, N − 1 additional equations (−1 since the
trailing-edge point is excluded) were obtained by equating the neighbor panel strengths,
which is equivalent to requiring a continuous singularity distribution strength. In this sec-
tion a generic approach is provided to obtain the additional equations that are needed as
the order of approximation for the singularity strength distribution increases. Usually these
equations are based on requirements such as smooth first, second, and higher derivatives at
the panel corner points between the two neighbor panels, but there are different methods of
obtaining these additional equations that can be optimized for certain problems. Therefore,
the approach presented here is mainly to demonstrate the method, but improvement of these
methods to tailor them for specific problems is encouraged.

11.6.1 Linear Source/Quadratic Doublet Method

For this example, too, the approach of Section 11.3 is used and a combination of
linearly varying strength sources and vortices will be distributed on the solid boundaries
S (Fig. 11.34) and the vortex distribution is replaced by a quadratic doublet distribution.
Following Section 11.3.1 we select the velocity potential within the volume enclosed by S
as �∗

i = �∞ and the boundary condition at each collocation point is reduced to the form
given by Eq. (11.62):

N1∑
j=1

B jσ j +
N1∑
j=1

C jμ j = 0 (11.62)

where N1 is the number of singularity strength parameters. In this section a solution based
on this equation using linearly varying source and quadratic doublet distributions will be
established. The wake, however, will be modeled by a constant-strength doublet as shown

Figure 11.34 Doublet distribution near the trailing edge of an airfoil.
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in Fig. 11.34. Now, to develop the method of solution, let us follow the basic six-step
procedure:

a. Selection of Singularity Element
The potential at an arbitrary point P due to a linearly varying strength source

element with the edge values of σ j and σ j+1 was derived in the previous section and is
given by Eq. (11.110):

�S = PHILS(σ j , σ j+1, xi , zi , x j , z j , x j+1, z j+1) (11.110)

Similarly, the potential at point P due to a quadratic doublet distribution element where
the doublet strength (in panel local coordinates) varies as

μ(x) = μ0 + μ1x + μ2x2

is obtained by combining Eqs. (10.28), (10.59), and (10.80):

� = −μ0

2π
(θ2 − θ1) − μ1

4π

[
2x(θ2 − θ1) + z ln

r2
2

r2
1

]

+ μ2

2π

[
(x2 − z2)(θ1 − θ2) − xz ln

r2
2

r2
1

+ z(x1 − x2)

]
(panel coordinates)

(11.127)

where the variables r1, r2, θ1, and θ2 are shown in Fig. 11.35.
When the point P is on the element (z = 0±, x1 < x < x2) then this reduces to a

combination of Eqs. (10.31), (10.64), and (10.84):

�(x, 0±) = ∓
(

μ0

2
+ μ1

2
x + μ2x2

2

)
(panel coordinates) (11.128)

Using the transformation of Eq. (11.23a) (from global to panel coordinates and back)
and the above equations for the velocity potential we can formulate an influence subroutine
for the quadratic doublet element such that⎛

⎜⎜⎝
�

�a

�b

�c

⎞
⎟⎟⎠

D

= PHIQD[(μ0, μ1, μ2) j , x, z, x j , z j , x j+1, z j+1] (11.129)

Figure 11.35 Nomenclature for a quadratic doublet panel element.
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This subroutine computes the potential at a point P due to the j th panel and the superscripts
( )a , ( )b, and ( )c represent the panel influence contributions due to the terms in Eq. (11.127)
multiplied by μ0, μ1, and μ2, respectively. The increment in the potential at point P is
therefore the sum of these three terms,

� = �a + �b + �c (11.130)

It is assumed that these three components of the velocity potential are automatically com-
puted by this subroutine.

b. Discretization of Geometry
The N + 1 panel corner points and N collocation points are generated in a manner

similar to the previous examples (see Fig. 11.18). In this case of the internal Dirichlet
boundary condition the collocation points must be placed inside the body. This small inward
displacement of the collocation point can be skipped if the panel self-induced influence is
specified in a separate formula.

c. Influence Coefficients
The increment in the velocity potential at collocation point i due to a quadratic

doublet element is computed by using Eq. (11.129) (note that a unit strength was assigned
to all three doublet distribution coefficients μ0, μ1, and μ2):⎛

⎜⎜⎝
�

�a

�b

�c

⎞
⎟⎟⎠

D

= PHIQD[(μ0 = 1, μ1 = 1, μ2 = 1) j , x, z, x j , z j , x j+1, z j+1)]

(11.129a)

For example, calculation of the velocity potential increment by this formula for the first
collocation point due to the first panel yields(

�a
1μ0 + �b

1μ1 + �c
1μ2

)
1

≡ a11μ01 + b11μ11 + c11μ12

Here the first subscript of the doublets is used as the doublet parameter counter (0, 1, and 2)
while the second subscript is the influencing panel counter. Similarly, for the coefficients a,
b, and c, the first counter is the collocation point counter and the second is the influencing
panel counter. The potential at this first collocation point due to all the doublet panels is

�D1 = (a11μ01 + b11μ11 + c11μ21) + (a12μ02 + b12μ12 + c12μ22) + · · ·
+ (a1N μ0N + b1N μ1N + c1N μ2N ) + A1W μW (11.131)

where μW is the constant-strength wake doublet element (as in Section 11.3.1) and A1W is
the wake influence coefficient, which can be calculated by using Eq. (11.66). The strength
of this wake doublet element is set by applying the Kutta condition at the trailing edge and
is given by Eq. (11.118):

μW = μU − μL (11.132)

where μU and μL are the upper and lower panel doublet strengths at the trailing edge,
respectively.

Equation (11.131) for the potential can be formulated for each collocation point, result-
ing in N equations (for N panels) with 3N unknowns (μ0, μ1, μ2) j and one more unknown,
which is the wake doublet strength μW . Additional equations can be obtained by requiring
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that the doublet distribution and its gradient will be continuous between neighboring ele-
ments. Applying this to the point between the j th and the ( j + 1)-th panel for the doublet
strength we get

μ0 j + μ1 j�c j + μ2 j (�c j )
2 = μ0, j+1 (11.133a)

and for the doublet gradient

μ1 j + 2μ2 j�c j = μ1, j+1 (11.133b)

where �c j is the panel length. Equations (11.133a,b) can be applied to all panel corner
points, excluding the trailing edge, and thereby result in 2N − 2 equations. The last three
equations are found as follows:

1. Equation (11.133b) can be applied at the trailing edge, so that the upper and lower
doublet gradients will be equivalent:

μ1N + 2μ2N �cN = μ11 (11.134)

2. The Kutta condition is specified at the trailing edge by using Eq. (11.132):

μW = μ0N + μ1N �cN + μ2N (�cN )2 − μ01 (11.135)

3. The last “missing” equation can be obtained by specifying the �∗
i = �∞ Dirich-

let boundary condition (Eq. 11.62) on an additional point inside the body. This
equation will have the form of the regular N boundary conditions (e.g., as in
Eq. (11.131)) and for best results it needs to be specified near the trailing edge
(e.g., on the camberline toward the trailing edge, inside a thick airfoil, or between
the upper and lower trailing edge collocation points).

d. Establish RHS Vector
The boundary condition given by Eq. (11.62) is specified at the N + 1 collocation

points and the strength of the sources will be specified by using Eq. (11.61) (note that in
this case the panel edge source values σ j are evaluated at the panel edges):

σ j = n j · Q∞ (11.61)

Since the source contribution to the velocity potential is now known, the potential due to all
the N panels (with N + 1 panel edge source values) can be computed by using Eq. (11.120)
such that

RHSi = −
N∑

j=1

PHILS(σ j , σ j+1, xi , zi , x j , z j , x j+1, z j+1) (11.120)

The right-hand side vector RHSi is now evaluated at the N collocation points plus at the
(N + 1)-th point (which was selected inside the body and near the trailing edge).

e. Solve Equations
At this point it is possible to establish N + 1 equations based on the boundary con-

dition (Eq. (11.62)) plus two equations based on the trailing-edge conditions (Eqs. (11.134)
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and (11.135)) and they will have the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 b11 c11 a21 b21 c21 . . . a1,N b1,N c1,N A1W

a21 b21 c21 a22 b22 c22 . . . a2,N b2,N c2,N A2W
...

...
. . .

...
...

aN+1,1bN+1,1cN+1,1 abcN+1,1 . . . aN+1,N bN+1,N cN+1,N AN+1,W

0, −1, 0 0 . . . 0, 1, 2�cN 0
−1, 0, 0 0 . . . 1, �cN , (�cN )2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ01

μ11

μ21

μ02

μ12

μ22
...

μ2N

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN+1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11.136)

In this equation the matrix will have 3N + 1 columns (same as the μ vector) and N + 3
rows (same as the RHS vector). The additional 2(N − 1) equations can be obtained by using
Eqs. (11.133)–(11.135). However, from the computational point of view it is desirable to
reduce the influence matrix size, which can be done by substituting the above equations
backward while calculating the influence matrix.

It is possible to rearrange Eqs. (11.133a,b) to create a regression formula such that

μ1 j = 2

�c j
(μ0, j+1 − μ0 j ) − μ1, j+1 (11.137a)

μ2 j = 1

2�c j
(μ1, j+1 − μ1 j ) (11.137b)

Using these regression equations, all μ1 j and μ2 j unknowns can be eliminated (by perform-
ing column operations on the matrix), excluding the last two (μ1N and μ2N ). These algebraic
operations can be performed automatically when assembling the matrix coefficient and will
reduce Eq. (11.136) to the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 . . . A1,N+2 A1W

A21 A22 A23 . . . A2,N+2 A2W
...

...
...

. . .
...

...
AN+1,1 AN+1,2 AN+1,3 . . . AN+1,N+2 AN+1,W

0 AN+2,2 0 . . . 2�cN 0
−1 AN+3,2 0 . . . (�cN )2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ01

μ02

μ03
...

μ0N

μ1N

μ2N

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN+1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11.138)

where now we have N + 3 equations with N + 3 unknowns μ01, μ02, . . . , μ0N , μ1N ,

μ2N , μW and Ai j are the new coefficients obtained after the resubstitution process.
Solution of the full-matrix equation (Eq. (11.138)) with N + 3 unknown values μ j can

be obtained by standard matrix solvers. Then the local panel doublet distribution can be
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obtained by using the same regression formulation that was used to reduce the number of
columns in the influence coefficient matrix.

f. Calculation of Pressures and Loads
Once the values of the doublet parameters (μ01, μ11, μ02, . . . , μ0N , μ1N , μ2N ) are

known, the panel doublet distribution can be calculated (with Eqs. (11.132)). Then the
perturbation velocity at each collocation point can be calculated by using the tangential
derivative of the doublet at the panel center and the total tangential velocity becomes

Qt j = Qt∞ −
(

μ1 j + 2μ2 j
�c j

2

)
(11.139)

and the pressure coefficient can be calculated by using Eq. (11.18). The lift and pitching
moment of the panel can be obtained by using the method described by Eqs. (11.78)–(11.80).

A computer program based on the quadratic doublet method is presented in Appendix
D (Program No. 11) and the formulation of the doublet-only method is very similar to this
one. The pressure coefficients computed with this method for the airfoil of Section 6.6 at
an angle of attack of 5◦ are very similar to the data presented in Fig. 11.31.

11.6.2 Quadratic Doublet Method

The method of the previous section can be further simplified by equating the
source strengths to zero in Eq. (11.60). The value of the constant for the internal potential is
selected to be zero and consequently the boundary condition describing the internal potential
(Eq. (11.60)) reduces to

N1∑
j=1

C jμ j + �∞ = 0 (11.81)

where N1 is the number of singularity strength parameters and

�∞ = U∞x + W∞z (11.82)

Again, note that now μ will represent the potential jump from zero to �u on the boundary
(see Fig. 11.26) and therefore �u is the local total potential (whereas in the previous example
μ was the jump in the perturbation potential only).

Equation (11.81) can be specified at each collocation point inside the body, providing
a linear algebraic equation for this point. The steps toward establishing such a numeric
solution are very similar to the previous method.

a. Selection of Singularity Element
The potential at an arbitrary point P due to the j th doublet element with the three

doublet parameters μ0, μ1, and μ2 is given by Eq. (11.129):⎛
⎜⎜⎝

�

�a

�b

�c

⎞
⎟⎟⎠

D

= PHIQD[(μ0, μ1, μ2) j , x, z, x j , z j , x j+1, z j+1] (11.129)

Recall that the superscripts ( )a , ( )b, and ( )c represent the panel influence contributions
due to the three coefficients describing the panel doublet distribution.



P1: FHB

CB329-11 CB329/Katz September 13, 2000 15:28 Char Count= 0

11.6 Methods Based on Quadratic Doublet Distribution (Using the Dirichlet B.C.) 321

b. Discretization of Geometry
The N + 1 panel corner points and N collocation points are generated in a manner

similar to the previous examples (see Fig. 11.18). In this case of the internal Dirichlet
boundary condition the collocation points must be placed inside the body. This small inward
displacement of the collocation point can be skipped if the panel self-induced influence is
specified in a separate formula.

c. Influence Coefficients
The influence of this doublet panel is calculated exactly as in the previous section.

The velocity potential at each point is the sum of all the individual panel influences. For
example, for the first collocation point due to the first panel it is(

�a
1μ0 + �b

1μ1 + �c
1μ2

)
1

≡ a11μ01 + b11μ11 + c11μ12

and the potential at this collocation point due to all the doublet panels is given by Eq. (11.131):

�D1 = (a11μ01 + b11μ11 + c11μ21) + (a12μ02 + b12μ12 + c12μ22) + · · ·
+ (a1N μ0N + b1N μ1N + c1N μ2N ) + A1W μW (11.131)

where μW is the constant-strength wake doublet element (as in Section 11.3.1) and A1W is
the wake influence coefficient, which can be calculated by using Eq. (11.66). The strength
of this wake doublet element is set by applying the Kutta condition at the trailing edge and
is given by Eq. (11.135).

Using the backward substitution process described in the previous section the potential
at the N + 1 collocation points (the additional point is inside the body and near the trailing
edge) will have the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1

�2
...

�N+1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 . . . A1,N+2 A1W

A21 A22 A23 . . . A2,N+2 A2W
...

...
...

. . .
...

...
AN+1,1 AN+1,2 AN+1,3 . . . AN+1,N+2 AN+1,W

0 AN+2,2 0 . . . 2�cN 0
−1 AN+3,2 0 . . . (�cN )2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ01

μ02

μ03
...

μ0N

μ1N

μ2N

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.140)

Here the last two equations are the trailing-edge conditions, based on Eqs. (11.134) and
(11.135), and the coefficients Ai j are the result of the backward substitution as described in
the previous section. Substitution of this into the boundary condition (Eq. (11.81)) results in

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 . . . A1,N+2 A1W

A21 A22 A23 . . . A2,N+2 A2W
...

...
...

. . .
...

...
AN+1,1 AN+1,2 AN+1,3 . . . AN+1,N+2 AN+1,W

0 AN+2,2 0 . . . 2�cN 0
−1 AN+3,2 0 . . . (�cN )2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ01

μ02

μ03
...

μ0N

μ1N

μ2N

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�∞1

�∞2

...
�∞N+1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0

(11.141)
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where again the last two equations are the trailing-edge conditions and �∞ j are known
(e.g., from Eq. (11.82)).

d. Establish RHS Vector
The second term in Eq. (11.141) is known and can be transferred to the right-hand

side of the equation. The RHS vector then becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN+1

RHSN+2

RHSN+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�∞1

�∞2

...
�∞N+1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11.142)

and the �∞ j terms are calculated by using Eq. (11.82).

e. Solve Equations
Substituting the influence coefficients of the doublets and the RHS vector into the

boundary condition of Eq. (11.141) we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 . . . A1,N+2 A1W

A21 A22 A23 . . . A2,N+2 A2W
...

...
...

. . .
...

...
AN+1,1 AN+1,2 AN+1,3 . . . AN+1,N+2 AN+1,W

0 AN+2,2 0 . . . 2�cN 0
−1 AN+3,2 0 . . . (�cN )2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ01

μ02

μ03
...

μ0N

μ1N

μ2N

μW

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN+1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11.143)

This full-matrix equation with N + 3 unknown values μ j can be solved by standard matrix
solvers. Note that in this case (compared to Eq. (11.136)) the doublet represents the jump
in the total potential (and not the perturbation only).

f. Calculation of Pressures and Loads
Once the values of the doublet parameters (μ01, . . . , μ0N , μ1N , μ2N ) are known,

each panel doublet distribution can be obtained by using the backward substitution equations
(e.g., Eqs. (11.134), (11.135), and (11.137)). Then the velocity at each collocation point
can be calculated by differentiating the local potential:

Qt j = −
(

μ1 j + 2μ2 j
�c j

2

)
(11.144)

and the pressure coefficient can be calculated by using Eq. (11.18). The lift and pitching
moment of the panel can be obtained by using the method described by Eqs. (11.78)–(11.80).

This method seems to involve less numerical calculations than the equivalent quadratic
doublet/linear source method and therefore will require somewhat less computational time.
(A computer program based on this method is presented in Appendix D, Program No. 11.)
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11.7 Some Conclusions about Panel Methods

The examples presented in this chapter indicate that most methods can yield rea-
sonable results. The methods were presented in their simplest form and their computational
efficiency usually can be improved. For example, when calculating the influence of the pan-
els, terms that depend on panel cornerpoint geometry are calculated twice (for each of the
neighbor panels) and this redundancy can easily be corrected in the computer programming
phase.

It seems that in terms of ease of construction and the least computational effort the
constant-strength doublet method with the internal velocity potential boundary condition is
the most successful. Also, in general, the use of the velocity potential boundary condition
will result in fewer numerical manipulations and hence less computational time.

The use of higher order methods requires more computational effort and is justified when
the velocity near the body must be continuous (as inside the gaps of multielement airfoils).
However, constant-strength singularity element based methods can give good results, too,
when a sufficient number of panels are used (see Fig. 11.28).

Figure 11.36 Comparison of computational time (CPU, in seconds of VAX-6000-320 computer)
among the various panel methods versus number of panels.
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All of the methods presented for the solution of lifting flows can be extended to include
several bodies (or airfoils) and then for each element a separate Kutta condition is used. As
an example, the chordwise pressure distribution along a four-element airfoil is presented in
Fig. 11.33. The computation was done with a linear-strength source and doublet combination
using the internal Dirichlet boundary condition.

Most of the methods presented here were investigated in Ref. 11.1 and the computation
times (CPU, measured in seconds of VAX-6000-320 computer) versus number of panels N
are presented in Fig. 11.36. In these data the matrix inversion time (which has the same order
of magnitude) was subtracted to increase the resolution in the figure. These data indicate
that the constant doublet method with the Dirichlet boundary condition is the fastest, and
computational effort increases with increasing the order of the method. (However, it seems
that low and higher order methods can converge to solutions of similar quality, in terms of
circulation and lift, with a similar number of panels.)

It is noted, too, that each computational method depends on the grid and on various
other parameters. Therefore each technique must be validated first before it can be applied
to unknown cases. As an example, the sensitivity of the linear doublet (with the internal
Dirichlet boundary condition) to panel density is presented in Fig. 11.37. The very low
density of five upper and five lower panels resulted in a crude solution, which improved
considerably by doubling the number of panels. When panel density was increased to 70,
results similar to those presented in Fig. 11.31 were obtained.

Another example for the sensitivity of the methods to geometrical details is presented in
Fig. 11.38. Here the (N + 1)-th collocation point for the quadratic doublet (with Dirichlet
B.C.) is moved inside the airfoil. In Fig. 11.38a this collocation point is placed near the
trailing edge and the results for both α = 0◦ and 5◦ are good. (Bringing this point too close to
the trailing-edge panel collocation points, though, may cause the matrix to be ill-conditioned

Figure 11.37 Effect of panel density on the computed pressure distribution, using very few panels
(linear doublet method with the Dirichlet B.C.).
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Figure 11.38 Effect of placing the (N + 1)th collocation point inside the 15% thick van de Vooren
airfoil (using a quadratic doublet method with the Dirichlet B.C.).

for large panel numbers.) But if this point is placed at the center of the airfoil (as shown in
Fig. 11.38b) the results near the trailing edge become erratic.

Another interesting problem arises when attempting to model airfoils with cusped
(very thin) trailing edges. The geometry of such an airfoil is presented in the inset to Fig.
11.39a, and more information on this 15%-thick airfoil is provided in Sections 6.6 and 6.7.
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Figure 11.39 Pressure distribution on a cusped trailing edge 15%-thick van de Vooren airfoil using:
(a) linear vortex method with Neumann B.C., and (b) constant-strength source/doublet method with
the Dirichlet B.C.

Most methods will have problems near the trailing edge because of the very tight plac-
ing of the collocation points. This is illustrated in Fig. 11.39b, where the data were cal-
culated with a constant-strength source/doublet method using the Dirichlet B.C. Such
problems can be cured by modeling a finite angle there (instead of zero angle) and this
can be achieved by simply having larger trailing-edge panels. Also, numerical
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Figure 11.40 Recommended and not recommended options for panel distributions inside the gap of
a two-element airfoil.

experimentation reported in Ref. 9.2 indicated that when using the velocity formulation
for the Kutta condition (see Eq. 9.15b), the magnitude of these problems near the trailing
edge was considerably reduced. The linear-strength vortex method with the Neumann B.C.
seemed to be the only method that was not sensitive to this cusped trailing-edge problem (see
Fig. 11.39a).

Figure 11.41 Two-dimensional experimental and computed (constant-source/doublet, with Dirichlet
B.C.) chordwise pressure distribution on a NACA 4412 wing and a NACA 4415 flap (flap chord is
40% of wing chord). Experiments from Adair, D., and Horne, W. C., “Turbulent Separated Flow in the
Vicinity of a Single-Slotted Airfoil Flap,” AIAA Paper 88-0613, Jan. 1988.
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In conclusion, most methods will work and can be tailored to particular needs, and in
many cases, problems can be avoided by simple means such as selecting a better spacing of
the panels. As a final example to enforce this statement consider the panel distribution inside
the gap of a two-element airfoil, as shown in Fig. 11.40a. Since the lower surface collocation
points are close to the panel corner points the influence of this panel can be overestimated
(e.g., in the case of a vortex being at the panel corner point). A simple rearrangement of the
panels, as shown in Fig. 11.40b, can improve the solution in this area.

Finally, before concluding this chapter we must note that the present analysis is based on
potential flow theory and, for example, the calculated drag coefficient is zero. However, the
viscous boundary layer does result in certain values of drag coefficient (even at zero lift)
and a large selection of such information is provided by Abbot and Doenhoff.11.2 The effect
of viscosity on the pressure distribution (for the smaller angles of attack) is usually small
but at larger angles of attack flow separation may cause the pressure distribution to change
considerably (for more details see Chapters 14 and 15). As an example, the calculated (by
constant-strength doublet/source method with Dirichlet B.C.) and experimental pressure
distribution on a NACA 4412 airfoil with a NACA 4415 flap is presented in Fig. 11.41. In
this condition the airfoil is near stall, that is, the flow on the front airfoil is attached and on
the flap a limited trailing-edge separation is present. Near the leading edge the calculated
suction peak is larger than the experimental data and on the flap it is considerably less
because of the trailing-edge separation. Also, in general, even for the attached flow case
the experimental circulation is slightly less, as indicated by the comparison between the
experimental and calculated data on the first airfoil element in Fig. 11.41.
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Problems

This chapter allows the formulation and study of a large number of interesting
problems. If the geometry is limited to airfoils, then a generic problem will have
the following form:
a. Construct a numerical technique, based on one or more of the methods in this

chapter.
b. Calculate the pressure distribution, lift and moment coefficient, and center of

pressure and:
I. Compare with results presented in Ref. 11.2.

II. Study one or more of the aerodynamic problems presented in Fig. 11.42.
III. Study effect of grid density, compare between various methods, etc.

Ample useful information on airfoil shapes, zero-angle pressure distribu-
tions, lift, and drag is presented in Ref. 11.2, and the use of this information for
homework problems and student projects is recommended.

As an example consider the following possible problems:

11.1. Investigate the problems of ground effect, tandem wings, and biplane as shown in
Figs. 11.42a–c. Use five-point vortex elements to model a flat plate (say at α = 5◦)
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Figure 11.42 Typical airfoil-related problems that can be studied (as homework problems) by using
the methods of this chapter.

and investigate the change in the pressure distribution and lift as the distance (�H
or �x in Fig. 11.42a–c) is being increased.

11.2. Construct a constant-strength source based computer program to calculate
the pressure distribution over a symmetric NACA 0012 airfoil and compare
to the results of Ref. 11.2 (p. 321; also, the airfoil coordinates appear on this
page).

11.3. Develop a constant-strength source/doublet method (using the Dirichlet B.C.) to
study the flow over a NACA 632-415 airfoil (see Ref. 11.2, pp. 418 and 528).
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Calculate the pressure distribution over the airfoil, center of pressure, and lift, as
a function of angle of attack. (For a more advanced assignment study the effect of
a 20% trailing-edge flap with δ f = 10◦; see Fig. 11.42d.)

11.4. Extend the computer program of Problem 11.3 to the case of a two-element airfoil
(Fig. 11.42e, where the flap chord is one half of the main airfoil’s chord). Use
the NACA 632-415 airfoil section for both elements and check the effect of flap
deflection on lift, pitching moment, and center of pressure.
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CHAPTER 12

Three-Dimensional Numerical Solutions

Three dimensional numerical solutions based on surface singularity distributions
are similar, in principle, to methods presented for the two-dimensional case. From the the-
oretical aspect, only the wake and the trailing-edge conditions (three-dimensional Kutta
condition) will require some additional attention. The most difficult aspect in three di-
mensions, though, is the modeling of the geometry, especially when arbitrary geometry
capability is sought.

In the first part of this chapter the geometry (of the wing) is kept relatively simple and
the aerodynamics of a thin lifting surface is modeled. In principle, this simple method
has all the elements of the more complex panel methods and is capable of modeling the
effect of wing planform shape on the fluid dynamic loads. In addition, the examples that
are being presented require only limited programming effort and, therefore, are suitable for
classroom instruction. Furthermore, the introduction in class of the numerical lifting-line
model (Section 12.1), next to Prandtl’s lifting-line model of Section 8.1, provides additional
insight and a clear explanation of the spanwise integral equation.

In the second part of this chapter the principles of panel codes capable of solving the
flow over bodies with arbitrary three-dimensional geometry will be presented. Over the
years many such methods were developed and improved, but recent trends indicate an
increased use of the approach that is based on the combination of surface source and doublet
distributions with the inner potential boundary condition (for closed bodies). Consequently,
only this approach will be presented through a brief description of one low-order and one
high-order panel method.

In terms of classroom instruction it is recommended at this phase that use be made of one
of the commercially available panel codes and that students be trained first to use the pre-
and post-processor. This graphic pre-processor generates the surface grid (panel model) that
is used to define the input to the computer program. The post-processor is usually a graphic
utility that allows for a rapid analysis of the three-dimesional results by using extensive
graphic representations. It is believed that after studying and preparing examples with the
lifting surface code in this chapter (Section 12.3) students can safely proceed to use a larger
panel code since at this phase they must have a deep understanding of the formulation and
the construction of these codes.

12.1 Lifting-Line Solution by Horseshoe Elements

As a first example, consider the numerical solution of the lifting-line problem of
Section 8.1. This can help us to understand the assumptions and limitations of the single
vortex line method, which in this numerical form can be extended easily to include effects of
wing sweep, dihedral, or even side slip. For simplicity (and in the spirit of Prandtl’s model)
only one chordwise vortex is used here but the method can easily be extended to include
more chordwise vortices. The small-disturbance assumption of Chapter 8 still holds for this
case, and a thin lifting wing with large aspect ratio ( > 4) is assumed. This problem is

331
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Figure 12.1 “Horseshoe” model of a lifting wing.

stated in terms of a vortex distribution in Section 4.5 and the following horseshoe model
can be considered as the simplest approach to its solution.

In regard to solving Laplace’s equation, the vortex line is a solution of this equation and
the only boundary condition that needs to be satisfied is the zero normal flow across the
thin wing’s solid surface:

∇(� + �∞) · n = 0 (12.1)

In the classical case of Prandtl’s lifting-line model, the wing is placed on the x–y plane
and then this boundary condition requires that the sum of the normal velocity component
induced by the wing’s bound vortices wb, by the wake wi and by the free-stream velocity
Q∞, will be zero (see also Eq. (8.2a)):

wb + wi + Q∞α = 0 (12.2)

Based on the proposed horseshoe element and on the above boundary condition, let us
construct a numerical solution, following the six-step procedure of Chapter 9.

a. Choice of Singularity Element
To solve this problem the horseshoe element shown in Fig. 12.1 is selected. This

element consists of a straight bound vortex segment (BC in Fig. 12.1) that models the lifting
properties and of two semi-infinite trailing vortex lines that model the wake. The segment
BC does not necessarily have to be parallel to the y axis, but at the element tips the vortex is
shed into the flow where it must be parallel to the streamlines so that no force will act on the
trailing vortices. In order not to violate the Helmholtz condition, these vortex elements are
viewed as the near portions of vortex rings whose starting vortices extend far back, so that
the effect of this segment (AD in Fig. 12.1) is negligible. The requirement that the far wake
must be parallel to the free stream poses some modeling difficulties (which were not raised
at all when constructing the classical lifting-line model). This is illustrated in Fig. 12.2a,
which shows that the trailing wake has to be bent near the trailing edge to meet this free
wake condition. Another possibility is shown in Fig. 12.2b, where the simple horseshoe
vortex is kept, but the trailing segments are not shed at the trailing edge. Of course the very
small angle of attack assumption (as in the case of the lifting-line model) allows the placing
of the wake on the x–y plane of the body coordinate system as shown in Fig. 12.3. Since
in this section the numerical solution of the lifting-line model is attempted, we shall adopt
the model shown in Fig. 12.3, which assumes small angles of attack. However, the method
can easily be modified to use the wake model as presented in Fig. 12.2a, and an even more
detailed model will be presented in Section 12.3.
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Figure 12.2 Difficulties of meeting the “wake parallel to local velocity” condition by a single horse-
shoe vortex representation.

The method by which the thin wing planform is divided into elements is shown in
Fig. 12.3 and a typical spanwise element is shown in Fig. 12.4. Here, based on the results of
the lumped-vortex model, the bound vortex is placed at the panel quarter chord line and the
collocation point is at the center of the panel’s three-quarter chord line. The strength of the
vortex � is assumed to be constant for the horseshoe element and a positive circulation is de-
fined as shown in the figure. Since this element is based on the lumped-vortex model, which
includes the two-dimensional Kutta condition, it is assumed that this three-dimensional
model accounts (in an approximate way) for the Kutta condition:

γT.E. = 0 (12.3)

where the subscript T.E. stands for trailing edge. The velocity induced by such an element
at an arbitrary point P(x, y, z), shown in Fig. 12.4, can be computed by three applications

Figure 12.3 Horseshoe vortex lattice model for solving the lifting-line problem.
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Figure 12.4 A spanwise horseshoe vortex element.

of the vortex line routine VORTXL (Eq. (10.116)) of Section 10.4.5:

(u1, v1, w1) = VORTXL(x, y, z, xA, yA, z A, xB, yB, zB, �)

(u2, v2, w2) = VORTXL(x, y, z, xB, yB, zB, xC , yC , zC , �) (12.4)

(u3, v3, w3) = VORTXL(x, y, z, xC , yC , zC , xD, yD, zD, �)

At this point, let us follow the small-disturbance lifting-line approach and assume

yA = yB, yC = yD, and xA = xD → ∞
Of course ∞ means that the influence of the vortex line beyond xA or xD is negligible,
which from the practical point of view means at least twenty wing spans behind the wing.
It is possible, at this point, to align the wake with the free stream by adjusting the points
at x = ∞ (e.g., z A = xA sin α and zD = xD sin α). It is also possible to use the model of
Fig. 12.2a, which requires breaking the two trailing vortex segments into two segments each
and computing their induced velocity in a similar manner.

The velocity induced by the three vortex segments is then

(u, v, w) = (u1, v1, w1) + (u2, v2, w2) + (u3, v3, w3) (12.4a)

It is convenient to include these computations (Eqs. (12.4) and (12.4a)) in a subroutine such
that

(u, v, w) = HSHOE(x, y, z, xA, yA, z A, xB, yB, zB, xC , yC , zC , xD, yD, zD, �)

It is recommended at this point that the trailing vortex wake-induced downwash (u, v, w)∗

be separated from the velocity induced by the bound vortex segments and saved. This
information is needed for the induced-drag computations and if done at this phase will only
slightly increase the computational effort. The influence of the trailing segment is obtained
by simply omitting the (u2, v2, w2) part from Eq. (12.4a):

(u, v, w)∗ = (u1, v1, w1) + (u3, v3, w3) (12.5)

So, at this point it is assumed that (u, v, w)∗ is automatically obtained as a byproduct of
subroutine HSHOE.
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b. Discretization and Grid Generation
At this phase the wing is divided into N spanwise elements as shown by Fig. 12.3

(with the panel side edge assumed to be parallel to the x axis). For this example the span is
divided equally into N = 8 panels, and the spanwise counter j will have values between 1
and N . Also, geometrical information such as the panel area Sj , normal vector n j , and the
coordinates of the collocation points (xi , yi , zi ) are calculated at this phase. For example, if
the panel is approximated by a flat plate then the normal n j is a function of the local angle
α j as defined in Fig. 11.3 or Fig. 11.17:

n j = (sin α j , cos α j ) (12.6)

c. Influence Coefficients
To fulfill the boundary conditions, Eq. (12.2) is specified at each of the collocation

points (see Fig. 12.3). The velocity induced by the horseshoe vortex element no. 1 at
collocation point no. 1 (hence the use of the index 1,1) can be computed by using the
HSHOE routine developed before:

(u, v, w)11 = HSHOE(x1, y1, z1, xA1, yA1, z A1, xB1, yB1, zB1,

xC1, yC1, zC1, xD1, yD1, zD1, � = 1.0)

Note that � = 1 is used to evaluate the influence coefficient due to a unit strength vortex.
Similarly, the velocity induced by the second vortex at the first collocation point will be

(u, v, w)12 = HSHOE(x1, y1, z1, xA2, yA2, z A2, xB2, yB2, zB2,

xC2, yC2, zC2, xD2, yD2, zD2, � = 1.0)

The no normal flow across the wing boundary condition (Eq. (12.2)), at this point, can be
rewritten for the first collocation point as

[(u, v, w)11�1 + (u, v, w)12�2 + (u, v, w)13�3 + · · ·
+ (u, v, w)1N �N + (U∞, V∞, W∞)] · n1 = 0

and the strengths of the vortices � j are not known at this phase. Establishing the same
procedure for each of the collocation points results in the discretized form of the boundary
condition:

a11�1 + a12�2 + a13�3 + · · · + a1N �N = − Q∞ · n1

a21�1 + a22�2 + a23�3 + · · · + a2N �N = − Q∞ · n2

a31�1 + a32�2 + a33�3 + · · · + a3N �N = − Q∞ · n3

...
...

aN1�1 + aN2�2 + aN3�3 + · · · + aN N �N = − Q∞ · nN

where the influence coefficients are defined as

ai j ≡ (u, v, w)i j · ni (12.7)

The normal velocity components of the free-stream flow Q∞ · ni are known and moved to
the right-hand side of the equation:

RHSi ≡ −(U∞, V∞, W∞) · ni (12.8)
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We now have a set of N linear algebraic equations with N unknown � j that can be solved
by standard matrix solution techniques.

For example, for the case of a planar wing with constant angle of attack α, this results
in the following set of equations:⎛

⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1N

a21 a22 . . . a2N

a31 a32 . . . a3N
...

. . .
...

aN1 aN2 . . . aN N

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�1

�2

�3
...

�N

⎞
⎟⎟⎟⎟⎟⎠

= −Q∞ sin α

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
...
1

⎞
⎟⎟⎟⎟⎟⎠

In practice it is recommended that two DO loops be used to automate the computation of
the ai j coefficients. The first will scan the collocation points, and the inner loop will scan
the vortex elements for each collocation point:

DO 1 i = 1, N (collocation point loop)
RHSi = −Q∞ · ni

DO 1 j = 1, N (vortex element loop)

(u, v, w)i j = HSHOE(xi , yi , zi , xAj , yAj , z Aj , xB j , yB j , zB j ,

xC j , yC j , zC j , xDj , yDj , zDj , � = 1.0)

ai j = (u, v, w)i j · ni

bi j = (u, v, w)∗i j · ni

1 END

Here bi j is the normal component of the wake-induced downwash that will be used for
the induced-drag computations and (u, v, w)∗i j is given by Eq. (12.5).

d. Establish RHS Vector
The right-hand side vector, Eq. (12.8), is actually the normal component of the

free stream, which can be computed within the outer DO loop of the influence coefficient
computations (as shown above). However, if one plans to upgrade the code by including
unsteady effects or the simulation of normal “transpiration” flows, then this calculation
should be done separately.

e. Solve Linear Set of Equations
The solution of the above described problem can be obtained by standard matrix

methods. Furthermore, since the influence of such an element on itself is the largest, the
matrix will have a dominant diagonal, and the solution is stable.

f. Secondary Computations: Pressures, Loads, Velocities, Etc.
The solution of the above set of equations results in the vector (�1, �2, . . . , �N ).

The lift of each bound vortex segment is obtained by using the Kutta–Joukowski theorem:

�L j = ρQ∞� j�y j (12.9)

where�y j is the panel bound vortex projection normal to the free stream (see Fig. 12.4 where
the panel width �b = �y). The induced-drag computation is somwhat more complex.
Following the lifting-line results of Eq. (8.20a), we have

�D j = −ρwind j � j�y j (12.10)
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Figure 12.5 Array of the trailing vortex segments responsible for the induced downwash on the
three-dimensional wing.

where the induced downwash wind j at each collocation point j is computed by summing the
velocity induced by all the trailing vortex segments (see Fig. 12.5). This can be done during
the phase of the influence coefficient computations or even later, by using the HSHOE
routine with the influence of the bound vortex segment turned off. This procedure can be
summarized by the following matrix formulation where all the bi j and the � j are known:⎛

⎜⎜⎜⎜⎜⎝

wind1

wind2

wind3

...
windN

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

b11 b12 . . . b1N

b21 b22 . . . b2N

b31 b32 . . . b3N
...

. . .
...

bN1 bN2 . . . bN N

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�1

�2

�3
...

�N

⎞
⎟⎟⎟⎟⎟⎠

The total lift and drag are then calculated by summing the individual panel contributions:

D =
N∑

j=1

�D j

L =
N∑

j=1

�L j

The induced drag can be calculated, too, by using Eq. (8.146) in the Trefftz plane, which
is selected to be far behind the trailing edge and normal to the free stream. Since the wake
is force free, the trailing vortex lines will be normal to this plane and their induced velocity
can be calculated by using the two-dimensional formula (e.g., Eqs. (3.81) and (3.82)).
Consequently, the wake-induced downwash at each of the trailing vortex lines is

wind j = −1

2π

NW∑
i=1

x j − xi

(z j − zi )2 + (x j − xi )2

where NW is the number of trailing vortex lines and the influence of a vortex line on itself is
set to zero. Once the induced downwash at each of the vortex lines is obtained, the induced
drag is evaluated by applying Eq. (8.146):

D = −ρ

2

∫ bw/2

−bw/2
�(y)w dy = −ρ

2

NW∑
i=1

� jwind j �y j (12.10a)
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If wake rollup routines are used then the results of Eq. (12.10a) may not be unique owing to
the nonunique placing of the wake trailing vortices. Therefore, it is recommended that one
calculate first the wing circulation with the rolled up wake, and for this induced velocity
and drag calculation one should then use the spacing �y j of the vortex lines, as released
at the trailing edge. (This is the simplest approximation for a force-free wake since many
wake rollup routines may not converge to this condition.) Moreover, note that Eq. (12.10a)
is similar to Eq. (12.10) but it has a coefficient of 1

2 , which is a result of the first being
evaluated at the Trefftz plane (where the trailing vortices seem to be two dimensional)
whereas Eq. (12.10) is evaluated at the spanwise bound-vortex line (and there the trailing
vortices are observed to be semi-infinite).

This first simple example presented a numerical solution for the lifting-line model, and
inclusion of wing sweep and dihedral effects can be done as a homework assignment. Some
of the limitations with regard to the wake model and the trailing-edge conditions will be
studied in the vortex-ring model that will be presented next. Also, the method presented
here does not take advantage of the wing symmetry to reduce computational effort. This
important modification is discussed in the following section.

12.2 Modeling of Symmetry and Reflections from Solid Boundaries

In situations when symmetry exists between the left and right halves of the body’s
surface, or when ground proximity is modeled, a rather simple method can be used to
include these features in the numerical scheme. In terms of programming simplicity these
modifications will affect only the influence coefficient calculation section of the code.

For example, consider the symmetric wing (left to right), shown in Fig. 12.6, where only
the right-hand half of the wing must be modeled. The influence of a panel j at point P can
be obtained by any of the influence routines of Chapter 10. For this example, let us use the
HSHOE routine of the previous section. Thus the velocity induced at point P by the j th
element (with the four corner points A, B, C, and D) is

(ui , vi , wi ) = HSHOE(x, y, z, xAj , yAj , z Aj , xB j , yB j , zB j , xC j ,

yC j , zC j , xDj , yDj , zDj , � j )

But because of the left/right symmetry, the image panel in the left half wing in Fig. 12.6
will have the same strength, and its effect can be evaluated by calling the influence of the

Figure 12.6 Image of the right-hand side of a symmetric wing model.
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actual vortex at point (x, −y, z). Note that the sign was changed for the y coordinate. Thus

(uii , vi i , wi i ) = HSHOE(x, −y, z, xAj , yAj , z Aj , xB j , yB j , zB j , xC j ,

yC j , zC j , xDj , yDj , zDj , � j )

and the velocity induced by the two equal strength elements at point P is

(u, v, w) = (ui + uii , vi − vi i , wi + wi i ) (12.11)

Note that for simplicity, instead of moving the four corner points into the image plane
(a total of sixteen numbers), only the y value of point P (one number) was moved; this
change is corrected by the minus sign added to the v component of the resulting image
velocity.

This procedure can reduce the number of unknowns by half, and only the vortices of the
right semiwing need to be modeled. Therefore, when scanning the elements of the semispan
in the influence coefficient step the coefficients ai j are modified (see Eq. (12.7)) such that

ai j = (u, v, w)i j · ni = (ui + uii , vi − vi i , wi + wi i )i j · ni (12.12)

The inclusion of ground effect can be achieved by using the same method. In this situation
(described in Fig. 12.7) the ground plane is simulated by modeling a mirror image wing
under the x–y plane. Again, the velocity at a point P induced by the elements of the real
wing (ug, vg, wg) and of the imaginary wing (ugg, vgg, wgg) are added up. If we use the
HSHOE routine to demonstrate this principle, the upper element induced velocity is

(ug, vg, wg) = HSHOE(x, y, z, xAj , yAj , z Aj , xB j , yB j , zB j , xC j ,

yC j , zC j , xDj , yDj , zDj , � j )

and the velocity induced by the same element but at a point (x, y, −z) is

(ugg, vgg, wgg) = HSHOE(x, y, −z, xAj , yAj , z Aj , xB j , yB j , zB j ,

xC j , yC j , zC j , xDj , yDj , zDj , � j )

Figure 12.7 Modeling of ground effect by using the image technique.
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and the combined influence is

(u, v, w) = (ug + ugg, vg + vgg, wg − wgg) (12.13)

The coefficient ai j that includes the ground effect is

ai j = (u, v, w)i j · ni = (ug + ugg, vg + vgg, wg − wgg)i j · ni (12.14)

Note that the wing in Fig. 12.7 is raised in the x, y, z system and the ground plane is assumed
to be at the z = 0 plane.

Using this method for computing the flow over a symmetric wing in ground proximity
reduces the number of unknown elements by a factor of 4. Because much of the compu-
tational effort is spent on the matrix inversion, which increases at a rate of N 2, the use of
this reflection technique can reduce computation time by approximately 1/16! Examples
for incorporating this technique into a computer program are presented in the next section
and in Appendix D, Programs No. 13, 14, and 16.

12.3 Lifting-Surface Solution by Vortex Ring Elements

In this section the three-dimensional thin lifting surface problem will be solved
using vortex ring elements. The main advantage of using these elements is that they require
very little programming effort (although computational efficiency can be further improved).
Additionally, the exact boundary conditions will be satisfied on the actual wing surface,
which can have camber and various planform shapes.

As with the previous example, this singularity element is based on the vortex line solution
of the incompressible continuity equation. The boundary condition that must be satisfied
by the solution is the zero normal flow across the thin wing’s solid surface:

∇(� + �∞) · n = 0 (12.1)

In the small-disturbance lifting surface formulation of Section 4.5, this boundary condition
was expressed in terms of a surface-vortex distribution (Eq. (4.50)) as

−1

4π

∫
wing+wake

γy(x − x0) − γx (y − y0)

[(x − x0)2 + (y − y0)2]3/2
dx0 dy0 = Q∞

(
∂η

∂x
− α

)
(12.15)

Note that in Eq. (12.15) the small-disturbance approximation to the boundary condition
was satisfied on the wing surface projected onto the x–y plane whereas in the following
example the actual boundary condition (Eq. (12.1)) will be implemented.

In order to solve this lifting surface problem numerically, the wing is divided into elements
containing vortex ring singularities as shown in Fig. 12.8. The solution procedure is as
follows.

a. Choice of Singularity Element
The method by which the thin wing planform is divided into panels is shown in

Fig. 12.8 and some typical panel elements are shown in Fig. 12.9. The leading segment
of the vortex ring is placed on the panel’s quarter chord line and the collocation point is
at the center of the three-quarter chord line. The normal vector n is defined at this point,
too. A positive � is defined here according to the right-hand rotation rule (for the leading
segment), as shown in the figure.

From the numerical point of view these vortex ring elements are stored in rectangular
patches (arrays) with i, j indexing as shown by Fig. 12.10. The velocity induced at an
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Figure 12.8 Vortex ring model for a thin lifting surface.

arbitrary point P(x, y, z), by a typical vortex ring at location i , j , can be computed by
applying the vortex line routine VORTXL (Eq. (10.116)) to the ring’s four segments:

(u1, v1, w1) = VORTXL(x, y, z, xi, j , yi, j , zi, j , xi, j+1, yi, j+1, zi, j+1, �i, j )

(u2, v2, w2) = VORTXL(x, y, z, xi, j+1, yi, j+1, zi, j+1, xi+1, j+1,

yi+1, j+1, zi+1, j+1, �i, j )

(u3, v3, w3) = VORTXL(x, y, z, xi+1, j+1, yi+1, j+1, zi+1, j+1, xi+1, j ,

yi+1, j , zi+1, j , �i, j )

(u4, v4, w4) = VORTXL(x, y, z, xi+1, j , yi+1, j , zi+1, j , xi, j , yi, j , zi, j , �i, j )

The velocity induced by the four vortex segments is then

(u, v, w) = (u1, v1, w1) + (u2, v2, w2) + (u3, v3, w3) + (u4, v4, w4) (12.16)

Figure 12.9 Nomenclature for the vortex ring elements.
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Figure 12.10 Arrangement of vortex rings in a rectangular array.

It is convenient to include these computations in a subroutine (see Eq. (10.117)) such that

(u, v, w) = VORING(x, y, z, i, j, �) (12.17)

Note that in this formulation it is assumed that by specifying the i, j counters, the (x, y, z)
coordinates at the four corners of this panel are automatically identified (see Fig. 12.10).

The use of this subroutine can considerably shorten the programming effort, however,
for the segment between two such rings the induced velocity is computed twice. For the sake
of simplicity this routine will be used for this problem, but more advanced programming
can easily correct this loss of computational efficiency.

It is recommended at this point, too, that one calculate the velocity induced by the
trailing vortex segments only (the vortex lines parallel to the free stream, as in Fig. 12.5).
This information is needed for the induced-drag computations and if done at this phase will
only slightly increase the computational effort. The influence of the trailing segments is
obtained by simply omitting the (u1, v1, w1) + (u3, v3, w3) part from Eq. (12.16):

(u, v, w)∗ = (u2, v2, w2) + (u4, v4, w4) (12.18)

So, at this point it is assumed that (u, v, w)∗ is automatically obtained as a byproduct of
subroutine VORING.

b. Discretization and Grid Generation
The method by which the thin wing planform is divided into elements is shown

in Fig. 12.8 and some typical panel elements are shown in Fig. 12.9. Also, only the wing
semispan is modeled and the mirror image method will be used to account for the other
semispan. The leading segment of the vortex ring is placed on the panel’s quarter chord line
and the collocation point is at the center of the three-quarter chord line. The normal vector n
is defined at this point, as shown in Fig. 12.9. A positive � is defined here as the right-hand
rotation, as shown in the figure. For the pressure distribution calculations we need the local
circulation, which for the leading edge panel is equal to �i but for all the elements behind
it is equal to the difference �i − �i−1. In the case of increased surface curvature the above
described vortex rings will not be placed exactly on the lifting surface, and a finer grid
needs to be used, or the wing surface can be redefined accordingly. By placing the leading
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Figure 12.11 Definition of wing outward normal.

segment of the vortex ring at the quarter chord line of the panel the two-dimensional Kutta
condition is satisfied along the chord (recall the lumped-vortex element). Also, along the
wing trailing edges, the trailing vortex of the last panel row (which actually simulates the
starting vortex) must be canceled to satisfy the three-dimensional trailing-edge condition:

γT.E. = 0 (12.19)

For steady-state flow this is done by attempting to align the wake vortex panels parallel to
the local streamlines, and their strength is equal to the strength of the shedding panel at the
trailing edge (see Fig. 12.8 where �T.E. = �W , for each row).

For this example (in Fig. 12.8) the chord is divided equally into M = 3 panels and the
semispan is divided equally into N = 4 panels. Therefore, the chordwise counter i will have
values from 1 to M and the spanwise counter j will have values between 1 and N . Also, ge-
ometrical information such as the vortex ring corner points, panel area Sk , normal vector nk ,
and the coordinates of the collocation points are calculated at this phase (note that the panel
sequential counter k will have values between 1 and M × N ). A simple and fairly general
method for evaluating the normal vector is shown in Fig. 12.11. The panel opposite corner
points define two vectors Ak and Bk , and their vector product will point in the direction of nk :

nk = Ak × Bk

|Ak × Bk | (12.20)

This method is used in Program No. 13 in Appendix D; however, it is possible to evaluate
the normal vector on the actual wing surface (if an analytic description is available).

The results of the grid generating phase are shown schematically in Fig. 12.12. For more
information about generating panel corner points, collocation points, area, and normal

Figure 12.12 Array of wing and wake panel corner points (dots) and of collocation points (× symbols).



P1: FHB

CB329-12 CB329/Katz September 12, 2000 11:44 Char Count= 0

344 12 / Three-Dimensional Numerical Solutions

Figure 12.13 Example of a double “DO loop” to calculate the influence coefficients of a vortex ring
model (FORTRAN).

vector, see the student computer Program No. 13 in Appendix D (and subroutine PANEL
for the use of Eq. (12.20)).

c. Influence Coefficients
The influence coefficient calculation proceeds in a manner similar to the methods

presented so far, but in this three-dimensional case more attention is needed to the scanning
sequence of the surface panels.

Let us establish a collocation point scanning procedure that takes the first chordwise row
where i = 1 and scans spanwise with j = 1 → N and so on (see Fig. 12.10). This procedure
can be described by the two DO loops shown in Fig. 12.13. As the panel scanning begins,
a sequential counter assigns a value K to each panel (the sequence of K is shown in
Fig. 12.14), which will have values from 1 to M × N .

Let us assume that the collocation point scanning has started and K = 1 (which is point
(i = 1, j = 1) on Fig. 12.12). The velocity induced by the first vortex ring is then

(ui , vi , wi )11 = VORING(x, y, z, i = 1, j = 1, � = 1.0)

Figure 12.14 Sequence of scanning the wing panels (with the counter K ).
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Figure 12.15 Method of attaching a vortex wake panel to fulfill the Kutta condition.

and that from its image on the left semispan is

(uii , vi i , wi i )11 = VORING(x, −y, z, i = 1, j = 1, � = 1.0)

and the velocity induced by the unit strength �1 vortex and its image at collocation point 1
is

(u, v, w)11 = (ui + uii , vi − vi i , wi + wi i )11 (12.21)

Note that the subscript ( )11 represents the influence of the first vortex at the first collocation
point, and both counters can have values from 1 to M × N . Also, a unit strength vortex is
used in the process of evaluating the influence coefficient a11, which is

a11 = (u, v, w)11 · n1

To scan all the vortex rings influencing this point, an inner scanning loop is needed with
the counter L = 1 → N × M (see Fig. 12.13). Thus, at this point, the K counter is at
point 1, and the L counter will scan all the vortex rings on the wing surface, and all
the influence coefficients a1L are computed (also, in Eq. (12.21) the ( )11 index means
K = 1, L = 1):

a1L = (u, v, w)1L · n1 (12.22)

When a particular vortex ring is at the trailing edge, a “free wake” vortex ring with the
same strength is added to cancel the spanwise starting vortex line (as shown in Fig. 12.15).
Therefore, when the influence of such a trailing-edge panel vortex is calculated (i = M ,
in the inner vortex-ring loop in Fig. 12.13) the contribution of this segment is added. For
example, in Fig. 12.8 the first wake panel is encountered when i = 3 (or the L counter
is equal to 9). If the wake grid is added into the M + 1 corner point array (as shown in
Fig. 12.12 where this point is added at x = ∞) then the velocity due to the i = 3, j = 1
(or L = 9) panel is

(u, v, w)19 = VORING(x1, y1, z1, i = 3, j = 1, � = 1.0)

and that due to the attached wake is

(u, v, w)19W = VORING(x1, y1, z1, i = 3 + 1, j = 1, � = 1.0)

When the wing is symmetric as in this case and only the right half is paneled, then the
(u, v, w) velocity components of the trailing-edge and wake panels include the influence of
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the left-hand side image (as in Eq. (12.21)). The corresponding influence coefficient is

a19 = [(u, v, w)19 + (u, v, w)19W ] · n1 (12.22a)

As mentioned before, parallel to the computation of the aK L coefficients, the normal
velocity component induced by the streamwise segments can also be computed by using
the (u, v, w)∗ portion as in Eq. (12.5). For the first element then

b1L = (u, v, w)∗1L · n1 (12.23)

This procedure continues until all the collocation points have been scanned; a FORTRAN
example is presented in Fig. 12.13.

d. Establish RHS
The RHS vector is computed as before by scanning each of the collocation points

on the wing:

RHSK = −Q∞ · nK (12.24)

e. Solve Linear Set of Equations
Once the computations of the influence coefficients and the right-hand side vector

are completed, the zero normal flow boundary condition on each of the collocation points
will result in the following set of algebraic equations:⎛

⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1m

a21 a22 . . . a2m

a31 a32 . . . a3m
...

. . .
...

am1 am2 . . . amm

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�1

�2

�3
...

�m

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2

RHS3
...

RHSm

⎞
⎟⎟⎟⎟⎟⎠

Here K is the vertical collocation point counter and L is the horizontal vortex ring counter
and the order of this matrix is m = M × N .

f. Secondary Computations: Pressures, Loads, Velocities, Etc.
The solution of the above set of equations results in the vector (�1, . . . , �K , . . . ,

�m). If the counter K is resolved back to the original i, j counters then the lift of each bound
vortex segment is obtained by using the Kutta–Joukowski theorem:

�Li j = ρQ∞(�i, j − �i−1, j )�yi j , i > 1 (12.25)

and when the panel is at the leading edge (i = 1) then

�Li j = ρQ∞�i, j�yi j , i = 1 (12.25a)

The pressure difference across this panel is

�pi j = �Li j

�Si j
(12.26)

where �Si j is the panel area and �yi j is the panel width (similar to �b in Fig. 12.4).
The induced-drag computation is somewhat more complex. In this case

�Di j = −ρwindi, j (�i, j − �i−1, j )�yi j , i > 1 (12.27)

�Di j = −ρwindi, j �i, j�yi, j , i = 1 (12.27a)
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where the induced downwash at each collocation point i, j is computed by summing up the
velocity induced by all the trailing vortex segments (see Fig. 12.5 for the horseshoe vortex
element case). This can be done during the phase of the influence coefficient computation
(Eq. (12.23)) by using the VORING routine with the influence of the bound vortex segments
turned off. This procedure can be summarized by the following matrix formulation where
all the bKL and the �K are known:⎛

⎜⎜⎜⎜⎜⎝

wind1

wind2

wind3

...
windm

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

b11 b12 . . . b1m

b21 b22 . . . b2m

b31 b32 . . . b3m
...

. . .
...

bm1 bm2 . . . bmm

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�1

�2

�3
...

�m

⎞
⎟⎟⎟⎟⎟⎠

and again m = N × M . The total lift and drag are then calculated by summing the individual
panel contributions:

D =
M∑

i=1

N∑
j=1

�Di j

L =
M∑

i=1

N∑
j=1

�Li j

The induced drag can also be calculated by using Eq. (8.146) in the Trefftz plane, through
the discretization of Eq. (12.10a):

D = −ρ

2

NW∑
k=1

�kwindk �yk

Here the counter k scans the trailing-edge vortices and NW is the number of trailing-edge
vortices. Since the wake is force free, the trailing vortex lines will be normal to this plane
and their induced velocity windk can be calculated by using the two-dimensional formula
(e.g., Eqs. (3.81) and (3.82)). Similarly to the lifting-line case, if wake rollup routines are
used it is recommended for this induced velocity and drag calculation, that one first calculate
the wing circulation with the rolled up wake and to use the spacing �yi j of the vortex lines,
as released at the trailing edge. (This is the simplest approximation for a force-free wake
since many wake rollup routines may not converge to this condition.)

Example: Planar Wing

Consider a planar wing planform, where the leading, trailing and side edges are
made of straight lines and the wing has no camber. By using the method of this
section the lift slope CLα

can be calculated. The general effect of wing aspect ratio
and sweep � is summarized in Fig. 12.16 (computed results are the same as

those drawn by Jones and Cohen). The two-dimensional values of the lift slope are
shown at the right-hand side of the figure where = ∞. For the two-dimensional
unswept wing CLα

= 2π , as obtained in Chapter 5. The effect of leading-edge
sweep is to reduce this lift slope. Similarly, because of the increased downwash of
the trailing vortices, smaller aspect ratio wings will have smaller lift slope.

The effect of leading-edge sweep on the spanwise loading is shown in Fig. 12.17
for an = 4, planar wing. Aft swept wings will have more lift toward their tips
while forward swept wings will have larger loading near the root. This effect can
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Figure 12.16 Effect of aspect ratio on the lift coefficient slope of untapered planar wings. From
Jones, R. T., and Cohen, D., “High Speed Wing Theory,” Princeton Aeronautical Paperback, No. 6,
1960, Princeton University Press, Princeton, N. J.

be explained by observing the downwash induced by the right wing vortex on the
left half wing (Fig. 12.18). This downwash is larger near the wing centerline and
decreases toward the wingtip. In the case of the forward swept wing, an upwash at
the wing centerline will increase the lift there.

From the wing structural point of view, for the same lift, the root bending mo-
ments will be smaller for a forward swept wing than for a wing with the same
aft sweep. Moreover, for such untwisted wings the stall will be initialized at the
root section of the forward swept wing, which will create smaller rolling moments

Figure 12.17 Effect of wing sweep on the spanwise loading of untapered planar wings. From
Ref. 13.13, reprinted with permission of ASME.
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Figure 12.18 Schematic description of the effect of wing’s leading-edge sweep.

(due to possible asymmetry of the stall) than in the case of a comparable aft swept
wing. The main reason that most high-speed wings use aft sweep is the aeroelas-
tic divergence of the classical wing structures. (This problem can be avoided by
tailoring the torsional properties of composite structures.)

Wing root bending can be reduced, too, by tapering the wing. The taper ratio λ

is defined as the ratio of tip to root chords:

λ = c(y = b/2)

c(y = 0)
(12.28)

The spanwise loading of an untwisted wing with various taper ratios is shown in
Fig. 12.19. As was noted the load is decreasing toward the tip but the local lift

Figure 12.19 Effect of taper ratio on the spanwise variation of the lift coefficient for untwisted wings.
From Bertin, J. J., and Smith, L. M., Aerodynamics for Engineers, 2nd edition, 1989, Prentice-Hall,
p. 258. Reprinted by permission of Prentice-Hall, Inc. Englewood Cliffs, N.J.
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Figure 12.20 Effect of ground proximity on the lift coefficient slope of rectangular wings. From Ref.
13.13, reprinted with permission of ASME.

coefficient (divided by the local chord) is increasing with a reduction in taper ratio.
This means that the tip of such wings will stall first, an unfavorable behavior that
can be corrected by twist (which reduces the angle of attack toward the tip).

The method presented here can model ground proximity. Figure 12.20 presents
the effect of distance from the ground for unswept rectangular wings. The increase
in the lift slope in the proximity of the ground is present also for the smaller
aspect ratio wings. In the case of the finite wing the image trailing wake induces
an upwash on the wing that results in an additional gain in the lift due to ground
proximity.

The effect of wing dihedral (see inset in Fig. 12.21) in ground proximity is
shown in Fig. 12.21. Far from the ground the dihedral (as the sweep) reduces the

Figure 12.21 Effect of dihedral on the lift coefficient slope of rectangular wings in ground effect.
From Kalman, T. P., Rodden, W. P., and Giesing, J. P., “Application of the Doublet-Lattice Method to
Nonplanar Configurations in Subsonic Flow,” J. Aircraft, Vol. 8, No. 6, 1971. Reprinted with permission.
Copyright AIAA.
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lift slope. However, near the ground, especially for negative values of dihedral
(anhedral), the increase in lift of the wing portion near the ground is large, as
shown in the figure.

12.4 Introduction to Panel Codes: A Brief History

Observing the brief history of potential flow solutions, along with the methodology
presented in Chapters 3–5, implies that the trend is toward using surface distributions of
elementary solutions with gradually increasing complexity. So in principle, if a problem
can be solved by distributing the unknown quantity on the boundary surface rather than
in the entire volume surrounding the body (as in finite difference methods), then a faster
numerical solution is obtainable. This observation is true for most practical inviscid flow
problems (e.g., lift of wings in attached flows etc.).

This reduction of the three-dimensional computational domain to a two-dimensional one
(on a three-dimensional boundary) led to the rapid development of computer codes for the
implementation of panel methods, some of which are listed in Table 12.1. Probably the
first successful three-dimensional panel code is known as the Hess code12.1 (or Douglas–
Neumann), which was developed by the Douglas Aircraft Company and used a Neumann
velocity boundary condition. This method was based on flat source panels and had a true
three-dimensional capability for nonlifting potential flows.

The Woodward I code,12.2 which originated in the Seattle area, was capable of solving
lifting flows for thick airplane-like configurations. This code also had a supersonic potential

Table 12.1. Chronological list of some panel methods and their main features

Geometry Singularity Boundary
Method of panel distribution conditions Remarks

1962, Douglas- Flat Constant source Neumann
Neumann12.1

1966, Woodward I12.2 Flat Linear sources Neumann M > 1
Constant vortex

1973, USSAERO12.3 Flat Linear sources Neumann M > 1
Linear vortex

1972, Hess I12.4 Flat Constant source Neumann
Constant doublet

1980, MCAIR12.5 Flat Constant source Dirichlet Coupling with B. L.
Quadratic doublet design mode

1980, SOUSSA12.6 Parabolic Constant source Dirichlet Linearized
Constant doublet unsteady

1981, Hess II12.7 Parabolic Linear source Neumann
Quadratic doublet

1981, PAN AIR12.8,12.9 Flat Linear source both M > 1
subpanels Quadratic doublet

1982, VSAERO12.10,12.11 Flat Constant source both Coupling with
and doublet B. L., wake rollup

1983, QUADPAN12.12 Flat Constant source Dirichlet
and doublet

1987, PMARC12.13,12.14 Flat Constant source both Unsteady
Constant doublet wake rollup
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flow solution option, which increased its applicability. The method was later improved and
was released as the USSAERO code12.3 (or the Woodward II code). At about the same time
Hess added doublet elements to his nonlifting method so that he could solve for flows with
lift; this code12.4 was widely used by the industry and was called the Hess I code.

All of the computer codes listed in Table 12.1 had the capability to correct for low-speed
compressibility effects by using the Prandtl–Glauert transformation (as in Section 4.8).

The above computer codes were considered to be the first-generation panel programs, but
as computer technology evolved, more complex algorithms could be developed based on
higher order approximations to the panel surface and singularity distribution. For example,
the MCAIR code,12.5 which evolved into a high-order singularity method, had two new
interesting features. One was an inverse two-dimensional solution for multielement airfoils
with prescribed pressure distribution. The second option was an iterative coupling with
a boundary layer procedure. Pressure and velocity data from the potential flow solution
were fed into a boundary layer analysis that estimated the displacement thickness and
surface friction. During the next iteration of the potential solver the three-dimensional
panel geometry was modified to include the added displacement thickness of the boundary
layer.

At about the same time the SOUSSA code12.6 was developed and it used the Dirichlet
boundary condition (as did MCAIR) and had the additional feature of an unsteady oscillatory
mode. Meanwhile, John Hess of the McDonnell Douglas Aircraft Co. had updated the Hess
I code to the Hess II code,12.7 which now had parabolic panel shape and higher order
singularity distributions.

During this second-generation panel code development period, the largest effort was
invested in the PAN AIR code,12.8,12.9 which was developed for NASA by the Boeing Co.
The basic panel element in this code had five, flat, subelements with higher order singularity
distribution; boundary conditions were usually Dirichlet, but on selected areas the Neumann
condition could be used as well. This code also had the capability for solving the supersonic
potential flow equations.

Until the early 1980s most panel codes were limited (along with the availability of
mainframe computers) to the larger aerospace companies. However, computer technology
rapidly evolved and cost decreased in these years, so that it was economically logical for
smaller companies (e.g., general aviation contractors, boat builders, race-car teams, etc.) to
use this technology. The first panel code commercially available to the smaller industries
was VSAERO12.10,12.11 (which was developed under a grant from NASA Ames Research
Center). This code can be viewed as the beginning of a third period in the development of
panel codes, since it returned to a simpler, first-order panel and singularity elements. This
code used the Dirichlet boundary condition for thick bodies and the Neumann condition
for thin vortex-lattice panels. Interaction with several methods of boundary layer solutions
along streamlines was used, but the displacement thickness effect was corrected by adding
sources (blowing or transpiration), rather than adjusting the panel geometry (as in MCAIR).
In addition, a wake rollup routine was added that computed the induced velocity on the wake
and moved the wake vortices to a new “force-free” position. Following the success of this
code (due to computational economy) the Lockheed company developed a similar method,
called QUADPAN.12.12

At this point it seems that the theory of panel methods has matured and most of the
effort is invested in pre- and post-processing (automatic generation of surface grids and
graphical representation of results). Also being developed are interactive airfoil and wing
design routines, where the designer can modify interactively the body’s geometry in order
to obtain a desirable pressure distribution.
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Table 12.2. Claimed advantages of low- and high-order panel codes

Low-order methods High-order methods

Derivation of influence simple derivation more complex derivation
coefficients

Computer programming relatively simple coding requires more coding effort
Program size short (fits minicomputers) longer (will run on mainframes only)
Run cost low considerably higher
Accuracy less – for same number of panels higher accuracy for a given number

(but more accurate for same of panels
run time)

Sensitivity to gaps not very sensitive∗ not allowed
in paneling

Extension to M > 1 possible simple (for arbitrary geometry)

∗ This is a major advantage for the comparatively untrained user. Also this feature allows for an easy treatment
of very narrow gaps where viscous effects control the otherwise high speed inviscid flow (see example in
Section 12.7).

Some of the other improvements of these methods, during the second half of the 1980s,
included the addition of an unsteady motion option12.13 and an overall numeric optimization
of the method (in terms of computer memory requirement and efficiency of matrix solver).
Such a code is PMARC12.14 (Panel Method Ames Research Center), which was developed
at NASA Ames and is now suitable for home computers.

This recent trend of some code developers toward the use of low-order methods, and the
fact that many different methods are now being used, led to several comparison studies.
For instance, the study of Margason et al.12.15 indicates that low-order methods are clearly
faster and cheaper to operate. Some of the claimed advantages of each of the methods are
listed in Table 12.2 and the decision of which one to choose for a particular application is
not obvious. It is important to point out that, “any method will provide good results after
validating it through a large number of test cases.” (Dr. John Hess).

12.5 First-Order Potential-Based Panel Methods

As an example of three-dimensional first-order panel methods, some of the features
are discussed, following the six steps used for the previous computational methods. It is
recommended at this phase that students use one of the available panel codes along with
its graphical pre- and post-processor. It is useful to become familiar first with the pre-
processor and the grid generation process, through homework assignments, and only later
devote more time to the aerodynamic results. In the following discussion, some of the
features of a first-order method (e.g., VSAERO12.10,12.11 and PMARC12.14) are described.

a. Choice of Singularity Elements
The basic panel element used in this method has a constant-strength source or

doublet, and the surface is also planar (but doublet panels that are equivalent to a vortex
ring and can be twisted). Following the formulation of Section 9.4, the Dirichlet boundary
condition on a thick body can be reduced to the form of Eq. (9.23), which states that the
perturbation potential inside the body is zero:

N∑
k=1

Ckμk +
NW∑
�=1

C�μ� +
N∑

k=1

Bkσk = 0 (12.29)
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This equation will be evaluated for each collocation point inside the body and the influence
coefficients Ck, C� of the body and wake doublets and Bk of the sources are calculated by
the formulas of Section 10.4.

Both the VSAERO12.10,12.11 and PMARC12.14 computer programs allow additional mod-
eling of zero-thickness surfaces by vortex lattice grids, which are treated in a manner
described in Section 12.2. On these surfaces the zero normal velocity boundary condition
is used, which results in a similar set of equations on the collocation point of panel i :

N∑
k=1

C∗
k μk +

NW∑
�=1

C∗
� μ� +

N∑
k=1

B∗
k σk = −Q∞ · ni (12.30)

The B∗
k , C∗

k induced velocity coefficients are given, too, in Section 10.4.

b. Discretization and Grid Generation
In this phase the shape of the body is divided into surface panel elements as shown

in Fig. 12.22. It is useful to have a graphic representation of the grid so that possible input
errors such as gaps between the panels and misplaced corner points can be corrected. The
grid is usually constructed of rectangular subgrids (patches) and some of the patches forming
the model of Fig. 12.22 are shown as well. Note that triangular panels, as in the nose cone
area, are actually rectangular panels with two coinciding corners. At this phase the panel
corner points, collocation points (which may be on the surface or slightly inside the body),
and the outward normal vectors nk are identified and the counter k for each panel is assigned.
A typical example of generating a wing grid and its unfolded patch are shown in Fig. 12.23.

Figure 12.22 Representation of the surface geometry of a generic airplane by subarrays (patches):
(a) complete model; (b) separate patches.
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Figure 12.23 Method of storing the grid information on a wing patch (and identifying the wing’s
outer surface).

c. Influence Coefficients
At this phase the boundary conditions of Eq. (12.29) (or (12.30)) are evaluated and

for this example we shall use only the Dirichlet boundary condition. As was noted earlier,
Eq. (12.29) is not unique and the combination of sources and doublets must be selected.
For example, fixing the source strengths as

σk = nk · Q∞ (12.31)

will result in a set of equations with the doublet strengths as the unknowns. The above
selection of the source strength is based on the results of Section 4.4 and includes most
of the normal velocity component required for the zero normal flow boundary condition
(in the nonlifting case). Consequently, the unknown μk strengths will be smaller.

So, at this point, the potential at the collocation point of each panel (inside the body) is
influenced by all the N other panels and the coefficients appearing in Eq. (12.29) can be
calculated. Now, let us consider a wake panel that is shed by an upper panel with a counter
l and a lower panel with a counter m, as shown in Fig. 12.24. Equation (12.29) for the first
collocation point can be derived as

C11μ1 + · · · + C1lμl + · · · + C1mμm + · · · + C1N μN

+
NW∑
p=1

C1pμp +
N∑

k=1

B1kσk = 0 (12.32)

The influence of this particular wake panel at point 1, when singled out from the
∑NW

p=1 C1pμp

term, is then

C1p(μl − μm) (12.33)

where the counter p scans the wake panels. But this second summation of the wake influ-
ences in Eq. (12.29) does not contain additional unknown values of μ. Therefore, the results
of this second summation can be resubstituted into the equation, using the results of the
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Figure 12.24 A typical wake panel shed by the trailing edge upper and lower panels.

Kutta condition (Eq. (12.33)). In the particular case of Fig. 12.24, the equation for the first
point becomes

C11μ1 + · · · + (C1l + C1p)μl + · · · + (C1m − C1p)μm + · · ·

+ C1N μN +
N∑

k=1

B1kσk = 0

Consequently, this equation can be simplified to a form

N∑
k=1

A1kμk = −
N∑

k=1

B1kσk (12.34)

where A1k = C1k if no wake is shed from this panel and A1k = C1k ± C1p if it is shedding
a wake panel. This equation now has the form⎛

⎜⎜⎜⎝
a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

b11, b12, . . . , b1N

b21, b22, . . . , b2N
...

...
bN1, bN2, . . . , bN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σ1

σ2
...

σN

⎞
⎟⎟⎟⎠ (12.35)

which is a set of N linear equations for the N unknown μk (σk is known from Eq. (12.31)).
Notice that on the diagonal, akk = 1/2, except when the panel is at the trailing edge.

d. Establish RHS
The right-hand-side matrix multiplication can be carried out since the strengths of

the sources are known. This procedure establishes the RHS vector and Eq. (12.35) reduces
to the form⎛

⎜⎜⎜⎝
a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

⎞
⎟⎟⎟⎠ (12.36)

e. Solution of Linear Equations
The above matrix is full and has a nonzero diagonal and so a stable numerical

solution is possible. Usually when the number of panels is low (e.g., less than 500) a direct
solver can be used. However, as the number of panels increases (up to about 10,000), iterative
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Figure 12.25 Nomenclature used for the differentiation of the velocity potential for local tangential
velocity calculations.

solvers are used so that only one row of the matrix occupies the computer memory during
the solution.

f. Computation of Velocities, Pressures, and Loads
One of the advantages of the velocity potential formulation is that the computation

of the surface velocity components and pressures is determinable by the local properties of
the solution (velocity potential in this case). The perturbation velocity components on the
surface of a panel can be obtained by Eqs. (9.26), in the tangential directions:

ql = −∂μ

∂l
, qm = − ∂μ

∂m
(12.37)

and in the normal direction:

qn = σ (12.37a)

where l, m are the local tangential coordinates (see Fig. 12.25). For example, the perturbation
velocity component in the l direction can be formulated (e.g., by using central differences)
as

ql = 1

2�l
(μl−1 − μl+1) (12.38)

where �l is the panel length in the l direction. In most cases the panels do not have equal
sizes and instead of this simple formula, a more elaborate one can be used (sometimes only
the term �l is modified). The total velocity at collocation point k is the sum of the free
stream plus the perturbation velocity:

Qk = (Q∞l , Q∞m , Q∞n )k + (ql , qm, qn)k (12.39)

where lk, mk, nk are the local panel coordinate directions (shown in Fig. 12.25) and of course
the total normal velocity component on the surface is zero. The pressure coefficient can
now be computed for each panel using Eq. (4.53):

C pk = 1 − Q2
k

Q2∞
(12.40)

The contribution of this element to the aerodynamic loads �Fk is

�Fk = −C pk

(
1

2
ρQ2

∞

)
�Sknk (12.41)
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Figure 12.26 Typical points used to evaluate the influence of a higher order singularity distribution.

The total aerodynamic loads are then obtained by adding the contributions of the individual
panels (multiplied first by the lift, drag, and side-force direction vectors). A sample computer
program based on this method is provided in Appendix D, Program No. 14.

In many situations off-body velocity field information is also required. This type of
calculation can be done by using the velocity influence formulas of Chapter 10 (since the
strengths σ and μ are known at this point).

12.6 Higher Order Panel Methods

The mathematical principle behind these methods is similar to that of the low-order
methods, but the complexity of the element in terms of its geometry and singularity distri-
bution is increased. The boundary conditions to be solved are still Eq. (12.29) (Dirichlet)
and Eq. (12.30) (Neumann) or a combination of both. (That is, on some panels the Neumann
and on the other panels the Dirichlet condition will be used – but not both conditions on the
same panel.) The influence coefficients are more complex and they depend on more than
one singularity parameter (whereas only one such a parameter was required for a constant-
strength source or doublet element). In the following section a brief description of such a
method is presented and more details on one of these methods (PAN AIR) is provided in
Refs. 12.8 and 12.9.

a. Choice of Singularity Elements
Using a first-order source and second-order doublet distribution as described in

Section 10.5 allows us to determine the influence of each panel in terms of its values at its
nine points (as shown in Fig. 12.26). The surface is divided into five flat subelements and
the relative location of these points on these surfaces is shown in Fig. 10.27. The influence
of the panel’s subelements can be summarized as

�� = FS(σ1, σ2, σ3, σ4, σ9) = fS(σ0, σx , σy) (12.42)

�(u, v, w) = GS(σ1, σ2, σ3, σ4, σ9) = gS(σ0, σx , σy) (12.43)

for the first-order source element and

�� = FD(μ1, μ2, μ3, μ4, μ5, μ6, μ7, μ8, μ9) = fD(μ0, μx , μy, μxx , μxy, μyy)

(12.44)
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�(u, v, w) = G D(μ1, μ2, μ3, μ4, μ5, μ6, μ7, μ8, μ9)

= gD(μ0, μx , μy, μxx , μxy, μyy) (12.45)

for the second-order doublet. The subscripts 1 through 9 denote the strength of the singularity
distribution at this point according to the sequence in Fig. 12.26. Note that for a source five
unknowns are used, but by assuming a linear strength distribution this can be reduced by
algebraic manipulations to three (e.g., fS = σ0 + σx x + σy y). Similarly, by assuming a
parabolic distribution for the doublet strength the number of unknowns is reduced to six
per panel (e.g., gD = μ0 + μx x + μy y + μxy xy + μxx x2 + μyy y2).

b. Discretization and Grid Generation
The grid generation procedure is similar to the procedure described for the zero-

order method, but now all nine nodal points are stored in the memory. Also, gaps in the
geometry are not allowed since a continuous geometry is assumed.

c. Influence Coefficients
Again we shall follow the case where the strength of the source (for thick bodies)

is set by Eq. (12.31)

σk = nk · Q∞

The Dirichlet boundary condition can be reduced then to the form

6N∑
k=1

Ckμk +
NW∑
�=1

C�μ� +
3N∑
k=1

Bkσk = 0 (12.46)

or if the Neumann condition is used then on the i th collocation point

6N∑
k=1

C∗
k μk +

NW∑
�=1

C∗
� μ� +

3N∑
k=1

B∗
k σk = −Q∞ · ni (12.47)

In principle, for N panels we have 6N unknown doublet strengths, but by matching the
magnitudes (or slopes) of the neighbor panels, 5N very simple additional equations can
be obtained (see for example the two-dimensional case in Section 11.6.1). These neighbor
panel relations are resubstituted into Eq. (12.46) or Eq. (12.47) such that for N panels N
linear algebraic equations must be solved. Also, as before, the wake doublets μ� do not
contain any new unknowns and based on the corresponding doublet values of the wake
shedding panels the wake influence can be substituted into the Ck, C∗

k coefficients. Thus for
each panel i (when using the internal Dirichlet boundary condition)

N∑
k=1

Aikμk = −
N∑

k=1

Bikσk (12.48)

where the collocation point counter i = 1 → N .

d. Establish RHS
The right-hand side of this equation includes the known source strengths (for the

Dirichlet boundary condition) and the free-stream component normal to the surface (for
the Neumann boundary condition case) and can be computed. The additional 2N equations
for the source corner point values are obtained by matching the source strength at the panel
edges.
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e. Solution of Linear Equations
The solution is the same as for low-order methods.

f. Computation of Velocities, Pressures, and Loads
The local tangential velocity is calculated by using Eq. (12.37), but since at each

panel there are nine values of μ a finer arithmetic scheme is used for calculating the
local gradients of the velocity potential. Once the velocity components are found the lo-
cal pressure coefficient and the aerodynamic loads are found by using Eqs. (12.40) and
(12.41).

More details on such high-order panel codes can be found in Refs. 9.4 and 12.9.

12.7 Sample Solutions with Panel Codes

Panel methods have the advantage of modeling the flow over complex three-
dimensional configurations. However, the first thing to remember is that the method is
based on potential flow solutions and therefore its forte is in solving attached flowfields. In
the case of such attached flowfields the calculated pressure distribution and the lift will be
close to the experimental results, but for the drag force only the lift-induced drag portion
is provided by the potential flow solution and an estimation of the viscous drag is required.
For flows with considerable areas of flow separations the method usually can point toward
areas of large pressure gradients that cause the flow separations, but the computed pressure
distributions will be wrong. The following examples will show some of the cases where
such methods can provide useful engineering information, along with some cases where
the effects of viscosity become more important.

Figure 12.27 Effect of fuselage on the spanwise loading of a rectangular wing.
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Figure 12.28 Comparison between calculated and experimental lift coefficients for a generic fighter
aircraft configuration. (Experimental results taken from Stoll, F., and Koenig, D. G., “Large Scale Wind-
Tunnel Investigation of a Close-Coupled Canard-Delta-Wing Fighter Model through High Angles of
Attack,” AIAA Paper 83-2554.)

Example 1: Wing Body Combination

All classical methods (e.g., lifting surface) were capable of modeling simple lift-
ing surfaces only with some estimation of wing/fuselage juncture effects. Panel
methods, in contrast, can solve the flow over fairly complex wing/fuselage com-
binations. For example, Fig. 12.27 shows a typical case where the lift near the
centerline is reduced due to the presence of the fuselage. The wake vortex origi-
nating near the wing/fuselage juncture, whose circulation is opposite in direction to
the tip vortex, must be modeled carefully (so that it will not intersect the fuselage).
The location of this vortex is important, too, since it may affect the flow on the rest
of the aircraft and may cause flow separations on the aft section of the fuselage
and on the tail. Some methods allow the “stitching” of the wing-root vortex to the
fuselage for better modeling of the lift “carry-over” from the wing to the fuselage.

Example 2: Lift of High-Speed Airplane Configurations

Airplanes that operate at higher speeds where compressibility effects are not negli-
gible usually encounter low-speed flight conditions during takeoff and landing. For
these conditions panel methods can provide useful aerodynamic information. As
an example the calculated and experimental lift coefficients for two such aircraft
configurations are provided in Figs. 12.28 and 12.29. Both figures indicate that at
the lower angles of attack (less than 15◦ in this case) the calculations agree fairly
well with the experiments. However, at larger angles of attack, leading-edge vortex
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Figure 12.29 Comparison between calculated and measured lift coefficients for the McDonnell
Douglas F/A-18 airplane (using 668 panels per side). From Ref. 12.16. Reprinted with permission.
Copyright AIAA.

lift (e.g., for α > 15◦ in Fig. 12.28 and for 15◦ < α < 30◦ in Fig. 12.29) can cause
additional lift, and such vortex lift models were not introduced in this chapter.
Moreover, the flow over these complete configurations is usually very complex
and many regional flow separations and vortex flows exist. Therefore, even if the
results presented in these two figures agree reasonably with the computations,
the computations can serve mainly as a first-order prediction tool; final validation
usually would require extensive testing.

Figure 12.30 Effect of wind-tunnel walls on the pressure distribution on the upper surface centerline
(shown by the black dots) of a streamlined automobile (model frontal area to wind-tunnel cross-sectional
area ratio was about 13%). From Ref. 12.17.
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Figure 12.31 Pressure distribution on a two-dimensional four-element airfoil (a) and at the centerline
of an AR = 1.5, rectangular wing, having the same airfoil section and angle of attack (b). From Ref.
12.18. Reprinted with permission. Copyright AIAA.

Example 3: Wind-Tunnel Wall Interference Corrections

Wind tunnels provide a well-controlled environment where a variety of tests, such
as measurement of aerodynamic pressures and loads, can be carried out. However,
model designers usually prefer larger models and therefore, in many cases, the
effect of the test section walls is not negligible. The most obvious interference
between the model and the wind-tunnel test section walls is called “solid blockage,”
in which the presence of the model inside the wind tunnel reduces the flow cross-
sectional area and, according to Bernoulli’s principle, the flow speed will increase
there. Since the local velocity at the test section is higher than it would be in a free
flow outside the wind tunnel the aerodynamic coefficients are overestimated. In
addition to this “blockage effect” there is a “reflection effect” that changes the lift of
lifting surfaces near solid boundaries (as in the case of ground effect). Figure 12.30
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shows the increase in the suction peaks (and velocity) over the upper surface of a
streamlined automobile model; and this increase was well predicted by the panel
method. In this case, for theoretical purposes the aft section of the vehicle was
highly streamlined and flow separations there were minimal, but a generalization
of this approach to other bluff body shapes must be approached with extra care.

In general, the wind-tunnel wall corrections are obtained by two sequential
computations where in the first the flowfield over the model within the wind-tunnel
test section is computed and in the second computation the wind-tunnel walls are
removed. The differences between these two cases provides the potential flow effect
of wind-tunnel boundaries on model lift and blockage (Refs. 12.16 and 12.17). Note
that this wind-tunnel wall correction method inherently includes effects of lift
and blockage, and it provides more details than previous semi-empirical methods
(for the complete wind-tunnel wall effect, though, the viscous effects should be
included, too.)

Example 4: High-Lift, Low Aspect Ratio Multielement Wing

As the wing aspect ratio becomes small, two-dimensional airfoil analysis may not
be applicable and a considerable difference exists between the two- and three-
dimensional chordwise pressure distributions. Consequently, a two-dimensional
development of such an airfoil section, without considering the complete three-
dimensional analysis, is not recommended.12.18 As an example, typical computa-
tional results for the two-dimensional pressure distribution on a four-element airfoil
are shown in Fig. 12.31a. The computed pressure distribution, at the centerline of a
rectangular wing ( = 1.5), having the same airfoil section and the same attitude,
are presented in Fig. 12.31b. The most obvious differences between the two cases
of Fig. 12.31 are the threefold reduction in the C p range of the three-dimensional
data and the change in the shape of the pressure distribution when compared with
the two-dimensional case. Also, in the three-dimensional case, pressure gradients
are the strongest near the second flap (from the trailing edge) and with increased
angle of attack, flow separation can be initiated here (and not near the leading edge,
as it seems from the two-dimensional data).

Example 5: Wake Length

One of the objectives of this section is to highlight some possible errors in modeling
the potential flow problems. One such frequent problem arises when the wake of
a wing is too short (in steady-state flow). This problem occurs when, owing to
the need to present the wing and the wake in the same scale, the wake model
becomes short. Since in most situations the wake is modeled by constant-strength
doublet elements a starting vortex is present at the edge of the far field panel
as shown in Fig. 12.32. This vortex induces a downwash on the wing thereby
reducing its lift. The problem can easily be cured by a longer wake, which should
be at least 20 chord lengths behind the wing trailing edge (of course this distance
depends on wing aspect ratio; see also the effect of a starting vortex in Example 1,
Section 13.12).

Example 6: Modeling of Gap in Wing

Example 4 indicated that the modeling of a gap between two airfoils is obtained
in a satisfactory manner. However, if the gap is parallel to the streamlines, as
in the case of the chordwise gap between a main wing and a flap, establishing
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Figure 12.32 Location of the starting vortex in the case of specifying a short wake for an AR = 6
rectangular wing in a steady-state flow. (13 time steps).

Figure 12.33 Effect of a gap between a floating wing tip and the wing on the spanwise loading. From
Ref. 12.19.
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a good panel model may be difficult. Since the potential flow does not account
for viscosity, the velocity inside a narrow gap will increase to unrealistic values,
which in reality are reduced by the viscous friction. This problem is demonstrated
by Fig. 12.33 (taken from Ref. 12.19) where such a side gap between a large aspect
ratio wing and a moving wing tip (shown in Fig. 12.33) is calculated by different
panel models. When the two wing parts were modeled as two separate, closed
bodies, the high speed within the gap resulted in large suction peaks (shown by the
broken lines) that are different from the experimental data. The solid line shows the
case where the wing and the wingtip closures were removed from the gap (thereby
leaving the two bodies open in the gap region) and the results now agree more
with the experimental data. Since this example was executed with a first-order
panel method (Ref. 12.11) which is not sensitive to gaps in the panel model this
problem was partially resolved, but this approach is not applicable to higher order
panel methods. (Note that the accurate potential solution is practically inaccurate
in this case and the removal of the wing side edge closures inside the gap should
be viewed as a viscous flow effect modeling exercise!)
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Problems

Three-dimensional solutions that were presented in this chapter usually require
more effort than an average homework problem and the following suggested ex-
amples are more suitable for midterm or final projects.

12.1. Construct a computational method based on the lifting-line model of Section 12.1
and study the effect of wing sweep on the spanwise loading. Use at least ten
spanwise elements (per semispan), and assume a constant chord c and wing aspect
ratio of 8.

12.2. Use the method of Problem 12.1 to study the spanwise load distribution on the
wing planforms presented in Fig. 12.34.

12.3. Use the method of Problem 12.1 to study the effect of taper ratio on the spanwise
load distribution of an unswept leading-edge wing. Assume wing span b = 6, root
chord c0 = 1, and 	 = 1.0, 0.6, and 0.2.

Figure 12.34 Various wing planform shapes to be used for homework problems.
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12.4. Construct a computational method based on the lifting-surface model of Sec-
tion 12.3. Use at least ten spanwise (per semispan) and five chordwise panels, and
assume a constant chord c and wing aspect ratio of 8.
a. Study the effect of wing sweep on the spanwise loading.
b. Study the spanwise load distribution on the wing planforms presented in

Fig. 12.34.
c. Study the effect of taper ratio on the spanwise load distribution of an unswept

leading-edge wing. Assume wing span b = 6, root chord c0 = 1, and 	 =
1.0, 0.6, and 0.2.

12.5. Use the pre-processor to the panel code that is available in your institute to generate
the grid for the wing configurations of Fig. 12.34 (use at least 200 panels per
semispan). Assume all wings have a NACA 632-415 airfoil section.

12.6. Using the three-dimensional panel code available in your institute solve the flow
over the wing planforms of Problem 12.5 and present chordwise pressure distri-
butions at five equally spaced spanwise stations. Also plot the spanwise loading
for each wing and compare their root bending moment Mx .

12.7. Use the three-dimensional panel code available in your institute for the following
exercises:
a. Study the effect of wing sweep on the spanwise loading. Assume a rectangular

wing with aspect ratio of = 8, constant chord, and leading-edge sweep of
	 = 0◦, 20◦, 40◦, and 60◦.

b. Study the effect of taper ratio on the spanwise load distribution of an unswept
leading-edge wing. Assume wing span b = 6, root chord c0 = 1 and λ =
1.0, 0.6, and 0.2.

For all these cases present the chordwise pressure distribution at five equally spaced
spanwise stations. Also plot the spanwise loading for each wing and compare their root
bending moment Mx .
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CHAPTER 13

Unsteady Incompressible Potential Flow

We have seen in the previous chapters that in an incompressible, irrotational fluid
the velocity field can be obtained by solving the continuity equation. However, the incom-
pressible continuity equation does not directly include time-dependent terms, and the time
dependency is introduced through the boundary conditions. Therefore, the first objective is
to demonstrate that the methods of solution that were developed for steady flows can be used
with only small modifications. These modifications will include the treatment of the “zero
normal flow on a solid surface” boundary conditions and the use of the unsteady Bernoulli
equation. Furthermore, as a result of the nonuniform motion, the wake becomes more com-
plex than in the corresponding steady flow case and it should be properly accounted for.
Consequently, this chapter is divided into three parts, as follows:

a. Formulation of the problem and of the proposed modifications for converting
steady-state flow methods to treat unsteady flows (Sections 13.1–13.6).

b. Examples of converting analytical models to treat time-dependent flows (e.g., thin
lifting airfoil and slender wing in Sections 13.8–13.9).

c. Examples of converting numerical models to treat time-dependent flows (Sections
13.10–13.13).

For the numerical examples only the simplest models are presented; however, application
of the approach to any of the other methods of Chapter 11 is strongly recommended (e.g.,
can be given as a student project).

In the general case of the arbitrary motion of a solid body submerged in a fluid (e.g.,
a maneuvering wing or aircraft) the motion path is determined by the combined dynamic
and fluid dynamic equations. However, this chapter will deal with the loads generated by
the fluid only and therefore the path along which the body (or the wing or aircraft) moves
is assumed to be prescribed.

13.1 Formulation of the Problem and Choice of Coordinates

When treating time-dependent motions of bodies, the selection of the coordinate
systems becomes very important. It is useful to describe the unsteady motion of the surface
on which the “zero normal flow” boundary condition is applied in a body-fixed coordinate
system (x, y, z); see for example the maneuvering wing depicted in Fig. 13.1. The motion
of the origin O of this coordinate system (x, y, z) is then prescribed in an inertial frame
of reference (X, Y, Z ) and is assumed to be known (as shown in Fig. 13.1). For simplicity,
assume that at t = 0 the inertial frame (X, Y, Z ) coincides with the frame (x, y, z). Then, at
t > 0, the relative motion of the origin ( )o of the body-fixed frame of reference is prescribed
by its location R0(t), and the instantaneous orientation �(t), where (φ, θ, ψ) are the Euler13.1

rotation angles:

(X0, Y0, Z0) = R0(t) (13.1)

(φ, θ, ψ) = �(t) (13.2)

369
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Figure 13.1 Inertial and body coordinates used to describe the motion of the body.

For example, in the case of a constant-velocity flow of speed U∞ in the positive x direction
(in the wing’s frame of reference in Fig. 13.1) the function R0(t) will be

(X0, Y0, Z0) = (−U∞t, 0, 0)

which means that the wing is being translated in the negative X direction.
The fluid surrounding the body is assumed to be inviscid, irrotational, and incompressible

over the entire flowfield, excluding the body’s solid boundaries and its wakes. Therefore,
a velocity potential �(X, Y, Z ) can be defined in the inertial frame and the continuity
equation, in this frame of reference, becomes

∇2� = 0 (in X, Y, Z coordinates) (13.3)

and the first boundary condition requiring zero normal velocity across the body’s solid
boundaries is

(∇� + v) · n = 0 (in X, Y, Z coordinates) (13.4)

Here −v is the surface’s velocity and n = n(X, Y, Z , t) is the vector normal to this moving
surface, as viewed from the inertial frame of reference. (Note that v is defined with the minus
sign so that the undisturbed flow velocity will be positive in the body’s frame of reference.)
Since Eq. (13.3) does not depend directly on time, the time dependency is introduced through
this boundary condition (e.g., the location and orientation of n can vary with time). It is
interesting to point out that � is the total velocity potential, but as a result of its definition
in a frame that is attached to the undisturbed fluid its magnitude is small (in fact it is similar
to the perturbation potential of Section 4.2).

The second boundary condition requires that the flow disturbance, due to the body’s
motion through the fluid, should diminish far from the body (or wing in Fig. 13.1),

lim
|R−R0|→∞

∇� = 0 (13.5)

where R = (X, Y, Z ).
For the unsteady flow case the use of the Kelvin condition will supply an additional

equation that can be used to determine the streamwise strength of the vorticity shed into the
wake. In general, the Kelvin condition states that in the potential flow region the angular
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momentum cannot change, and thus the circulation � around a fluid curve enclosing the
wing and its wake is conserved:

d�

dt
= 0 (for any t) (13.6)

The solution of this problem, which becomes time dependent because of the boundary
condition (Eq. (13.4)), is easier in the body-fixed coordinate system. Consequently, a trans-
formation f between the two coordinate systems has to be established, based on the flight
path information of Eqs. (13.1) and (13.2), that is,⎛

⎜⎝
x

y

z

⎞
⎟⎠ = f (X0, Y0, Z0, φ, θ, ψ)

⎛
⎜⎝

X

Y

Z

⎞
⎟⎠ (13.7)

Such a transformation should include the translation and the rotation of the (x, y, z) system,
and, for example, may have the form (Ref. 13.1, pp. 312–313)⎛

⎜⎝
x

y

z

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0

0 cos φ(t) sin φ(t)

0 −sin φ(t) cos φ(t)

⎞
⎟⎠

⎛
⎜⎝

cos θ (t) 0 −sin θ (t)

0 1 0

sin θ (t) 0 cos θ (t)

⎞
⎟⎠

×

⎛
⎜⎝

cos ψ(t) sin ψ(t) 0

−sin ψ(t) cos ψ(t) 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

X − X0

Y − Y0

Z − Z0

⎞
⎟⎠ (13.7a)

Similarly, the kinematic velocity v of the undisturbed fluid due to the motion of the wing
in Fig. 13.1, as viewed in the body frame of reference, is given by

v = −[V0 + Ω × r] (13.8)

where V0 is the velocity of the (x, y, z) system’s origin, and must be resolved into the
instantaneous (x, y, z) directions,

V0 = (Ẋ0, Ẏ0, Ż0) (13.9a)

Here r = (x, y, z) is the position vector and Ω is the rate of rotation of the body’s frame of
reference, as shown in Fig. 13.1,

Ω = (p, q, r ) (13.9b)

where (p, q, r ) are the angular velocity components, as shown in Fig. 13.1. In situations
when an additional relative motion vrel within the (x, y, z) system is desired (e.g., small-
amplitude oscillation of the wing or its flap, in addition to the average motion of the body
system) then Eq. (13.8) becomes

v = −[V0 + vrel + Ω × r] (13.8a)

and

vrel = (ẋ, ẏ, ż) (13.9c)

To an observer in the (x, y, z) frame, the velocity direction is opposite to the flight
direction (as derived in the X, Y, Z frame) and therefore the minus sign appears in Eq. (13.8).
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The proper transformation of Eqs. (13.3)–(13.5) into the body’s frame of reference
requires the evaluation of the various derivatives in the (x, y, z) system. This can be found
using the standard chain rule differentiation. For example, the ∂/∂ X term becomes

∂

∂ X
= ∂x

∂ X

∂

∂x
+ ∂y

∂ X

∂

∂y
+ ∂z

∂ X

∂

∂z

Here, ∂x/∂ X , ∂y/∂ X , and ∂z/∂ X include the information about the instantaneous orien-
tation of the body-fixed frame of reference (it is also assumed that the time t is the same in
both frames). For example, consider the case when the body frame of reference of Fig. 13.1
translates to the left and only one degree of rotation with θ is allowed (so that φ = ψ = 0
and the y and Y axes remain parallel). In this situation, Eq. (13.7) will provide the transfor-
mation between the (x, y, z) and (X, Y, Z ) coordinates, which will depend on one rotation
only, and the above chain differentiation results in

∂

∂ X
= cos θ

∂

∂x
+ sin θ

∂

∂z

∂

∂Y
= ∂

∂y

∂

∂ Z
= −sin θ

∂

∂x
+ cos θ

∂

∂z

(13.10)

The time derivative in the (x, y, z) system can be obtained by the chain rule (and is similar
to Eq. (13.8) less the relative velocity term vrel):

∂

∂t inertial
= −[V0 + Ω × r] ·

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
+ ∂

∂t body
(13.11)

But it is possible to transform Eqs. (13.3), and (13.4) into the body’s frame of reference
without explicitly knowing Eq. (13.7) and still arrive at the same conclusions. For example,
at any moment the continuity equation is independent of the coordinate system orientation
and the mass should be conserved. Therefore, the quantity ∇2� is independent of the
instantaneous coordinate system and the continuity equation in terms of (x, y, z) remains
unchanged (the reader is encouraged to prove this by using the chain rule):

∇2� = 0 (in x, y, z coordinates) (13.12)

Also, the two boundary conditions (Eq. (13.4) and (13.5)) should state the same physical
conditions. The gradient ∇� will have the same magnitude and the kinematic velocity v
is given by Eq. (13.8). Therefore, the zero-velocity normal to a solid surface boundary
condition, in the body frame, becomes

(∇� + v) · n = 0 (in x, y, z coordinates) (13.13)

Here n is the normal to the body’s surface, in terms of the body coordinates (x, y, z).
If we use Eq. (13.8a) with vrel representing the motion of the body in the (x, y, z)

coordinates, Eq. (13.13) becomes

(∇� − V0 − vrel − Ω × r) · n = 0 (in x, y, z coordinates) (13.13a)

Note that this boundary condition can be derived directly by using Eq. (2.27) of Chapter 2.
According to that terminology, the surface is defined in the body frame of reference by F as

F = z − η(x, y, t) = 0
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Application of Eq. (2.27) ((DF/Dt) = 0) in the (X, Y, Z ) coordinate system where the
particles move with a velocity ∇� yields

DF

Dt X,Y,Z
= ∂ F

∂t
+ ∇� · ∇F = 0

Transferring this expression into the (x, y, z) system requires the transformation of the
∂ F/∂t term by using Eq. (13.11) and with the second term remaining unchanged this
becomes

∂ F

∂t
− (V0 + Ω × r) · ∇F + ∇� · ∇F = 0

Recalling that in the body’s frame of reference ∂ F/∂t = −∂η/∂t and according to Eq.
(2.26) ∇F/|∇F | = n we get

[∇� − (V0 + Ω × r)] · n − ∂η/∂t

|∇F | = 0

The last term represents the relative motion within the body’s frame of reference and by
exchanging (∂η/∂t)/|∇F | with a possible three-dimensional relative motion vrel · n we get

[∇� − (V0 + Ω × r)] · n − vrel · n = 0

which is identical to the previous result of Eq. (13.13a).
In the case of more complex flowfields, when the modeling of nonzero velocity compo-

nents across the boundaries is desired (e.g., engine inlet/exit flows or simulation of boundary
layer displacement by blowing) a transpiration velocity VN can be added:

(∇� − V0 − vrel − Ω × r) · n = VN (13.13b)

The most important conclusion from these results (Eqs. (13.12) and (13.13)) is that for
incompressible flows the instantaneous solution is independent of time derivatives. That is,
since the speed of sound is assumed to be infinite, the influence of the momentary boundary
condition is immediately radiated across the whole fluid region. Therefore, steady-state
solution techniques can be used to treat the time-dependent problem by substituting the
instantaneous boundary condition (Eq. (13.13)) at each moment. The wake shape, however,
does depend on the time history of the motion and consequently an appropriate vortex wake
model has to be developed.

For many situations involving lifting problems the wake separation line has to be pre-
scribed. As in the case of the steady-state flows the Kutta condition is assumed to be valid
for the time-dependent case as well (for attached flows with reduced frequencies of less
than 1 where the reduced frequency k = ωL/2U∞ is defined in a manner similar to Eq.
(1.52)). Therefore, along trailing edges of lifting surfaces, the velocity has to be finite (to
fix the rear stagnation line) and

∇� < ∞ (at trailing edges) (13.14)

13.2 Method of Solution

The continuity equation (Eq. (13.12)) is exactly the same as the corresponding
steady-state equation and consequently solution methods similar to those presented in the
previous (steady-state flow) chapters can be used. Recalling the formulation, based on
Green’s identity (Section 3.3), we can construct the general solution to Eq. (13.12) by
integrating the contribution of the basic solutions of source σ and doublet μ distributions



P1: FIN

CB329-13 CB329/Katz September 20, 2000 14:33 Char Count= 0

374 13 / Unsteady Incompressible Potential Flow

over the body’s surface and its wakes:

�(x, y, z) = 1

4π

∫
body+wake

μn · ∇
(

1

r

)
dS − 1

4π

∫
body

σ

(
1

r

)
dS (13.15)

This formulation does not include directly a vortex distribution; however, it was demon-
strated earlier (e.g., in Section 10.4.3) that doublet distributions can be exchanged with
equivalent vortex distributions. Also, from this point and on, the velocity potential � is
considered to be specified in terms of the body’s coordinate system.

This singular element solution automatically fulfills the boundary condition of Eq. (13.5).
To satisfy the boundary condition of Eq. (13.13), Eq. (13.15) is differentiated with respect
to the body coordinates. The resulting velocity induced by the combination of the doublet
and source distributions is then

∇� = 1

4π

∫
body+wake

μ∇
[

∂

∂n

(
1

r

)]
dS − 1

4π

∫
body

σ∇
(

1

r

)
dS (13.16)

In order to establish the Neumann form of the boundary value problem, the local velocity
at each point on the body has to satisfy the zero normal flow condition across the body’s
surface (Eq. (13.13) or, in the case of transpiration, Eq. (13.13b)). Substitution of Eq. (13.16)
into Eq. (13.13a) allows us to form the final integral equation with the unknown μ and σ

distributions:{
1

4π

∫
body+wake

μ∇
[

∂

∂n

(
1

r

)]
dS − 1

4π

∫
body

σ∇
(

1

r

)
dS

− V0 − vrel − Ω × r

}
· n = 0 (13.17)

For thick bodies, this condition of zero normal flow across solid boundaries can be
defined by using the Dirichlet formulation of Section 9.2. In this case the inner perturbation
potential is assumed to be constant such that

�i = const.

By selecting �i = 0 for the velocity potential (observe that the problem is formulated in the
inertial (X, Y, Z ) frame of reference where �∞ = 0, and the magnitude of � corresponds
to the perturbation potential1 in the steady-state flow case) a formulation similar to Eq.
(9.11) is obtained:

1

4π

∫
body+wake

μ
∂

∂n

(
1

r

)
dS − 1

4π

∫
body

σ

(
1

r

)
dS = 0 (13.18)

Equations (13.17) and (13.18) still do not uniquely describe a solution since a large number
of source and doublet distributions will satisfy a set of such boundary conditions. It is
possible to set the doublet strength or the source strength to zero, in a manner similar to
the thick and thin wing cases (as in Chapter 11). A frequently followed choice for panel
methods (e.g., PMARC9.7,9.8) is to set the value of the source distribution equal to the local
kinematic velocity (the time-dependent equivalent of the free-stream velocity). To justify
this, observe the Neumann boundary condition of Eq. (13.13a), which states that on the
solid boundary,

∂�

∂n
= (V0 + vrel + Ω × r) · n

1 For convenience, therefore, in this chapter � is often referred to as a perturbation potential.
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Figure 13.2 Possible assumption for wake shape near the trailing edge.

But Eq. (3.12) states that the jump in the local normal velocity component is

−σ = ∂�

∂n
− ∂�i

∂n

and since �i = 0 then also ∂�i/∂n = 0 on the solid boundary SB . By substituting ∂�/∂n,
the source strength becomes

σ = −n · (V0 + vrel + Ω × r) (13.19)

13.3 Additional Physical Considerations

The above mathematical formulation, even after selecting a desirable combination
of sources and doublets and after fulfilling the boundary conditions on the surface SB (in
Fig. 13.2), is not unique. As we have seen in the previous chapters, for lifting flow conditions
the magnitude of circulation depends on the wake shape and on the location of the wake
shedding line and, therefore, an appropriate wake model needs to be established. Following
the practice of the previous chapters, we will base the wake model on some additional
physical conditions (e.g., the Kutta condition) as described next.

a. Wake Strength
The simplest solution to this problem is to apply the two-dimensional Kutta con-

dition along the trailing edges (T.E.) of lifting wings (see Fig. 13.2):

γT.E. = 0 (13.20)

The validity of this assumption depends on the component of the kinematic velocity normal
to the trailing edge, which must be much smaller than the characteristic velocity (e.g., Q∞)
for Eq. (13.20) to be valid (see additional discussion of this condition in Section 13.11).

Also, the Kelvin condition can be used to calculate the change in the wake circulation:

d�

dt
= 0 (13.6)

b. Wake Shape
Following the requirement of Section 9.3, that the wake is force free, the Kutta–

Joukowski theorem (Section 3.11) states that

Q × γW = 0 (13.21)

When the wake is modeled by a vortex distribution of strength γW , Eq. (13.21) can be
interpreted as a requirement that the velocity should be parallel to the circulation vector,

γW ‖Q (13.21a)
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Furthermore, in most cases the trailing edge has a finite angle and an additional assump-
tion has to be made about the angle at which the wake leaves the trailing edge. In these
cases it is usually sufficient to assume that the wake leaves the trailing edge at a median
angle δT.E./2, as shown in Fig. 13.2.

13.4 Computation of Pressures

Solution of Eq. (13.12) will provide the velocity potential and the velocity com-
ponents. Once the flowfield is determined the resulting pressures can be computed by the
Bernoulli equation. In the inertial frame of reference this equation is [note that (∇�)2 =
∇� · ∇� = (u2 + v2 + w2)]

p∞ − p

ρ
= (∇�)2

2
+ ∂�

∂t
= 1

2

[(
∂�

∂ X

)2

+
(

∂�

∂Y

)2

+
(

∂�

∂ Z

)2]
+ ∂�

∂t

(in X, Y, Z coordinates) (13.22)

The magnitude of the velocity ∇� is independent of the frame of reference (only the
resolution of the velocity vector into its components is affected) and therefore the form
of the first term in this equation remains unchanged. The time derivative of the velocity
potential, however, is affected by the frame of reference and must be evaluated by using Eq.
(13.11); therefore, the pressure difference p∞ − p will have the form13.2

p∞ − p

ρ
= 1

2

[(
∂�

∂x

)2

+
(

∂�

∂y

)2

+
(

∂�

∂z

)2]
− (V0 + Ω × r) · ∇� + ∂�

∂t

(in x, y, z coordinates) (13.23)

In the case of three-dimensional panel methods it is often simpler to use the instantaneous
Bernoulli equation, in its original form (Eq. (2.35)):

pref − p

ρ
= Q2

2
− v2

ref

2
+ ∂�

∂t
(13.24)

Here Q and p are the local fluid velocity and pressure values, pref is the far field reference
pressure, and vref is the magnitude of the kinematic velocity as given in Eq. (13.8):

vref = −[V0 + Ω × r] (13.25)

It is often convenient to express this kinematic velocity in the direction of the moving
(x, y, z) frame as [U (t), V (t), W (t)], which can be obtained by a simple transformation f1

(which is a function of the momentary rotation angles φ, θ, ψ , resembling Eq. (13.7a)):⎛
⎜⎝

U

V

W

⎞
⎟⎠ = f1(φ, θ, ψ)

⎛
⎜⎝

vrefX

vrefY

vrefZ

⎞
⎟⎠ (13.26)

The total velocity at an arbitrary point (or collocation point k in the case of a numerical
solution) on the body is the sum of the local kinematic velocity (e.g., the reference velocity
in Eq. (13.25)) plus the perturbation velocity,

Qk = (
vrefl , vrefm , vrefn

)
k + (ql , qm, qn)k (13.27)

where (l, m, n)k are the local tangential and normal directions (see Fig. 9.10) and the
components of vref in these directions are obtained by a transformation similar to Eq. (13.26).
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The local perturbation velocity is (ql , qm, qn) = (∂�/∂l, ∂�/∂m, ∂�/∂n) and of course the
relative normal velocity component on the solid body is zero. The pressure coefficient can
now be computed for each panel as

C p = p − pref

(1/2)ρv2
ref

= 1 − Q2

v2
ref

− 2

v2
ref

∂�

∂t
(13.28)

or if we use Eq. (13.23) then the pressure coefficient becomes

C p = p − pref

(1/2)ρv2
ref

= − (∇�)2

v2
ref

+ 2

v2
ref

[V0 + Ω × r] · ∇� − 2

v2
ref

∂�

∂t
(13.28a)

Note that in situations such as the forward flight of a helicopter rotor vref can be selected
as the forward flight speed or the local blade speed at each section on the rotor blade.
Consequently, different values of the pressure coefficient will be obtained – and this matter
is usually left to be determined by the particular application.

The contribution of an element with an area of �Sk to the aerodynamic loads �Fk is

�Fk = −C pk

(
1

2
ρv2

ref

)
k

�Sknk (13.29)

(Note that vref here has a subscript k, which means that it depends on the body coordinates.
This assignment is usually not recommended but may be used in cases such as the forward
flight of a helicopter rotor.)

Once the potential field and the velocity field are obtained, the corresponding pressure
field is calculated using Eq. (13.28a) and additional information such as forces, moments,
surface velocity surveys, etc. can be obtained.

13.5 Examples for the Unsteady Boundary Condition

As a first example, let us investigate several simple motions and the corresponding
derivation of the boundary conditions. Consider a flat plate at an angle of attack α moving
at a constant velocity U∞ in the negative X direction, as shown in Fig. 13.3. The translation
of the origin is

V0 = (Ẋ0, Ẏ0, Ż0) = (−U∞, 0, 0)

and the rotation is

Ω = 0

The vector n on the flat plate and in the body frame is

n = (sin α, 0, cos α)

Figure 13.3 Translation of a flat plate placed in the (x, y, z) system with a speed of (−U∞, 0, 0).
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Figure 13.4 Motion of a flat plate along a circular arc with radius d.

Substitution of these values into the boundary condition (Eq. (13.13a)) results in

(∇� − V0 − Ω × r) · n =
(

∂�

∂x
+ U∞, 0,

∂�

∂z

)
· (sin α, 0, cos α) = 0

and by assuming that α � 1 and ∂�/∂x � U∞, we reduce this to the classical result

∂�

∂z
= −

(
U∞ + ∂�

∂x

)
tan α ≈ −U∞α (13.30)

For the second example consider a one degree of freedom motion along a circular arc
(Fig. 13.4) with a radius of d . If the origin ( )0 is moving with a speed of U∞, then

(Ẋ0, Ẏ0, Ż0) = (−U∞ cos θ, 0, U∞ sin θ )

But it is easy to observe that V0, at any moment, resolved in the direction of the (x, y, z)
system, will be

V0 = (−U∞, 0, 0)

The rotation for this case is (q = θ̇ )

Ω = (0, θ̇ , 0)

where

θ̇ = U∞
d

and

Ω × r = (θ̇ z, 0, −θ̇x)

Also, the normal is n = (0, 0, 1). The boundary condition for a flat plate (at zero angle of
attack in its coordinate system) is then

(∇� − V0 − Ω × r) · n =
(

∂�

∂x
− θ̇ z + U∞, 0,

∂�

∂z
+ θ̇x

)
· (0, 0, 1) = 0
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Figure 13.5 Description of the motion of a helicopter rotor in hover.

which results in

∂�

∂z
= −θ̇x = −U∞

x

d
(13.31)

Note that there is an upwash of w = θ̇x due to this motion (see Fig. 13.4), resulting in
lift (even though α = 0 in the flat plate’s coordinate system). Furthermore, it is clear from
this example that if the wing’s leading edge is placed at x = −c then instead of an upwash
the wing will be subject to a downwash (or negative lift). Therefore, the location of the
rotation axis is very important in motions with body rotations.

Next consider the rotation of a helicopter rotor in hover (Fig. 13.5) at a rate r = ψ̇ . For
this case

V0 = (0, 0, 0)

Ω = (0, 0, ψ̇)

Ω × r = (−ψ̇ y, ψ̇x, 0)

n = (sin α, 0, cos α)

The boundary condition for a flat plate rotor, at an angle of attack α, is

(∇� − V0 − Ω × r) · n =
(

∂�

∂x
+ ψ̇ y,

∂�

∂y
− ψ̇x,

∂�

∂z

)
· (sin α, 0, cos α) = 0

which results in

∂�

∂z
=

(
ψ̇ y + ∂�

∂x

)
tan α (13.32)

Note that to the rotor blade sections the oncoming velocity seems to increase with the
radius |y|, and consequently most of the loads will be generated close to the tips.
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Figure 13.6 Description of the motion of a rotating propeller.

Similarly, the boundary condition for a statically spinning propeller blade can be estab-
lished by rotating the blades at a rate p = φ̇ about the x axis as shown in Fig. 13.6 (observe
the definition of α in Fig. 13.6 for this example).

For this case

V0 = (0, 0, 0)

Ω = (φ̇, 0, 0)

Ω × r = (0, −φ̇z, φ̇y)

n = (sin α, 0, cos α)

and α is defined here in a similar manner to the wing at angle of attack. The boundary
condition for a flat propeller blade is

(∇� − V0 − Ω × r) · n =
(

∂�

∂x
,
∂�

∂y
+ φ̇z,

∂�

∂z
− φ̇y

)
· (sin α, 0, cos α) = 0

which results in

∂�

∂z
= −∂�

∂x
tan α + φ̇y (13.33)

Again, most of the load will be generated at the tips where φ̇|y| is the largest. Also, if
the propeller advances at a speed of U∞ parallel to its x axis, then the boundary condition
becomes

∂�

∂z
= −

(
∂�

∂x
+ U∞

)
tan α + φ̇y (13.34)

13.6 Summary of Solution Methodology

The results of Sections 13.1–13.4 indicate that the unsteady flow method of solution
is very similar to the steady-state methods presented in the previous chapters. Therefore,
it is possible to use those steady-state methods with only a few small modifications. These
modifications can be limited to three sections of the analytical or the numerical model and
in general are:

1. Update of the “zero normal flow on a solid surface” boundary condition to include
the kinematic velocity components (as in Eq. (13.13a)).

2. Similarly, use of the modified unsteady Bernoulli equation (as in Eq. (13.23)).
3. Construction of a wake model, based on the requirements of Section 13.3.
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The first two modifications are very minor and local (in terms of computing); however,
the third modification is more elaborate and in the following sections a simple vortex wake
model will be used.

Based on these conclusions the rest of this chapter is concerned with presenting examples
for the transformation of some analytical and numerical methods into the time-dependent
mode.

13.7 Sudden Acceleration of a Flat Plate

One of the simplest and yet the most basic examples of unsteady aerodynamics is
the sudden acceleration motion of an airfoil.13.3 This example will be studied first by the
simple lumped-vortex method so that the most basic differences between this case and the
steady flow case will be highlighted.

Consider the thin, uncambered airfoil shown in the upper part of Fig. 13.7 to be at rest
at t < 0. Then at t = 0 the airfoil is suddenly accelerated to a constant velocity U∞. The
boundary condition for t > 0 and for small α, according to Eq. (13.30), is

∂�

∂z
= −

(
U∞ + ∂�

∂x

)
tan α ≈ −U∞α, t > 0

Figure 13.7 Development of the wake after the plunging motion of a flat plate as modeled by a single
lumped-vortex element.



P1: FIN

CB329-13 CB329/Katz September 20, 2000 14:33 Char Count= 0

382 13 / Unsteady Incompressible Potential Flow

Now let us represent the airfoil by a lumped-vortex element. By doing so, a single vortex
solution is selected instead of the more general form of Eq. (13.15) that includes doublets
and sources. Also, by placing the vortex at the quarter chord, the Kutta condition is assumed
to be satisfied for this case.

At this point also a wake model has to be established and here a discrete vortex wake
is selected (Fig. 13.7). Now at a time t1 = �t , the airfoil already has traveled a distance
U∞�t and its circulation is �(t1). Recalling Kelvin’s theorem (Eq. (13.6)), we see that the
airfoil bound circulation has to be canceled with a starting vortex (Fig. 13.7 at t1 = �t).
The concentrated wake vortex has to be placed along the path traveled by the trailing
edge, during this interval, so that the discretization effect will be minimal. At this point
the middle of the interval is selected and the effect of this choice can be demonstrated
later.

The zero normal flow boundary condition is satisfied at the collocation point at the plate’s
three-quarter chord point (as shown by the x in Fig. 13.7) where the downwash induced by
the bound vortex is −�(t1)/2π (c/2) and the downwash induced by the first wake vortex is
approximated by �W1/{2π [(c/4) + (U∞�t/2)]}, assuming α � 1. The boundary condition
∂�/∂z = −U∞α for the first time step then becomes

−�(t1)

2π (c/2)
+ �W1

2π [(c/4) + (U∞�t/2)]
= −U∞α

This equation can be rewritten in the form

wb + wW + U∞α = 0

which indicates that the sum of the normal velocity induced by the airfoil wb, the wake wW ,
and the free stream must be zero. An additional equation is obtained by using the Kelvin
condition:

d�

dt
= �(t1) + �W1 = 0

Note that � is considered positive for right-hand rotation, and in Fig. 13.7 for illustration
purposes and with the knowledge of the solution, the wake vortex is drawn in the negative
direction.

The above set of two equations with two unknowns is solved for �(t1) and �W1 . Now,
after the second time step the airfoil has moved to a new location, as shown in the figure
(for t2 = 2�t). It was assumed in Section 2.9 that for high Reynolds number flows, vortex
decay is negligible (and zero for irrotational flow) and therefore the strength of �W1 will
not change with time. It is possible to calculate the induced velocity at the wake vortex and
then move it along the local streamline, but for simplicity it is assumed here that its location
remains unchanged (in the inertial frame).

At t = 2�t , the two equations describing the no normal flow across the airfoil boundary
condition and the Kelvin condition are

−�(t2)

πc
+ �W2

2π [(c/4) + (U∞�t/2)]
+ �W1

2π [(c/4) + (U∞3�t/2)]
= −U∞α

�(t2) + �W2 + �W1 = 0

This set is solved for �(t2) and �W2 , while �W1 is known from the previous calculation at
t = t1.
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Figure 13.8 Variation of lift and circulation after the initiation of a sudden forward motion of a
two-dimensional flat plate.

At t = 3�t , the two equations can be written in a similar manner:

−�(t3)

πc
+ �W3

2π [(c/4) + (U∞�t/2)]
+ �W2

2π [(c/4) + (U∞3�t/2)]

+ �W1

2π [(c/4) + (U∞5�t/2)]
= −U∞α

�(t3) + �W3 + �W2 + �W1 = 0

Again this set is solved for �(t3) and �W3 , while �W2 and �W1 are known from the previous
calculations.

In this simplified analysis it was assumed that α is very small and the distance to the
collocation points can be approximated by [(c/4) + (U∞�t/2)], [(c/4) + (U∞3�t/2)], . . .
and that the induced velocity is normal to the surface. Of course, numerically this error can
easily be corrected.

The results of this computation for �(t) (shown by the circles), along with a more accurate
solution, are presented in Fig. 13.8. The circulation at t = 0 is zero since the airfoil is still
at rest. At t > 0 the circulation increases but is far less than the steady-state value due to the
downwash of the starting vortex. In this two-dimensional case the increase of the circulation
is slow and this transient growth extends to infinity.

To compute the lift, the small disturbance approximation (U∞ � ∇�) is applied to the
unsteady Bernoulli equation (Eq. (13.23)),

p∞ − p = ρ

[
(U∞, 0, 0) · ∇� + ∂�

∂t

]

and the pressure difference between the airfoil’s upper and lower surface is

�p = 2ρ

(
U∞ · γ

2
+ ∂�

∂t

)
= ρU∞γ (x) + ρ

∂

∂t

∫ x

0
γ (x) dx (13.35)

Here we used the results of Eq. (3.147) for a planar vortex distribution where the upper
surface induced velocity is ∇� = (γ /2, 0, 0).
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For the lumped-vortex method there is only one airfoil vortex and therefore the lift L ′

per unit span is

L ′ =
∫ c

0
�p dx = ρ

[
U∞�(t) + ∂

∂t
�(t) · c

]
(13.36)

Results of this simple model (triangular symbols) along with the exact solution of
Wagner13.3 are presented in Fig. 13.8. The lift at t = 0+ is exactly half of the steady-
state lift, but this lift is not due to the airfoil circulation (circulatory force) but due to the
acceleration portion of the lift that results from the change in the upwash (∂�/∂t). The
magnitude of this force due to fluid acceleration becomes smaller with the reduced influ-
ence of the starting vortex. At t = 0 when the airfoil was suddenly accelerated from rest
the lift was infinite, owing to this acceleration term as shown in Fig. 13.8.

It is interesting to point out that for a two-dimensional airfoil there is a drag force during
the transient. This drag force will have two components, owing to the two terms of the lift in
Eq. (13.36). The first is due to the wake-induced downwash, which rotates the circulatory
lift term by an induced angle wW /U∞. The second is due to the fluid acceleration ∂�/∂t ,
which acts normal to the flat plate and its contribution to the drag is α times the second lift
term in Eq. (13.36). Consequently, the drag force per unit span is

D = ρ

[
wW (x, t)�(t) + ∂

∂t
�(t)cα

]
(13.37)

Here the first term is due to the wake-induced downwash wW (x, t), which in the lumped-
vortex case is evaluated at the three-quarter chord point. The second term is due to the fluid
acceleration and its center of pressure is at the center of the

∫ c
0 ẇ(x, t)dx term, which is

closer to the aft section of the airfoil and varies with time. Calculated drag coefficients with
this method and with a more accurate method13.2 are presented in Fig. 13.9.

Figure 13.9 Variation of drag after the initiation of a sudden forward motion of a two-dimensional
flat plate.
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Figure 13.10 Wake circulation distribution behind a flat plate that was suddenly set into motion.

While examining the wake vorticity as presented in Fig. 13.10, it can be observed that
the first vortices are the strongest and that all vortices have counterclockwise (negative)
values. Consequently, when the wake is allowed to roll up, as a result of the velocity field
induced by the wake and the airfoil, the shape shown in Fig. 13.11 will be obtained.

A simple computer program based on the formulation of this section is presented in
Appendix D, Program No. 15.

13.7.1 The Added Mass

In situations when a body is accelerated in a fluid, it is possible to use Newton’s
second law, in its simplest form, to compute the force F acting on the body. For example,
if the body’s motion is parallel to the z axis then

F = m tot
dw

dt

Of course the mass m tot consists of the mass of the body m and of the fluid m ′ that is being
accelerated as well. Unfortunately, the evaluation of the added mass (m ′) is not always easy
since in most situations the local fluid acceleration may be caused by effects other than the
body’s motion (e.g., in the case of a time-dependent wake-induced downwash). However,
in the case of a constant acceleration of a flat plate normal to itself, in a fluid at rest, the
added mass can be more easily evaluated (see also Section 8.2.3).

Consider the flat plate of Fig. 13.12 accelerating in a fluid, such that the acceleration
ẇ is constant (see also Fig. 8.24). Since the continuity equation is independent of time, at
each frozen moment the potential will be similar to the steady-state flow potential of the

Figure 13.11 Wake rollup behind a two-dimensional flat plate that was suddenly set into motion.
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Figure 13.12 A flat plate in a sinking motion.

flow normal to the plate. From Section 6.5.3 the potential for such a flow is

�± = ±w

√(
b

2

)2

− y2 = ±w
b

2

√
1 −

(
y

b/2

)2

(13.38)

where + is used for the potential above the plate and − is used for the potential below it.
This is an elliptic distribution of the potential, similar to the one obtained in Chapter 8 for
the lifting-line and slender wing theories. Because of the antisymmetry between the upper
and lower surfaces

��(y) = 2�+(y) = wb

√
1 −

(
y

b/2

)2

(13.39)

It is interesting to point out that �� in this equation can be replaced by �, and its derivative
is the spanwise circulation γ (y) as shown in Fig. 13.13. Examination of the terms in the
pressure equation (Eq. (13.23)) reveals that for this motion (V0 + Ω × r) · ∇� = (0, 0, w) ·
∇� = 0 since ∇� will have a y component only, on the plate’s surface. (This can be
deduced from Fig. 13.13, too, by observing that the “traditional” lift γ × (0, 0, w) has no
vertical component.) Therefore, the pressure difference is due to the velocity potential’s

Figure 13.13 Spanwise circulation on a flat plate in a sinking motion.
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time derivative ∂�/∂t , only, in the unsteady Bernoulli equation, and is

�p = ρ
∂

∂t
�� = ρb

√
1 −

(
y

b/2

)2
∂w(t)

∂t
(13.40)

The integral is easily evaluated by recalling that the area of the ellipse is πb/4 and the lift
L ′ of a massless plate becomes

L ′ =
∫ b/2

−b/2
�p dy = π

4
ρb2 ∂w(t)

∂t
= π

4
ρb2ẇ (13.41)

Note that because of the left/right symmetry, the center of pressure is at y = 0. Also, the lift
is created only if the plate is under acceleration and the amount of fluid being accelerated
(added mass) is equal to the mass of a fluid cylinder with a diameter of b (m ′ = ρb2π/4),
and in summary we can write

L ′ = m ′ẇ (13.41a)

13.8 Unsteady Motion of a Two-Dimensional Thin Airfoil

As is indicated in Section 13.6, steady-state flow methods can be extended to treat
the time-dependent problem with only a few modifications. Following this methodology,
in this section we treat the time-dependent equivalent of the small-disturbance, thin, lifting
airfoil in steady flow (Sections 5.2–5.4). One of the more difficult aspects of this unsteady
problem is the modeling of the vortex wake’s shape and strength, which depend on the time
history of the motion. By selecting a discretized vortex wake model at the early stages of
this discussion we limit ourselves mostly to numerical solutions. Nonetheless, this approach
allows for a simple formulation (which is clear and easy to explain to students) that avoids
an elaborate mathematical treatment of the wake influence integral.

The two-dimensional, thin lifting surface with a chord length of c is shown schematically
in Fig. 13.14. At t = 0 the airfoil is at rest in the inertial system X, Z , and at t > 0 it moves
along a time-dependent curved path, S. (Note that the fluid in Fig. 13.14 is basically at

Figure 13.14 Nomenclature for the unsteady motion of a two-dimensional thin airfoil. (Note that the
motion is observed from the X, Z coordinate system and the airfoil moves toward the left side of the
page.)
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rest and the airfoil moves toward the left of the page.) For convenience, the coordinates
x, z are selected such that the origin is placed on the path S, and the x coordinate axis
is always tangent to the path. The airfoil shape (camberline) is given in this coordinate
system by η(x, t), which is considered to be small (η/c � 1). Since small-disturbance
motion is assumed, the path radius of curvature � is also much larger than the chord c
(or c/� = θ̇c/U (t) � 1).

13.8.1 Kinematics

In Section 13.1 (Eq. (13.12)) it was shown that the continuity equation in the
moving frame of reference x, z remains as

∇2� = 0 (13.42)

where � is the equivalent of the steady-state perturbation potential.
The time-dependent version of the boundary condition requiring no normal flow across

the surface is given by Eq. (13.13a):

(∇� − V0 − vrel − Ω × r) · n = 0 (13.43)

In this section the instantaneous shape of the airfoil is given by η(x, t) and therefore the
vector n normal to the surface is

n = (−∂η/∂x, 0, 1)√
(∂η/∂x)2 + 1

(13.44)

To establish the kinematic relations for the airfoil’s motion (according to Eq. (13.8)) the
instantaneous velocity and orientation of the x, z system can be described by a flight velocity
U (t) and a rotation θ̇ about the y coordinate. Note that the x coordinate was selected such
that the instantaneous velocity of the origin ( )0 (of Eq. (13.9a)), resolved into the directions
of the x, z coordinate system, is

V0 = [−U (t), 0, 0] (13.45)

The instantaneous rotation is then

Ω = [0, θ̇ (t), 0] (13.46)

Also, by allowing a relative motion of the chordline within the coordinate system x, z we
get the relative velocity from Eq. (13.9c) of

vrel =
(

0, 0,
∂η

∂t

)
(13.47)

At this point, it is convenient to divide the velocity potential � into an airfoil potential
�B and to a wake potential �W (for example, if a time-stepping numerical approach is used,
then the strengths of the wake singularities are assumed to be known and only the airfoil’s
singularity distribution �B must be obtained):

� = �B + �W (13.48)

Evaluating the product

Ω × r = (θ̇ z, 0, −θ̇x)
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and substituting Eqs. (13.45)–(13.47) into the boundary condition (Eq. (13.43)) we obtain(
∂�B

∂x
+ ∂�W

∂x
+ U − θ̇ z, 0,

∂�B

∂z
+ ∂�W

∂z
+ θ̇x − ∂η

∂t

)
·
(

− ∂η

∂x
, 0, 1

)
= 0

(13.49)

This can be rearranged in terms of the boundary condition for the unknown potential �B :

∂�B

∂z
=

(
∂�B

∂x
+ ∂�W

∂x
+ U − θ̇ z

)
∂η

∂x
− ∂�W

∂z
− θ̇x + ∂η

∂t
≡ W (x, t)

(13.50)

The main advantage of this formulation lies in the previous assumption that if the wake
potential is known (and it is usually known from the previous time steps, when a time-
stepping solution is applied) then the solution can be reduced to solving an equivalent
steady-state flow problem, at each time step. For example, if this model is compared to the
thin, lifting airfoil of Section 5.2 then the boundary condition of Eq. (13.50) is equivalent
to the steady-state boundary condition of Eq. (5.29). Therefore, by exchanging the local
downwash W (x, t) with the right-hand side of Eq. (5.29), the methods of solution developed
in Chapter 5 can be applied at each moment. Also, note that the boundary condition (Eq.
(13.50)) is not reduced to its small-disturbance approximation yet and can be specified
(numerically) on the airfoil’s surface and not on the z = 0 plane.

13.8.2 Wake Model

As was discussed in Sections 4.7 and 13.3, the wake shed from the trailing edges of
lifting surfaces can be modeled by doublet or vortex distributions. In the two-dimensional
case the unsteady airfoil’s wake will be shed only if the airfoil’s circulation varies with
time (Kelvin’s condition). Therefore, if the airfoil circulation is varying continuously, then
a continuous vortex sheet will be shed at the trailing edge, as shown in Fig. 13.15a. For
simplicity, a discrete-vortex model of this continuous vortex sheet is approximated here,
as shown in Fig. 13.15b. The strength of each vortex �Wi is equal to the vorticity shed
during the corresponding time step �t such that �Wi = ∫ t

t−�t γW (t)U (t)dt . Consequently,

Figure 13.15 Discretization of the wake’s continuous vortex distribution by the use of discrete vor-
tices.
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Figure 13.16 Method of placing the latest discrete-vortex wake on the path covered by the trailing
edge during the current time step. (Note that in this figure, too, the fluid is at rest and the airfoil moves
toward the left side of the page.)

for each vortex element, its strength and location must be specified. In regard to specifying
wake vortex location, consider the first wake element after the beginning of the motion, as
shown in Fig. 13.16. The wake was probably shed at the airfoil’s trailing edge, which moved
during the latest time step along the dashed line. (Note, again, that in this figure the fluid is
stationary and the airfoil moves to the left.) So at first estimate it will be placed on this line.
The distance and relative angle to the trailing edge are important numerical parameters,
and usually the wake vortex location should be aligned with the trailing edge and be placed
closer to the latest position of the trailing edge. (This is so, since the discrete vortex when
placed at the middle of this interval is an approximation that underestimates the induced
velocity when compared with the continuous wake vortex sheet result. This is mainly due
to the small distance (zero distance) of the continuous wake from the trailing edge during
the time interval, compared to the relatively larger distance of an equivalent discrete vortex
with similar vorticity placed amid the interval of the latest time step. A typical numerical
approach to correct for this wake-discretization error is to place the latest vortex closer to
the trailing edge (e.g., within the range of 0.2–0.3 U (t)�t , as shown in Fig. 13.16).)

The strength of the latest vortex element is calculated by using Kelvin’s condition (Eq.
(13.6)), which states that

d�

dt
= d�(t)

dt
+ d�W

dt
= 0 (13.51)

where �(t) is the airfoil’s circulation and �W is the wake’s circulation, respectively. For the
first time step

�(t) + �W1 = 0

and for the i th time step

�Wi = −[�(ti ) − �(ti−1)] (13.52a)

or by assuming that the Kelvin condition was met at the previous time step then

�Wi = −
[
�(ti ) +

i−1∑
k=1

�Wk

]
(13.52b)
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It must be noted, too, that the Helmholtz theorems of Section 2.9 imply that there is no vor-
tex decay. That is, if a wake vortex element is shed from the trailing edge its strength will be
conserved (which is a good practical approximation for most high Reynolds number flows).

Since the vortex wake is force free, each vortex must move with the local stream velocity
(Eq. (13.21a)). The local velocity is a result of the velocity components induced by the
wake and airfoil (wing) and is usually measured in the inertial frame of reference X, Z . To
achieve the vortex wake rollup, at each time step the combined airfoil and wake-induced
velocity (u, w)i is calculated and then the vortex elements are moved by

(�x, �z)i = (u, w)i�t (13.53)

In this simple scheme the velocity components and vortex positions of the current time step
are used. But more refined techniques can be applied here to improve the wake shape near
the trailing edge (by using information from the current and previous time steps).

13.8.3 Solution by the Time-Stepping Method

The above presentation of the thin airfoil fluid dynamics is formulated as an initial
value problem. Typical initial conditions can be a steady-state motion or a start from rest.
In the latter case there is no wake at t = 0 and the first wake element is formed at t = �t .
Consider the airfoil after the first time step �t , as shown in Fig. 13.17a. The problem at
this moment is to obtain the flowfield details and to calculate the pressure difference across
the airfoil, in the presence of one wake vortex – which represents the vorticity shed at the
trailing edge since the initiation of the motion. To apply the results of the small-disturbance
solutions of Sections 5.2 and 5.3, the airfoil’s camber and angle of attack are assumed to
be small η/c � 1, and the path curvature must be large (θ̇c/U � 1), so that the boundary
conditions can be transferred to the z = 0 plane. If the lifting thin airfoil is modeled by
a chordwise vortex distribution γ (x, t), then at the first time step this problem resembles
exactly the model shown in Fig. 5.7, but with an additional wake vortex �W1 (Fig. 13.17a).
The downwash induced by the airfoil bound circulation γ (x, t) is given by Eq. (5.38) (note

Figure 13.17 Representation of the lifting thin wing by a continuous vortex distribution and the wake
by discrete vortex elements.
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that the boundary conditions are transferred to the z = 0 plane):

∂�B

∂z
(x, t)z=0 = −1

2π

∫ c

0
γ (x0, t)

dx0

x − x0
(13.54a)

At any later time the downwash of the NW discrete vortices of the wake (see Fig. 13.17b)
on the airfoil can be summed up numerically by using, for example, Eq. (11.1):

∂�W

∂z
(x, t)z=0 =

NW∑
k=1

−�k

2π

x − xk

(x − xk)2 + (z − zk)2
(13.54b)

where k is the counter of the wake vortices. The downwash of the bound vortex distribution
of Eq. (13.54a) must be equal to the right-hand side of the boundary condition in Eq.
(13.50):

W (x, t) =
(

∂�B

∂x
+ ∂�W

∂x
+ U − θ̇η

)
∂η

∂x
− ∂�W

∂z
− θ̇x + ∂η

∂t

≈ U
∂η

∂x
− ∂�W

∂z
− θ̇x + ∂η

∂t
(13.55)

where the smaller terms were neglected. Substitution of this approximate value of W (x, t)
and ∂�B/∂z from Eq. (13.54a) into the boundary condition (Eq. (13.50)) results in

−1

2π

∫ c

0
γ (x0, t)

dx0

x − x0
= U (t)

∂η(x, t)

∂x
− ∂�W

∂z
(x, t) − θ̇ (t)x + ∂η(x, t)

∂t
,

0 < x < c (13.56)

which is the time-dependent equivalent of the steady-state boundary condition (Eq. (5.39))
and must hold for each point x on the airfoil’s chord. In addition, the Kutta condition is
assumed to be valid for this flow (recall that θ̇c/U � 1):

γ (c, t) = 0 (13.57)

If the right-hand side of Eq. (13.56) is known then the solution for the vortex distribution is
given in Section 5.3. In fact, all terms appearing in the right-hand side are known (will have
numeric value) at any time t , excluding the latest wake vortex influence, which depends on
the solution γ (x, t). This difficulty can be overcome by assuming that the strength of the
latest wake vortex is also known, and adjusting for this assumption later.

The classical approach of Glauert, presented in Section 5.3, approximates γ (x, t) by a
chordwise trigonometric expansion at any time t . This requires the transformation of the
equations into trigonometric variables as appear in Eq. (5.45):

x = c

2
(1 − cos ϑ) (13.58)

Based on this transformation a solution similar to the vortex distribution of Eq. (5.48) is
proposed for the time-dependent problem (at each frozen moment, t):

γ (ϑ, t) = 2U (t)

[
A0(t)

1 + cos ϑ

sin ϑ
+

∞∑
n=1

An(t) sin(nϑ)

]
(13.59)

Substitution of this proposed solution into the boundary condition (see details in Section
5.3, Eqs. (5.49) to (5.53)) results in

W (x, t)

U (t)
= −A0(t) +

∞∑
n=1

An(t) cos(nϑ) (13.60)
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which is a trigonometric expansion of the momentary chordwise downwash. The coefficients
An were found in Section 5.3 (Eqs. (5.51) and (5.52)) and are

A0(t) = − 1

π

∫ π

0

W (x, t)

U (t)
dϑ, n = 0 (13.61)

An = 2

π

∫ π

0

W (x, t)

U (t)
cos nϑ dϑ, n = 1, 2, 3, . . . (13.62)

So at this point, if the momentary chordwise downwash W (x, t) is known, then the
momentary circulation distribution on the airfoil is known, too, from Eqs. (13.59), (13.61),
and (13.62). However, as mentioned before, the strength of the latest vortex �Wi (Fig. 13.17b)
in the downwash term is unknown, but it can be calculated by using Kelvin’s condition (Eq.
(13.51)). A simple iterative scheme to calculate the strength of this vortex is as follows: At
a given time step assume that the strength of the latest vortex �Wi is known (0 or �(t)/2
are reasonable initial assumptions). Then the total circulation (which must be zero for the
converged solution) can be expressed as

f (�) = �(t) + �Wi +
i−1∑
k=1

�Wk {= 0 for the converged solution} (13.63)

where the first term is the airfoil’s circulation, the second term is the latest wake vortex,
and the last term is the circulation of all the other wake vortices (which are known from the
previous time steps). The circulation of the airfoil is obtained by using Eq. (5.58):

�(t) =
∫ c

0
γ (x, t) dx =

∫ π

0
γ (ϑ, t)

c

2
sin ϑ dϑ

= 2U (t)
∫ π

0

[
A0(t)

1 + cos ϑ

sin ϑ
+

∞∑
n=1

An(t) sin(nϑ)

]
c

2
sin ϑ dϑ

= U (t)cπ

[
A0(t) + A1(t)

2

]
(13.64)

The iterations for determining the strength of the latest vortex element (using a simple
Newton–Raphson iteration) will have the form

(�Wi ) j+1 = (�Wi ) j − f (�Wi ) j

f ′(�Wi ) j
(13.65)

where j is the iteration counter and the derivative f ′(�) is approximated by

f ′(�) j = [ f (�) j − f (�) j−1]

(�Wi ) j − (�Wi ) j−1

The solution of the momentary airfoil’s vortex distribution �(t) can be summarized
such that, first, at a given time step ti the downwash W (x, t) is calculated by Eq. (13.55).
By assuming an initial vortex strength �Wi for the most recently shed trailing-edge vortex
we can calculate the wake influence via Eq. (13.54b). So now the chordwise downwash
W (x, t) can be calculated at any point along the chord and, for example, can be evaluated
at say fifty nodal points on the chordline. This allows the numerical computation of the
coefficients An(t) and f (�) (in Eqs. (13.61)–(13.63)). Then using Eq. (13.65) the next
value of the latest wake vortex is obtained, and this short iterative process (beginning with
the downwash calculation and ending with the value of the chordwise vortex distribution)
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is repeated. This simple iteration scheme will usually converge within 3–5 iterations and
this will conclude the solution of the vortex distribution for this time step.

13.8.4 Fluid Dynamic Loads

The fluid dynamic pressures and loads generated by the airfoil can be calculated
by using the unsteady Bernoulli equation:

p∞ − p

ρ
= 1

2

[(
∂�

∂x

)2

+
(

∂�

∂y

)2

+
(

∂�

∂z

)2]

− (V0 + Ω × r) · ∇� + ∂�

∂t
(13.23)

By recalling Eqs. (13.45) and (13.46), we obtain for the terms inside the second parentheses

−(V0 + Ω × r) = [U (t) − θ̇ (t)η, 0, θ̇ (t)x]

If the reduced frequency (θ̇c/U ) is small and the point of interest is on the airfoil surface
then the pressure equation becomes

p∞ − p

ρ
≈ U (t)

∂�

∂x
+ θ̇ (t)x

∂�

∂z
+ ∂�

∂t
(13.66)

In cases when ∂�/∂z has the same value both above and below the chordline (e.g., for thin
airfoils) then the second term is the same above and below the thin surface and this term
does not contribute to the pressure difference. For these cases the pressure equation can be
approximated as

p∞ − p

ρ
≈ U (t)

∂�

∂x
+ ∂�

∂t
(13.66a)

where the first term is similar to the steady-state term, but for the time-dependent case also
the change in the potential contributes to the pressures (due to the acceleration of the fluid).

The pressure difference across the airfoil �p (positive �p is in the +z direction) is then
two times the pressure increment at any one side of the thin surface:

�p = pl − pu = 2ρ

[
U (t)

∂�

∂x
+ ∂�

∂t

]
l

= ρ

[
U (t)

∂

∂x
�� + ∂

∂t
��

]
(13.67)

where��(x, t) = �(x, 0+, t) − �(x, 0−, t) = ∫ x
0 γ (x0, t)dx0 = �(x, t) and therefore the

pressure difference in terms of the airfoil chordwise circulation γ becomes

�p = ρ

[
U (t)γ (x, t) + ∂

∂t

∫ x

0
γ (x0, t) dx0

]
(13.67a)

The normal force on the thin airfoil is then

L ′ ≡ Fz =
∫ c

0
�p dx =

∫ c

0
ρ

[
U (t)γ (x, t) + ρ

∂

∂t
�(x, t)

]
dx

= ρU (t)�(t) + ρ

∫ c

0

∂

∂t
�(x, t) dx (13.68)

where the first term is due to the instantaneous circulation (and similar to the steady-state
circulatory term) and the second term includes the contribution of the time dependency.
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To evaluate the time derivative of the velocity potential in terms of the coefficients An

(appearing in Eq. (13.59)) recall that � = ∫
q · dl (or �� = ∫

γ dl). Then

∂

∂t
��(x, t) = ∂

∂t

∫ x

0
γ (x0, t) dx0 = ∂

∂t

∫ ϑ

0
γ (ϑ0, t)

c

2
sin ϑ0 dϑ0

= ∂

∂t

{
2U (t)

∫ ϑ

0

[
A0(t)

1 + cos ϑ0

sin ϑ0
+

∞∑
n=1

An(t) sin(nϑ0)

]
c

2
sin ϑ0 dϑ0

}

where x = c
2 (1 − cos ϑ). With the use of the integrals (see Ref. 5.7, p. 139)

∫ ϑ

0
sin2 ϑ0 dϑ0 = ϑ

2
− 1

4
sin 2ϑ

∫ ϑ

0
sin nϑ0 sin ϑ0 dϑ0 = sin(n − 1)ϑ

2(n − 1)
− sin(n + 1)ϑ

2(n + 1)

and after some algebra we get

∂

∂t
��(ϑ, t) = 2

{
B0(ϑ + sin ϑ) + B1

(
ϑ

2
− 1

4
sin 2ϑ

)

+
∞∑

n=2

Bn

[
sin(n − 1)ϑ

2(n − 1)
− sin(n + 1)ϑ

2(n + 1)

]}
(13.69)

where

Bn = c

2

∂

∂t
[An(t)U (t)], n = 0, 1, 2, 3, . . . (13.70)

For a given airfoil geometry, the mean camberline η(x, t) is a known value and the coef-
ficients A0(t), A1(t), A2(t), . . . can be computed by Eqs. (13.61) and (13.62) (assuming that
the wake influence is known). The pressure difference of Eq. (13.67) can be evaluated since
all terms in this equation depend on the coefficients An(t). The force in the z direction is then

L ′ ≡ Fz =
∫ c

0
�p dx = 2ρ

∫ π

0

{
U 2(t)

[
A0(t)

1 + cos ϑ

sin ϑ
+

∞∑
n=1

An(t) sin(nϑ)

]

+ B0(ϑ + sin ϑ) + B1

(
ϑ

2
− 1

4
sin 2ϑ

)

+
∞∑

n=2

Bn

[
sin(n − 1)ϑ

2(n − 1)
− sin(n + 1)ϑ

2(n + 1)

]}
c

2
sin ϑ dϑ

These integrals are similar to those treated in Section 5.3 and after their evaluation we get

L ′(t) = ρc

{
3π

2
B0 + π

2
B1 + π

4
B2 + πU 2 A0 + π

2
U 2 A1

}
(13.71)

In terms of the An’s (using Eq. (13.70)), we get

L ′(t) = πρc

{[
U 2 A0 + 3c

4

∂

∂t
(U A0)

]

+
[

U 2 A1

2
+ c

4

∂

∂t
(U A1) + c

8

∂

∂t
(U A2)

]}
(13.71a)
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and it is clear that the velocity and the coefficients are a function of time (i.e., U ≡ U (t),
An ≡ An(t)).

The pitching moment about the airfoil’s leading edge is

M0(t) = −
∫ c

0
�px dx = −

∫ c

0
ρ

[
U (t)

∂

∂x
�� + ∂

∂t
��

]
x dx

= −2ρ

∫ π

0

{
U 2(t)

[
A0(t)

1 + cos ϑ

sin ϑ
+

∞∑
n=1

An(t) sin(nϑ)

]

+ B0(ϑ + sin ϑ) + B1

(
ϑ

2
− 1

4
sin 2ϑ

)

+
∞∑

n=2

Bn

[
sin(n − 1)ϑ

2(n − 1)
− sin(n + 1)ϑ

2(n + 1)

]}
c

2
(1 − cos ϑ)

c

2
sin ϑ dϑ

and after an evaluation of these integrals we get

M0 = −cL ′

2
+ ρc2

4

[
U 2

(
A0π + A2

π

2

)
− π

2
B0 − π

2
B1 + π

8
B3

]

With the use of Eq. (13.71) for L ′, the moment about x = 0 becomes

M0(t) = −ρc2 π

2

[
U 2

2

(
A0 + A1 − A2

2

)
+ 7

4
B0 + 3

4
B1 + 1

4
B2 − 1

16
B3

]

(13.72)

and in terms of the An’s

M0(t) = −ρc2 π

2

[
U 2

2
A0 + 7c

8

∂

∂t
(U A0) + U 2

2
A1 + 3c

8

∂

∂t
(U A1)

−U 2

4
A2 + c

8

∂

∂t
(U A2) − c

32

∂

∂t
(U A3)

]
(13.72a)

Example 1: Small-Amplitude Oscillations of a Thin Airfoil

One of the simplest and yet important examples is the small-amplitude unsteady
motion of a flat plate airfoil, which was analyzed by Theodorsen13.4 and by von
Karman and Sears.13.5 For this case let us assume that the (x, z) frame of reference
in Fig. 13.14 moves to the left of the page at a constant speed U (t) = U = const. in
an otherwise stationary fluid. Also, the (x, z) frame does not rotate for this example
(θ = θ̇ = 0) and the small-amplitude unsteady motion will be introduced through
the vrel term (or the ∂η/∂t term in Eq. (13.55)) in the boundary conditions.

The time-dependent chordline position can be represented by a vertical dis-
placement h(t) (positive in the z direction) and by an instantaneous angle of attack
α(t) (Fig. 13.18). The chordline shape is then

η = h − α(x − a)

where a is the pitching axis location. For simplicity, first, we shall assume that
the pitching axis is at the origin (a = 0), and h is the vertical displacement of the
leading edge. The position η then becomes

η = h − αx
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Figure 13.18 Nomenclature for the oscillatory pitching and heaving motion of a flat plate.

Further assume that the vertical displacement is small (e.g., η � c). The derivatives
of η are

∂η

∂t
= ḣ − α̇x

∂η

∂x
= −α

where the dot denotes a time derivative. Substituting this into the downwash W (x, t)
term of Eq. (13.55) we get

W (x, t) = −Uα + ḣ − α̇x − ∂�W

∂z
Since the wake effect is a function of the motion history let us concentrate first on
the loads due to the motion only. This portion of the downwash, W ∗(x, t), is then

W ∗(x, t) = −Uα + ḣ − α̇x = −Uα + ḣ − c

2
α̇ + c

2
α̇ cos ϑ

and here x was replaced by the trigonometric variable ϑ , using Eq. (13.58). Sub-
stitution of this term of the downwash into Eqs. (13.61) and (13.62) provides the
values of the An coefficients:

A0 = 1

U

(
Uα − ḣ + c

2
α̇

)

A1 = α̇c

2U

A2 = A3 = · · · = AN = 0

The circulation due to the downwash W ∗ can be obtained by recalling the results
of Eq. (5.58):

�∗(t) =
∫ c

0
γ (x, t) dx = πcU

(
A0 + A1

2

)

and after substitution of the An coefficients the circulation becomes

�∗(t) = πc

(
Uα − ḣ + 3

4
cα̇

)

The lift per unit span is then obtained from Eq. (13.71a):

L∗ = ρU� + πρc2U

(
3

4

∂ A0

∂t
+ 1

4

∂ A1

∂t

)
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and in terms of the displacement h and the angle of attack, α, we get

L∗ = πρUc

(
Uα − ḣ + 3

4
cα̇

)
+ πρc2

[
3

4
(U α̇ − ḧ) + c

2
α̈

]

In the derivation of this expression the Kutta condition was satisfied, but the down-
wash of the unsteady wake was not included. Theodorsen13.4 and von Karman and
Sears13.5 showed that for a small-amplitude oscillatory motion the final result will
include similar terms and the effect of the wake is to reduce the lift due to the first
term in L∗ by a factor of C(k), which is called the lift deficiency factor. Now, if
we consider harmonic heave and pitch oscillations such that

h = h0 sin ωt

α = α0 sin ωt

then the lift per unit span becomes

L ′ = πρUcC(k)

[
Uα − ḣ + 3

4
cα̇

]
+ πρ

c2

4

[
U α̇ − ḧ + c

2
α̈

]
(13.73a)

This equation includes the effects of the periodic wake and some of the constants
in the second (added mass) term are different from those in L∗. Moreover, the
added mass part of this solution does not satisfy the Kutta condition and therefore
this term differs in its definition from the second term in L∗. In the case when the
pitch axis is moved to a location a (and also h is measured at this point), as shown
in Fig. 13.18, then the lift per unit span will have a form similar to the results of
Ref. 13.4:

L ′ = πρUcC(k)

[
Uα − ḣ +

(
3

4
− a

c

)
cα̇

]
+ πρ

c2

4

[
(U α̇ − ḧ) + c

(
1

2
− a

c

)
α̈

]

(13.73b)

This can be rewritten as

L ′ = L ′
1 + L ′

2

where L ′
1 is similar to the circulatory lift term in a steady motion and L ′

2 is the lift
due to the acceleration (added mass).

Figure 13.19 shows a plot of the lift deficiency factor C(k) versus the reduced
frequency k, which is defined similarly to the nondimensional number of Eq. (1.52):

k = ωc

2U
As Fig. 13.19 indicates, the wake has a delaying effect on the circulatory part of
the lift such that

L ′
1(t) = L ′

1 sin(ωt − � )

and � represents the time shift effect of the wake (note that � changes with the
reduced frequency as shown in Fig. 13.19).

After a similar treatment of the moment about the leading edge we get

M0 = −πρc2

4

{
− c

2
ḧ + 3Uc

4
α̇ + 9

32
c2α̈ + UC(k)

[
− ḣ + Uα + 3c

4
α̇

]}

(13.74a)
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Figure 13.19 Graphic description of Theodorsen’s13.4 lift deficiency and phase lag functions (fol-
lowing p. 482 in W. Johnson, Helicopter Theory, Princeton University Press, 1980).

Again, when the pitch axis is moved to a point a (Fig. 13.18) then the pitching
moment about this point is

M = −πρc2

4

{
c

(
a

c
− 1

2

)
ḧ + Uc

(
3

4
− a

c

)
α̇ + c2

4

(
9

8
+ 4a2

c2
− 4a

c

)
α̈

−
(

4a

c
− 1

)
UC(k)

[
−ḣ + Uα + c

(
3

4
− a

c

)
α̇

]}
(13.74b)

The most important portion of Theodorsen’s analysis is that the basic nature of
the unsteady effect can be briefly summarized by the C(k) diagrams in Fig. 13.19.
As the reduced frequency k increases the magnitude of the ρU� term in the lift
is reduced. Additionally, the lift lag initially increases with the reduced frequency,
but for k > 0.4 a gradual decrease in the phase shift is shown.

The above model for the small-amplitude oscillation of a thin airfoil is useful in estimating
the unsteady loads in cases such as wing flutter or propulsion. The propulsion effect due
to the heaving oscillations of a flat plate is shown schematically in Fig. 13.20. Recall that
the leading-edge suction causes the circulatory part of the lift (ρU�) to become normal
to the instantaneous motion path, which clearly results in a propulsive (forward pointing)
component. If the heaving motion is relatively slow then the second term in Eq. (13.73) is
relatively small, too, and high propulsive efficiencies13.2 can be obtained.

Figure 13.20 Schematic description of the propulsion effect due to heaving oscillations of a flat plate.
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Figure 13.21 Nomenclature for the unsteady motion of a slender thin wing along the path S. (Note
that the motion is observed from the X, Y, Z coordinate system where the fluid is at rest and the wing
moves toward the upper left side of the page.)

13.9 Unsteady Motion of a Slender Wing

As the simplest example for the conversion of a three-dimensional wing theory to
the time-dependent mode, consider the planar motion of a slender wing in the x, z plane.13.6

(This is a three degrees of freedom motion with Ẋ , Ż , and θ̇ as shown in Fig. 13.21.) Since
for a slender wing the longitudinal dimension is much larger than the other two dimensions
(x � y, z) we can assume that the derivatives are inversely affected such that:

∂

∂x
� ∂

∂y
,

∂

∂z
(13.75)

As in the case of the steady-state flow over slender wings and bodies, substitution of this
condition into the continuity equation (Eq. (13.12)) allows us to neglect the first term,
compared to the other derivatives:

∇2� ≈ ∂2�

∂y2
+ ∂2�

∂z2
= 0 (13.76)

This suggests that the cross-flow effect is dominant, and for any x = const. station, a local
two-dimensional solution is sufficient. An interesting aspect of this simplification is that the
wake influence is negligible, too, as long as the longitudinal time variations (e.g., wing’s
forward acceleration) are small.

The slender, thin lifting surface with a chord length of c is shown schematically in Fig.
13.21. At t = 0 the wing is at rest in the inertial system (X, Y, Z ), and at t > 0 it moves
along a time-dependent curved path, S (for this particular case S is assumed to be two
dimensional). For convenience, the coordinates x, z are selected such that the origin O is
placed on the path S, and the x coordinate axis is always tangent to the path. The wing
shape (camberline) is given in this coordinate system by η(x, t), which is considered to be
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small (η/c � 1, since small-disturbance motion is assumed). Also, the normal component
of the kinematic velocity is small (i.e., θ̇c/U (t) � 1).

The time-dependent version of the boundary condition requiring no normal flow across
the surface (at any x = const. station) for this case is given by Eq. (13.50):

∂�

∂z
= W (x, t) (13.77)

where � is the wing’s perturbation potential and the subscript B is not used in the case of
the slender wing (since the wake effect was neglected).

13.9.1 Kinematics

In the body coordinate system shown in Fig. 13.21, the chordwise downwash
W (x, t) (assuming small-disturbance flow) is given by Eq. (13.55):

W (x, t) = U
∂η

∂x
− ∂�W

∂z
− θ̇x + ∂η

∂t
(13.55)

where the smaller terms were neglected. As a result of the slenderness assumption, the wake
influence can also be neglected and the chordwise downwash becomes

W (x, t) = U
∂η

∂x
− θ̇x + ∂η

∂t
(13.78)

Let us now follow Section 8.2.2 and model the cross-flow (shown in Fig. 8.18) at any x
station by a vortex distribution γ (y, t). The perturbation velocity potential is given then by
Eq. (8.69):

�(x, y, z, t) = 1

2π

∫ b(x)/2

−b(x)/2
γ (y0, t) tan−1 z

(y − y0)
dy0 (13.79)

The velocity components in the x = const. plane, due to this velocity potential, are

v(x, y, 0±, t) = ∂�

∂y
= ∓γ (y, t)

2
(13.80)

w(x, y, 0±, t) = ∂�

∂z
= 1

2π

∫ b(x)/2

−b(x)/2
γ (y0, t)

dy0

(y − y0)
(13.81)

It is evident in these formulas that because of the slender wing assumption, only the local
spanwise vortex distribution will affect the near field downwash. By substituting this vor-
tex distribution–induced downwash w(x, y, 0±, t) into the wing boundary condition (Eq.
(13.77)) we get for each x = const. section on the wing

1

2π

∫ b(x)/2

−b(x)/2
γ (y0)

dy0

(y − y0)
= U

∂η

∂x
− θ̇x + ∂η

∂t
(13.82)

and it is clear that γ, U, η, and θ̇ are functions of time. A comparison of this form of the
boundary condition with the formulation for high aspect ratio wings (Eq. (8.11)) clearly
indicates that as a result of the slender wing assumption the effect of the vortex lines parallel
to the y axis (including the time-dependent portion of the wake) were neglected.

13.9.2 Solution of the Flow over the Unsteady Slender Wing

Solution of the vortex distribution for any given time t , at each x = const. station,
is reduced now to solving Eq. (13.82) for γ (y) ≡ γ (y, t). Because of the similarity between
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this case and the steady-state slender wing case we know that the spanwise circulation (load)
distribution is elliptic, as in Eq. (8.74):

�(y) = �max

[
1 −

(
y

b(x)/2

)2]1/2

(13.83)

and again �(y) ≡ �(y, t). The spanwise vorticity distribution (shown in Fig. 8.18) is ob-
tained by differentiating with respect to y (as in Eq. (8.41) or (8.75)):

γ (y) = −d�(y)

dy
= 4�max

b(x)2

y√
[1 − (y/b(x)/2)2]

(13.84)

Substitution of this into the integral equation, Eq. (13.82), results in

1

2π

∫ b(x)/2

−b(x)/2

4�max

b(x)2

y0√
[1 − (y0/b(x)/2)2]

dy0

(y − y0)
= U

∂η

∂x
− θ̇x + ∂η

∂t
(13.85)

But the left-hand side integral has already been evaluated in Chapter 8 (see Eq. (8.77)),
resulting in (4�max/b(x)2)(−πb(x)/2). Substitution of this result into Eq. (13.85) yields

1

2π

4�max

b(x)2

[−πb(x)

2

]
= U

∂η

∂x
− θ̇x + ∂η

∂t

and after rearranging the terms we get

�max

b(x)
= −U

∂η

∂x
+ θ̇x − ∂η

∂t
= −W (x, t) (13.86)

which shows that the spanwise induced downwash due to an elliptic lift distribution is
constant and independent of y. The value of �max (at each x station and time t) is easily
evaluated now and is

�max = −b(x)W (x, t) (13.87)

Recalling that the velocity potential can be defined by a path of integration along the local
y axis (for an x = const. section), we have

�(x, y, 0±, t) =
∫ y

−b(x)/2

∓γ (y)

2
dy = ±�(y)

2

where the integration starts at the left leading edge of the x = const. station and the inte-
gration path is above (0+) or below (0−) the wing.

By substituting γ (y) and �max into Eqs. (13.79)–(13.81), we can obtain the cross-flow
potential and its derivatives:

�(x, y, 0±, t) = ∓W (x, t)
b(x)

2

√
1 −

[
y

b(x)/2

]2

= ∓W (x, t)

√[
b(x)

2

]2

− y2

(13.88)

u(x, y, 0±, t) = ∂�

∂x
(x, y, 0±, t) = ∓ ∂

∂x

⎧⎨
⎩W (x, t)

√[
b(x)

2

]2

− y2

⎫⎬
⎭ (13.89)

This differentiation can be executed only if the wing planform shape b(x) and chordwise
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downwash W (x, t) are known. The other derivatives of the velocity potential are

v(x, y, 0±, t) = ∂�

∂y
(x, y, 0±, t) = ∓γ (y)

2
= ± W (x, t)y√

[b(x)/2]2 − y2
(13.90)

and based on Eq. (13.77), the downwash on the wing is

w(x, y, 0±, t) = ∂�

∂z
(x, y, 0±, t) = W (x, t) (13.91)

Once the velocity field is obtained the pressure distribution on the wing can be calculated
by using the Bernoulli equation. If the reduced frequencies and the accelerations in the z
direction are small, then the pressure is given by Eq. (13.66a):

p∞ − p

ρ
≈ U (t)

∂�

∂x
+ ∂�

∂t
(13.66a)

where the first term is similar to the steady-state (circulatory) term, and the second term is a
result of the change of the flow with time. The pressure difference across the thin wing is then

�p = p(x, y, 0−, t) − p(x, y, 0+, t) = 2ρ

[
U

∂�

∂x
+ ∂�

∂t

]
z=0+

= ρU
∂

∂x
�� + ρ

∂

∂t
�� (13.92)

since �� = 2�(x, y, 0+, t). Substitution of the results for the velocity potential and its
derivatives yields

�p = −2ρU
∂

∂x

⎧⎨
⎩W (x, t)

b(x)

2

√
1 −

[
y

b(x)/2

]2
⎫⎬
⎭

− 2ρ
∂

∂t

⎧⎨
⎩W (x, t)

b(x)

2

√
1 −

[
y

b(x)/2

]2
⎫⎬
⎭ (13.93)

The longitudinal wing loading is obtained by integrating the spanwise pressure difference
and by recalling the result of Eq. (8.88) that

∫ b(x)/2

−b(x)/2

[
1 −

(
y

b(x)/2

)2]1/2

dy = πb(x)

4
(13.94)

With this in mind,

dL

dx
=

∫ b(x)/2

−b(x)/2
�p dy = −ρU (t)

∂

∂x

{
W (x, t)b(x)

∫ b(x)/2

−b(x)/2

[
1 −

(
y

b(x)/2

)2]1/2

dy

}

− ρ
∂

∂t

{
W (x, t)b(x)

∫ b(x)/2

−b(x)/2

[
1 −

(
y

b(x)/2

)2]1/2

dy

}

= −πρU (t)

4

∂

∂x
[W (x, t)b(x)2] − πρ

4

∂

∂t
[W (x, t)b(x)2] (13.95)

This is the unsteady version of the slender wing lift (see Section 8.2.3). A similar formulation
was derived by Lighthill13.7 when studying the swimming of slender fish in small-amplitude
motion.
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In regard to the momentary drag force, recall that the x axis of the coordinate system used
for this problem remains parallel to the flight path (Fig. 13.21) and the normal component of
the force was designated as lift. Similarly, it is possible to define the axial component of the
force as drag. Since at each moment for a given set of boundary conditions the potential flow
problem is independent of time (excluding the wake influence – which is neglected in this
example) the drag component due to the circulatory part of the force can be approximated
by the steady-state results of Eq. (8.95). Consequently, owing to the leading-edge suction,
the drag due to the circulatory lift (the first term of Eq. (13.95)) is half of the projected
pressure difference component:

1

2

πρU

4

∂

∂x
[W (x, t)b(x)2]

while the drag due to the fluid acceleration (second term in Eq. (13.95)) is not reduced by
the leading-edge suction. Thus the instantaneous drag force becomes

dD

dx
=

∫ b(x)
2

−b(x)
2

�p
∂η

∂x
dy ≈ −πρ

4

∂η

∂x

[
U

2

∂

∂x
+ ∂

∂t

]
[W (x, t)b(x)2] (13.96)

Example 1: Heaving Oscillations of a Slender Delta Wing

As one of the simplest examples let us consider the small-amplitude heaving
oscillations of a slender delta wing. The x, z coordinate system is selected such that
it moves to the left of the page at a constant velocity U (t) = U∞. The wing remains
parallel to the x axis, but it oscillates up and down at a frequency ω and amplitude
h0 (see Fig. 13.22). The small displacement of the wing relative to the x axis is then

η(x, t) = h0 sin ωt

Then with vrel = (0, 0, ∂η/∂t) the time-dependent downwash W (x, t) of Eq. (13.55)
becomes

W (x, t) = ∂η

∂t
= h0ω cos ωt

The longitudinal loading dL/dx is obtained from Eq. (13.95):

dL

dx
= −πρU∞

4

∂

∂x
[h0ωb(x)2 cos ωt] − πρ

4

∂

∂t
[h0ωb(x)2 cos ωt]

= −πρU∞
4

∂

∂x
[b(x)2]h0ω cos ωt + πρ

4
b(x)2h0ω

2 sin ωt

For a flat triangular delta wing with a chord c and trailing edge span of bT.E. the

Figure 13.22 Heaving oscillations of a wing with an amplitude of h0.
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span b(x) becomes

b(x) = bT.E.
x

c
and the longitudinal lift distribution is

dL

dx
= −πρU∞

2

b2
T.E.

c2
xh0ω cos ωt + πρ

4

(bT.E.x)2

c2
h0ω

2 sin ωt

The lift of the wing is obtained by integrating d L
dx along the chord:

L =
∫ c

0

dL

dx
dx = −πρU∞

4
b2

T.E.h0ω cos ωt + πρ

12
b2

T.E.ch0ω
2 sin ωt (13.97)

The pitching moment about the apex (x = 0) is

M0 = −
∫ c

0

dL

dx
x dx = −πρU∞

6
b2

T.E.ch0ω cos ωt + πρ

16
b2

T.E.c
2h0ω

2 sin ωt

(13.98)

As we can see the loads on the wing are created by two terms that have a phase
shift between them. The lift of the wing, for example, can be divided such that

L1 = −πρU∞
4

b2
T.E.h0ω cos ωt = −πρU∞

4
b2

T.E.η̇

L2 = πρ

12
b2

T.E.ch0ω
2 sin ωt = −πρ

12
b2

T.E.cη̈

The time-dependent vertical displacement of the wing η(t) and these two terms of
the lift (L1, L2) are shown schematically in Fig. 13.23. The first term L1 resembles
the steady-state (circulatory) term and the lift is a result of the instantaneous
effective angle of attack. This lags in phase with the motion such that when the
wing moves downward it creates lift L1 and vice versa. The second term L2 is
a result of the wing vertical acceleration (added mass) and is in phase with the
motion.

Figure 13.23 Schematic description of the heaving motion and the two parts of the lift during one
cycle.
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Figure 13.24 Nomenclature used to define the pitch oscillations of the slender wing.

Example 2: Pitch Oscillations of a Slender Delta Wing

Another simple example is the small-amplitude pitching oscillations of a slender
delta wing. The origin of the x, z coordinate system is now moving to the left of
the page at a constant velocity U (t) = U∞. The wing is pitching about the point
xcg with a frequency ω and a small amplitude θ0 (shown in Fig. 13.24):

θ = θ0 sin ωt

The wing’s chordline η(x, t) is given then by

η(x, t) = −(x − xcg) tan θ ≈ −(x − xcg)θ = −(x − xcg)θ0 sin ωt

By substituting the derivatives of η into Eq. (13.50) we obtain the time-dependent
downwash

W (x, t) = −U∞θ0 sin ωt − θ0ω(x − xcg) cos ωt

Note that the same result can be obtained from Eq. (13.55) by placing the chordline
on the x axis and pitching the x–z plane with θ̇ . The longitudinal loading dL/dx
is obtained from Eq. (13.95):

dL

dx
= −πρU∞

4

∂

∂x
{[−U∞θ0 sin ωt − θ0ω(x − xcg) cos ωt]b(x)2}

− πρ

4

∂

∂t
{[−U∞θ0 sin ωt − θ0ω(x − xcg) cos ωt]b(x)2}

For a flat triangular delta wing with a chord c and trailing-edge span of bT.E. the
local span b(x) becomes

b(x) = bT.E.
x

c
and the longitudinal lift distribution is

dL

dx
= πρU∞

4

b2
T.E.

c2
[2xU∞θ0 sin ωt + θ0ω(3x2 − 2xxcg) cos ωt]

+ πρ

4

b2
T.E.

c2
[U∞θ0ωx2 cos ωt − θ0ω

2(x3 − x2xcg) sin ωt]

The lift of the wing is obtained by integrating dL/dx along the chord:

L =
∫ c

0

dL

dx
dx = πρU∞

4

b2
T.E.

c2
[U∞θ0c2 sin ωt + θ0ω(c3 − c2xcg) cos ωt]

+ πρ

4

b2
T.E.

c2

[
U∞θ0ω

c3

3
cos ωt − θ0ω

2

(
c4

4
− c3

3
xcg

)
sin ωt

]
(13.99)
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The pitching moment about the apex (x = 0) is

M0 = −
∫ c

0

dL

dx
x dx

= − πρU∞
4

b2
T.E.

c2

[
U∞θ0

2c3

3
sin ωt + θ0ω

(
3c4

4
− 2c3

3
xcg

)
cos ωt

]

− πρ

4

b2
T.E.

c2

[
U∞θ0ω

c4

4
cos ωt − θ0ω

2

(
c5

5
− c4

4
xcg

)
sin ωt

]
(13.100)

As we can see in this case, too, the loads on the wing can be divided into three
terms that have a phase shift between them. The three components can be rewritten
as

L1 = πρb2
T.E.

4
U 2

∞θ

L2 = πρb2
T.E.

4
U∞

[
(c − xcg) + c

3

]
θ̇

L3 = πρb2
T.E.

4

(
c2

4
− c

3
xcg

)
θ̈

and

L = L1 + L2 + L3

It is clear that the first term is a result of the instantaneous angle of attack while
the second term is a result of the downwash caused by the pitch rotation. This part
is a function of the pitch axis. The last term is due to the acceleration (added mass)
and depends, too, on the location of xcg .

The damping of the wing due to a constant pitch motion can be found by
integrating L2 only in Eq. (13.100):

∂ M0

∂θ̇
= −πρU∞

4

b2
T.E.

c2

(
3c4

4
− 2c3

3
xcg

)
− πρ

4

b2
T.E.

c2
U∞

c4

4

= −πρU∞
4

b2
T.E.

(
c2 − 2c

3
xcg

)
(13.101)

13.10 Algorithm for Unsteady Airfoil Using the Lumped-Vortex Element

As was mentioned earlier, with only a few minor modifications, steady-state so-
lution techniques can be updated to treat unsteady flows. As a first numerical example, the
discrete vortex model of thin lifting airfoils (Section 11.1.1) will be modified. There are
three areas of the program that will be affected:

1. The normal velocity component on the solid boundary should include the com-
ponents of the unsteady motion as well (as in Eq. (13.13a)) – this is a minor and
local modification to the steady-state program.

2. Similar corrections due to the unsteady motion should be included in the pressure
calculations (using the modified Bernoulli equation, Eq. (13.23)) – again this is a
limited local modification.
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Figure 13.25 Schematic flowchart for the numerical solution of the unsteady wing problem.

3. An unsteady wake model has to be established (e.g., the time-stepping discrete-
vortex model as presented in Section 13.8.2). Note that such a wake model can be
added on, in a simple manner, to the steady-state solvers.

(In this example the discrete vortex model for the thin lifting airfoil of Section 11.1.1
will be transformed to the unsteady mode. But any of the methods presented in Chapter 11
can be modified easily and can be given as a student project.)

The mechanics of such an upgrade are demonstrated by the generic flowchart of
Fig. 13.25. A comparison of this diagram with the steady-state diagram of Fig. 9.15 reveals
that, first, a time-stepping loop has to be established (only one programming statement).
Then a new element appears (the flight path information block), which has all the kinematic
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information on the body’s or wing’s motion. The rest of the program will follow the method-
ology of Chapter 11, and the only additional block is the “wake rollup” block, which will
perform the wake rollup at each time step. Consequently, we shall follow the same sequence
used in the previous numerical chapters:

a. Choice of Singularity Element
For this discrete-vortex method the lumped-vortex element is selected and its

influence is given in Section 11.1.1:(
u

w

)
= � j

2πr2
j

(
0 1

−1 0

)(
x − x j

z − z j

)
(13.102)

where

r2
j = (x − x j )

2 + (z − z j )
2

Thus, the velocity at an arbitrary point (x, z) due to a vortex element � j located at (x j , z j )
is given by this equation. This can be included in a subroutine, which was defined by Eq.
(11.2):

(u, w) = VOR2D(� j , x, z, x j , z j ) (11.2)

Using this lumped-vortex element, the airfoil will be represented by a set of discrete
vortices placed on the camberline, as shown in Fig. 13.26. If the airfoil’s circulation changes
with time, then vortex wake elements are shed at the trailing edge and the wake will be
modeled by using the same discrete-vortex model (Fig. 13.26).

b. Kinematics
Let us establish an inertial frame of reference X, Z , shown in Fig. 13.27, such

that this frame of reference is stationary while the airfoil is moving to the left of the page.
Next, the airfoil’s camberline is placed in a moving frame of reference x, z with the leading
edge at the origin. The flight path of the origin and the orientation of the x, z system are
prescribed as

X0 = X0(t)

Z0 = Z0(t)

θ = θ (t)

(13.103)

Figure 13.26 Discrete vortex model for the unsteady thin airfoil problem (shown during the first time
step, t = �t).
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and the instantaneous velocity of the origin and its rotation θ̇ about the y axis are

Ẋ0 = Ẋ0(t)

Ż0 = Ż0(t)

θ̇ = θ̇ (t)

(13.104)

For example, if the airfoil moves to the left at a constant speed of U∞ and sinks at a speed
of W∞ then

X0 = −U∞t, Ẋ0(t) = −U∞

Z0 = −W∞t, Ż0(t) = −W∞ (13.105)

θ = 0, θ̇ = 0

Or if the airfoil flies at a constant forward speed U∞, and performs pitch oscillations at a
frequency ω about the y axis, then

X0 = −U∞t, Ẋ0(t) = −U∞
Z0 = 0, Ż0(t) = 0 (13.106)

θ = sin ωt, θ̇ = ω cos ωt

It is useful to establish a transformation between the two coordinate systems shown in
the figure such that(

X

Z

)
=

(
cos θ (t) sin θ (t)

−sin θ (t) cos θ (t)

)(
x

z

)
+

(
X0

Z0

)
(13.107)

and similarly the transformed velocity components are(
Ẋ

Ż

)
=

(
cos θ (t) sin θ (t)

−sin θ (t) cos θ (t)

)(
ẋ

ż

)
(13.108)

The inverse transformation is also useful, and the velocity components Ut , Wt observed in
the x, z frame due to the translation of the origin are(

Ut

Wt

)
=

(
cos θ (t) −sin θ (t)

sin θ (t) cos θ (t)

)(−Ẋ0

−Ż0

)
(13.109)

c. Discretization and Grid Generation
At this phase the thin-airfoil camberline (Fig. 13.26) is divided into N subpanels,

which may be equal in length. The N vortex points (x j , z j ) will be placed at the quarter
chord of each planar panel and the zero normal flow boundary condition can be fulfilled on
the camberline at the three-quarter point of each panel. These N collocation points (xi , zi )
and the corresponding N normal vectors ni along with the vortex points can be computed
numerically or supplied as an input file. The normal ni pointing outward at each of these
points is found in the x, z frame from the surface shape η(x), as shown in Fig. 13.27:

ni = (−dη/dx, 1)√
(dη/dx)2 + 1

= (sin αi , cos αi ) (13.110)

where the angle αi is shown in Fig. 13.26 for panel number 4. Similarly, the tangential
vector τ i is

τ i = (cos αi , −sin αi ) (13.111)
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Figure 13.27 Discrete-vortex model for the unsteady thin airfoil problem after eight time steps.
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Since the lumped-vortex element inherently fulfills the Kutta condition for each panel,
no additional specification of this condition is required.

If the airfoil’s geometry does not change with time (e.g., in the case of a flexible airfoil),
then the calculation of the vortex points and collocation points can be done before the
beginning of the time loop, as shown in Fig. 13.25 (where the box “definition of geometry”
is placed outside of the time-stepping loop).

d. Influence Coefficients
At this point, the zero normal flow across the solid surface boundary condition

is implemented. To specify this condition, the kinematic conditions need to be known and
the time-stepping loop (shown in Fig. 13.25) is initiated. Let us select It as the time step
counter, so that the momentary time is

t = It · �t

For simplicity, we assume that at t = 0 the two coordinate systems x, z and X, Z coincided
and the airfoil was at rest (hence there was no wake). Consequently, the calculation begins
at t = �t (Fig. 13.26) and the wake at this moment consists of a single vortex �W1 , which is
placed along the path of the trailing edge (see also Fig. 13.16). The location of the trailing
edge at t = 0 and at t = �t is obtained by using the transformations of Eq. (13.107). The
wake vortex is then placed usually at 0.2–0.3 of the distance covered by the trailing edge dur-
ing the latest time step (see the discussion on this subject in the beginning of Section 13.8.2)

In general, the normal velocity component at each point on the camberline is a combi-
nation of the self-induced velocity, the kinematic velocity, and the wake-induced velocity.
The self-induced part can be represented by a combination of influence coefficients, as
in the steady-state flow case. If the shape of the airfoil η(x) remains constant with time
then these coefficients will be evaluated only once. The normal velocity component due
to the motion of the wing is known from the kinematic equations (Eq. (13.13a)) and will
be transferred to the right-hand side (RHS) of the equation. The velocity induced by the
most recent wake vortex is unknown and will be resolved by adding an additional equation
(the Kelvin condition). The strength of the other wake vortices is known from the previous
time steps (for the general case when It > 1, but since at t = �t only one wake vortex is
present, the rest of the wake contribution for the first time step is zero) and their effect on
the normal velocity will be transferred to the right-hand side, as well.

To formulate the momentary boundary condition, let us use Eq. (13.13a), and for sim-
plicity we allow only one component of the relative velocity vrel = (0, ∂η/∂t) limited to
small amplitudes, within the coordinate system x, z. Also, it is convenient to divide the
perturbation potential into an airfoil potential �B and a wake potential �W and both parts
of the velocity potential will be modeled by discrete-vortex elements of circulation �.
Consequently, the boundary condition of Eq. (13.13a) becomes

(∇�B + ∇�W − V0 − vrel − Ω × r) · n = 0 (13.112)

To establish the self-induced portion of the normal velocity (∇�B · n in Eq. (13.112)), at
each collocation point, consider the velocity induced by the airfoil’s � j th element at the first
collocation point (in order to get the influence due to a unit strength � j assume � j = 1):

(u, w)1 j = VOR2D(� j = 1, x1, z1, x j , z j ) (13.113)

The influence coefficient ai j is defined as the velocity component induced by the airfoil’s
unit strength � j element, normal to the surface (at collocation point i). Consequently, the
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contribution of a unit strength singularity element j , at collocation point 1, is

a1 j = (u, w)1 j · n1 (13.114)

The induced normal velocity component qn1, at collocation point 1, due to all N vortex
elements and the latest wake vortex is therefore

qn1 = a11�1 + a12�2 + a13�3 + · · · + a1N �N + a1W �Wt

Note that the strengths of the airfoil vortices � j and of the latest wake vortex �Wt are
unknown at this point (see also Fig. 13.27 where �Wt = �W8 ).

For the boundary condition on the surface to be fulfilled requires that at each collocation
point the normal velocity component will vanish (Eq. (13.112)). Specifying this condition
for the i th collocation point we obtain

ai1�1 + ai2�2 + ai3�3 + · · · + ai N �N + aiW �Wt

+ [U (t) + uW , W (t) + wW ]i · ni = 0 (13.115)

and here the terms (−V0 − vrel − Ω × r) were replaced by an equivalent tangential and
normal velocity [U (t), W (t)]i representing the kinematic velocity due to the motion of the
airfoil, and (uW , wW )i are the velocity components induced by the the wake vortices (except
the latest wake vortex – shown in Fig. 13.27). The wake influence can be calculated using
Eq. (13.102) since the location of all wake vortex points is known. The time-dependent
kinematic velocity components U (t), W (t) (see also Eq. (13.49)) are calculated with the
help of Eq. (13.109):

(
U (t)

W (t)

)
=

(
cos θ (t) −sin θ (t)

sin θ (t) cos θ (t)

)(−Ẋ0

−Ż0

)
+

(
−θ̇η

θ̇x − ∂η

∂t

)
(13.116)

Since these terms are known at each time step, they can be transferred to the right-hand
side of the equation. Consequently, the right-hand side (RHS) is defined as

RHSi = −[U (t) + uW , W (t) + wW ]i · ni (13.117)

When we specify the boundary condition for each of the collocation points we obtain
the following set of algebraic equations:⎛

⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1N a1W

a21 a22 · · · a2N a2W
...

...
. . .

...
...

aN1 aN2 · · · aN N aN W

1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�1

�2
...

�N

�Wi

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

�(t − �t)

⎞
⎟⎟⎟⎟⎟⎠

(13.118)

Note that for the lumped-vortex element the Kutta condition is not stated explicitly. The
last equation represents the Kelvin condition:

�(t) − �(t − �t) + �Wt = 0 (13.119)

and the instantaneous airfoil circulation is the sum of all the airfoil’s vortices:

�(t) =
N∑

j=1

� j (13.120)

and �(t − �t) is the circulation measured at the previous time step. This influence coeffi-
cient calculation procedure can be accomplished by using two DO loops, where the outer
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loop scans the collocation points (xi , zi ) and the inner scans the vortices � j . If the airfoil
chord geometry does not vary with time the influence coefficient calculation needs to be
carried out only once at the beginning of the computations.

e. Establish RHS Vector
The right-hand-side vector, which is the normal component of the kinematic veloc-

ity and the wake-induced velocity, can be computed within the outer loop of the previously
described DO loops by using Eq. (13.117).

f. Solve Linear Set of Equations
The results of the previous calculations (shown by Eq. (13.118)) can be summarized

in indicial form (for each collocation point i) as

N+1∑
j=1

ai j� j = RHSi (13.121)

Again, if the shape of the airfoil remains unchanged then the matrix inversion occurs only
once. For time steps larger then 1 the calculation is reduced to

� j =
N+1∑
i=1

a−1
i j RHSi (13.122)

where a−1
i j are the coefficients of the inverted matrix.

g. Computation of Velocity Components, Pressures, and Loads
The resulting pressures and loads can be computed by using the Bernoulli equation

(Eq. (13.24)) near the panel surface:

pref − p

ρ
= Q2

2
− v2

ref

2
+ ∂�

∂t

The pressure difference between the camberline upper and lower surfaces is then

�p = pl − pu = ρ

[(
Q2

t

2

)
u

−
(

Q2
t

2

)
l

+
(

∂�

∂t

)
u

−
(

∂�

∂t

)
l

]
(13.123)

and the tangential velocity Qt is found from

Qt j = [U (t) + uW , W (t) + wW ] j · τ j ± ∂�

∂τ j
(13.124)

where the ± sign stands for above and below the surface, respectively. The tangential
derivative of the thin airfoil potential can be approximated as

± ∂�

∂τ j
= ±γ

2
≈ ± � j

2�l j
(13.125)

and here �l j is the j th panel length. (Note that here ∂/∂τ j is used for tangential derivative
and ∂/∂t for a derivative with respect to time.)

The velocity-potential time derivative, obtained using the definition �± = ± ∫ x
0 (γ /2) dl,

is

±∂� j

∂t
= ± ∂

∂t

j∑
k=1

�k

2
(13.126)
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so that the local potential is the sum of the vortices from the leading edge to the j th vortex
point. After substituting these terms into Eq. (13.123), we find that the pressure difference
between the airfoil’s upper and lower surfaces becomes

�p j = ρ

[
(U (t) + uW , W (t) + wW ) j · τ j

� j

�l j
+ ∂

∂t

j∑
k=1

�k

]
(13.127)

For example, in the case of a translatory motion parallel to the x axis, as in Eq. (13.105),
and for a flat thin airfoil placed on the x axis the normal and tangential vectors become

ni = (0, 1), τ j = (1, 0)

The upper and lower tangential velocity components are then

Qt j = U∞ ± � j

2�l j

and the pressure difference becomes

�p j = ρ

(
U∞

� j

�l j
+ ∂

∂t

j∑
k=1

�k

)

The total lift and moment are obtained by integrating the pressure difference along the
chordline:

L ≡ Fz =
N∑

j=1

�p j�l j cos α j (13.128)

M0 = −
N∑

j=1

�p j cos α j�l j x j (13.129)

The drag of the two-dimensional airfoil during the unsteady motion is due to the induced
angle caused by the wake and due to the added mass effect (caused by the relative fluid
acceleration; see also discussion leading to Eq. (13.37)):

D =
N∑

j=1

ρ

(
wW j � j + ∂

∂t

j∑
k=1

�k�lk sin αk

)
(13.130)

Here the first term is due to the wake-induced downwash wW j which in the lumped-vortex
element case is evaluated at the panel’s three-quarter chord point. The second term is due
to the fluid acceleration (second term in Eq. (13.127)) and its center of pressure is assumed
to act at the panel center.

h. Vortex Wake Rollup
Since the vortex wake is force free, each vortex must move with the local stream

velocity (Eq. (13.21a)). The local velocity is a result of the velocity components induced
by the wake and airfoil and is usually measured in the inertial frame of reference X, Z . To
achieve the vortex wake rollup, at each time step the induced velocity (u, w)i at each vortex
wake point is calculated and then the vortex elements are moved by

(�x, �z)i = (u, w)i�t (13.131)



P1: FIN

CB329-13 CB329/Katz October 5, 2000 11:31 Char Count= 0

416 13 / Unsteady Incompressible Potential Flow

The velocity induced at each wake vortex point is a combination of the airfoil � j and wake
�k vortices and can be obtained by using the same influence routine (Eq. (11.2)):

(u, w)i =
N∑

j=1

VOR2D
(
� j , xWi , zWi , x j , z j

)

+
NW∑
k=1

VOR2D
(
�Wk , xWi , zWi , xWk , zWk

)
(13.132)

In this simple scheme the velocity components of the current or previous time step (or a
combination thereof) were used. However, more refined techniques can be applied here to
improve the wake shape near the trailing edge.

Summary
The solution procedure is described schematically by the flowchart of Fig. 13.25. In

principle at each time step the motion kinematics is calculated (Eqs. (13.103) and (13.104)),
the location of the latest wake vortex is established, and the RHSi vector is calculated. Then,
during the first time step the influence coefficients appearing in Eq. (13.118) are calculated
and the matrix equation is solved. At later time steps, the airfoil vortex distribution can be
calculated by the momentary RHS j vector, using Eq. (13.122). Once the vortex distribution
is obtained the pressures and loads are calculated, using Eqs. (13.128)–(13.130). To conclude
the time step, the wake vortex locations are updated using the velocity induced by the
flowfield from Eq. (13.132).

As an example, consider the sudden acceleration of a flat plate (discussed in Section 13.7)
placed along the x axis. The angle of attack α can be obtained by rotating the plate frame
of reference by θ = α relative to the direction of Q∞. For this case at t > 0 the velocity
of the origin is (Ẋ0, Ż0) = (−Q∞, 0) and Eq. (13.116) results in the following free-stream
components:(

U (t)

W (t)

)
= Q∞

(
cos α

sin α

)

Since the normal vector to the flat plate is n = (0, 1) the right-hand side (downwash) vector
of Eq. (13.117) becomes

RHSi = −(Q∞ cos α + uW , Q∞ sin α + wW ) · (0, 1) = −(Q∞ sin α + wW )

The wake-induced downwash is obtained by using Eq. (13.113) and then at each moment
Eq. (13.118) is solved for the airfoil vortex distribution. The pressure difference is then
obtained by using Eq. (13.127). Results of this computation for the case of the sudden
acceleration of a flat plate are presented in Figs. 13.8–13.10 along with the results obtained
with the one-element lumped-vortex method.

Program No. 15 in Appendix D includes most of the elements of this method except
the matrix inversion phase and may be useful in developing a computer program based on
this method. The matrix inversion is included, though, in Program No. 16, which is a more
complicated three-dimensional model.

13.11 Some Remarks about the Unsteady Kutta Condition

The potential flow examples, as presented in Chapters 3 and 4, indicate that the
solution for lifting flows is not unique for a given set of boundary conditions. This difficulty
was resolved by requiring that the flow leave smoothly at the trailing edge of two-dimensional
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Figure 13.28 Variation of the vertical displacement and normal force coefficient during one heaving
cycle. From Katz, J., and Weihs, D., “Behavior of Vortex Wakes from Oscillating Airfoils,” J. Aircraft,
Vol. 15, No. 12, 1978. Reprinted with permission. Copyright AIAA.

airfoils, thereby fixing the amount of circulation generated by the airfoil. The above two-
dimensional Kutta condition was almost automatically extended to the three-dimensional
steady-state case and in this chapter was used for unsteady flows as well. Although from
the mathematical point of view a condition to fix the amount of circulation is required, it
is not obvious that this condition is the best candidate. However, prior to arriving at any
conclusion in this regard, let us use the method of this section to study the wake rollup
behind a thin airfoil undergoing a small-amplitude heaving oscillation.

Consider the small-amplitude heaving oscillation of the flat plate shown in the inset to
Fig. 13.28. Assume that the motion of the origin of the x, z coordinates is given by

X0 = −U∞t, Ẋ0(t) = −U∞
Z0 = −h0 sin ωt, Ż0(t) = −h0ω cos ωt

θ = 0, θ̇ = 0

The time-dependent kinematic velocity components of Eq. (13.116) then become
(

U (t)

W (t)

)
=

(
U∞

h0ω cos ωt

)

Since the normal vector to the flat plate is n = (0, 1) the right-hand-side (downwash) vector
of Eq. (13.117) becomes

RHSi = −(h0ω sin ωt + wW )

The wake-induced downwash is obtained by using Eq. (13.113) and then at each moment
Eq. (13.118) is solved for the airfoil vortex distribution. The pressure difference is then
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Figure 13.29 Calculated and experimental wake patterns behind a thin airfoil undergoing heaving
oscillations at various frequencies. From Katz, J., and Weihs, D., “Behavior of Vortex Wakes from
Oscillating Airfoils,” J. Aircraft, Vol. 15, No. 12, 1978. Reprinted with permission. Copyright AIAA.

obtained by using Eq. (13.127) and the wake rollup is obtained by moving the wake vortices
with the local induced velocity (Eq. (13.132)). The rest of the details are as presented in the
previous section and results of the wake rollup computation for the flat plate oscillating at
various frequencies is shown in Fig. 13.29. The comparison in this figure indicates that up
to a high reduced frequency of ωc/2Q∞ = 8.5 the calculated wake shape is similar to the
results of flow visualizations. Since the wake shape is a direct result of the airfoil’s circulation
history and the calculated wake shape is similar to the experimentally observed shape, it
is safe to assume that the calculated airfoil’s lift history is similar to the experimental one
(which was not measured in this case). As an example, the vertical load Cz on the airfoil
during one cycle is presented in Fig. 13.28 next to the motion history (note the phase shift
due to the wake influence).

Now that we have generated a good example in favor of the unsteady Kutta condition let
us investigate some possible parameters affecting its validity. It is clear that conditions such
as very high oscillation frequency, large amplitudes, and large angles of attack will cause
some trailing-edge separation. Such local flow separation automatically violates the Kutta
condition, but in practice it may not have a noticeable effect on the lift, although it may
cause a lag in the aerodynamic loads. Experimental investigations of the unsteady Kutta
condition13.8−13.11 usually indicate that the streamlines do not leave parallel to the trailing
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edge at reduced frequencies of ωc/2Q∞ > 0.6, but the lift and pressure distributions are
not affected in a visible manner even at higher frequencies. These experiments were based
on small-amplitude oscillations of airfoils where the trailing-edge vertical displacement
was small.

So, based on the indirect results of Fig. 13.29 and some cited references we can try
to establish some guidelines for the boundaries for the validity of the unsteady Kutta
condition. First and most important, large angles of attack where trailing-edge separa-
tion begins to develop must be avoided. Also, it is clear that as the reduced frequency
increases the “allowed” trailing-edge displacement amplitude (e.g., h0 in the previous ex-
ample) must be smaller. So, for example, with h0 = 0.1c and with reduced frequencies of
up to ωc/2Q∞ = 1.0 calculations based on the Kutta condition may provide reasonable
load calculations. The vertical kinematic velocity of the trailing edge (e.g., ḣ0/U∞ in the
previous example) is an important parameter, too, and in the case of the highest frequency
oscillation in Fig. 13.29 it has a value of about 0.35. Hence, in addition to the previously
mentioned limits on the reduced frequency and trailing-edge amplitude, if we limit our-
selves to trailing-edge vertical displacement velocity of ḣ0/U∞ � 1, then for practical
purposes we can assume that the unsteady Kutta condition is valid. Furthermore, we must
remember that characteristic airplane maneuvers will fall into a category where the reduced
frequency is far less than 1, and therefore the use of the Kutta condition is justified in most
cases. However, for a rapidly pitching helicopter rotor in forward flight this may not be the
case!

The above discussion was aimed primarily at the lift calculation; however, the lag (due
to viscous effects) in the adjustment of the flow at the trailing edge may cause some lags in
the aerodynamic loads, and this effect is still not explored sufficiently.

13.12 Unsteady Lifting-Surface Solution by Vortex Ring Elements

The method of transforming steady-state flow based numerical solutions into the
time-dependent mode is described schematically in Fig. 13.25 and in the introduction to
Section 13.10. In this section the same approach is applied to the three-dimensional thin
lifting surface problem. In this example, as in the case of the lifting surface of Section 12.3,
the wing’s bound circulation and the vortex wake will be modeled by vortex ring elements
(see Fig. 13.30). The main advantage of using vortex ring elements is that they require little
programming effort (although computational efficiency can be further improved). Also, in
this numerical example, the boundary conditions are specified on the actual wing surface,
which can have camber and various planform shapes.

The solution is again based on the time-stepping technique, and at the beginning of
the motion only the wing-bound vortex rings exist (upper part of Fig. 13.30). Note that the
closing segment of the trailing-edge vortex elements in Fig. 13.30 will represent the starting
vortex. Consequently, during the first time step there will be no wake panels and if the wing
is represented by K unknown vortex rings (K = 8 in Fig. 13.30) then by specifying the
zero normal flow boundary condition on the K collocation points, a solution at t = �t is
possible. With this model, therefore, we do not have to add an additional equation to enforce
the Kelvin condition since the vortex ring model inherently fulfills this condition. During
the second time step, the wing is moved along its flight path and each trailing-edge vortex
panel sheds a wake panel with a vortex strength equal to its circulation in the previous time
step (lower part of Fig. 13.30). Also, during this second time step, there will be only one
row of wake vortices, but with a known strength. Therefore, the wing K bound vortices can
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Figure 13.30 Vortex ring model for the unsteady lifting surface during the first time step (upper
figure) and during the second time step (lower figure).

be calculated for this time step, too, by specifying the boundary condition on the same K
collocation points. This time-stepping methodology can then be continued for any type of
flight path and at each time step the vortex wake corner points can be moved by the local
velocity, so that wake rollup can be simulated. One of the advantages of this wake model is
its simplicity, it being equal in its formulation to the wing’s bound vortex rings (or constant-
strength doublet panels). Consequently, this wake model can be used for more advanced
panel methods (and is actually used by the code PMARC9.7,9.8,12.13).

It is recommended that prior to reading this section the reader should be familiar with
the steady-state solution presented in Section 12.3. The presentation of the unsteady version
of this method then proceeds with the same sequence (steps) of the previous sections. So,
in general, the wing is divided into panel elements containing vortex ring singularities as
shown in Fig. 13.30 and the solution procedure is as follows:

a. Choice of Singularity Element
The method by which the thin-wing planform is divided into panels is similar to

what was described in Section 12.3 and shown schematically in Figs. 13.30 and 13.31.
The leading segment of the vortex ring is placed on the panel’s quarter chord line and the
collocation point is at the center of the three-quarter chord line. The normal vector n is
defined at this point, too, which falls at the center of the vortex ring. A positive � is defined
here according to the right-hand rotation rule, as shown by the arrows in Fig. 13.31.

From the numerical point of view these vortex ring elements are stored in rectangular
patches (arrays) with i, j indexing as shown by Fig. 13.31 (see also Fig. 12.10). The velocity
induced at an arbitrary point P (x, y, z), by a typical vortex ring (see Fig. 13.32) at location
i j , can be computed by applying the vortex line routine VORTXL (Eq. (10.106)) to the
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Figure 13.31 Nomenclature for the unsteady motion of a thin lifting surface along a predetermined
path. (Note that in this figure, too, the fluid is at rest and the airfoil moves toward the left side of the
page.)

ring’s four segments:

(u1, v1, w1) = VORTXL(x, y, z, xi, j , yi, j , zi, j , xi, j+1, yi, j+1, zi, j+1, �i, j )

(u2, v2, w2) = VORTXL(x, y, z, xi, j+1, yi, j+1, zi, j+1,

xi+1, j+1, yi+1, j+1, zi+1, j+1, �i, j )

(u3, v3, w3) = VORTXL(x, y, z, xi+1, j+1, yi+1, j+1,

zi+1, j+1, xi+1, j , yi+1, j , zi+1, j , �i, j )

(u4, v4, w4) = VORTXL(x, y, z, xi+1, j , yi+1, j , zi+1, j , xi, j , yi, j , zi, j , �i, j )

The velocity induced by the four vortex segments is then

(u, v, w) = (u1, v1, w1) + (u2, v2, w2) + (u3, v3, w3) + (u4, v4, w4) (13.133)

It is convenient to include these computations in a subroutine (see Eqs. (10.117) and (12.17))

Figure 13.32 Typical vortex ring element and its influence at point P .
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such that

(u, v, w) = VORING(x, y, z, i, j, �) (13.134)

Note that in this formulation it is assumed that by specifying the i, j counters, the (x, y, z)
coordinates of this panel are automatically identified (see Fig. 12.10).

The use of this subroutine can considerably shorten the programming effort; however,
for the vortex segment between two adjacent vortex rings the velocity induced by the vortex
segment is computed twice. For the sake of simplicity this routine will be used for this prob-
lem, but more advanced programming can easily correct this compromise of computational
efficiency.

It is recommended at this point, too, that one calculate the velocity induced by the
trailing vortex segments only (the vortex lines parallel to the free stream, as in Fig. 12.5).
This information is needed for the induced-drag computations and if done at this point will
only slightly increase the computational effort. The influence of the trailing segments is
obtained by simply omitting the (u1, v1, w1) + (u3, v3, w3) part from Eq. (12.133):

(u, v, w)∗ = (u2, v2, w2) + (u4, v4, w4) (13.135)

and it is assumed that (u, v, w)∗ is automatically obtained as a byproduct of subroutine
VORING.

b. Kinematics
Let us establish an inertial frame of reference X, Y, Z , as shown in Fig. 13.1, such

that this frame of reference is stationary while the wing is moving to the left of the page.
The flight path of the origin and the orientation of the x, y, z system is assumed to be known
and is prescribed as

X0 = X0(t), Y0 = Y0(t), Z0 = Z0(t) (13.136)

φ = φ(t), θ = θ (t), ψ = ψ(t) (13.136a)

and the momentary velocity of the origin and its rotations about the axes are

Ẋ0 = Ẋ0(t), Ẏ0 = Ẏ0(t), Ż0 = Ż0(t) (13.137)

p = p(t), q = q(t), r = r (t) (13.137a)

For example, if the wing moves to the left (parallel to the X axis) at a constant speed of U∞
and has a constant sideslip (parallel to the Y axis) of V∞, then

X0 = −U∞t, Y0 = −V∞t, Z0 = 0 (13.138)

φ = θ = ψ = 0 (13.138a)
and

Ẋ0 = −U∞, Ẏ0 = −V∞, Ż0 = 0 (13.139)

p = q = r = 0 (13.139a)

It is useful to establish a transformation between the two coordinate systems (Eq. (13.7a))
that depends on the translation of the origin and the orientation of the body frame of
reference:⎛

⎜⎝
x

y

z

⎞
⎟⎠ = f (φ, θ, ψ)

⎛
⎜⎝

X − X0

Y − Y0

Z − Z0

⎞
⎟⎠ (13.140)
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This transformation, without the translation part, can be used also for the velocity transfor-
mation. To define such a three-dimensional transformation uniquely, the order of rotation
must be specified. For example, if we adopt the order of rotation such that first we rotate
about the z axis, then about the y axis, and finally about the x axis then the transformation
becomes:

a. rotation by ψ (sideslip):

⎛
⎜⎝

U1

V 1

W 1

⎞
⎟⎠ =

⎛
⎜⎝

cos ψ(t) sin ψ(t) 0

−sinψ(t) cos ψ(t) 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

−Ẋ0

−Ẏ0

−Ż0

⎞
⎟⎠

b. rotation by θ (angle of attack):
⎛
⎜⎝

U2

V 2

W 2

⎞
⎟⎠ =

⎛
⎜⎝

cos θ (t) 0 −sin θ (t)

0 1 0

sin θ (t) 0 cos θ (t)

⎞
⎟⎠

⎛
⎜⎝

U1

V 1

W 1

⎞
⎟⎠

c. rotation by φ (roll angle):
⎛
⎜⎝

U3

V 3

W 3

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0

0 cos φ(t) sin φ(t)

0 −sin φ(t) cos φ(t)

⎞
⎟⎠

⎛
⎜⎝

U2

V 2

W 2

⎞
⎟⎠ (13.140a)

where U3, V 3, W 3 are the velocity components observed in the x, y, z frame due
to the translation of the origin.

The time-dependent kinematic velocity components U (t), V (t), W (t), in the x, y, z
frame, are then a combination of the translation velocity and the rotation of the body
frame of reference:⎛

⎜⎝
U (t)

V (t)

W (t)

⎞
⎟⎠ =

⎛
⎜⎝

U3

V 3

W 3

⎞
⎟⎠ +

⎛
⎜⎝

−qz + r y

−r x + pz

−py + qx − ∂η

∂t

⎞
⎟⎠ (13.141)

Since the instantaneous rotation and translation rates are known, these kinematic terms are
known, too, at each time step.

c. Discretization and Grid Generation
The method by which the thin wing planform is divided into elements is the same

as presented in Section 12.3 and is shown in Figs. 13.30 and 13.31. Some typical panel
elements are also shown in Figs. 12.8–12.10. Also, if only the wing’s semispan is modeled
then the mirror image method must be used to account for the other semispan. The leading
segment of the vortex ring is placed on the panel’s quarter chord line and the collocation
point is at the center of the three-quarter chord line (see Fig. 13.31). The lifting surface shape
is usually given by z = η(x, y) and is divided into N spanwise and M chordwise panels.
Using a procedure such as shown in Fig. 12.13 allows the scanning and calculation of
geometrical information such as the panel area Si j , normal vector ni j , and the coordinates
of the collocation points. A simple and fairly general method for evaluating the normal
vector is shown in Fig. 12.11. The panel opposite corner points define two vectors A and
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Figure 13.33 Nomenclature for the wake shedding procedure at a typical trailing-edge panel.

B, and their vector product will point in the direction of n:

n = A × B

|A × B|
A positive � for a vortex ring is defined here using the right-hand rotation convention, as

shown in Fig. 13.31. For increased surface curvature the above described vortex rings will
not be placed exactly on the lifting surface and the normal vectors may be offset somewhat,
and a finer grid needs to be used, or the wing surface can be redefined accordingly. By
placing the leading segment of the vortex ring at the quarter chord line of the panel the
two-dimensional Kutta condition is satisfied along the chord (recall the lumped-vortex
element).

At this point the wake shedding procedure must be addressed. Consider a typical trailing-
edge vortex ring placed on the last panel row (as shown in Fig. 13.33). The trailing segment
(parallel to the trailing edge) is placed in the interval covered by the trailing edge during
the latest time step (of length Q · �t). Usually it must be placed closer to the trailing edge
within 0.2–0.3 of the above distance (see discussion about this topic at the beginning of
Section 13.8.2). The wake vortex ring corner points must be created at each time step, such
that at the first time step only the two aft points of the vortex ring are created. Therefore,
during the first time step there are no free wake elements and the trailing vortex segment
of the trailing-edge vortex ring represents the starting vortex. During the second time
step the wing trailing edge has advanced and a wake vortex ring can be created using
the new aft points of the trailing-edge vortex ring and the two points where these points
were during the previous time step (see Fig. 13.30). This shedding procedure is repeated at
each time step and a set of new trailing-edge wake vortex rings is created (wake shedding
procedure).

The strength of the most recently shed wake vortex ring (�Wt in Fig. 13.33) is set equal
to the strength of the shedding vortex �T .E .t−�t (placed at the trailing edge) in the previous
time step (as if it was shed from the trailing edge and left to flow with the local velocity):

�Wt = �T.E.t−�t (13.142)

Once the wake vortex is shed, its strength is unchanged (recall the Helmholtz theorems in
Section 2.9), and the wake vortex carries no aerodynamic loads (and therefore moves with
the local velocity).
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This is the unsteady equivalent of the Kutta condition. For the steady-state flow condi-
tions, all wake panels shed from a particular trailing-edge panel will have the same vortex
strength, which is equal to the strength of the shedding panel. Thus, the spanwise oriented
vortex lines of the adjacent vortex rings will cancel each other and only a horseshoe-like
vortex will remain.

d. Influence Coefficients
At this point, the zero normal flow across the solid surface boundary condition is

implemented. To specify this condition, the kinematic conditions must be known and the
time-stepping loop (shown in Fig. 13.25) is initiated. Let us select again It as the time-step
counter, so that the momentary time is

t = It · �t

Let us assume that at t = 0 the two coordinate systems x, y, z and X, Y, Z coincided and the
wing was at rest. The calculation is initiated at t = �t and the wake at this moment consists of
the vortex line created by the trailing segments of the trailing-edge vortex rings (Fig. 13.30).
The location of the trailing edge at t = 0 and at t = �t , needed for specifying the wake
panels’ corner points, is obtained by using coordinate transformations such as Eq. (13.140).

The normal velocity component at each point on the camberline is a combination of
the self-induced velocity, the kinematic velocity, and the wake-induced velocity. The self-
induced part can be represented by a combination of influence coefficients, as in the steady-
state flow case. If the shape of the wing η(x, y) remains constant with time then these
coefficients will be evaluated only once. The normal velocity component due to the motion
of the wing is known from the kinematic equations (Eqs. (13.13a) or (13.141)) and will be
transferred to the right-hand side (RHSK ) of the equation. The strength of the other wake
vortices is known from the previous time steps and the wake-induced normal velocity on
each panel will be transferred to the right-hand side, too.

Let us establish a collocation point scanning procedure (similar to that of Section 12.3)
that takes the first chordwise row where i = 1 and scans spanwise with j = 1 → N and
so on (recall that we have M chordwise panels – see Fig. 12.10). This procedure can be
described by two DO loops shown in Fig. 12.13. As the panel scanning begins, a sequential
counter assigns a value K to each panel (the sequence of K is shown in Fig. 12.14); K will
have values from 1 to M × N .

Once the collocation point scanning has started, K = 1 (which is point (i = 1, j = 1)
on Fig. 12.12. The velocity induced by the first vortex ring is then

(u, v, w)11 = VORING(x, y, z, i = 1, j = 1, �1 = 1.0)

Note that a unit strength vortex is used for evaluating the influence coefficient a11, which is

a11 = (u, v, w)11 · n1 (13.143)

To scan all the vortex rings influencing this point, an inner scanning loop is needed with
the counter L = 1 → N × M (see Fig. 12.13). Thus, at this point, the K counter is at point
1, and the L counter will scan all the vortex rings on the wing surface, and all the influence
coefficients a1L are computed (also, in Eq. (13.143) the ( )11 index means K = 1, L = 1):

a1L = (u, v, w)1L · n1

and for the K , Lth panel

aK L = (u, v, w)K L · nK (13.143a)
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As mentioned before, parallel to the computation of the aK L coefficients, the normal
velocity component induced by the streamwise segments of the wing vortex rings can also
be computed. These bK L coefficients, which will be used for the induced-drag calculation,
are calculated by using Eq. (13.135):

bK L = (u, v, w)∗K L · nK (13.144)

and it is assumed that these coefficients are a byproduct of the aK L calculations and do not
require additional computational effort.

This procedure continues until all the collocation points have been scanned. A FORTRAN
example for this influence coefficient calculation is presented in Fig. 12.13 of Chapter 12.

e. Establish RHS Vector
Specifying the zero normal velocity boundary condition on the surface (QnK = 0)

on an arbitrary collocation point K we obtain

QnK = aK 1�1 + aK 2�2 + aK 3�3 + · · · + aK m�m

+ [U (t) + uW , V (t) + vW , W (t) + wW ]K · nK = 0

where [U (t), V (t), W (t)]K are the time-dependent kinematic velocity components due to
the motion of the wing (Eq. (13.141)), (uW , vW , wW )K are the velocity components in-
duced by the wake vortices, and m = M × N . The wake influence can be calculated using
Eq. (13.134) since the location of all vortex points is known (including the wake vortex
points). Since these terms are known at each time step, they can be transferred to the
right-hand side of the equation. Consequently, the right-hand side is defined as

RHSK = −[U (t) + uW , V (t) + vW , W (t) + wW ]K · nK (13.145)

f. Solve Linear Set of Equations
Once the computations of the influence coefficients and the right-hand side vector

are completed, the zero normal flow boundary condition on all the wing’s collocation points
will result in the following set of algebraic equations:

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1m

a21 a22 · · · a2m

a31 a32 · · · a3m
...

...
. . .

...
am1 am2 · · · amm

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�1

�2

�3
...

�m

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

RHS1

RHS2

RHS3
...

RHSm

⎞
⎟⎟⎟⎟⎟⎠

(Recall that K is the vertical and L is the horizontal matrix counter and the order of this
matrix is m = M × N .)

The results of this matrix equation can be summarized in indicial form (for each collo-
cation point K ) as

m∑
L=1

aK L�L = RHSK (13.146)

If the shape of the wing remains unchanged then the matrix inversion occurs only once. For
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time steps larger then 1 the calculation is reduced to

�K =
m∑

L=1

a−1
K LRHSL (13.147)

where a−1
K L are the coefficients of the inverted matrix.

g. Computation of Velocity Components, Pressures, and Loads
For the pressure distribution calculations the local circulation is needed. For the

leading-edge panel this is equal to �i j but for all the elements behind it the circulation is
equal to the difference �i j − �i−1, j . The fluid dynamic loads then can be computed by using
the Bernoulli equation (Eq. (13.24)) and the pressure difference is given by Eq. (13.123):

�p = pl − pu = ρ

[(
Q2

t

2

)
u

−
(

Q2
t

2

)
l

+
(

∂�

∂t

)
u

−
(

∂�

∂t

)
l

]

The tangential velocity due to the wing vortices will have two components on the wing, and
it can be approximated by the two directions i, j on the surface as

±∂�

∂τi
= ±γ

2
≈ ±�i, j − �i−1, j

2�ci j
(13.148a)

± ∂�

∂τ j
≈ ±�i, j − �i, j−1

2�bi j
(13.148b)

where ± represents the upper and lower surfaces, respectively, and �ci j and �bi j are the
panel lengths in the i th and j th directions, respectively. Similarly, τ i and τ j are the panel
tangential vectors in the i and j directions (of course, these vectors are different for each
panel and the ij subscript from τ ii j is dropped for the sake of simplicity).

The velocity-potential time derivative is obtained by using the definition �± =
± ∫ x

0 (γ /2) dl and by integrating from the leading edge. Since for this vortex ring model
�� = � then

±∂�i j

∂t
= ± ∂

∂t

�i j

2
(13.149)

Substitution of these terms into the pressure difference equation results in

�pi j = ρ

{
[U (t) + uW , V (t) + vW , W (t) + wW ]i j · τ i

�i, j − �i−1, j

�ci j

+ [U (t) + uW , V (t) + vW , W (t) + wW ]i j · τ j
�i, j − �i, j−1

�bi j
+ ∂

∂t
�i j

}

(13.150)

The contribution of this panel to the loads, resolved along the three body axes, is then

�F = −(�p�S)i j ni j (13.151)

The total forces and moments are then obtained by adding the contribution of the individual
panels.

The total force obtained by this pressure difference integration will have some of the
thin lifting surface problems since it does not account for the leading-edge suction force.
In general, the lifting properties of the wing will be estimated adequately by this method
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but the induced drag will be overestimated. Also, in the case of an arbitrary motion, the
definition of lift and drag is more difficult and even the definition of a reference veloc-
ity (e.g., free-stream velocity) is not always simple. For example, presenting the pressure
coefficient data on a helicopter blade in forward flight can be based on the local blade
velocity or on the helicopter flight speed. So for the simplicity of this discussion on the
induced drag, we shall limit the motion of the lifting surface such that it moves forward
along a straight line without side slip (but the forward speed may vary). The induced
drag is then the force component parallel to the flight direction, and each panel contribu-
tion is

�Di j = ρ

[
(wind + wW )i j (�i j − �i−1, j )�bi j + ∂

∂t
�i j�Si j sin αi j

]
(13.152)

and if the panel is at the leading edge then

�Di j = ρ

[
(wind + wW )i j�i j�bi j + ∂

∂t
�i j�Si j sin αi j

]
(13.152a)

where αi j is the panel’s angle of attack relative to the free-stream direction. The first
term here is due to the downwash induced by the wing’s streamwise vortex lines wind

and due to the wake wW ; the second term is due to the fluid acceleration. The induced
downwash wind at each collocation point i, j is computed by summing the velocity in-
duced by all the trailing segments of the wing-bound vortices. This can be done during
the phase of the influence coefficient computation (Eq. (13.144)) by using the VORING
routine with the influence of the spanwise vortex segments turned off. This procedure can
be summarized by the following matrix formulations where all the bK L and the �K are
known: ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

wind−1

wind−2

wind−3

...

wind−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b11 b12 · · · b1m

b21 b22 · · · b2m

b31 b32 · · · b3m

...
...

. . .
...

bm1 bm2 · · · bmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1

�2

�3

...

�m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where again m = N × M .
The main difficulty in the induced-drag calculation for a general motion lies in the

identification of the force component that will be designated as drag. Once this problem is
resolved then the above method can be extended to more complex wing motions (and then
angles such as αi j in Eq. (13.152) must be defined).

h. Vortex Wake Rollup
Since the vortex wake is force free, each vortex must move with the local stream

velocity (Eq. (13.21a)). The local velocity is a result of the velocity components induced
by the wake and wing and is usually measured in the inertial frame of reference X, Y, Z ,
at each vortex ring corner point. To achieve the vortex wake rollup, at each time step the
induced velocity (u, v, w)� is calculated and then the vortex elements are moved by

(�x, �y, �z)� = (u, v, w)��t (13.153)
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The velocity induced at each wake vortex point is a combination of the wing and wake
influence and can be obtained by using the same influence routine (Eq. (13.134)):

(u, v, w)� =
m∑

K=1

VORING(x�, y�, z�, i, j, �K )

+
NW∑
k=1

VORING(x�, y�, z�, iW , jW , �W k) (13.154)

and there are m wing panels and NW wake panels.
In the case of a strong wake rollup the size of the wake vortex ring can increase (or

be stretched) and if a vortex line segment length increases its strength must be reduced
(from the angular momentum point of view). For the methods presented in this section it is
assumed that this stretching is small and therefore is not accounted for.

Summary
The solution procedure is described schematically by the flowchart of Fig. 13.25. In

principle at each time step the motion kinematics is calculated (Eqs. (13.142)), the location of
the latest wake vortex ring is established, and the RHSi vector is calculated. The influence
coefficients appearing in Eq. (13.146) are calculated only during the first time step and
the matrix is inverted. At later time steps, the wing vortex distribution can be calculated by
the momentary RHS j vector, using Eq. (13.147). Once the vortex distribution is obtained the
pressures and loads are calculated, using Eq. (13.151). At the end of each time step, the wake
vortex ring corner point locations are updated using the velocity induced by the flowfield.

A student program based on this algorithm is enclosed in Appendix D (Program No. 16).

Example 1: Sudden Acceleration of an Uncambered Rectangular Wing into
a Constant-Speed Forward Flight

In this case the coordinate system is selected such that the x coordinate is parallel
to the motion and the kinematic velocity components of Eq. (13.141) become
[U (t), 0, 0]. The angle of attack effect is taken care of by pitching the wing in the
body frame of reference and for the planar wing then all the normal vectors will
be n = (sin α, 0, cos α). Consequently, the RHS vector of Eq. (13.145) becomes

RHSK = −{[U (t) + uW ] sin α + wW cos α}K (13.155)

and here the wake influence will change with time. The rest of the time-stepping
solution is as described previously in this section. For the numerical investigation
the wing is divided into four chordwise and thirteen spanwise equally spaced
panels, and the time step is U∞�t/c = 1/16.

Following the results of Ref. 13.13 we present the transient lift coefficient
variation with time for rectangular wings with various aspect ratios in Fig. 13.34.
The duration of the first time step actually represents the time of the acceleration
during which the ∂�/∂t term is large. Immediately after the wing has reached
its steady-state speed (U∞) the lift drops because of the influence of the starting
vortex and most of the lift is a result of the ∂�/∂t term (because of the change
in the downwash of the starting vortex–see also Fig. 13.8). Also, the initial lift
loss and the length of the transient seems to decrease with a reduction in the wing
aspect ratio (because of the presence of the trailing vortex wake).
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Figure 13.34 Transient lift coefficient variation with time for uncambered, rectangular wings that
were suddenly set into a constant-speed forward flight. Calculation is based on four chordwise and
thirteen spanwise panels and U∞�t/c = 1/16.

The transient drag coefficient variation with time for the same rectangular wings
is presented in Fig. 13.35. Recall that this is the inviscid (induced) drag and it is
zero for the two-dimensional wing ( = ∞). Consequently, the larger aspect ratio
wings will experience the largest increase in the drag owing to the downwash of
the starting vortices. The length of the transient is similar to the results of the
previous figure, that is, a smaller aspect ratio wing will reach steady state in a
shorter distance (in chord lengths).

The above drag calculation results allow us to investigate the components of
Eq. (13.152). For example, Fig. 13.36 depicts the drag CD1 due to induced down-
wash (first term in Eq. (13.152)) and due to the fluid acceleration term CD2 (which
is the second term in Eq. (13.152)) for a rectangular wing with an aspect ratio of
8. At the beginning of the motion, most of the drag is due to the ∂�/∂t term, but
later the steady-state induced-drag portion develops to its full value.

The effect of wing aspect ratio on the nondimensional transient lift of uncam-
bered, rectangular wings that were suddenly set into a constant-speed forward
flight is shown in Fig. 13.37. This figure is very useful for validating a new calcu-
lation scheme, and the results are sensitive to the spacing of the latest wake vortex
from the trailing-edge (actually this is one method to establish the distance of the
trailing-edge vortex behind the trailing edge for a given time step). For comparison
the results of Wagner13.3 for the two-dimensional case are presented as well (in his
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Figure 13.35 Transient drag coefficient variation with time for uncambered, rectangular wings that
were suddenly set into a constant-speed forward flight. Calculation is based on four chordwise and
thirteen spanwise panels and U∞�t/c = 1/16.

case the acceleration time is zero and the lift at t = 0+ is ∞). It is clear from this
figure, too, that both the length of the transient and the loss of initial lift decrease
with decreasing wing aspect ratio. The difference between the computed curve
and the classical results of Wagner can be attributed to the finite acceleration rate
during the first time step. The effect of this finite acceleration is to increase the lift
sharply during the acceleration and to increase it moderately later (this effect of
finite acceleration is discussed in Ref. 13.14).

Example 2: Heaving Oscillations of a Rectangular Wing

As a final example this method is used to simulate the heaving oscillations of
a rectangular wing near the ground. The boundary conditions for this case were
established exactly as in the example of Section 13.9.1. The ground effect is ob-
tained by the mirror image method and the results13.13 for a planar rectangular
wing with = 4 are presented in Fig. 13.38. The upper portion shows the effect
of frequency on the lift without the presence of the ground, and the loads increase
with increased frequency. The lower portion of the figure depicts the loads for the
same motion, but with the ground effect. This case was generated to study the
loads on the front wing of a race car due to the heaving oscillation of the body,
and the data indicate that the ground effect does magnify the amplitude of the
aerodynamic loads.
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Figure 13.36 Separation of the transient drag coefficient into a part due to induced downwash CD1

and due to fluid acceleration CD2 . Calculation is based on four chordwise and thirteen spanwise panels
and U∞�t/c = 1/16.

Figure 13.37 Effect of aspect ratio on the nondimensional transient lift of uncambered, rectangular
wings that were suddenly set into a constant-speed forward flight. Calculation is based on four chordwise
and thirteen spanwise panels.
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Figure 13.38 Effect of ground proximity on the periodic lift during the heaving oscillation of an
aspect ratio = 4 rectangular wing.

13.13 Unsteady Panel Methods

Principles of converting a steady-state, potential flow solution into a time-dependent
mode were summarized in Section 13.6 and were demonstrated in the sections that followed.
The complexity of these examples in terms of geometry increased gradually and in the pre-
vious section the three-dimensional thin lifting surface problem was illustrated. Although
this method was capable of estimating the fluid dynamic lift, the calculation of the drag was
indirect and inefficient from the computational point of view. Therefore, a similar conver-
sion of a three-dimensional panel method into the unsteady mode can provide, first of all,
the capability of treating thick and complex body shapes, and in addition the fluid dynamic
loads will be obtained by a direct integration of the pressure coefficients. Since the pressure
coefficient is obtained by a local differentiation of the velocity potential (and not by sum-
ming the influence of all the panels) this approach yields an improved numerical efficiency.
In addition, the drag force is obtained as a component of the pressure coefficient integration
and there is no need for a complicated estimation of the leading-edge suction force.

The following example is based on the conversion of a steady-state panel method using
constant-strength source and doublet elements12.12 (described in Section 12.5), which re-
sulted in the time-dependent version12.14 presented in this section. Familiarity with Sections
12.5 and 13.12 is also advised since some details mentioned in these sections are described
here only briefly.

The method of the conversion is described schematically in Fig. 13.25, and the potential
flow solution will be included in a time-stepping loop that will start at t = 0. During each of
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the following time steps the strength of the latest wake row is computed by using the Kutta
condition, and the previously shed wake vortex strengths will remain unchanged. Thus, at
each time step, for N panels, N equations will result with N unknown doublet strengths. If
the geometry of the body does not change with time then the matrix is inverted only once. In
a case when the body geometry does change (e.g., when a propeller rotates relative to a wing)
the influence coefficients and matrix inversion (or portions of it) are recalculated at each time
step. The description of the method, based on the eight-step procedure, is then as follows.

a. Choice of Singularity Element
The basic panel element used in this method has a constant-strength source and/or

doublet, and the surface is also planar (but the doublet panels that are equivalent to a vortex
ring can be twisted). Following the formulation of Section 9.4, we can reduce the Dirich-
let boundary condition on a thick body (e.g., Eq. (13.18)) to the following form (see Eq.
(12.29)):

N∑
k=1

Ckμk +
NW∑
�=1

C�μ� +
N∑

k=1

Bkσk = 0 (13.156)

which condition must hold at any moment t . This equation will be evaluated for each col-
location point inside the body and the influence coefficients Ck, C� of the body and wake
doublets, respectively, and Bk of the sources are calculated by the formulas of Section
10.4. (In this example only the Dirichlet boundary condition is described but with a similar
treatment the Neumann condition can be applied to part or all of the panels.)

b. Kinematics
Let us establish an inertial frame of reference X, Y, Z , as shown in Fig. 13.39,

such that this frame of reference is stationary while the airplane is moving to the left of the
page. The flight path of the origin and the orientation of the x, y, z system is assumed to be
known and the boundary condition (Eq. (13.13a)) on the solid surface becomes

∂�

∂n
= (V0 + vrel + Ω × r) · n (13.157)

Figure 13.39 Body and inertial coordinate systems used to describe the motion of the body.
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Figure 13.40 Schematic description of a wing’s trailing edge and the latest wake row of the unsteady
wake.

The kinematic velocity components at each point in the body frame due to the motion
(V0 + vrel + Ω × r) are given as [U (t), V (t), W (t)] by Eq. (13.141). If the combined
source/doublet method is used (see Section 13.2) then the Dirichlet boundary condition
requires that the source strength is given by Eq. (13.19):

σ = −n · (V0 + vrel + Ω × r) (13.19)

c. Discretization and Grid Generation
In this phase the geometry of the body is divided into surface panel elements (see

for example Fig. 12.22). The panel corner points, collocation points (usually slightly inside
the body), and the outward normal vectors nk are identified while the counter k for each
panel is assigned. A typical example of generating a wing grid and the unfolded patch is
shown in Fig. 12.23.

The wake shedding procedure is described schematically by Fig. 13.40. A typical trailing-
edge segment is shown with momentary upper μu and lower μl doublet strengths. The Kutta
condition requires that the vorticity at the trailing edge remains zero:

μWt = (μu − μl)t (13.158)

Thus, the strength of the latest wake panel μWt is directly related to the wing’s (or body’s)
unknown doublets. Note that the spanwise segment (parallel to the trailing edge) of the
latest wake panel (which is actually equivalent to a vortex ring) is placed in the interval
covered by the trailing edge during the latest time step (of length Q · �t). Usually it must
be placed closer to the trailing edge, within 0.2–0.3 of the above distance (see discussion
about this topic at the beginning of Section 13.8.2). During the second time step the wing
trailing edge has advanced and a new wake panel row can be created using the new aft
points of the trailing edge. The previous (t − �t)-th wake row will remain momentarily in
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its previous location (as observed in the inertial frame) so that a continuous wake sheet is
formed. The wake corner points then will be moved with the local velocity, in the wake
rollup calculation phase. Once the wake panel is shed, its strength is unchanged (recall the
Helmholtz theorems in Section 2.9), and the wake vortex carries no aerodynamic loads (and
therefore moves with the local velocity). Thus the strengths of all the previous wake panels
are known from previous time steps. This shedding procedure is repeated at each time step
and a row of new trailing-edge wake vortex rings are created (wake shedding procedure).

d. Influence Coefficients
To specify the time-dependent boundary condition the kinematic conditions need

to be known (from Eq. (13.141)) and a time-stepping loop (shown in Fig. 13.25) is initiated
with It as the time-step counter:

t = It · �t

Let us assume that at t = 0 the two coordinate systems x, y, z and X, Y, Z in Fig. 13.39
coincided and the wing was at rest. The calculation is initiated at t = �t and the wake at
this moment consists of one wake panel row (the wake panel row adjacent to the trailing
edge in Fig. 13.40). The Dirichlet boundary condition (Eq. (13.156)) when specified, for
example, at the i th panel’s collocation point (inside the body) is influenced by all the N
body and NW wake panels and will have the form

N∑
k=1

Cikμk +
NW∑
�=1

Ci�μ� +
N∑

k=1

Bikσk = 0 (13.156a)

But the strength of all the wake panels is related to the unknown doublet values of the
trailing-edge upper and lower panels, via the Kutta condition (Eq. (13.158)). Therefore, by
resubstituting the trailing-edge condition (see also a similar explanation in Section 12.5),
we can reduce this boundary condition to include only the body’s unknown doublets, and
for the first time step it becomes

N∑
k=1

Aikμk +
N∑

k=1

Bikσk = 0, t = �t (13.159)

where Aik = Cik if no wake is shed from this panel and A1k = Cik ± Ci� if it is shedding a
wake panel.

During the subsequent time steps wake panels will be shed, but, as noted, their strength
is known from the previous computations. Thus, Eq. (13.159) is valid only for the first time
step, and for t > �t the influence of these wake doublets μW (excluding the latest row)
must be included in the boundary condition. So for all the other time steps Eq. (13.156a)
will have the form

N∑
k=1

Aikμk +
MW∑
�=1

Ci�μ� +
N∑

k=1

Bikσk = 0, t > �t (13.160)

Note that now the wake counter MW does not include the latest wake row.

e. Establish RHS Vector
Since the source value is set by the value of the local kinematic velocity (Eq.

(13.19)), the second and third terms in Eq. (13.160) are known at each time step and,
therefore, can be transferred to the right-hand side of the equation. The RHS vector is then
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defined as⎛
⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

c11, c12, . . . , c1MW

c21, c22, . . . , c2MW

...
...

cN1, cN2, . . . , cN MW

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1W

μ2W

...
μMW

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

b11, b12, . . . , b1N

b21, b22, . . . , b2N
...

...
bN1, bN2, . . . , bN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σ1

σ2
...

σN

⎞
⎟⎟⎟⎠ (13.161)

(Again, note that μlW and σk are known.) In the case when the body geometry is not changing
with time the bkl coefficients are calculated only once, but the ckl coefficients of the wake
must be recomputed at each moment because of the wake’s time-dependent rollup.

f. Solve Set of Linear Equations
Once the the momentary RHS vector is established, the boundary condition, when

specified at the body’s N collocation points, will have the form⎛
⎜⎜⎜⎝

a11, a12, . . . , a1N

a21, a22, . . . , a2N
...

...
aN1, aN2, . . . , aN N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2
...

μN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

RHS1

RHS2
...

RHSN

⎞
⎟⎟⎟⎠ (13.162)

This matrix has a nonzero diagonal (akk = 1
2 , when the panel is not at the trailing edge) and

has a stable numerical solution.
The results of this matrix equation can be summarized in indicial form (for each collo-

cation point k) as

N∑
l=1

aklμl = RHSk (13.163)

If the shape of the body remains unchanged then the matrix inversion occurs only once. For
time steps larger then 1 the calculation is reduced to

μk =
N∑

l=1

a−1
kl RHSl (13.164)

where a−1
kl are the coefficients of the inverted matrix. In situations when a large number

of panels are used (more than 2,000) then from the computational point of view it is often
more economical to iterate for a new instantaneous solution of Eq. (13.163), at each time
step, than to store the large inverted matrix a−1

kl in the memory.

g. Computation of Velocity Components, Pressures, and Loads
One of the advantages of the velocity potential formulation is that the computation

of the surface velocities and pressures is determinable by the local properties of the solution
(velocity potential in this case). The perturbation velocity components on the surface of a
panel can be obtained by Eqs. (9.26) in the tangential direction,

ql = −∂μ

∂l
, qm = − ∂μ

∂m
(13.165a)
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and in the normal direction (similar to Eq. (9.27))

qn = σ (13.165b)

where l, m are the local tangential coordinates (see Fig. 12.25). For example, the perturbation
velocity component in the l direction can be formulated (e.g., by using central differences)
as

ql = 1

2�l
(μl−1 − μl+1) (13.166)

In most cases the panels do not have equal sizes and instead of this simple formula, a more
elaborate differentiation must be used. The total velocity at collocation point k is the sum
of the kinematic velocity plus the perturbation velocity:

Qk = [U (t), V (t), W (t)]k · (l, m, n)k + (ql , qm, qn)k (13.167)

where lk, mk, nk are the local panel coordinate directions (shown in Fig. 12.25) and of course
the normal velocity component for a solid surface is zero. The pressure coefficient can now
be computed for each panel using Eq. (13.28):

C p = p − pref

(1/2)ρv2
ref

= 1 − Q2

v2
ref

− 2

v2
ref

∂�

∂t
(13.168)

Here Q and p are the local fluid velocity and pressure values, ∂�/∂t = ∂μ/∂t (since
�i = 0), pref is the far field reference pressure, and vref can be taken as the kinematic
velocity as appears in Eq. (13.8):

vref = −[V0 + Ω × r] (13.169)

or as the translation velocity of the origin V0. For nonlifting bodies the use of Eq. (13.128a)
instead of Eq. (13.168) is recommended when the body’s rotation axis is parallel to the
direction of motion. (In the case of more complex motion the use of the pressure equation
and the selection of vref should be investigated more carefully.)

The contribution of an element with an area of �Sk to the aerodynamic loads �Fk is
then

�Fk = −C pk

(
1

2
ρv2

ref

)
k

�Sknk (13.170)

In many situations off-body velocity field information is required as well. This type of
calculation can be done by using the velocity influence formulas of Chapter 10 (and the
singularity distribution strengths of σ and of μ are known at this point).

h. Vortex Wake Rollup
Since the wake is force free, each wake panel (or wake vortex ring) must move

with the local stream velocity (Eq. (13.21a)). The local velocity is a result of the kinematic
motion and the velocity components induced by the wake and body and is usually measured
in the inertial frame of reference X, Y, Z , at each panel’s corner points. This velocity can
be calculated (using the velocity influence formulas of Section 10.4.1 for the doublet and
of Section 10.4.2 for the source panels) since the strength of all the singularity elements in
the field is known at this point of the calculation.

To achieve the wake rollup, at each time step, the induced velocity (u, v, w)� at each
wake panel corner point � is calculated in the stationary inertial frame and then the vortex
elements are moved by

(�x, �y, �z)� = (u, v, w)��t (13.171)
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Summary
The time-stepping solution is best described by the block diagram in Fig. 13.25. For

cases with fixed geometry (e.g., a maneuvering airplane) the geometrical information, such
as panel corner points, collocation points, and normal vectors, must be calculated first. Then
the time-stepping loop begins and based on the motion kinematics the geometry of the wake
panel row adjacent to the trailing edge is established. Once the geometry of the trailing-edge
area is known the influence coefficients akl of Eq. (13.162) can be calculated. The same
kinematic velocity information (e.g., Eq. (13.141)) allows the body’s source strength (Eq.
(13.19)) and the RHS vector of Eq. (13.161) to be obtained. Next, the unknown doublet
distribution is obtained and the surface velocity components and pressures are calculated.
Prior to advancing to the next time step, the wake rollup procedure is performed and then
the time is increased by �t , the body is moved along the flight path, and the next time step
is treated in a similar manner.

Some examples of using the unsteady, constant-strength singularity element based panel
method of Ref. 12.13 are presented in the following paragraphs.

Example 1: Large-Amplitude Pitch Oscillation of a NACA 0012 Airfoil

The previous examples on the pitch oscillations of an airfoil were obtained by
thin airfoil methods that do not provide the detailed pressure distribution on the
surface. In this case the computations are based on a thick airfoil model and the
two-dimensional results were obtained by using a large aspect ratio ( = 1,000)
rectangular wing. The lift and pitching moment histograms, during a fairly large
amplitude pitch oscillation cycle, of this NACA 0012 two-dimensional airfoil
are presented in Fig. 13.41. Comparison is made with experimental results of
Ref. 13.15 for oscillations about the airfoil’s quarter chord. The computations are

Figure 13.41 Lift and pitching-moment loops for the pitch oscillation of a NACA 0012 airfoil. From
Ref. 12.13. Reprinted with permission. Copyright AIAA.
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Figure 13.42 Lift coefficient variation after an airplane model was suddenly set into a constant-speed
forward motion. From Ref. 12.13. Reprinted with permission. Copyright AIAA.

reasonably close to the experimental values of the lift coefficient through the cycle.
During the pitchdown motion, however, a limited flow separation reduces the lift
of the airfoil in the experimental data. The shape of the pitching-moment loops is
close to the experimental result with a small clockwise rotation. This is a result
of the inaccuracy of computing the airfoil’s center of pressure, since only nine
chordwise panels were used.

This example indicates, too, that if the flow stays attached over the airfoil then
the Kutta condition based load calculation is applicable to engineering analysis
even for these large trailing edge displacements.

Example 2: Sudden Acceleration of an Airplane Configuration

The transient load on a thin airfoil that was suddenly set into motion was first
reported during the 1920s13.3 and only recently with the use of panel methods
could this type of analysis be applied to more realistic airplane configurations.
Such computation for a complex aircraft shape is presented in Fig. 13.42, and the
panel grid consists of 706 panels per side of the model. The transient lift growth of
this wing/canard combination differs somewhat from the monotonic lift increase
of a single lifting surface as presented in Fig. 13.37. At the first moment the lift
of the wing and canard grow at about the same rate, with the lift of the wing
being slightly lower because of the canard-induced downwash. Then the wing’s
lift increases beyond its steady-state value, since the canard wake has not yet
reached the wing. At about Q∞t /c ≈ 1.0 the canard wake reaches the wing and its
influence begins to reduce the wing’s lift. This behavior results in the lift overshoot,
as shown in the figure.

Example 3: Helicopter Rotor

The flexibility of this method can be demonstrated by rotating a pair of high as-
pect ratio, untwisted wings around the z axis, to simulate rotor aerodynamics. The
trailing-edge vortices behind this two-bladed rotor, which was impulsively set into
motion, are presented in Fig. 13.43. Similar information on wake trajectory and
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Figure 13.43 Panel model of a two-bladed rotor and its wake in hover, after one-quarter revolution.
From Ref. 12.13. Reprinted with permission. Copyright AIAA.

rollup, for more complex rotorcraft geometries and motions (including forward
flight), can easily be calculated by this technique. The spanwise lift distribution
on one rotor blade of Fig. 13.43, after one-quarter revolution (�ψ = 90◦), is pre-
sented in Fig. 13.44. The rotor for this example is untwisted and has a collective
pitch angle of αR = 8◦, to duplicate the geometry of the rotor tested by Caradonna
and Tung.13.16 The large difference between this spanwise loading (�ψ = 90◦) and
the experimental loading measured in Ref. 13.16, for a hovering rotor, is due to the
undeveloped wake. This solution can be considerably improved by allowing about
eight revolutions of the rotor, so that the wake-induced flow will develop. This
spiral vortex wake-induced downwash did reduce the spanwise lift distribution on
the wake to values that are close to those measured by Caradonna and Tung,13.16

as shown in Fig. 13.44 (by the “steady hover” line). Figure 13.45 presents the cor-
responding chordwise pressures for three blade stations. The computed pressures
fall close to the measurements of Ref. 13.16 and the small deviations could be a
result of the sparse panel grid used or could be caused by experimental errors.

Figure 13.44 Spanwise load distribution on the rotor blades of Fig. 13.43. From Ref. 12.13. Reprinted
with permission. Copyright AIAA.



P1: FIN

CB329-13 CB329/Katz September 13, 2000 15:57 Char Count= 0

442 13 / Unsteady Incompressible Potential Flow

Figure 13.45 Chordwise pressure distribution on the rotor blades of Fig. 13.43. From Ref. 12.13.
Reprinted with permission. Copyright AIAA.
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Figure 13.46 Wake shape behind a two-bladed rotor and a body in forward flight, after one-half
revolution.

Figure 13.47 Description of the standard dynamic model and of the coning motion. From Katz, J.,
“Numerical Simulation of Aircraft Rotary Aerodynamics,” AIAA Paper 88-0399, 1988. Reprinted with
permission. Copyright AIAA.
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Figure 13.48 Comparison between measured and calculated normal Cz, side forces Cy , and rolling
moment C� in a coning motion (without side slip). Symbols represent experimental data of Ref. 13.17.
From Katz, J., “Numerical Simulation of Aircraft Rotary Aerodynamics,” AIAA Paper 88-0399, 1988.
Reprinted with permission. Copyright AIAA.
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Increasing the complexity of the motion is fairly simple. The forward flight of
this rotor with a generic body is shown in Fig. 13.46

Example 4: Coning Motion of a Generic Airplane

The coning motion is described schematically in Fig. 13.47 for the generic airplane
geometry modeled by 718 panels per side. In principle the x coordinate of the body
system translates forward at a constant speed Q∞ and the model angle of attack
is set within this frame of reference. The rotation φ̇ is performed about the x axis,
as shown in the figure. Computed and experimental normal force Cz , side force
Cy , and rolling moment C� are presented in Figs. 13.48a and 13.48b. The aircraft
model was rotated about its center of gravity at a rate of up to ωb/2U = 0.04. This
rate is fairly low, but representative of possible aircraft flight conditions, and was
selected to match the experiments of Ref. 13.17. The normal force is not affected
by this low rotation rate and both experimental and computed lines are close to
being horizontal. For higher angles of attack, the computational results are lower
than the experimental data owing to the vortex lift of the strakes. The side force, in
this type of motion, is influenced by the side slip of the vertical and horizontal tail
surfaces. Consequently, the computed values of Cy , for the above angle-of-attack
range, are close to the experimental data.

The computed rolling moment of the configuration C� at α = 0 (Fig. 13.48c)
is much larger than shown by the experiment. However, the computation does
capture the fact that the trend of the curve slope (which is really the roll damping)
becomes negative at the larger angles of attack. This slope is also a function of the
distance between the wing’s center of pressure and the rotation axis, and the error
in computing this distance is probably the reason for the larger (computed) rolling
moments.
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Problems

13.1. Consider a two-dimensional version of the relative motion described in Fig. 13.1,
between a body fixed frame of reference (x, z) and an inertial frame (X, Z ) such
that

(X0, Z0) = (−U∞t, −W∞t)

θ = sin ωt

and

(Ẋ0, Ż0) = (−U∞, −W∞)

θ̇ = ω cos ωt

a. Use the chain rule to evaluate the derivatives ∂/∂ X , ∂/∂ Z , and ∂/∂t in terms
of the body coordinates.

b. Using your results from (a) transform the Bernoulli equation

p∞ − p

ρ
= (∇�)2

2
+ ∂�

∂t
(13.172)

into the (x, z) frame of reference.

13.2. The two-dimensional flat plate, shown in Fig. 13.49, is initially at rest and at t = 0+
it moves suddenly forward at a constant speed U∞. Obtain the time-dependent
circulation �(t) and lift L(t) of the flat plate using two chordwise lumped-vortex
elements (select the vortex and collocation points as suggested in Section 11.1.1)
with a discrete-vortex model for the wake and present your results graphically (as
in Fig. 13.8).
a. Study the effect of time step U∞�t/c in the range U∞�t/c = 0.02–0.2. Note

that a smaller time step simulates a faster acceleration to the terminal speed U∞
and therefore has a physical effect on the results (in addition to the numerical
effect).

b. Study the effect of wake vortex positioning by placing the latest trailing-edge
vortex at the beginning, center, and end of the interval covered by the trailing
edge during the latest time step (see Fig. 13.49). Compare your results with the
more accurate calculations in Fig. 13.34 (for = ∞).
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Figure 13.49 Nomenclature for the suddenly accelerated flat plate.

13.3. Use the flat plate model of the previous example to study the constant acceleration
of a flat plate. Assume that the forward speed is U (t) = at and the time step is
a�t2/2c = 0.1. Calculate the time-dependent circulation �(t) and lift L(t) of the
flat plate for several values of the acceleration a and present your results graphically
(as in Fig. 13.8). For simplicity, place the latest vortex shed from the trailing edge
at one third of the distance covered by the trailing edge during that time step.

13.4. Convert any of the two-dimensional panel codes of Chapter 11 (e.g., a constant-
strength doublet method) to the unsteady mode and validate it by calculating the
lift and circulation after a sudden acceleration. (This problem requires a larger
effort and can be given as a final project.)
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CHAPTER 14

The Laminar Boundary Layer

The discussion so far has focused mainly on the potential flow model whose
solution provides a useful but restricted description of the flow. For practical problems
such as the flow over an airfoil, however, effects of the viscous flow near the solid surface
must be included. The objective of this chapter, therefore, is to explain how a viscous
boundary layer model can be combined with the inviscid flow model to provide a more
complete representation of the flowfield. These principles can be demonstrated by using the
laminar boundary layer model, which provides all the necessary elements for combining the
viscous and inviscid flow models. We must remember, though, that the Reynolds number
of the flow over actual airplanes or other vehicles is such that large portions of the flow are
turbulent, and the solely laminar flow model must be augmented to reflect this. However,
the principles of the matching process remain similar. Extensions of this laminar boundary
layer based approach to flows with transition, to turbulent boundary layers, or to cases with
flow separation, and other aspects of airfoil design, will be discussed briefly in Chapter 15.
(Although in these cases the viscous flow model may change substantially from the laminar
model, the viscous–inviscid coupling strategy remains unchanged.)

Boundary layer theory is a very wide topic and there are several textbooks that focus
solely on this subject (e.g., see Ref. 1.6). Since the main topic in this book is the potential
flow solution, no attempt is made to provide a comprehensive description of this field apart
from the elements needed to explain the coupling process. Consequently, the discussion in
this chapter is limited to describing the basics of the boundary layer model and the elements
necessary to explain the concept of combining the inner viscous and the outer inviscid
flows. With these two (inner and outer flow) models in mind, the information sought from
the viscous boundary layer solution in this chapter is:

1. The scale, or thickness, of the boundary layer and its streamwise growth.
2. Displacement effects (to the inviscid model) resulting from the slower velocity

inside the viscous layer.
3. Skin-friction and resulting drag estimates, which cannot be calculated by the in-

viscid flow.
4. Hints about more advanced topics such as boundary layer transition and flow

separation.

14.1 The Concept of the Boundary Layer

The focus of this book, as discussed earlier, is on low-speed aerodynamics. In
Section 1.8 it was established that such flows are mostly inviscid, apart from thin regions
near a solid surface where the viscous effects are not negligible. This observation has allowed
us to calculate the flowfield past an airfoil under the assumption of potential flow (and to
obtain a satisfactory representation of the pressure field and resulting forces and moments).
One result of this calculation is the nonzero tangential velocity component on the airfoil
surface, which we denote as Ue = Ue(x, t), where x is the coordinate along the surface. A

448
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Figure 14.1 Coordinate system used for the boundary layer along a curved surface.

typical situation within the flowfield near a solid boundary is described schematically in
Fig. 1.14. In the actual flow, the no-slip condition requires the velocity at the surface to be
zero and so it is necessary to insert a thin layer of fluid adjacent to the wall where the flow is
assumed to be viscous and where the tangential velocity component grows from zero at the
wall to Ue at the edge. This layer of rapid change in the tangential velocity component is
called the boundary layer and in Section 1.8 we concluded that for high Reynolds number
flows its thickness δ = δ(x, t) is much smaller than the characteristic length, L , along the
solid surface:

δ � L

To demonstrate the properties of the boundary layer, we limit the discussion to the two-
dimensional case and for additional simplicity, we consider the continuity and momentum
equations with constant properties (μ = const. and ρ = const.). Since most practical solid
surfaces are not flat, let us begin with a curvilinear coordinate system, to allow for the
inclusion of moderately curved surfaces such as the upper surface of an airfoil. The selected
coordinate system is shown in Fig. 14.1 with the abscissa, x , selected along the solid surface,
and the ordinate, z, normal to it. If we denote the local radius of curvature of the surface as
r (x) (see Fig. 14.1), then the local curvature k is given as

k(x) = 1

r (x)

and a new variable h may be used (to simplify the algebraic operations) such that

h = h(x) = 1 + zk(x) (14.1)

The continuity equation (Eq. (1.23)) and the two components of the momentum equation
(Eq. (1.30)), without the body forces, written in the curvilinear system (see Rosenhead,14.1

p. 201, or Schlichting,1.6 p. 68) are

∂u

∂x
+ ∂hw

∂z
= 0 (14.2)

∂u

∂t
+ u

∂u

∂x
+ w

∂hu

∂z
= −1

ρ

∂p

∂x
+ hμ

ρ

∂

∂z

[
1

h

(
∂hu

∂z
− ∂w

∂x

)]
(14.3)

∂w

∂t
+ u

∂w

∂x
+ hw

∂w

∂z
− ku2 = −h

ρ

∂p

∂z
− hμ

ρ

∂

∂x

[
1

h

(
∂hu

∂z
− ∂w

∂x

)]
(14.4)
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These equations can be simplified by a combination of a dimensional analysis, similar
to the one used in Section 1.7, and a consideration of the order of magnitude of the terms.
For this analysis a set of characteristic quantities may be defined again; however, now we
make a distinction between the streamwise and the normal directions:

x∗ = x

L
, z∗ = z

δ
, k∗ = kL

u∗ = u

U
, w∗ = w

W

p∗ = p

p0

t∗ = t

T
= t

L/U

(14.5)

where W is the characteristic speed in the z direction. The flow equations are now rewritten
in terms of the new variables, and the first, the continuity equation, becomes

U

L

∂u∗

∂x∗ +
(

1 + z∗k∗ δ

L

)
W

δ

∂w∗

∂z∗ = 0 (14.6a)

Since the surface curvature is not large, we can rewrite Eq. (14.1) as

h = 1 + z∗k∗ δ

L
≈ 1

and with this simplification, Eq. (14.6a) becomes

U

L

∂u∗

∂x∗ + W

δ

∂w∗

∂z∗ = 0 (14.6b)

If we assume that all nondimensional variables of Eq. (14.5) are of O(1) inside the boundary
layer, then for both terms in the continuity equation to be of the same order it is necessary
that U/L be of the order of W/δ. Therefore, if δ � L , then it follows that W � U , and the
order of magnitude of W is determined as

W

U
= O

(
δ

L

)

Introducing the nondimensional variables into the momentum equation in the x direction
(similarly to the treatment of Eq. (1.60)) we obtain

�
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + W

U

L

δ
w∗ ∂u∗

∂z∗ = −Eu
∂p∗

∂x∗ + 1

Re

(
L2

δ2

∂2u∗

∂z∗2
− L

δ

W

U

∂2w∗

∂x∗∂z∗

)

(14.7)

where all nondimensional numbers are defined as before (e.g., Eu is the Euler number). All
three terms on the left-hand side of this equation appear to have the same order of magnitude
while the last (second viscous) term can be clearly neglected in comparison with the first
viscous term. If we recall our basic assumption that, inside the boundary layer, the inertia
terms (left-hand side of Eq. (14.7)) are of the same order of magnitude as the viscous terms,
then the remaining viscous term is of O(1), therefore,

1

Re

(
L2

δ2

)
≈ O(1)
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and it follows that

δ

L
= O(Re−1/2) and

W

U
= O(Re−1/2) (14.8)

Consequently, only one term, the second viscous term, is neglected in this equation! Sub-
stitution of the nondimensional quantities into the momentum equation in the z direction
results in

W

U
�

∂w∗

∂t∗ + W

U
u∗ ∂w∗

∂x∗ + W 2

U 2

L

δ
w∗ ∂w∗

∂z∗ − k∗u∗2

= − L

δ
Eu

∂p∗

∂z∗ − 1

Re

∂

∂x∗

(
L

δ

∂u∗

∂z∗ − W

U

∂w∗

∂x∗

)
(14.9)

Again, all inertia terms on the left-hand side are of the same order of magnitude (O(δ/L))
and are considerably smaller than the pressure term, which is multiplied by L/δ. The viscous
terms are of the the same order as the inertia terms (O(δ/L)) since according to Eq. (14.8),
1/Re = O(δ2/L2). Therefore, all inertia and viscous terms appearing in this equation are
much smaller than the pressure term and can be neglected.

Rearranging the remaining terms in the continuity and momentum equations indicates
that for the continuity equation all terms appear to be of the same order of magnitude;
therefore, it remains in its previous form:

∂u

∂x
+ ∂w

∂z
= 0 (14.10)

For the momentum equation in the x direction only one viscous term is neglected, and so
we have

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ μ

ρ

∂2u

∂z2
(14.11)

while, in the z direction, all terms but the normal pressure gradient become negligible,
implying that the normal pressure gradient itself is equal to zero, as well:

0 = −∂p

∂z
(14.12)

Equations (14.10)–(14.12) define the classical two-dimensional boundary layer equations
proposed by the German scientist Prandtl (1874–1953) in 1904. At the wall, the no-slip
condition yields

z = 0, u = w = 0 (14.13a)

and at the edge of the boundary layer (z = δ) the tangential velocity component must
approach the inviscid surface value of Ue(x, t), that is,

z = δ, u = Ue(x, t) (14.13b)

Solution of this Prandtl’s boundary layer model will be discussed in Section 14.3. In addition,
Eq. (14.12) states that the pressure across the boundary layer (normal to the surface) is con-
stant and therefore this pressure is taken to be the inviscid pressure evaluated on the surface.
Application of the momentum equation (Eq. (14.11)) outside the boundary layer yields

∂Ue

∂t
+ Ue

∂Ue

∂x
= −1

ρ

∂p

∂x
(14.14)
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This value can be inserted into Eq. (14.11) so that the pressure p is no longer an unknown in
the problem. With the above assumptions and for the case of steady-state flow, Eq. (14.11)
reduces to

u
∂u

∂x
+ w

∂u

∂z
= Ue

∂Ue

∂x
+ μ

ρ

∂2u

∂z2
(14.11a)

14.2 Boundary Layer on a Curved Surface

Note that the wall curvature does not appear in the boundary layer equations (Eqs.
(14.10)–(14.12)) so that the equations seem to be written in Cartesian coordinates. For the
analysis in the present section the solution process for the flow past an airfoil proceeds as
follows: First, solve the inviscid problem, and, second, solve the boundary layer equations
to model the effects of viscosity. This solution process represents a high Reynolds number
alternative to the solution of the complete Navier–Stokes equations and, with the extension to
include transition and turbulence, has been the approach used almost extensively for airfoil
design. There are nonetheless many practical aerodynamic applications where the Prandtl
boundary layer equations are not sufficient to adequately describe the flow (as described in
Section 14.6), but solution techniques in the spirit of Prandtl’s analysis have been developed
to successfully extend the applicability of the boundary layer concept (and some of these
are discussed in Section 14.8). However, for the description of the high Reynolds number
flowfield past an airfoil there is not universal agreement on one set of governing equations
(based on first principles) or on one solution technique.

To provide guidance in the understanding and evaluation of the available boundary layer
solution techniques, it is useful to extend the boundary layer equations to second order (in
the spirit of a perturbation expansion as discussed in Chapter 7) and in this way to study the
effects of curvature as well as to continue the iterative process of the interaction between
inviscid and viscous solutions. This extension is treated in Van Dyke14.2 and Schlichting1.6

(Chapter IX) and we will proceed in a similar way. For the analysis in this section, we
will consider steady flow (e.g., ∂/∂t = 0). A suitable small perturbation parameter for this
problem (see Eq. (14.8)) is defined as

ε = Re−1/2 (14.15)

The nondimensional variables in Eq. (14.5) are introduced with δ = ε and W = εU . We
now construct an asymptotic (inner) expansion in the boundary layer and keep the first two
terms:

u = u1 + εu2 (14.16a)

w = w1 + εw2 (14.16b)

p = p1 + εp2 (14.16c)

Next, substitute the above equations into the nondimensional continuity and Navier–Stokes
equations (Eqs. (14.6a), (14.7), and (14.9)). If terms of like order are collected in each
equation, the terms corresponding to the largest order are the classical boundary layer
equations, which in dimensional form are given in Eqs. (14.10)–(14.12). If terms of the
next largest order are now equated (terms of O(ε)) the second-order, steady-state boundary
layer equations are obtained and in dimensional form are (see Van Dyke14.2)

∂u2

∂x
+ ∂w2

∂z
= −k

∂

∂z
(zw1) (14.17a)
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u1
∂u2

∂x
+ u2

∂u1

∂x
+ w1

∂u2

∂z
+ w2

∂u1

∂z
+ 1

ρ

∂p2

∂x
− μ

ρ

∂2u2

∂z2

= k

[
∂

∂z

(
z
∂u1

∂z

)
− w1

∂

∂z
(zu1)

]
(14.17b)

1

ρ

∂p2

∂z
= ku2

1 (14.17c)

Note that the terms appearing on the right-hand side of the equations are proportional to
the curvature k.

To determine appropriate boundary conditions for the second-order equations, we need
to introduce an asymptotic expansion for the outer inviscid flow and match this with the
inner solution (as shown, for example, in Chapter 7). In the inviscid flow, we expect that
changes in the x and z directions are comparable in size and therefore we can use the
nondimensional Navier–Stokes equations as they appear in Eqs. (14.7) and (14.9) but with
δ = L and W = U . Let us construct an outer asymptotic expansion for the inviscid flow:

u0 = U1 + εU2 (14.18a)

w0 = W1 + εW2 (14.18b)

p0 = P1 + εP2 (14.18c)

We expect that the first-order outer solution is the inviscid solution we have already obtained
and the second-order solution will be a correction due to the presence of the boundary
layer. When the above expansions (Eqs. (14.18a–c)) are substituted into the Navier–Stokes
equations (e.g., Eq. (1.60)), it is seen that the viscous terms on the right-hand side (which
are multiplied by 1/Re) vanish to second order so that both the first- and second-order
problems are inviscid.

To obtain the appropriate boundary conditions for the second-order problems, we need
to match the two solutions (inner expansion of outer solution to the outer expansion of
inner solution). In other words, the limit of the boundary layer solution as the edge of the
boundary layer is approached should be equivalent to the limit of the inviscid flow solution
as the surface is approached.

First we will match the tangential velocity component. Consider the outer solution to
second order. If we write its expansion as z approaches zero and keep terms to O(ε) we get

U1(x, 0) + ε

[
U2(x, 0) + z

∂U1(x, 0)

∂z

]
(14.19)

Consider the inner solution as z goes to a value ze just outside the boundary layer. We get

u1(x, z) + εu2(x, z), z → ze (14.20)

Matching the last two equations term by term yields

u1(x, z) = U1(x, 0), z → ze (14.21a)

u2(x, z) = U2(x, 0) + z
∂U1(x, 0)

∂z
, z → ze (14.21b)

Next, matching the normal components of velocity in a similar way leads to the following
results:

W1(x, 0) = 0 (14.22a)

W2(x, 0) = w1(x, z) − z
∂W1(x, 0)

∂z
, z → ze (14.22b)
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And finally, matching the pressure expansions leads to

p1(x, z) = P1(x, 0) as z → ze (14.23a)

p2(x, z) = P2(x, 0) + z
∂ P1(x, 0)

∂z
as z → ze (14.23b)

(Note that the results for the boundary layer variables at first order (Eqs. (14.21a) and
(14.23a)) are simply those for the Prandtl boundary layer.) To complete the second-order
outer problem definition, we need to evaluate the W2(x, 0) term. Based on Eq. (14.22b),
when z = ze

W2(x, 0) = w1(x, ze) − ze
∂W1(x, 0)

∂z

Substituting Eq. (14.18a and b) into the outer continuity equation (Eq. 14.2) we have

∂W1(x, 0)

∂z
= −dUe

dx
(14.24)

Now substitute Eq. (14.24) into Eq. (14.22b) to get

W2(x, 0) = ze
dUe

dx
+ w1(x, ze) (14.25)

To evaluate w1(x, ze) consider the first-order inner continuity equation

∂u1

∂x
+ ∂w1

∂z
= 0

Integrate this equation across the boundary layer to get

w1(x, ze) = −
∫ ze

0

∂u1

∂x
dz

= −
∫ ze

0

(
∂u1

∂x
+ ∂Ue

∂x

)
dz − ze

∂Ue

∂x

Using the Leibnitz rule14.3 we can rewrite this expression as

d

dx

∫ ze

0
(Ue − u1) dz − dze

dx
(Ue − u1)z=ze − ze

dUe

dx

At this point it is useful to introduce the displacement thickness δ∗, the physical meaning
of which will be explained later:

δ∗ =
∫ ze

0

(
1 − u1

Ue

)
dz (14.26)

Using the definition of δ∗ to simplify the previous term we get

w1(x, ze) = d

dx
(Ueδ

∗) − ze
dUe

dx

Substitution of this result into Eq. (14.25) results in

W2(x, 0) = d

dx
(Ueδ

∗) (14.27)

Equations (14.26) and (14.27) provide the first clue about the effect of the boundary layer
on the inviscid solution. The displacement thickness is described schematically in Fig. 14.2
and it indicates the extent to which the surface would have to be displaced in order to be
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Figure 14.2 Illustration of the displacement thickness δ∗ in a boundary layer. (Note that the area
enclosed by the two shaded triangular regions should be equal.)

left with the same flow rate of the viscous flow, but with an inviscid velocity profile (of
u(x, z) = Ue(x), which is constant inside the boundary layer). Consequently, the boundary
of the surface for the (outer) potential flow boundary conditions must be raised by δ∗, as
shown in Fig. 14.3.

The second-order outer problem can now be seen as the flow past the airfoil with its
surface raised by the displacement thickness. Note that the displacement thickness is nonzero
in the wake behind the airfoil so that the new body is semi-infinite in length. The equivalent
result from the matching condition (Eq. (14.27)) is simply a statement that the new surface
(airfoil plus displacement thickness) is a streamline of the flow. This version of the boundary
condition is preferable since it uses the airfoil geometry (with a transpiration velocity) so
that the geometry is fixed from iteration to iteration. The influence coefficients in a panel
method then only need to be calculated once.

Now that the second-order outer problem is defined, the appropriate matching conditions
(u2(x, ze) and p2(x, ze)) for the second-order boundary layer problem must be addressed.
Consider Eq. (14.21b) for the tangential velocity component at the edge of the boundary
layer, u2(x, ze). Using the curvilinear form for the vorticity ζy (taken from Van Dyke14.2),
for the first-order outer flow, we get

ζy = ∂U1

∂z
+ kU1

h
− 1

h

∂W1

∂x
(14.28)

Figure 14.3 Nomenclature for the boundary layer flow over a flat plate at zero incidence.
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which must equal zero. If we apply this equation at the wall z = 0, where W1 = 0, then
h = 1 and ∂W1/∂x = 0, and therefore the result is

∂U1(x, 0)

∂z
= −kU1(x, 0)

Substituting this result into Eq. (14. 21b) at the boundary layer edge we get

u2(x, ze) = U2(x, 0) − kzU1(x, 0) (14.29)

The pressure at the boundary layer edge is (Eq. (14.23b))

p2(x, ze) = P2(x, 0) + z
∂ P1(x, 0)

∂z
(14.30)

To evaluate the second term in this equation, the first-order, outer, inviscid, normal mo-
mentum equation (Eq. (14.4), but, without the viscous terms) is evaluated at the wall to
give

∂ P1(x, 0)

∂z
= kU 2

1 (x, 0)

Substituting this result into Eq. (14.30) we obtain

p2(x, ze) = P2(x, 0) + kzU 2
1 (x, 0) (14.31)

The normal momentum equation (Eq. (14.17c)) can now be integrated across the bound-
ary layer to yield p2(x, z) to use in the streamwise momentum equation (Eq. (14.17b)).

A new sequential process is now available that includes the effects of displacement
thickness and curvature. Once the first iteration (inviscid flow plus traditional boundary
layer) is completed, the inviscid flow is updated (second-order outer) to include displacement
thickness interaction and then the viscous flow is updated (second-order inner) to include
the effect of curvature. In theory, the solution process now is correct to second order.
This second-order boundary layer theory is not currently being used in the calculation of
airfoil flows. The purpose in introducing it here is to demonstrate the appearance of the
effect of curvature (the right-hand side terms in Eqs. (14.17a–c)) and to provide a formal
derivation of the matching condition of Eq. (14.27). Typically, for practical airfoil flows,
the curvature effects are negligible (except perhaps in the neighborhood of the leading and
trailing edge) and the main correction term (which is small) is due to the displacement
thickness interaction. In some analyses, the pressure variation across the boundary layer
due to curvature (Eq. (14.17c)) is included.

Traditionally, the boundary layer iteration process has proceeded as follows:

1. Solve the inviscid flow.
2. Now knowing the external velocity and pressure, solve Prandtl’s boundary layer

model.
3. Solve the inviscid flow with displacement thickness.
4. Update the boundary layer model with first-order boundary layer equations.

The above process, using the traditional boundary layer equations, proceeds sequentially,
starting with the inviscid flow calculation. This interaction is called a “weak interaction.”
Typically, iteration is not necessary to provide a good approximation to the flow. Before we
consider situations where the weak interaction methods described above become invalid,
let us study some basic solutions of the traditional boundary layer equations (Eqs. (14.10)–
(14.12)).
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Figure 14.4 Coordinate system used for the flow over a wedge.

14.3 Similar Solutions to the Boundary Layer Equations

Shortly after Prandtl formulated the boundary layer equations (in 1904), two of
his students, Blasius and Hiemenz, obtained solutions to two very important examples, the
flat-plate boundary layer and stagnation point flow. These solutions are members of a class
of similar solutions to the equations that exist for flows lacking an appropriate characteristic
length. We will develop the governing equations for this class of “wedge flows” (see the
schematic description in Fig. 14.4) and then consider the above special cases.

We start with the boundary layer equations (Eqs. (14.10)–(14.12)) for steady-state flow:

∂u

∂x
+ ∂w

∂z
= 0 (14.10)

∂u

∂x
+ w

∂u

∂z
= Ue

∂Ue

∂x
+ μ

ρ

∂2u

∂z2
(14.11a)

0 = −∂p

∂z
(14.12)

where the streamwise pressure gradient term in Eq. (14.11) has been replaced byUe(∂Ue/∂x),
and in addition, Eq. (14.12) is satisfied as well. The boundary conditions are

u = w = 0 for z = 0

u = Ue for z = ze = ∞
A similar solution is one where the velocity profile at any streamwise station, scaled by the
velocity in the outer flow, can be represented as a function of one suitably scaled transverse
coordinate η,

η = z

g
(14.32)

where g is a measure of the boundary layer thickness. The similar velocity profile is now

u

Ue
= f ′(η) (14.33)

and for convenience in integration, it is selected to be the derivative of the function f .
This assumption, in effect, reduces the two-dimensional problem to a one-dimensional one
in the transverse direction. It is convenient to introduce the stream function as defined in
Section 2.13. In this case the stream function 	 can be obtained by integrating the u velocity
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component:

	 =
∫

u dz = gUe

∫
f ′ dη = Ueg f (14.34)

Note that the introduction of the stream function automatically satisfies the continuity
equation, Eq. (14.10).

Based on the properties of the stream function, the velocity components and their deriva-
tives (for insertion into Eq. (14.11)) can be obtained. The u velocity component is

u = ∂	

∂z
= ∂	

∂η

∂η

∂z
= Ue f ′ (14.35)

w = −∂	

∂x
= − f

d

dx
(Ueg) − Ueg f ′ ∂η

∂x
= − f

d

dx
(Ueg) + Ueη f ′g (14.36)

where ∂η/∂x = −ηg′/g. The first and second derivatives of the u velocity components are

∂u

∂x
= U ′

e f ′ + Ue f ′′ ∂η

∂x
= U ′

e f ′ − Ue f ′′η
g′

g

∂u

∂z
= Ue f ′′ ∂η

∂z
= Ue

f ′′

g
(14.37)

∂2u

∂z2
= Ue

f ′′′

g2
(14.38)

When the above results are substituted into the axial momentum equation (Eq. (14.11a))
and the resulting equation is multiplied by g2/νUe, we get

f ′′′ + g2U ′
e

ν
(1 − f ′2) + g

ν

d

dx
(Ueg) f f ′′ = 0 (14.39)

This equation can be further simplified by defining the coefficients α and β:

f ′′′ + β(1 − f ′2) + α f f ′′ = 0 (14.39a)

where the coefficients are

α = g

ν

d

dx
(Ueg), β = g2U ′

e

ν
(14.40)

For the boundary layer equations to have a similar solution, Eq. (14.39a) must be an ordinary
differential equation for f . Therefore both α and β must be constant. Note that

2α − β = 1

ν

d

dx
(g2Ue)

An integration yields

(2α − β)x = g2Ue

ν

and therefore

g =
√

(2α − β)νx

Ue
(14.41)

Without loss of generality we take α = 1 and

g =
√

(2 − β)νx

Ue
(14.41a)
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We are now in a position to determine the form that Ue must take to result in similar solutions
to the boundary layer equations. Solving for U ′

e from the equation for β (Eq. (14.40)) and
using Eq. (14.41a) for g we get

U ′
e

Ue
= β

2 − β

1

x

and integration leads to

Ue = U1xm (14.42)

where U1 is a constant and m = β/(2 − β). This inviscid outer flow velocity represents
the symmetric flow of a uniform stream approaching a wedge of included angle πβ (see
Fig. 14.4) when 0 < β < 2 and the flow around an expansion corner of angle πβ/2 when
−2 < β < 0. Note that these solutions may be thought of as local solutions, valid in the
neighborhood of x = 0, since Ue (in Eq. (14.42)) becomes unbounded as x becomes large.

The mathematical problem (differential equation and boundary conditions) for f (η) is
now

f ′′′ + f f ′′ + β(1 − f ′2) = 0 (14.43)

f (0) = f ′(0) = 0, f ′(∞) = 1 (14.44)

Equation (14.43) is called the Falkner–Skan14.4 equation and is a third-order, nonlinear,
ordinary differential equation. The Blasius semi-infinite flat-plate example is recovered for
β = m = 0 and the Hiemenz stagnation flow for β = m = 1. In this latter case the wedge
angle becomes equal to π and similar conditions are depicted by Fig. 3.6, and the corre-
sponding inviscid velocity field is given by Eq. (3.55). Numerical solutions to the above
differential equation are available, and tabulated results can be found in White14.5 (p. 246).
The importance of this solution is that it allows the calculation of the effect of the external
pressure gradient on the velocity profile inside the boundary layer. One case, with neg-
ative β, is of particular interest since it provides some clues about flow separation. This
case is depicted schematically in Fig. 14.5, showing the flow around a convex corner. In
this case the flow accelerates around the corner with an adverse pressure gradient. When
β = −0.199 (or m = −0.0905), corresponding to a turning angle of 18◦ in the figure, the
flow separates; that is, (∂u/∂z)z=0 = 0 ( f ′′(0) = 0, or τw = 0 according to Eq. (1.12)). This
example highlights the role of the adverse pressure gradient in contributing to the boundary
layer separation.

Consider the Blasius solution for the flow of a uniform stream of speed U1 = Ue = const.
along a semi-infinite flat plate. The coordinate x is measured from the leading edge (see
Fig. 14.3). The differential equation for f (with β = 0) becomes

f ′′′ + f f ′′ = 0 (14.45)

Figure 14.5 Falkner–Skan flow past a convex corner (the angle 18◦ represents the limit at which the
flow will separate).
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Figure 14.6 The function f and its derivatives for the Blasius solution of the flow over a flat plate.

where now η = z/g and substituting g from Eq. (14.41a) we get

η = z

g
= z√

2νx/Ue
(14.46)

Equation (14.45) was solved by Blasius using a power series expansion technique (see
details in Yuan,1.2 pp. 310–311), but here we provide a graphical description of this solution
in Fig. 14.6 (based on the numerical results of White,14.5 pp. 236–237). For example, from
the graph we get the value of f ′′(0) = 0.4696. With this information the wall shear stress
τw can be calculated as

τw = μ

(
∂u

∂z

)
z=0

= μUe f ′′(0)√
2νx/Ue

= 0.332√
Uex/ν

ρU 2
e = 0.332√

Rex
ρU 2

e (14.47)

and here Rex is defined as Rex = Uex/ν. The friction coefficient becomes

C f = τw

(1/2)ρU 2
e

= 0.664√
Rex

(14.48)

The total friction force F (or drag D), per unit width, for one side of the plate is obtained
by integrating along the plate:

F =
∫ L

0
τw dx = 0.664ρU 2

e

√
νL

Ue

and in nondimensional form, the total force coefficient, CF , which may be viewed as the
average friction coefficient for the plate, is

CF = F

(1/2)ρU 2
e L

= 0.664ρU 2
e

√
νL/Ue

(1/2)ρU 2
e

= 1.328√
ReL

(14.49)
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The boundary layer thickness (defined as the transverse location where u/Ue = 0.99 and
η ≈ 3.6) is now

δ99

x
= 5.00√

Rex
(14.50)

The displacement thickness is calculated by using Eq. (14.26):

δ∗ =
∫ ∞

0

(
1 − u

Ue

)
dz =

√
2νx

Ue

∫ ∞

0
(1 − f ′(η)) dη

=
√

2νx

Ue
lim

η→∞[η − f (η)] = 1.217

√
2νx

Ue
(14.51)

where the value of [η − f (η)] = 1.217 is taken from the tabulated results for f , f ′, and f ′′

in White.14.5 Consequently, the displacement thickness growth is

δ∗

x
= 1.721√

Rex
(14.52)

The loss of momentum due to the presence of the boundary layer can be characterized
by a momentum thickness θ in analogy with the definition of the displacement thickness:

θ =
∫ ∞

0

u

Ue

(
1 − u

Ue

)
dz (14.53)

The value of θ for the present case can be evaluated by using the same numerical values of
the function f :

θ =
√

2νx

Ue

∫ ∞

0
f ′[1 − f ′(η)] dη = 0.470

√
2νx

Ue
(14.54)

and the momentum thickness growth is

θ

x
= 0.664√

Rex
(14.55)

Note that in some of the treatments of the Blasius solution in the literature η is defined
without the 2 under the square-root sign and the differential equation (Eq. (14.45)) then has
a 2 in front of the second term.

The Blasius solution for the boundary layer velocity profile is given by f ′ in Fig. 14.6.
Comparison of this curve with experimental data in Fig. 14.7 shows good correlation, for
the case of the flat plate. Even if the Reynolds number is low (e.g., Re < 2,000), this type
of solution can be considered as local only, and for the case of the flow over a low Reynolds
number airfoil, the velocity profile varies along the chord and the similarity assumption
cannot be used.

As a final example for this group of solutions, consider the flow toward a stagnation point
and let Ue = ax (see Eq. (14.42) for β = m = 1). This solution is often used to provide
the initial conditions (at the forward stagnation point) for the numerical solution for the
boundary layer flow past an airfoil with a round leading edge. The differential equation
(Eq. (14.39)) becomes

f ′′′ + f f ′′ + 1 − f ′2 = 0 (14.56)
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Figure 14.7 Comparison of Blasius theory for the velocity profile in the boundary layer with the
experimental results of Nikuradse (from Ref. 1.6, p. 142).

where η = z/[ν/a]1/2. Based on the tabulated results for the solution of this equation taken
from White14.5 (Table 4.2, p. 246) the boundary layer thickness is constant and is

δ = 2.4

√
ν

a

The displacement and momentum thicknesses are also constant and given by

δ∗ = 0.6479

√
ν

a
(14.57)

θ = 0.2924

√
ν

a
(14.58)

At this point it is useful to revisit the Falkner–Skan family of similarity solutions. In
the discussion on Eq. (14.42) and (14.43) it was pointed out that for various values of β,
different similarity profiles can be obtained. Three of these velocity profiles are presented
in Fig. 14.8, which can be used to demonstrate the effect of the external pressure field
on the boundary layer. The case for β = 0 is of course the similarity solution of Blasius
and is the same as the one described in Fig. 14.6 or 14.7. The case for β = 1 can be used
to show the effect of favorable pressure gradient, (∂p/∂x) < 0, on the boundary layer,
which energizes it and reduces the displacement and momentum thicknesses. The opposite
is true for boundary layers with adverse pressure gradient, ∂p/∂x > 0, and the limiting
case of flow separation is decribed by the case of β = −0.199. Note that at this condition,
(∂u/∂z)z=0 = 0 and the skin friction τw is zero as well. For larger values of the adverse
pressure gradient the flow near the wall will reverse, and the flow is called separated while
in the case of β = −0.199 the flow is about to separate (but still flows parallel to the solid
surface).
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Figure 14.8 Falkner–Skan solutions for the boundary layer velocity profiles with and without external
pressure gradients.

14.4 The von Karman Integral Momentum Equation

For many engineering applications, it is not necessary to obtain the details of the
flow variables inside the boundary layer. For example, for design analyses, we need the
wall shear stress to calculate the drag force on the airfoil and the displacement thickness
to allow for coupling with the outer flow. These variables can be found from a solution
of an integral version of the boundary layer equation that is attributed to von Karman. In
spite of this approach being considered as “approximate,” it does not rely on the similarity
assumption and the shape of the boundary layer velocity profile along the surface can
change significantly. Consequently, this method can be easily extended beyond the laminar
flow discussion in this chapter to include effects such as boundary layer transition and
separation.

For a derivation of the integral momentum equation, consider the continuity and boundary
layer equations. It is possible to arrive at the von Karman integral equation by simply
integrating Eq. (14.11) with respect to z from z = 0 to z = δ:

∂

∂t

∫ δ

0
u dz +

∫ δ

0
u

∂u

∂x
dz +

∫ δ

0
w

∂u

∂z
dz = −1

ρ

∫ δ

0

∂p

∂x
dz + μ

ρ

∫ δ

0

∂2u

∂z2
dz

(14.59)

The last term on the left-hand side can be integrated by parts:

∫ δ

0
w

∂u

∂z
dz =

∫ δ

0

∂(uw)

∂z
dz −

∫ δ

0
u

∂w

∂z
dz

= uw
∣∣δ
0
−

∫ δ

0
u

∂w

∂z
dz

However, wz=0 = 0, and therefore the first term is Uewz=δ , and this term becomes

∫ δ

0
w

∂u

∂z
dz = Ue

∫ δ

0

∂w

∂z
dz −

∫ δ

0
u

∂w

∂z
dz
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With the use of the continuity equation to replace the derivatives of w with those of u, this
becomes∫ δ

0
w

∂u

∂z
dz = −Ue

∫ δ

0

∂u

∂x
dz +

∫ δ

0
u

∂u

∂x
dz (14.60)

Substituting this into Eq. (14.59), and keeping in mind that at z = δ, ∂u/∂z = 0 and τ = 0,
we get

∂

∂t

∫ δ

0
u dz + 2

∫ δ

0
u

∂u

∂x
dz − Ue

∫ δ

0

∂u

∂x
dz = −1

ρ

dp

dx
δ − τw

ρ

and finally

∂

∂t

∫ δ

0
u dz +

∫ δ

0

∂u2

∂x
dz − Ue

∫ δ

0

∂u

∂x
dz = −1

ρ

dp

dx
δ − τw

ρ
(14.61)

With the use of the Leibnitz rule, the second and third terms in this equation become∫ δ

0

∂u2

∂x
dz = d

dx

∫ δ

0
u2 dz − U 2

e

dδ

dx

Ue

∫ δ

0

∂u

∂x
dz = Ue

d

dx

∫ δ

0
u dz − U 2

e

dδ

dx

and Eq. (14.61) reduces to

∂

∂t

∫ δ

0
u dz + d

dx

∫ δ

0
u2 dz − Ue

d

dx

∫ δ

0
u dz = −1

ρ

dp

dx
δ − τw

ρ
(14.62)

This is the von Karman integral momentum equation for the boundary layer.
This can be further simplified by assuming steady-state conditions, ∂/∂t = 0, and by

eliminating the pressure term using the momentum equation (Eq. (14.14)) outside the bound-
ary layer. We then have

Ue
∂Ue

∂x
= −1

ρ

∂p

∂x
(14.63)

Substitution of these results into Eq. (14.62) results in

d

dx

∫ δ

0
u2 dz − Ue

d

dx

∫ δ

0
u dz − Ue

dUe

dx
δ = −τw

ρ
(14.64)

But

− d

dx

(∫ δ

0
uUe dz

)
dx = Ue

d

dx

(∫ δ

0
u dz

)
dx + dUe

dx

(∫ δ

0
u dz

)
dx

and with this in mind Eq. (14.64) can be rearranged as

d

dx

∫ δ

0
(Ue − u)u dz + dUe

dx

∫ δ

0
(Ue − u) dz = τw

ρ
(14.65)

Now recall the definitions of the displacement thickness δ∗:

δ∗ =
∫ ∞

0

(
1 − u

Ue

)
dz 


∫ ze

0

(
1 − u

Ue

)
dz =

∫ δ

0

(
1 − u

Ue

)
dz (14.26)

Note that ze ≥ δ, as discussed earlier (in Section 14.2). Similarly, for the momentum
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thickness θ we get

θ =
∫ δ

0

(
1 − u

Ue

)
u

Ue
dz (14.53)

An important observation is that the momentum thickness at a streamwise station is propor-
tional to the drag from the leading edge to that station. If the drag per unit width D is defined
as the momentum deficiency ρ

∫ δ

0 (Ue − u)u dz, then by comparing with Eq. (14.53) we get

D = ρ

∫ δ

0
(Ue − u)u dz = ρU 2

e θ (14.66)

With the aid of these two boundary layer thicknesses, Eq. (14.65) can be rewritten as

d

dx

(
U 2

e θ
) + Ueδ

∗ dUe

dx
= τw

ρ
(14.67a)

or

dθ

dx
+ (2θ + δ∗)

1

Ue

dUe

dx
= τw

ρU 2
e

(14.67b)

This equation is an ordinary differential equation and contains two integral quantities, the
displacement and momentum thicknesses. When using the shape factor H and the friction
coefficient C f , a dimensionless version of the integral momentum equation is obtained:

dθ

dx
+ (H + 2)

θ

Ue

dUe

dx
= C f

2
(14.67c)

where

C f = τw

1
2ρU 2

e

(14.68)

H = δ∗

θ
(14.69)

Based on the results of the Blasius solution, the momentum thickness is smaller than the
displacement thickness, and therefore the shape factor is larger than 1 (actually H = 2.59
for the Blasius solution).

A more intuitive method, based on the control volume approach, for developing the
boundary layer integral formulation is worth presenting. Consider the two-dimensional
segment of the boundary layer as depicted by Fig. 14.9. The rectangular control volume

Figure 14.9 Schematic description of the control volume used to formulate the integral boundary
layer equations.
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(actually control surface) is bounded by the four corners 1–2–3–4. The plane 2–4 is placed
above the boundary layer, at z = ze, where there are no transverse changes in the u com-
ponent of the velocity; and a constant outer speed Ue prevails. The mass flow rate entering
the control element through plane 1–2 is therefore

ρ

∫ ze

0
u dz

The flow rate leaving through plane 3–4 can be approximated by using the first term of a
Taylor series:

ρ

∫ ze

0
u dz + ρ

d

dx

(∫ ze

0
u dz

)
dx

Since there is no flow across the wall (plane 1–3), the net change in the mass flow rate must
have entered through plane 2–4 and is

ρ
d

dx

(∫ ze

0
u dz

)
dx (14.70)

In a similar manner, the momentum in the x direction entering across plane 1–2 is

ρ

∫ ze

0
u2 dz (14.71)

and that leaving through plane 3–4 is

ρ

∫ ze

0
u2 dz + ρ

d

dx

(∫ ze

0
u2 dz

)
dx (14.72)

The mass flow rate entering through plane 2–4, expressed by Eq. (14.70), has a constant
speed of Ue outside the control surface. Therefore, the momentum entering this plane is

ρUe
d

dx

(∫ ze

0
u dz

)
dx (14.73)

The time rate of the momentum change within the control surface is

ρ
∂

∂t

(∫ ze

0
u dz

)
dx (14.74)

Thus, the net rate of change of the momentum in the x direction is due to the change with
time (Eq. (14.74)) and due to the difference between the momentum leaving (Eq. (14.72))
and entering (Eqs. (14.71) and (14.73)) the control surface:

ρ
∂

∂t

(∫ ze

0
u dz

)
dx + ρ

∫ ze

0
u2 dz + ρ

d

dx

(∫ ze

0
u2 dz

)
dx

− ρ

∫ ze

0
u2 dz − ρUe

d

dx

(∫ ze

0
u dz

)
dx

= ρ
∂

∂t

(∫ ze

0
u dz

)
dx + ρ

d

dx

(∫ ze

0
u2 dz

)
dx − ρUe

d

dx

(∫ ze

0
u dz

)
dx

(14.75)

According to the momentum principle (Eq. (1.17)), this change in the linear momentum
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must be equal to the forces acting on the control surface. Since the body forces were
neglected the only forces acting are the pressure and the laminar shear stress on the wall.
Using Eq. (1.12), we obtain the shear force on the wall, along the segment 1–3:

−τw dx = −μ
∂u

∂z

∣∣∣∣
z=0

dx (14.76)

Since according to Eq. (14.12) the pressure is independent of z, then p(x) is a function of
x only. Consequently, the pressure force on segment 1–2 is pze and on segment 3–4 is

−
(

p + dp

dx
dx

)
ze

and the net force acting on the control surface is the sum of the shear and pressure forces:

−τw dx − dp

dx
dxze (14.77)

Equating the forces in Eq. (14.77) with the change in the momentum in Eq. (14.75) results
in

ρ
∂

∂t

(∫ ze

0
u dz

)
dx + ρ

d

dx

(∫ ze

0
u2 dz

)
dx

− ρUe
d

dx

(∫ ze

0
u dz

)
dx = −τw dx − dp

dx
dxze

Now if we let ze → δ and divide by ρ dx , we obtain the von Karman integral equation
for the boundary layer:

∂

∂t

∫ δ

0
u dz + d

dx

∫ δ

0
u2 dz − Ue

d

dx

∫ δ

0
u dz = −τw

ρ
− 1

ρ

dp

dx
δ (14.62)

14.5 Solutions Using the von Karman Integral Equation

The integral momentum equation (e.g., Eq. (14.67)) has three unknowns (dis-
placement thickness, momentum thickness, and wall shear stress) and cannot be solved
without additional information. The necessary information is obtained from an assumed
profile family f (η), which in principle defines the entire boundary layer velocity field
u(x, z):

u(x, z)

Ue
= f (η;P)

η = z

δ(x)

The transverse length scale δ(x) is comparable to the local boundary layer thickness, and P
is a profile parameter that determines the shape of the local velocity profile. Different inte-
gral boundary layer calculation methods make different choices for δ and P . Two examples
will follow; the first is in the spirit of Pohlhousen (see Ref. 1.2, Section 9.6) and the second
is the one proposed by Thwaites.14.6
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14.5.1 Approximate Polynomial Solution

The following example demonstrates the simplicity of the integral approach; by
suggesting an approximate velocity distribution within the boundary layer, parameters such
as the boundary layer thicknesses and skin-friction coefficient can be readily calculated. For
example, even simple polynomial velocity profiles can be used:

u

Ue
= f (η) = a0 + a1η + a2η

2 + · · · , 0 ≤ η ≤ 1

and for η > 1, f (η) = 1. Pohlhausen (see Ref. 1.2, Section 9.6) used a fourth-order poly-
nomial to develop a set of solutions including the effect of the pressure gradient inside the
boundary layer. In the spirit of his solution we demonstrate the case for the steady-state
boundary layer along a flat plate, without pressure gradient. The proposed velocity function
is then

u

Ue
= a1η + a2η

2 + a3η
3 + a4η

4 (14.78)

The boundary conditions for the original boundary layer problem (Eqs. (14.10)–(14.12))
are

at z = 0, u = w = 0

at z = δ, u = Ue,
∂u

∂z
= 0

and the requirement for smooth transition at the outer edge of the boundary layer forces
∂u/∂z = 0 at z = δ. Additional boundary conditions can be generated by observing the
change of the streamwise momentum inside the boundary layer (Eq. (14.11a)), but, without
the pressure gradient. Thus, assuming ∂Ue/∂x = 0, combined with the previous boundary
conditions, results in (see Eq. (14.11a))

at z = 0,
∂2u

∂z2
= 0

at z = δ,
∂2u

∂z2
= 0

Applying these additional conditions to the velocity function of Eq. (14.78) we get
u

Ue
= 2η − 2η3 + η4 (14.79)

To solve the problem for δ we substitute the velocity profile into von Karman’s integral
equation, but first the wall shear stress is calculated:

τw = μ

(
∂u

∂z

)∣∣∣∣
z=0

= μ
2Ue

δ
(14.80)

Substituting this and the velocity profile into Eq. (14.62), without the pressure term, we
obtain

d

dx

∫ δ

0
U 2

e

[
2

(
z

δ

)
− 2

(
z

δ

)3

+
(

z

δ

)4]2

dz

− Ue
d

dx

∫ δ

0
Ue

[
2

(
z

δ

)
− 2

(
z

δ

)3

+
(

z

δ

)4]
dz = −ν

2Ue

δ

Evaluating the two integrals, we get

U 2
e

d

dx
(0.5825δ) − U 2

e

d

dx
(0.7000δ) = −ν

2Ue

δ
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and after rearranging

δ
dδ

dx
= 17.021

ν

Ue

Integrating with δ = 0 at x = 0 we get

δ = 5.836
x√
Rex

(14.81)

With this solution for δ and with the velocity profile of Eq. (14.78), u(x, z) is known
everywhere and the values for the boundary layer thicknesses are calculated:

δ∗ =
∫ ∞

0

(
1 − u

Ue

)
dz = 1.751

x√
Rex

θ =
∫ ∞

0

(
1 − u

Ue

)
u

Ue
dz = 0.685

x√
Rex

or

δ∗

x
= 1.751√

Rex
(14.82)

θ

x
= 0.685√

Rex
(14.83)

and the skin-friction coefficient is

C f = τw

(1/2)ρU 2
e

= 0.6854√
Rex

(14.84)

This method can easily be extended to include the effect of streamwise pressure gradient,
a feature required for airfoil analysis (see, for example, Schlichting,1.6 pp. 206–211).

14.5.2 The Correlation Method of Thwaites

As a second example of an integral boundary layer method, the method due to
Thwaites14.6 will be presented. The presentation follows the approach in White14.5 (pp. 268–
270). Start with the dimensionless form of the integral momentum equation (Eq. (14.67c))
and multiply by Ueθ/ν to get

Ueθ

ν

dθ

dx
+ (H + 2)

θ2

ν

dUe

dx
= τwθ

μUe
(14.85)

The term on the right-hand side, the shear correlation function, is denoted by S and is a
function of the profile shape alone. The profile parameter P is denoted by λ and defined
by

λ = θ2

ν

dUe

dx
(14.86)

Consequently, H and S are now functions of λ:

S(λ) = τwθ

μUe
(14.87a)

H (λ) = δ∗

θ
(14.87b)
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With these definitions and recalling that θ dθ = d(θ2/2) we have for the momentum integral
equation

Ue
d

dx

λ

dUe/dx
= 2{S(λ) − λ[H (λ) + 2]} = F(λ) (14.88)

Thwaites14.6 used a compilation of the available analytical and experimental results to obtain
the following curve fit for the function F :

F(λ) = 0.45 − 6.0λ (14.89)

Using this result, Eq. (14.88) is integrated to yield the momentum thickness (for more
details see White,14.5 p. 269):

θ2 = 0.45ν

U 6
e (x)

∫ x

0
U 5

e (x) dx (14.90)

This result provides an approximate solution for steady, two-dimensional, incompressible
laminar boundary layers.

To develop a solution to a particular problem, we start with the inviscid solution Ue.
Equation (14.90) is then integrated to obtain θ and, along with Ue, we find λ from Eq. (14.86).
Curve fits for S and H are given in Cebeci and Bradshaw14.7 (p. 110) as follows:
for 0 < λ < 0.1

S = 0.22 + 1.57λ − 1.80λ2

H = 2.61 − 3.75λ + 5.24λ2 (14.91a)

and for −0.1 < λ < 0

S = 0.22 + 1.402λ + 0.018
λ

(λ + 0.107)

H = 2.088 + 0.0731

(λ + 0.14)

(14.91b)

For each point x along the surface, the skin-friction coefficient is found from Eq. (14.87a)
and the corresponding value of S:

C f = 2μ

ρUeθ
S(λ) (14.92)

As two examples of the Thwaites14.6 method, consider the flat plate and the stagna-
tion point boundary layer solutions of the previous section. First, for the Blasius flat-plate
boundary layer, the momentum thickness and displacement thickness are

δ∗

x
= 1.721√

Rex
(14.52)

θ

x
= 0.664√

Rex
(14.55)

For the Thwaites result, let Ue = U1 and integrate to get

θ2 = 0.45
νx

U1

and therefore

θ

x
= 0.6708√

Rex
(14.93)
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Since the outer velocity is constant, λ = 0, and from the curve fit (Eq. (14.91a)), H = 2.61.
The displacement thickness is then obtained from Eq. (14.87b) as

δ∗

x
= 1.7507√

Rex
(14.94)

For the stagnation point flow, the momentum thickness and the displacement thickness are

δ∗ = 0.6479

(
ν

a

)1/2

(14.57)

θ = 0.2924

(
ν

a

)1/2

(14.58)

Using the Thwaites method for this case, let Ue = ax (see Eq. (14.42) for m = 1) and
integrate Eq. (14.90) to get

θ2 = 0.075
ν

a

and therefore

θ = 0.2739

(
ν

a

)1/2

(14.95)

The profile parameter, Eq. (14.86), is then given by λ = .075 and from the curve fit,
Eq. (14.91a), we get H = 2.358. The displacement thickness is then given by Eq. (14.87b):

δ∗ = 0.6459

(
ν

a

)1/2

(14.96)

For the two cases, the displacement thicknesses differ by less than 2% and the momentum
thicknesses by less than 1% from the corresponding similarity solutions.

14.6 Weak Interactions, the Goldstein Singularity, and Wakes

The iteration process, which starts with a solution of the inviscid flow equations
and proceeds sequentially to a solution of the boundary layer equations, has been called
a weak interaction. The pressure distribution and external velocity Ue(x) are prescribed
for the boundary layer calculation. We have studied similar solutions (Falkner–Skan) and
approximate solutions using an integral version of the boundary layer momentum equation.
To continue the iteration the inviscid flow equations are solved with the displacement
thickness interaction included and therefore the boundary layer solution must include results
for the trailing wake.

Goldstein14.8 studied analytically the boundary layer flow past a finite length flat plate
aligned parallel to a uniform stream and showed that a singularity was present at the trailing
edge and that the boundary layer equations could not be integrated into the wake. This result
would clearly also apply to an airfoil with a cusped trailing edge. The source of the difficulty
was attributed to the discontinuity in boundary conditions at the trailing edge (no slip on
the plate side and vanishing shear stress on the wake side).

In addition to the above problem with the weak interaction version of the equations at the
trailing edge, researchers developing numerical methods14.9 to integrate the boundary layer
equations discovered that the calculations could not be continued past a streamwise location
where the wall shear stress approached zero. The boundary layer equations are parabolic
partial differential equations where the flow variables are independent of downstream
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conditions for positive values of the streamwise velocity component. The equations rep-
resent a balance of inertia, friction, and pressure. Since the flow momentum is small in
the boundary layer, an adverse pressure gradient can lead to the skin friction approaching
zero followed by a region of reversed flow. Under these conditions, the streamlines near
the wall would appear to separate from the wall. This singularity at a point of flow separa-
tion was also studied analytically by Goldstein.14.10 Using Goldstein’s results, Brown and
Stewartson14.11 showed that the slope of the displacement thickness grows without bound
as the separation point is approached.

For an airfoil with a finite trailing-edge angle (e.g., the van de Vooren airfoil in Chapter
6), the trailing edge is a stagnation point in the inviscid flow. The numerical solutions in
Chapter 11 show a steep decrease in surface speed as the trailing edge is approached, which
corresponds to a sharp increase in pressure. This strong adverse pressure gradient in the
neighborhood of the trailing edge in all likelihood will lead to flow separation upstream of
the edge (see Stewartson14.12).

It therefore appears that even for airfoil flows without separation (attached flows) the
boundary layer equations (in their weak interaction version) cannot be integrated beyond
the trailing edge and that a second iteration is not possible. In addition, the equations cannot
be integrated beyond a point of flow separation. The singularities at a separation point and
the trailing edge were originally thought to indicate that the boundary layer equations of
Prandtl were invalid at these points. It is now known (see, for example, Stewartson14.12) that
a regular solution of the boundary layer equations is possible in the vicinity of the point of
vanishing skin friction if the pressure and outer flow velocity are not prescribed in advance.
It is the weak interaction version of the equations that is invalid and a strong interaction
version must be used. (Of course, the original assumptions involved in the derivation of the
boundary layer equations must still be met; therefore only flows with mild separation can
be treated.) In this version, the inviscid and viscous equations cannot be solved sequentially
but must be coupled in some fashion. Catherall and Mangler14.13 were the first to integrate
the boundary layer equations through a separation point. In their method the displacement
thickness was prescribed. Goldstein14.8 derived a solution for the development of the near
wake downstream of the trailing edge of a finite flat plate but details in the neighborhood of
the trailing edge were not provided. Stewartson14.14 and Messiter14.15 independently derived
a local solution that provided the bridge between the Blasius solution upstream of the trailing
edge and the Goldstein near wake solution downstream of the edge. This solution, valid in a
streamwise region of extent O(Re−3/8), provides the displacement thickness interaction by
an asymptotic matching of flows in three transverse layers starting at the plate (and hence
giving it the name “triple-deck” theory).

The extension of the boundary layer into the wake behind a flat plate is shown schemat-
ically in Fig. 14.10. At the vicinity of the trailing edge the above discussed difficulties

Figure 14.10 Wake model behind a flat plate.
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prevail; however, far behind the plate the streamwise velocity component approaches the
free-stream value and a solution can be obtained from a linearized version of the bound-
ary layer equations. The streamwise velocity component u in the far wake (x � L) can be
written (see Schlichting,1.6 p. 177)

u

Ue
= uce−z2Ue/4xν (14.97a)

where the wake centerline velocity uc is

uc = C

√
L

x
(14.97b)

Here C is a constant, and Eq. (14.97b) describes the decay of the centerline velocity while
the exponential term in Eq. (14.97a) represents a Gaussian velocity profile behind the plate.
The force per unit span due to this velocity defect is

F = ρUe

∫ ∞

−∞
u dz = C2ρU 2

e

√
πνL

Ue

The drag coefficient Cd for both sides of the plate is then

Cd = F

(1/2)ρU 2
e L

and by equating these two expressions we get

C = Cd

4

√
Ue L

πν

and the velocity profile becomes

u

Ue
= Cd

√
Ue L

16πν

L

x
e−z2Ue/4xν = Cd

4

√
ReL

π

√
L

x
· e−z2Ue/4xν (14.98)

Using the results from the Blasius flat plate (e.g., Eq. (14.55) and (14.66)) for both sides to
evaluate Cd we get

u

Ue
= 0.664√

π

√
L

x
e−z2Ue/4xν (14.99)

and this formulation is considered to be valid for x > 3L . Of course, this simple wake model
serves only to demonstrate the principle of convecting the skin-friction effects behind the
body. For most practical cases, however, effects such as transition to turbulent flow, trailing-
edge separation, or shear layer instability will complicate the flow within the wake.

14.7 Two-Equation Integral Boundary Layer Method

Traditional boundary layer methods are tied to the approximation of a thin viscous
layer and the fact that the pressure and external velocity are known (from a previous inviscid
solution). For limited regions of separation or in the neighborhood of the trailing edge the
basic assumptions of boundary layer theory remain valid, but we have shown that we can
not specify the pressure and external velocity. The boundary layer adjusts through the
displacement effect and interactive approaches are needed. The boundary layer must be
solved in an inverse mode (external velocity not specified) rather than in the traditional
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(direct) mode. One-equation integral methods (such as the method due to Thwaites) tie the
local profile shape to the local pressure gradient and are therefore not suited for flows with
strong interaction.

Two-equation integral boundary layer methods eliminate the direct link between the
profile shape and pressure gradient and are therefore satisfactory for treating flows with
strong interaction. A profile family f (η;P) defines the flowfield and the profile parameter is
chosen asP = H (x), the shape factor. An integral kinetic energy equation can be obtained by
a suitable manipulation of the integral continuity and momentum equations (see White,14.5

pp. 266–267) and is given in dimensional and dimensionless forms as

d

dx

(
U 3

e θ∗) = 2�

ρ
(14.100)

dθ∗

dx
+ 3

θ∗

Ue

dUe

dx
= 2C� (14.101)

The dissipation integral � and associated dissipation coefficient C� are defined as follows:

� =
∫ ze

0
τ

∂u

∂z
dz =

∫ ze

0
μ

(
∂u

∂z

)2

dz (14.102a)

C� = �
1
2ρU 3

e

(14.102b)

and the kinetic energy thickness θ∗ is defined as

θ∗ =
∫ ze

0

(
1 − u2

U 2
e

)
u

Ue
dz (14.103)

The kinetic energy shape parameter equation is obtained by combining the integral momen-
tum and kinetic energy equations (Eqs. (14.67c) and (14.101)):

θ

θ∗

{
dθ∗

dx
+ 3θ∗

Ue

dUe

dx
− 2C�

}
−

{
dθ

dx
+ (H + 2)

θ

Ue

dUe

dx
− C f

2

}
= 0

and after rearranging the terms we get

θ

H∗
d H∗

dx
= 2C�

H∗ − C f

2
+ (H − 1)

θ

Ue

dUe

dx
(14.104)

where the kinetic energy shape parameter is defined as H∗ = θ∗/θ . Now there is no explicit
link between H and the local external velocity.

Three closure relations for H∗, C f , and C� are now required to integrate the momentum
and kinetic energy shape parameter equations simultaneously. They may be written as

H∗ = f1(H ) (14.105)

Reθ

C f

2
= f2(H ) (14.106)

Reθ

2C�

H∗ = f3(H ) (14.107)

where Reθ = Ueθ/ν is the momentum thickness Reynolds number. These three functions
are numerically computed from the Falkner–Skan profiles and the following wall boundary
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layer curve fits represent these closure relations (see Drela and Giles14.16):

H∗ =
⎧⎨
⎩

1.515 + 0.076 (H−4)2

H , H < 4

1.515 + 0.040 (H−4)2

H , H > 4
(14.108)

Reθ

C f

2
=

⎧⎨
⎩

−0.067 + 0.01977 (7.4−H )2

H−1 , H < 7.4

−0.067 + 0.022
(
1 − 1.4

H−6

)2
, H > 7.4

(14.109)

Reθ

2C�

H∗ =
{

0.207 + 0.00205(4 − H )5.5, H < 4
0.207 − 0.003(H − 4)2, H > 4

(14.110)

The corresponding closure relations for laminar wake profiles are

H∗ =
{

1.50 + 0.025(3.5 − H )3 + 0.001(3.5 − H )5, H < 3.5

1.50 + 0.015 (H−3.5)2

H , H > 3.5
(14.111)

Reθ

C f

2
= 0 (14.112)

Reθ

2C�

H∗ = 1.52
(H − 1)2

3 + H 3
(14.113)

Let us consider the kinetic energy shape parameter equation (Eq. (14.104)). To illustrate
the presence of the Goldstein singularity for the direct method (Ue specified) and the absence
of the singularity in the inverse method (Ue unspecified), first note that at incipient separation
H = 4.0 and from the curve fit for H∗, we get d H∗/d H = 0 at this point. Note that this
equation can be thought of as an equation for H (x) in attached flow and an equation for
Ue(x) in separated flow. If the equation is recast as

d H

dx
= H∗

d H ∗/d H

{
2C�

H∗θ
− C f

2θ
+ (H − 1)

1

Ue

dUe

dx

}
(14.114)

and Ue(x) is specified, then the right-hand side is seen to blow up as separation is approached.
If, however, the equation is recast as

dUe

dx
= Ue

1

H − 1

{
C f

2θ
− 2C�

H∗θ
+ 1

H∗
d H ∗

d H

d H

dx

}
(14.115)

then it can be integrated for Ue through separation.

14.8 Viscous–Inviscid Interaction Method

To illustrate the development of a viscous–inviscid interaction method, we will
consider a steady incompressible laminar flow for simplicity. The viscous flow past an
airfoil can be constructed by a combination of the real viscous flow (RVF), which includes
the boundary layer and wake, and an equivalent inviscid flow (EIF) over the entire flowfield
(see Fig. 14.11). The EIF is fictitious in the boundary layer and wake where it overlaps the
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Figure 14.11 Nomenclature for viscous–inviscid interaction. (Courtesy of M. Drela.)

RVF. These two flows are defined with the following properties:

The RVF is governed by the boundary layer equations.
The EIF is potential and is governed by Laplace’s equation.
The EIF and RVF match at the outer edge of the RVF region.

The matching requirement is imposed at a location ze and must be enforced for both
velocity components. Since the EIF is irrotational, it can be constructed using a panel
method with vortices (or doublets) and sources on the airfoil surface. We have previously
shown that the tangential component of velocity at the edge of the boundary layer is

u(x, ze) = Ue(x) = uI (x, 0) (14.116)

where the I subscript stands for inviscid. In addition, the normal component of velocity at
the wall for the inviscid flow is (see Eq. (14.27))

wI (x, 0) = d(Ueδ
∗)

dx
(14.117)

This normal velocity component can be included in the panel method solution by adding
an additional source density equal to the transpiration velocity. As an example, consider
a panel method using doublets and sources and the Dirichlet boundary condition on the
airfoil surface (see Section 11.3.1). Then the source strength of Eq. (9.12) is modified such
that

σ = n · Q∞ − d(Ueδ
∗)

dx
(14.118)

In addition, we need to add a source distribution along the wake. The wake centerline is taken
along the inviscid streamline leaving the airfoil trailing edge, and the displacement thickness
and momentum thickness in the wake are simply taken as the sum of these thicknesses above
and below the centerline. The displacement body is then continuous.

Numerous methods have been developed for the calculation of flows with strong inter-
action by iterated coupling between potential flow solvers and traditional boundary layer
marching solvers. For simplicity (and without a loss of generality in the discussion of basic
principles), we will consider the coupling between an integral boundary layer method and
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a potential flow panel method. Three basic approaches have appeared in the literature to
tackle a general viscous–inviscid interaction problem with limited separation. They are the
quasi-simultaneous method of Veldman,14.17 the semi-inverse method of Le Balleur,14.18

and the fully simultaneous method of Drela (see Drela14.19 and Drela and Giles14.16). These
approaches are discussed in Wolles and Hoeijmakers14.20 (with additional details provided
in Wolles14.21). In the approach of Veldman, an interaction law (which models the behavior
of the outer flow) is solved simultaneously with the boundary layer equations. In Le Balleur’s
approach, the coupling between the inner and outer flows is achieved through a relaxation
formula based on the stability analysis of the local flow solution. Even with the coupling
(and lack of hierarchy) of these approaches, they are adaptations of the direct and inverse
techniques and involve sequential solution of the viscous and inviscid flow equations. The
fully simultaneous approach of Drela eliminates this sequential solution of the equations
and it is this approach that will be described here. It is also the method used in Wolles and
Hoeijmakers.

The coupled system of equations to be solved consists of the two integral boundary layer
equations for the RVF, the momentum and kinetic energy shape parameter equations, and
the panel method equation for the doublet strength (e.g., Eq. (11.71) from Section 11.3.1)
to model the EIF. These are

dθ

dx
+ (H + 2)

θ

Ue

dUe

dx
= C f

2
(14.119)

1

H∗
d H ∗

dx
= 2C�

H∗θ
− C f

2θ
+ (H − 1)

1

Ue

dUe

dx
(14.120)

M∑
j=1

ai j m j +
M∑

j=1

ci jμ j = RHSi (14.121)

Note that here the known part of the source distribution (due to the free stream) is moved
to the right-hand side as RHSi and only the additional sources of strength −dm/dx =
−d(Ueδ

∗)/dx representing the displacement surface on the airfoil and in the wake remain
unknown. Also, M represents the number of nodes on the airfoil and the wake (M > N ).
The new coefficient ai j is related to the original source influence coefficient bi j by

ai j = bi j − bi, j−1

x j−1 − x j

since the additional source strength is (m j − m j−1)/(x j−1 − x j ). In summary, the unknowns
are the viscous variables θ , the momentum thickness, and m = Ueδ

∗, the mass defect, and
the doublet strength μ. The discrete version of the system of equations is written in residual
form as

�θ

θ
+ (H + 2)

�Ue

Ue
− C f

2

�x

θ
≡ R1i (μ j , θ j , m j ) = 0 (14.122)

�H∗

H∗ + (1 − H )
�ue

ue
+

(
C f

2
− 2C�

H∗

)
�x

θ
≡ R2i (μ j , θ j , m j ) = 0 (14.123)

M∑
j=1

ai j m j +
M∑

j=1

ci jμ j − RHSi ≡ Qi (μ j , m j ) = 0 (14.124)

The ( )i subscript indicates a panel node on the surface and along the wake centerline and
the two viscous variables are also obtained at these points. The change �( ) indicates a finite
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Figure 14.12 Calculated pressure distribution on a NACA 0012 airfoil at zero angle of attack. Dashed
line stands for the potential solution and the solid line for the flow with viscous interaction. The airfoil
and displacement thickness shapes are depicted at the lower part of the figure.

difference representation of the first derivative, for example,

�θ = θi − θi−1 (14.125)

and variables without a subscript represent a simple average, for example,

θ = 1

2
(θi + θi−1) (14.126)

The following secondary variables are computed directly from the primary variables θi

and mi using their definitions or closure relations:

Uei = Q∞ · t +
M∑

j=1

Ai j m j +
M∑

j=1

Ci jμ j (14.127)

δ∗
i = mi

Uei

(14.128)

Hi = δ∗
i

θi
(14.129)

H∗
i = f1(Hi ) (14.130)(
C f

2

)
i

= ν

Uei θi
f2(Hi ) (14.131)

(
2C�

H∗

)
i

= ν

Uei θi
f3(Hi ) (14.132)

The influence matrices A and C in the edge velocity equation are typically related to the
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particular panel method used. The residuals Q, R1, and R2 are driven to zero with a Newton
system. The iteration process starts with an initial estimate m, θ , and μ, and the system is
solved for dm, dθ , and dμ. The variables are then updated and the iterations continue until
convergence.

14.9 Concluding Example: The Flow over a Symmetric Airfoil

As a summary to the approach presented in this chapter, the flow over a NACA 0012
airfoil at zero angle of attack is calculated. The method is as outlined in the previous section,
and the results were computed using the computer code XFOIL, based on the method of
Drela (Refs. 14.16 and 14.19). The airfoil shape and the resulting pressure distribution are
plotted in Fig. 14.12. To present a solution for a case with a laminar boundary layer (as
presented in this chapter) a quite low Reynolds number of Re = 2,000 was assumed. This
may not be a realistic range for an airplane, but some small birds or miniature remotely
piloted airplanes may operate in this Reynolds number range. Figure 14.12 also depicts the
displacement body shape by adding the boundary layer displacement thickness around the
NACA 0012 airfoil. The displacement thickness is quite thick at this low Reynolds number
and it continues into the wake. The dashed line in the pressure plot corresponds to the
inviscid solution and the formation of a rear stagnation point is clearly visible (note that the
NACA 0012 has a finite-angle trailing edge; the full stagnation pressure can be recovered by

Figure 14.13 Calculated displacement thickness δ∗, momentum thickness θ , shape factor H , and
friction coefficient C f along a NACA 0012 airfoil at zero incidence.
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the potential solution when using more panels near the trailing edge). The solid line shows
the matched viscous/inviscid solution. Apart from the slight effects of the displacement
thickness (on the pressure distribution) the main difference is near the trailing edge, where
the rear stagnation point has vanished.

Details on the other boundary layer parameters are presented in Fig. 14.13. Both boundary
layer thicknesses (δ∗ and θ ) grow toward the trailing edge and then slowly decrease in the
near wake. The slight discontinuity in shape factor at the trailing edge is a result of the
finite trailing-edge thickness added to the wake behind the airfoil. The shape factor begins
at a value slightly lower than the Blasius value (of H = 2.59) and grows gradually toward
the trailing edge. The friction coefficient C f grows rapidly near the leading edge due to the
rapid acceleration of the flow and gradually decreases toward the trailing edge.

The above example demonstrates the principle of matching the viscous and inviscid
solutions. The methodology of Section 14.8 was developed here for laminar attached flows
but can be extended in a straightforward manner to treat practical airfoil design problems
with transition to turbulent flows and even mild flow separation (see Refs. 14.16 and 14.19).
For the extension to flows with turbulence, there is no change to the viscous–inviscid
coupling strategy or the panel method formulation. An amplification variable is added to
the laminar viscous equations (along with an equation for its evolution) to predict transition
and an additional equation is added once the flow is turbulent to model the turbulent shear
stress transport. Examples including transition and turbulence (for the same NACA 0012
airfoil but at higher Reynolds number) are given in Section 15.2.2.
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Problems

14.1. For the similarity solution of a boundary layer type problem assume that the stream
function has the form


 = ν1/2x1/3 f (η)

where η is

η = 1

3ν1/2

z

x2/3

Following the method of Section 14.3, find the differential equation for f (η). (This
solution describes the free jet flow in a constant pressure.)

14.2. For the similarity solution of a boundary layer type problem assume that the stream
function has the form


 = 4ν1/2x1/4 f (η)

where η is

η = z

ν1/2x3/4

Following the method of Section 14.3, find the differential equation for f (η). (This
solution describes the flow of a jet parallel to a wall in a constant pressure.)

14.3. Use the von Karman integral method to calculate the flat-plate displacement and
momentum thicknesses. Assume a polynomial velocity distibution of

u

Ue
= a1η + a2η

2 + a3η
3

Also, calculate the friction coefficient C f , and compare with the Blasius solution.

14.4. Calculate the flat-plate displacement and momentum thicknesses and the skin
friction coefficient by assuming the velocity profile

u

Ue
= sin

(
π

2
η

)

and by using von Karman’s integral method.

14.5. As an example for an integral boundary layer method with pressure gradient con-
sider the polynomial velocity profile of Eq. (14.78). By slightly modifying the
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boundary conditions in Section 14.5.1 such that

at z = 0, ν
∂2u

∂z2
= −Ue

dUe

dx
and defining � = (δ2/ν)(dUe/dx), show that

a1 = 2 + �

6

a2 = −�

2

a3 = −2 + �

2

a4 = 1 − �

6

and therefore
u

Ue
= 2η − 2η3 + η4 + �

6
(η − 3η2 + 3η3 − η4)

Finally, show that
δ∗

δ
= 3

10
− �

120
θ

δ
= 1

63

(
37

5
− �

15
− �2

144

)



P1: FBT

CB329-15 CB329/Katz October 5, 2000 11:34 Char Count= 0

CHAPTER 15

Enhancement of the Potential Flow Model

Toward the end of Chapter 1 (Section 1.8) it is postulated that many flowfields
of interest to the low-speed fluid dynamicist lie in the range of high Reynolds number.
Consequently, for attached flowfields, the fluid is divided into two regions: (a) the thin
inner boundary layer and (b) the mainly inviscid irrotational outer flow. Chapters 2–13
are entirely devoted to the solution of the inviscid outer flow problem, which indeed is
capable of estimating the resulting pressure distribution and lift due to the shape of the
given solid boundaries. The laminar boundary layer model was presented in Chapter 14
as an example for modeling the inner part of the complete flowfield. The methodology for
obtaining information such as the displacement thickness, the skin friction on the solid
surface and resulting drag force (due to surface friction), and the matching process with
the outer flow was demonstrated. However, in real high Reynolds number flows over wings
the flow is mostly turbulent and the engineering approach to extend the methodology of
Chapter 14 to include turbulent or even separated viscous layer models will be discussed
briefly in this chapter. The objective of this chapter is to provide a brief survey of some
frequently occurring low-speed (wing-related) flowfields and to help the student to place
in perspective the relative role of the potential flow methods (presented in this book) and
of the viscous effects in order to comprehend the complete real flowfield environment.
Additionally, several simplified enhancements to the potential flow model that can help
model some nonlinear and viscous effects will be surveyed.

The modifications presented in this chapter will begin with methods of calculating the
wake rollup, which from the classical potential-flow solution point of view was denoted as
a “slight nonlinear effect.” The rest of the presented improvements (or modifications) deal
with efforts to include the effects of viscosity and some of them are logical extensions to
the potential flow model. Some others (e.g., modeling of two-dimensional flow separation)
will clearly fall into the “daring and imaginative” category and their importance is more in
providing some explanation of the fluid-mechanical phenomena rather then being in a stage
that they can predict unknown flowfields.

In the following discussion, for the sake of simplicity, mainly the lifting characteristics
of the experimental observations and the resulting flow models are presented. In a limited
number of cases the drag force also is discussed, but important effects such as side forces,
moments, and possible crosscoupling of the aerodynamic loads are omitted in favor of
brevity. Therefore, the treatment of the various topics in this chapter is by no means complete
or comprehensive and the reader is encouraged to further investigate any of the following
topics in the referenced literature.

15.1 Wake Rollup

The conditions that the wake will move with the local streamlines (and carry no
loads) were introduced as early as Section 4.7 for thin lifting surfaces and later in Section
9.3 when discussing the wake model for panel methods. From the steady-state flow point of
view, the shape of the wake is not known, and the process of finding the proper wake shape

483
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Figure 15.1 Wake grid planes (usually normal to the free stream) used for wake rollup calculations.

(wake rollup) is often denoted as a “slight nonlinearity” in the solution process. Typical
remedies to this problem are:

1. Prescribe wake shape: This is done in Chapters 4, 8, and 11, for the lifting line
and lifting surface type solution (where the wake is placed on the z = 0 plane).
A more refined alternative of this option is to prescribe the wake shape based on
flow visualizations. This approach is very helpful when analyzing multielement
wings where, for example, in the case of a two-element airfoil the wake of the
main airfoil is very close to the trailing-edge flap upper surface.

2. Use wake relaxation: This is a process used by several steady-state numerical
solutions and to demonstrate the principle of this method let us follow the approach
used in the code VSAERO.9.3,12.11 The initial wake geometry is specified by the
programmer (usually as a planar wake extending backward from the trailing edge)
and then several wake grid planes (normal to the free stream) are established, as
shown in Fig. 15.1. For the first iteration, the flowfield over the wing and the initial
wake shape are calculated using the method described in Section 12.5.

For the second iteration the velocity induced by the wing and wake (u, v, w)�, at
each of the wake points (formed by the intersection between the wake grid planes
and the wake lines) is calculated. Next, the wake points are moved with the local
induced velocity (see Fig. 15.1) by

(�x, �y, �z)� = (u, v, w)��t (15.1)

(Some methods, for simplicity, will move the wake in the wake grid plane only.
If this is done in the free-stream coordinate system, then the wake grid lies in the
x = const. plane and only (�y, �z)� are required.) In Eq. (15.1) �t is an artificial
time parameter and its value can be approximated as

�t ≈ K
�x�

Q∞
(15.2)

where �x� is the distance of the wake grid plane from the trailing edge (or between
the wake grid planes) and K has values between 0.5 and 5. Once all the wake points
have been moved, as a result of the local induced velocity, the flow is computed
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Figure 15.2 Wing and canard wake rollup after two iterations, using the wake relaxation method of
Refs. 9.3 and 12.11. From Katz, J., “Evaluation of an Aerodynamic Load Prediction Method on a STOL
Fighter Configuration,” AIAA Paper 86-0590, 1986. Reprinted with permission. Copyright AIAA.

with the new wake geometry and the second iteration cycle (or wake relaxation
iteration) has been completed.

These wake relaxation iterations can be continued until convergence is obtained
or when sufficient wake rollup has been achieved (with the decision made by the
programmer). Since there is always a risk that by too many iterations the wake
can reach levels of nonphysical rollup (where the sum of the iteration time steps∑

�t is much larger than �x�/Q∞) the number of wake rollup iterations is usually
limited to less than three. Results of such a procedure (after two wake iterations) are
presented in Fig. 15.2. Here the VSAERO9.3,12.11 code was used and the interaction
between a close coupled wing canard configuration was calculated. Figure 15.3

Figure 15.3 Effect of canard position on wing’s spanwise loading. From Katz, J., “Evaluation of an
Aerodynamic Load Prediction Method on a STOL Fighter Configuration,” AIAA Paper 86-0590, 1986.
Reprinted with permission. Copyright AIAA.
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shows the effect of the canard on the wing’s spanwise loading. Note the noticeable
effect of the canard and its wake, which induces a downwash at the wing root area
and thereby reduces its lift there. The proper placement of the wake in such cases
of closely spaced lifting surfaces is critical and estimation of the wake motion is
important for the solution.

3. Use a time-stepping method: This approach was demonstrated in Chapter 13 (Sec-
tions 13.8.2 and 13.10) and in principle is similar to the wake relaxation method,
but now the time step is directly related to the motion. (Therefore, the apparent
“slight nonlinearity” does not exist.) During the computations, the number of wake
points increases with time, and, for example, for N wake lines during K time steps
approximately N K/2 wake point velocity computations are required. When using
the wake relaxation approach, even for the first iteration, all wake grids are used
and therefore N K such velocity calculations are required. Thus, even for steady-
state flows, this time-stepping wake rollup method may require less computational
effort.

As an example for this wake rollup calculation consider the rollup of a single
horseshoe vortex. In this case, the wing-bound vortex is modeled by a single
vortex line, which sheds two wake line segments of length Q∞�t at its tips during
each time step. As this shedding process continues the two long trailing vortices
are formed, but because of the instability of these two vortex lines a sinusoidal
pattern will develop. This instability was first analyzed by Crow,15.1 who presented
the photos appearing in Fig. 15.4, taken from Ref. 15.1. The numerical solution
presented in Fig. 15.4a is obtained by using only one panel in the method described

Figure 15.4 Instability of a pair of trailing vortices, and comparison between calculated and observed
vortex formations. Panel (a) shows the wake behind the airplane after its passage and (b) depicts the
Crow instability, which is shown later at a distance of about 80 wing spans. More details about such
calculations can be found in Rossow, V. J., J. Aircraft, Vol. 24, No. 7, 1987, pp. 433–440. Photo
from Ref. 15.1. Reprinted with permission of AIAA and Meteorology Research Inc. Photo originally
appeared in Smith, T. B., and Beemer, K. M., “Contrail Studies of Jet Aircraft,” MRI Report, Apr. 1959.
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in Section 13.12, and the above instability is also visible in the computation.
Calculations such as this one and that of Fig. 13.29 indicate that this approach
for calculating the rollup of vortex sheets yields satisfactory results (at least when
modeling trailing wakes behind wings).

As a closing remark to most of the wake rollup modeling efforts we must emphasize
that the velocity induced by a vortex point or line is singular (see, for example, Fig. 3.8a).
Therefore, an artificial vortex core (or cutoff distance) must be defined for the purpose of
numerical solutions. One possibility is to define the self-induced influence as zero within
this radius; however, in some methods a solid body rotation model is used within this core
(which is very similar to Fig. 2.11 with ε being the core size).

15.2 Coupling between Potential Flow and Boundary Layer Solvers

The concept of coupling between a two-dimensional outer potential flow and an
inner laminar boundary layer model was discussed in Section 14.8. This approach can be
extended to three-dimensional flows and to turbulent boundary layers that exist in the high
Reynolds number case. The information sought from the solution of the attached boundary
layer problem is essentially the same as for the laminar boundary layer case:

1. Displacement effects due to the slower velocity inside the boundary layer.
2. Surface skin friction, so that the contribution of friction to the drag force can be

estimated.
However, for engineering applications such as airfoil design, we also want to learn
about:

3. Location of boundary layer transition.
4. Indications about the tendency of the flow to detach (or separate). If the boundary

layer does separate then the method of Refs. 14.16 and 14.19 can handle cases of
“mild” separation. For cases with massive separation additional modeling efforts
or the solution of the full Navier–Stokes equations is required.

In this section these topics will be discussed very briefly. More comprehensive descrip-
tions can be found in texts such as Schlichting1.6 (boundary layers) or AGARD CP-29115.2

(viscous–inviscid interactions).

15.2.1 The Laminar/Turbulent Boundary Layer and Transition

The discussion so far has been limited to laminar flows. For example, steady-state
streamlines were described in Section 1.3 by a hypothetical experiment where coloring dye
is injected at point 1 (in Fig. 1.3) and then all particles will follow the same path to point 2.
However, Osborne Reynolds (in the second half of the 1800s) showed that dye injected into
the laminar flow inside a long tube eventually becomes chaotic, a flow we call turbulent.
Returning to the example in Fig 1.3, in the case of such turbulent flow the particles will be
subject to highly unsteady motion and those injected at point 1 will not necessarily pass
through point 2. The important conclusion at this point is that in spite of the flow being
“seemingly steady” the fluid particles are locally unsteady. However, concepts developed
for laminar flow (e.g., streamlines, boundary layer, etc.) can still be used by referring to the
time-averaged properties.

Some important features of the turbulent flow can be described by the basic case of the
flow over a flat plate. Suppose that the flat plate is submerged in an undisturbed, parallel,
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Figure 15.5 Schematic description of the boundary layer on a flat plate and the transition from laminar
to turbulent regions.

laminar free stream, as in the example of Fig. 14.3. Initially, a laminar boudary layer will
form, but as the distance increases (and Reynolds number increases) a transition to turbulent
boundary layer occurs (see Fig. 15.5). The region where this change takes place is called
the region of transition. Various models were proposed to explain the origin of turbulence
and several models are presented by Panton.15.3 One possible model (that fits well with the
models presented in this book) represents the shear layer near the wall by spanwise vortices
(see Fig. 15.6). In the laminar sublayer (which is less than 1% of δ) the shear creates vortex
lines, which later become unstable. We have seen vortex instabilities (e.g., Fig. 13.29 or
15.4) and certainly increasing continuously the vorticity in the boundary layer (the length
scale) and the wall proximity will create spanwise instability of the lower vortex sheets.
Eventually, the higher speed in the upper layer will lift portions of these vortices creating
streamwise vortex filaments. As this process continues, the vortex segments reach the outer
layers where they break up to form the fully turbulent region. Of course disturbances in
the free stream or those generated in the viscous shear layers near the surface (e.g., due to
surface roughness) can cause time-dependent fluctuations too, leading to earlier transition
and increased turbulence in the boundary layer.

The time-averaged nature of the turbulent flow has some pronounced effects on the
physics of the flow. For example, in the case of a turbulent boundary layer over the two-
dimensional flat plate of Fig. 15.5, the velocity u(z) at a given x location becomes time
dependent and will have the form

u(z, t) = ū(z) + u′(z, t) (15.3a)

Similarly, the normal velocity component is

w(z, t) = w̄(z) + w′(z, t) (15.3b)

Figure 15.6 Possible scenario for vorticity generation in the laminar sublayer, its liftoff, and breakup,
leading to fully developed turbulent boundary layer.
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where ū(z) and w̄(z) are the mean velocity components and u′(z, t) and w′(z, t) are the
time-dependent fluctuating parts. Figure 15.5 schematically indicates that as a result of the
fluctuating velocity component (larger momentum transfer) the turbulent boundary layer is
thicker. Furthermore, when examining the turbulent boundary layer equations, we see that
the shear force near the wall becomes (Schlichting1.6 p. 562)

τxz = μ

(
∂u

∂z

)
− ρu′w′ (15.4)

The second term is the Reynolds stress, which represents additional stress (compared
with Eq. (14.47)) due to axial momentum transfer in the vertical direction (time average of
the product u′w′).

Comparison of experimental laminar and turbulent boundary layer profiles for a flat
plate are presented in Fig. 15.7. Clearly, because of the transverse momentum transfer,
the velocity increases faster near the wall and the velocity gradient for the turbulent case
(∂u/∂z) appears to be larger there. Therefore it is expected that the turbulent skin friction
is larger than the laminar one. Figure 15.8 shows the trends in skin-friction coefficients for
a flat plate. For laminar flow, Eq. (14.49), based on Blasius’s solution, seems to be close to
experimental observation, but for turbulent boundary layers the skin friction increases dra-
matically. It also seems that for a wide range of Reynolds number either laminar or turbulent
boundary layers can exist. This may be utilized for drag reduction, where by using smooth
surfaces and minimizing external disturbances one can maintain a laminar boundary layer.

Figure 15.7 Velocity profiles on a flat plate at zero incidence for laminar and turbulent boundary
layers. From Dhawan, S., “Direct Measurements of Skin Friction,” NACA Report 1121, 1953.
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Table 15.1. Comparison between laminar (Blasius solution)
and turbulent (based on the 1

7 -power law) flat-plate, integral
boundary layer properties

Laminar Turbulent

δ99

x

5.00√
Rex

0.37
5
√

Rex

δ∗

x

1.721√
Rex

0.046
5
√

Rex

θ

x

0.664√
Rex

0.036
5
√

Rex

C f
0.664√

Rex

0.0576
5
√

Rex

H 2.59 1.28

To compare the properties of the two boundary layer profiles, the turbulent velocity
distribution must be approximated. A reasonable curve-fit to the experimental profile in
Fig. 15.7 (0.2 × 106 < Re < 10 × 106), following Schlichting1.6 (pp. 637–638), is the 1/7
power law:

ū

Ue
= η1/7 (15.5)

and here η = z/δ as defined in Section 14.5. When using this velocity profile with the
integral boundary layer method of Section 14.5 the properties for the turbulent boundary
layer can be calculated and the results are tabulated in Table 15.1. These results are presented
next to the results based on Blasius’s solution (Eqs. (14.48), (14.50), (14.52), (14.55), and
(14.69)).

Figure 15.8 Skin friction coefficient on a flat plate at zero incidence for laminar and turbulent
boundary layers. From Ref. 1.6, p. 717. Reproduced with permission of McGraw-Hill, Inc.
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Now, we can examine the above information and Fig. 15.8 and draw a few conclusions
that affect airfoil and wing design:

1. Displacement thickness is larger for turbulent than for laminar boundary layers.
2. The skin-friction coefficient becomes smaller with increased Reynolds number

(mainly for laminar flow).
3. Over a certain Reynolds number range (transition) both laminar and turbulent

boundary layers are possible. The nature of the actual boundary layer for a particular
case depends on flow disturbances, surface roughness, etc.

4. The skin-friction coefficient is considerably larger for the turbulent boundary layer.
5. Because of the vertical momentum transfer in the case of the turbulent bound-

ary layer, flow separations will be delayed somewhat, compared to the laminar
boundary layer (see Ref. 15.4, p. 474).

15.2.2 Viscous–Inviscid Coupling, Including Turbulent Boundary Layer

The introduction of the turbulent boundary layer concept in the previous section
and the results of Table 15.1 indicate that both boundary layer types can be represented
by the integral quantities introduced in Chapter 14. Although the relative displacement
thickness in the turbulent boundary layer is smaller, the important conclusion is that such a
quantity (e.g., δ∗) can be defined for the turbulent flow. Consequently, the coupling process
of the viscous inner and the inviscid outer flow can proceed in a manner similar to the
description in Section 14.8. This approach can be extended to three-dimensional cases as
well (see Ref. 9.3). A possible procedure for solving the coupled potential and boundary
layer equations can be established as follows (see Fig. 15.9):

1. Solve for the potential flowfield over the body (solid line in Fig. 15.9) and obtain
the surface velocity and pressure distribution.

2. Using this outer velocity distribution obtain the boundary layer solution and gen-
erate the displacement thickness and skin friction.

3. Modify the surface boundary condition for the potential flow (e.g., specify it on
the displacement surface between the viscous and inviscid regions, as in Fig. 15.9,
or add transpiration velocity) and solve for the second iteration.

This iterative process can be repeated several times and as mentioned there are some
different approaches for modifying the potential flow boundary conditions. One approach
(e.g., Refs. 9.6 and 15.5) is to change the location of the dividing streamline (or the bound-
ary) to account for the displacement thickness. The other approach (which was presented in
Section 9.9) is not to change the geometry of the surface but to simulate the displacement
by blowing normal to the surface (e.g., Refs. 12.11 or 15.6–15.9). This modification of the
boundary condition of Eq. (9.4) is obtained by replacing the zero term on the right-hand

Figure 15.9 Generic shape of an airfoil and the displaced streamline, outside of which the flow can
be considered as potential.
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side with Vn:

∂(� + �∞)

∂n
= Vn (15.6)

and then the transpiration (or blowing) velocity Vn is found from the information provided
by the boundary layer solution (see Eq. 14.117)):

Vn = −∂(Ueδ
∗)

∂s
(15.7)

where s is the line along the surface and the minus sign is a result of n pointing into the
body. In the case of the Dirichlet boundary condition the source term of Eq. (9.12) (e.g., in
the panel code VSAERO9.3,12.11) can be modified such that (see Eq. (14.118))

σ = n · Q∞ − ∂(Ueδ
∗)

∂s
(15.8)

This approach is based on the two-dimensional boundary layer model and in practice,
when extended to three-dimensional flows, the boundary layer calculations are applied
along streamlines or along two-dimensional sections (so in essence this is a quasi-three-
dimensional representation and not a true three-dimensional boundary layer model).

To demonstrate these principles let us first consider the case of the symmetric NACA
0012 airfoil, which was investigated for the laminar boundary layer case in Figs. 14.11
and 14.12. For this example (see Fig. 15.10) an angle of attack of 5◦ was assumed and
the Reynolds number is raised to 106. The dashed line represents the potential solution
and the solid line stands for the coupled viscous solution (using the XFOIL14.19 code).

Figure 15.10 Calculated pressure distribution on a NACA 0012 airfoil at 5◦ angle of attack. Dashed
line stands for the potential solution and the solid line for the flow with viscous interaction. The airfoil
and displacement thickness shapes are depicted at the lower part of the figure.
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Figure 15.11 Displacement thickness δ∗, momentum thickness θ , shape factor H , and surface friction
coefficient C f along the upper surface of a NACA 0012 airfoil at 5◦ angle of attack.

Boundary layer transition is estimated at x/c = 0.134 on the upper surface and at x/c =
0.984 on the lower surface. At the beginning of the transition on the upper surface a small
discontinuity in the pressure distribution is visible. This is a result of a local “laminar
bubble,” which will be described in the next section. The displacement streamline and the
airfoil are shown in the lower part of Fig. 15.10 and the displacement δ∗ is much smaller
than for the low Reynolds number case (Fig. 14.11). The displacement and momentum
thickness for the upper surface are presented in Fig. 15.11; note the sharp drop in the
displacement thickness for the turbulent flow. This directly affects the shape factor, which
drops sharply behind the transition region. The laminar skin friction is initially high owing
to the high shear near the leading edge, but, behind the transition point it grows again,
sharply demonstrating the large increase in turbulent drag. The above parameters for the
airfoil’s lower surface were not presented here because of the largely laminar boundary layer
there (which, apart from being much thinner, resembles the laminar case presented in the
previous chapter).

This approach of coupling between the viscous and inviscid solutions can be extended
to treat multiple bodies. As an example, the effect of the displacement thickness on a two-
element airfoil (shown in the inset) is presented in Fig. 15.12. Although the treatment of
multielement wings seems to be straightforward, in fact, the wake of the leading element
must be properly placed relative to the following flap. This problem is even more pronounced
for the three-dimensional case and validation against experimental data is recommended.
Similarly to the example presented in Fig. 15.10, in this case too, the presence of the
thin boundary layer reduces slightly the pressure difference (and hence the lift) obtained
by the inviscid solution. This effect increases with the airfoil’s angle of attack (see lift
coefficient data in Fig. 15.13), as the upper boundary layer becomes thicker and eventually
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Figure 15.12 Effect of the viscous boundary layer on the chordwise pressure distribution of a two-
element airfoil. From Ref. 15.6. Reprinted with permission. Copyright AIAA.

flow separation is initiated near the trailing edge (for α approximately larger than 5◦, in
Fig. 15.13).

When the flow separates, the streamlines do not follow the surface of the body, as shown
schematically in Fig. 15.14. This is a result of an adverse (positive) pressure gradient (which
may be caused by high surface curvature), which slows down the fluid inside the boundary

Figure 15.13 Effect of the viscous boundary layer on the lift coefficient of the two-element airfoil of
Fig. 15.12. From Ref. 15.6. Reprinted with permission. Copyright AIAA.
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Figure 15.14 Schematic description of the flow in the boundary layer near the point of separation.

layer to a point where the normal velocity gradient at the wall becomes zero. For laminar
flows, therefore, at the separation point(

∂u

∂z

)
w

= 0 (15.9)

and behind this point reversed flow exists.

15.3 Influence of Viscous Flow Effects on Airfoil Design

One of the earliest applications of panel methods (in their two-dimensional form),
when combined with various boundary layer solution methods, was for airfoil shape design.
Because of the simplicity of the equations, it was possible to develop inverse methods,
where the programmer would specify a modified pressure distribution and then the computer
program constructs the airfoil’s shape. Figure 15.15 depicts the sensitivity of the chordwise
pressure distribution to the airfoil’s upper surface shape and emphasizes the importance of
such inverse methods. For more details on these airfoil design methods see, for example,

Figure 15.15 Effect of small modifications to the airfoil’s upper surface curvature on the chordwise
pressure distribution.
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Figure 15.16 Effect of Reynolds number on the lift coefficient of a symmetric NACA 0012 airfoil.
From Ericsson, L. E., and Reading, J. P., “Further Considerations of Spilled Leading Edge Vortex
Effects on Dynamic Stall,” J. Aircraft, Vol. 14, No. 6, 1977. Reprinted with permission. Copyright
AIAA. (Courtesy of L. E. Ericsson, Lockheed Missiles and Space Company, Inc.)

Refs. 15.9–15.12. Here we will attempt only a brief discussion of some of the more dominant
considerations.

To estimate the effects of viscosity on airfoil design let us begin by observing the effect
of Reynolds number on the performance of a two-dimensional airfoil. Figure 15.16 shows
the lift coefficient versus angle of attack curve of a NACA 0012 airfoil and clearly the angle
of attack at which flow separation is initiated depends on the Reynolds number. Note that
for the attached flow condition the lift slope is close to 2π , but at a certain angle (e.g., about
α = 8◦ for Re = 0.17 × 106) the lift does not increase with an increase in the angle of attack.
This is caused by flow separation (see inset in the figure) and the airfoil (or wing) is “stalled.”

Let us now have a closer look at the boundary layer on the airfoil’s upper surface (that
is, the suction side). If the free stream is laminar to begin with then a laminar boundary
layer will develop behind the front stagnation point (see Fig. 15.17). At a certain point the
laminar flow will not be able to follow the airfoil’s upper surface curvature and a “laminar
bubble” will form. If the Reynolds number is low (as in the lowest two curves in Fig.
15.16) then the laminar boundary layer will separate at this point. But if the Reynolds
number increases then the flow will reattach behind the laminar bubble and a transition to
a turbulent boundary layer will take place. The effect of this laminar bubble on the upper
surface pressure distribution is shown in Fig. 15.10 and schematically in the upper inset
to Fig. 15.17. Because of the modified streamline shape the outer flow will have a higher
velocity Ue, resulting in a plateau shape of the pressure distribution (above this bubble).
Behind the bubble the velocity is reduced and the pressure increases, thus resulting in the
sharp drop of the negative pressure coefficient.

Returning to Fig. 15.16 we can see that for increasing Reynolds numbers, as a result of
the momentum transfer from the outer flow into the turbulent boundary layer, the airfoil
separation is delayed up to increasingly higher angles of attack (upper curves in Fig. 15.16).
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Figure 15.17 Schematic description of the transition on an airfoil from laminar to turbulent boundary
layer and the laminar bubble.

This delay in the airfoil’s stall angle of attack (caused by increased Reynolds number)
results in higher lift coefficients with a maximum lift coefficient of Clmax , whereas the flow
separation now is a “turbulent separation.”

Another interesting observation is that, for the low Reynolds number case, the flow starts
to separate at the airfoil’s trailing edge and gradually moves forward. This is called trailing-
edge separation, and in this case abrupt changes in the airfoil’s lift are avoided. For the high
Reynolds number cases the boundary layer becomes turbulent and the flow stays attached
for larger angles of attack (e.g., α = 14◦ for Re = 3.18 × 106 in Fig. 15.16). If gradual
trailing-edge separation is needed at higher angles of attack (to avoid the abrupt lift loss)
then this can be achieved by having a more cambered airfoil section.

Some of the more noticeable considerations, from the airfoil designer’s point of view,
become clear when observing the effects of the boundary layer with the aid of Figs. 15.8
and 15.16. The first observation is that the drag coefficient of the laminar boundary layer
is smaller and for drag reduction purposes larger laminar regions must be maintained on
the airfoil. However, when high lift coefficients are sought then an early tripping (causing
of transition, e.g., by surface roughness, vortex generators, etc.) of the boundary layer can
help to increase the maximum lift coefficient. Also, in many situations the same lifting
surface must operate within a wide range of angles of attack and Reynolds number and
the final design may be a result of a compromise between some opposing requirements.
Consequently, to clarify some of the considerations influencing airfoil design, these two
regimes of airfoil performance are discussed briefly in the following sections.
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Figure 15.18 Variation of drag coefficient versus lift coefficient for an early NACA airfoil and for a
low-drag airfoil, and the effect of rough surface on drag. (Experimental data from Ref. 11.2.)

15.3.1 Low Drag Considerations

When low drag of the lifting surface is sought (e.g., for an airplane cruise configu-
ration) then, as mentioned, large laminar boundary layer regions are desirable. To maintain
a laminar boundary layer on the airfoil the surface must be as smooth as possible, and
a favorable pressure gradient can also delay the transition to a turbulent boundary layer
(Ref. 15.4, Section 17.5). A favorable (negative) pressure gradient occurs when the pres-
sure is decreasing from the leading edge toward the trailing edge (thus adding momentum)
and can be achieved by having a gradually increasing thickness distribution of the airfoil.
This is demonstrated in the inset to Fig. 15.18 where an earlier NACA 2415 airfoil is com-
pared with a NACA 642-415 low-drag airfoil. The inset to the figure clearly shows that the
maximum thickness of the low-drag airfoil is moved to the 40% chord area, which is further
downstream than the location of the maximum thickness for the NACA 2415 airfoil. The
effect of this design on the drag performance is indicated clearly by the comparison between
the drag versus lift plots of the two airfoils (at the same Reynolds number). In the case of
the low-drag airfoil, a bucket-shaped low-drag area is shown, which is a result of the large
laminar flow regions. However, when the angle of attack is increased (resulting in larger Cl)
the boundary layer becomes turbulent and this advantage disappears. For comparison the
drag of a NACA 642-415 airfoil with a standard roughness11.2 is shown in Fig. 15.18 where
the boundary layer is fully turbulent and hence its drag is considerably higher.
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Figure 15.19 Signature of the laminar bubble on the pressure distribution of an airfoil. (Courtesy of
Douglas Aircraft Co. and Robert Liebeck.)

A large number of airfoil shapes together with their experimental validation are provided
in Ref. 11.2 (e.g., for the 6-series airfoils of Fig. 15.18 on pp. 119–123). Also, the airfoil
shape numbering system is explained there in detail and, for example, for the 642-415 airfoil
the last two digits indicate the airfoil thickness (15%). The first digit (6) is the airfoil series
designation and the second digit indicates the chordwise position of minimum low pressure
in tenths of chord (or the intention to have about 40% laminar flow). As long as the boundary
layer stays laminar in the front of the airfoil, its drag is low (see the bucket shape in Fig.
15.18) and the range of this bucket in terms of �Cl is ±0.2 near the designed Cl of 0.4
(hence the subscript 2 and the digit 4 after the dash).

Most airplane-related airfoils operate with a Reynolds number larger then 106, but when
the Reynolds number is below this value (as occurs in small-scale testing in wind tunnels
or with low-speed gliders and airplanes, etc.) then it is possible to maintain large regions
of laminar flow over the airfoil. This condition is more sensitive to stall and usually a
larger laminar bubble exists. The effect of such a laminar bubble on the airfoil’s pressure
distribution is shown in Fig. 15.19, where the plateau caused by the laminar bubble is
clearly visible (see also Figs. 15.10 and 15.17). For further details about low Reynolds
number airfoils the reader is referred to a review article on this topic by Lissaman.15.13

15.3.2 High Lift Considerations

Requirements such as short takeoff and landing can be met by increasing the lift
of the lifting surfaces. If this is done by increasing the wing’s lift coefficient then a smaller
wing surface can be designed (meaning less cruise drag, less weight, etc.). Engineering
solutions to this operational requirement within various lift coefficient ranges resulted in
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Figure 15.20 Family of possible airfoil upper-surface pressure distributions resulting in an attached
flow on the upper surface (for Re = 5 × 106). From Liebeck.15.12 Reprinted with permission. Copyright
AIAA. (Courtesy of Douglas Aircraft Co. and Robert Liebeck.)

many ingenious approaches and a comprehensive survey is given by Smith.15.14 A logical
approach is to increase the lift coefficient of a lifting surface by delaying flow separation,
but changing the wing area and shape in reaction to the changing flight conditions (e.g.,
airplane flaps) is also very common. In this section we shall briefly discuss some of the
features of single and multielement high-lift airfoils.

One approach is to develop a family of airfoil (upper surface) pressure distributions
that will result in the most delayed flow separation. To accomplish this the location of the
separation point must be estimated, based on information from the potential flow and the
boundary layer solutions. A simplified approach is to use a flow separation criteria such
as the Stratford criterion (description of this criterion can be found in several aerodynamic
books, e.g., Kuethe and Chow,15.4 Sections 18.10 and 19.2). Using such a flow separation
criterion, Liebeck15.11,15.12 developed the family of upper surface pressure distributions
shown in Fig. 15.20. These curves depend on the Reynolds number, and in the case of
Fig. 15.20, for a Reynolds number of 5 × 106, airfoils having any of the described upper
pressure distributions will have an attached flow on that surface. Note that the maximum
lift coefficient will increase toward the center of the group and the bold curve represents
the pressure distribution yielding the highest lift due to the upper surface pressure distribu-
tion.
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Figure 15.21 Shape of the L1004 airfoil and theoretical and experimental pressure distributions on it
at various angles of attack. From Liebeck.15.11 Reprinted with permission. Copyright AIAA. (Courtesy
of Douglas Aircraft Co. and Robert Liebeck.)

At this point it is clear that if, based on the nature of the boundary layer, the shape of
the desired pressure distribution can be sketched, then an inverse method is required to
find the corresponding (or the closest) practical airfoil shape. Based on this need many
inverse, or “design mode,” airfoil design methods were developed (e.g., Refs. 14.19 and
15.9–15.12). The airfoil shape based on using one of these pressure distributions is shown
in the inset to Fig. 15.21 along with the potential flow based solution and experimental
pressure distribution (maximum lift is Cl ≈ 1.8, at α = 14◦, and at Re = 3 × 106). Note
that at the lower angles of attack (at possible cruise conditions) there is a favorable pressure
gradient near the front of the airfoil where a laminar boundary layer can be maintained
for low drag. (Transition occurs near the maximum thickness section; also, at α = 0◦ a
laminar separation bubble appears on the lower surface near the leading edge, causing the
discrepancy between the measured and calculated data).

Another method of obtaining a high lift coefficient is to have a variable wing geometry,
where both surface area and airfoil camber can be changed according to the required flight
conditions. Mechanically a multielement airfoil can be considered as such a device since by
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Figure 15.22 Lift coefficient versus angle of attack for the RAF 19 airfoil broken up to different
numbers of elements. (Note that a two-element airfoil has 1 slot, a three-element airfoil has 2 slots,
etc.). From Ref. 15.14. Reprinted with permission. Copyright AIAA.

changing flap angles the lift coefficient can be altered without changing the wing angle of
attack. But the multielement design will inherently possess high lift capabilities. This was
realized early in the beginning of this century and Handley Page15.15 showed experimen-
tally that the greater the number of elements the greater is the maximum lift coefficient.
Figure 15.22 shows the results of Ref. 15.15 where the RAF 19 airfoil was broken up
into different numbers of elements (note that a two-element airfoil will have one slot, a
three-element airfoil two slots, etc.).

The pressure distribution and the lift versus angle of attack for a typical three-element
wing section15.16 is shown in Fig. 15.23; note that lift coefficients of over 3.0 can be obtained
(Fig. 15.24). Since the overall effect of a flap is to increase the load on the element ahead
of it, the leading-edge slat (if not drooped) is the most likely to separate. Consequently,
many airplanes will droop the leading-edge slat at high lift coefficients to delay its flow
separation. The effects of these devices is shown schematically in Fig. 15.25 and, in general,
extending the slats will extend the range of angle of attack for maximum lift but will not
raise the lift curve. Now, recall Example 3 of Section 5.4 about the flapped airfoil, which
indicated that a flap at the trailing edge will have a large effect on the airfoil’s lift. This is
clearly indicated in Fig. 15.25 where bringing the flap down by 50◦ results in an increase
of the lift coefficient by close to 1.0.

The above discussion was mainly aimed at two-dimensional airfoil design but as wing as-
pect ratio becomes smaller, the pressure distribution will be altered by the three-dimensional
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Figure 15.23 Comparison of experimental and computed pressure distribution (based on vis-
cous/inviscid interaction) near stall on a three-element wing. Slat angle is −42◦, trailing edge flap
angle is 10◦, and section lift coefficient is 3.1 at Re = 3.8 × 106.

shape of the wing (see Fig. 12.31) and three-dimensional methods (either computational or
experimental) must be used. Also, based on Figs. 15.22 and 15.23 it seems that with large
aspect ratio wings, section lift coefficients of about 4 are possible, and Smith15.14 estimates
a hypothetical maximum section lift coefficient of 4π and shows a two-element airfoil with
an estimated Cl of about 5. For smaller aspect ratio wings a maximum lift coefficient of

Figure 15.24 Lift coefficient versus angle of attack for a three-element wing shown in the inset to
Fig. 15.23. Slat angle is −40◦, trailing edge flap angle is 10◦, and Re = 3.8 × 106.
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Figure 15.25 Effect of leading-edge slats and trailing-edge flaps on the lift curve of a DC-9-30
airplane (tail off, M = 0.2). (Courtesy of Douglas Aircraft Co.)

CLmax = 1.2 is frequently quoted, and this is probably a more conservative version of
Hoerner’s15.17 CLmax = 1.94 formula. Hoerner also provides a limit on wing aspect ratio
for this formula (p. 4-1) such that < 6.

At this point it is worth mentioning a very simple trailing-edge flap that usually will
increase the lift of a wing. This small trailing-edge flap is shown schematically in the inset
to Fig. 15.26 and flow visualization indicates that owing to the small vortex created at the
pressure side, the trailing-edge upper surface boundary layer will be thinner. This in effect
turns the trailing-edge flow downward and increases the wing’s circulation. Experimental
results15.12,15.18 usually show a consistent increase in lift due to this device, which in most
cases is accompanied by a slight increase in drag. In some limited situations (as in Ref.
15.12 where the trailing-edge flap was attached to a high drag Newman airfoil) a reduction
in drag may be observed also. (A sketch of the Newman airfoil’s shape can be found in
Ref. 15.12.)



P1: FBT

CB329-15 CB329/Katz October 5, 2000 11:34 Char Count= 0

15.4 Flow over Wings at High Angles of Attack 505

Figure 15.26 Effect of a small 90◦ flap on the lift of a two-element airfoil (Re = 0.3 × 106). From
Ref. 15.18. Reprinted with permission of ASME.

15.4 Flow over Wings at High Angles of Attack

Many airplanes and other vehicles that use lifting surfaces face situations where a
variable range of lift coefficient is required. For example, the lowest landing speed of a high-
speed airplane is dictated by the highest (safe) lift coefficient. This is even more pronounced
for supersonic aircraft, which must have swept leading edges (less than the Mach cone) and
small wing area for supersonic cruise but, for landing at reasonably low speeds, require
very high lift coefficients. Therefore, it is very important to be able to generate high lift
coefficients, even if wing stall is approached.

Since the primary function of wings is to generate lift let us observe a typical lift curve
of a wing, as shown in Fig. 15.27. At the lower angle of attack range (far from the stall
angle) the lift slope versus angle of attack is well defined and predictable (constant CLα

range in Fig. 15.27) and airplane lift can be controlled by changing α. However, when the
angle of attack approaches the stall condition the wing lift will not react to α changes with
the same intensity as in the so-called linear range. From an airplane point of view the stall
should be gradual, as shown by the solid line, and not abrupt as indicated by the dashed line.
Even more important is that the stall process not generate strong rolling moments caused
by asymmetry (as a result of an earlier stall of either the left or the right wing) such that the
airplane will be driven into a stall-spin.15.19

A desirable wing stall pattern can be tailored, for example, by having larger section lift
coefficients near the wing root. If this is done properly, stall will be initiated there and will
gradually spread toward the wing tips, so that the overall stall will be similar to the solid line
in Fig. 15.27. Additionally, local wing root flow separations at the beginning of the wing
stall yield reasonably controllable rolling moments (assuming that roll control surfaces are
located near the wingtips) and such an airplane can safely approach wing stall. This onset
of root stall can be obtained by forward wing sweep (see spanwise loading of such wings in
Fig. 12.17), or by wing twist, etc. However, the effect of wing taper (see Fig. 12.19) or aft
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Figure 15.27 Lift curve and stall characteristics of two generic wings.

sweep (Fig. 12.17) results in higher wingtip loading, which (if not corrected by twist, airfoil
camber variation, etc.) can cause the high angle of attack flow separations to begin near the
wingtips. This may cause a stall of the ailerons and loss of the aircraft lateral control.

Leading-edge sweep also has an important effect on the stalled flowfield over wings. This
is illustrated schematically in Fig. 15.28 where typical separated flow patterns as observed
by flow visualization are shown for unswept, moderately swept (up to 60◦), and highly
swept wings. (Note that the discussion in this section is focused mainly on airplane wings
where the Reynolds number is considered to be high, e.g., Re > 106.) The unswept wing,
shown in the left-hand side of the figure, at large angles of attack behaves like a flat plate
with two shear layers emanating from the leading and trailing edges. In the two-dimensional
view of section AA, a time-dependent vortex shedding (sometimes called a “Karman vortex
street”) is observed. In the case of the highly swept wings, shown in the right-hand side of
the figure, the cross-section flowfield is shown schematically in section BB, and the flow
separates at the two leading edges, resulting in two strong, concentrated vortices. These
leading-edge vortices are located near and above the leading edge, and the low pressure
caused by the velocity induced by these vortices increases the wing’s lift. In the case of
moderate leading-edge sweep, as shown in the center of Fig. 15.28, the leading-edge vortex
becomes less visible, and sometimes even two such vortices per side may be observed.15.20

At this point we must emphasize that the methods discussed in Chapters 2–13 are based
on potential flow and they are applicable (with some viscous corrections, as described in
Section 15.2) to attached flows only. The drag force D in a real viscous flow, for example,
will have a potential flow component Di (which was zero in two dimensions) and a viscous
flow part D0:

D = Di + D0 (15.10)

In attached flows most of the viscous drag is due to the skin friction; however, in the case of
extensive separations the drag is due to “form drag” or “pressure drag,” which is much larger.
(As an example, consider the case of a fully stalled airfoil where instead of the attached lifting
flow pattern a large separation bubble with a fairly constant negative pressure distribution
exists – hence the term “pressure drag”). For further information on the fluid dynamic drag
of a particular configuration it is advised first to search through the considerable collection
of experimental data provided in Fluid Dynamic Drag by Hoerner.15.21
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Figure 15.28 Schematic description of the flow patterns observed in the separated flow over unswept, moderately swept, and highly swept leading-edge wings.
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The analytical treatment of separated flowfields to determine the resulting pressure dis-
tribution is far more difficult and has not yet reached the level of confidence obtained for
attached flows. Consequently, in the following four sections, experimental evidence is pro-
vided on the problems of unswept and highly swept leading-edge separation along with
some simple models for some special cases of flow separation. All of these simple models
are in their early state of development and have not reached a level where they can be used as
a predictive engineering tool (e.g., similar to some panel methods used within the attached
flow domain). However, their importance lies in helping to understand and to explain some
fairly complex flow phenomena.

15.4.1 Flow Separation on Wings with Unswept Leading
Edge – Experimental Observations

Flow visualization based observations of two-dimensional airfoils indicate that
when the angle of attack increases to the point where flow separation is initiated, a shear
layer forms near the separation point. The vorticity in this layer seems to have a clock-
wise value, whereas the shear layer emanating from the trailing edge (wake) mostly has a
counterclockwise vorticity (see schematic description in Section AA of Fig. 15.28). These
two layers roll up in opposite directions and eventually a periodic wake rollup pattern is
observed (Fig. 15.29). This instability of the two shear layers originating from the upper
and lower surface boundary layers is present even at zero angle of attack, and results of flow
visualizations15.22 with the hydrogen bubble technique are shown in Fig. 15.30. The first
and most important observation is, then, that even for a stationary airfoil, when the flow
separates, the problem becomes time dependent. The frequency of this wake oscillation can
be related to the wake spacing by the Strouhal number (Eq. (1.52)), which was observed to
have values of approximately

f d

Q∞
≈ 0.1 − 0.2 (15.11)

Figure 15.29 Smoke trace flow visualization of the separated flow over a two-element airfoil (Re =
0.3 × 106).
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Figure 15.30 Hydrogen bubble flow visualization of the wake (created by the upper and lower shear
layers of the boundary layer) behind a NACA 0012 airfoil. (Courtesy of K. W. McAlister and L. W.
Carr,15.22 U.S. Army Aeroflightdynamics Directorate, AVSCOM.)

Here d is the spacing between the two shear layer separation points (shown in Section
AA in Fig. 15.28) and f is the shedding frequency. Time-dependent chordwise pressure
measurements on a stalled airfoil are scarce, but a typical time-averaged pressure distribution
is shown in Fig. 15.31. The time-averaged effect of the flow separation is to reduce the lift
(reduced circulation) while the pressure stays fairly constant in the region starting behind
the separation point and ending at the trailing edge. Note the large difference between the
attached, potential flow calculations taken from Ref. 15.23 and the experimental results of
the separated flow.

Surface-oil flow visualizations15.24 with rectangular, finite aspect ratio wings (Fig. 15.32)
indicate that in reality there is no “true two-dimensional flow separation.” Instead there are
three-dimensional cells and at the central plane of each cell a flowfield similar to the “two-
dimensional separation” of Fig. 15.28 AA and Fig. 15.29 can be observed. These cells seem

Figure 15.31 Comparison between attached flow (calculation) and partially separated (experimental)
pressure distribution on a GAW-1 airfoil. From Ref. 15.23, published by AGARD/NATO.
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Figure 15.32 Oil flow patterns developed on the upper surface of several stalled rectangular wings.
For all wings angle of attack is α = 18.4◦, the airfoil shape is a 14% Clark Y section, and Re = 385,000.
(Courtesy of A. Winkelman.15.24) Reprinted with permission. Copyright AIAA.

to have some natural aspect ratio, which will adjust itself slightly to the actual wing planform
shape. For example, for a rectangular wing with aspect ratio ( ) of 3 one cell was visible,
whereas for = 6 and 9 two and three cells were visible, respectively. When the wing span
was further increased (to = 12) then five cells were observed and the size of some of the
cells was somewhat smaller. In conclusion, therefore, the unswept leading-edge problem
appears to be always three dimensional and time dependent – and from the experimental
point of view still not completely explored.

In the following section some of the inviscid modeling efforts for such flows are presented.
It is assumed that if the separated shear layer can be modeled then the rest of the flowfield
is still close to being irrotational and therefore the pressures and loads can be estimated.

15.4.2 Flow Separation on Wings with Unswept Leading Edge – Modeling

If we follow the previous assumptions that for high Reynolds number flows the
viscous effects are confined within thin shear layers, then the irrotational flow outside these
regions can be modeled by inviscid flow methods. The primary objective of this approach
is to explain the pressure distribution obtained in separated flow and in some cases also
the skin friction can be estimated. It seems clear that the model must be time dependent
and numerous such methods can be found in the literature. Two excellent survey papers by
Leonard15.25 and Sarpkaya10.3 describe and classify a large portion of the available literature
on this topic. Some steady-state, two-dimensional models for flow separation15.5 extend the
method of viscous–inviscid interaction of Section 15.2 and model the bubble created by
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Figure 15.33 Discrete-vortex representation of the shear layer leaving the separation point.

the separated flow with additional sources or simply assume that the pressure is constant
there. However, since flow visualization clearly indicates that high Reynolds number flow
separation involves time-dependent wake shedding, we shall elaborate a bit more on this
approach. Note that the following two-dimensional models are intended to simulate the
flowfield at the symmetry plane of a three-dimensional separation cell (as shown in Fig.
15.32).

A typical two-dimensional time-dependent model for the separated flow over an airfoil
can be constructed by taking any time-dependent potential flow solver (or any method of
Chapter 11 with a time-dependent upgrade) and adding a separated shear layer model.
Such a model is depicted schematically in Fig. 15.33, where the flow near a separation
point is described. In order to solve the potential flow problem, two additional unknowns
characterizing the simplified effects of viscosity must be supplied to the potential flow
solver. These are:

1. The location of the separation point or points. (Some information on the time-
dependent motion of this point, which may be small, is valuable, too.)

2. The strength of the vortex sheet.

For example, let us use the unsteady thin airfoil method of Section 13.10. It is assumed
that the shape of the solid surface and location of the separation point, which is a function of
the Reynolds number, are known (e.g., from experiments, flow visualizations, independent
viscous calculations, etc.). The separated vortex sheet will be approximated by discrete
vortices, as shown in Fig. 15.33, and their strength can be approximated by estimating
d�s/dt near the separation point (see Fig. 15.34), where the subscript s denotes “separated
wake.” Using the definition of the circulation as in Eq. (2.36), we write the rate of circulation
generation at the separation point as

d�s

dt
= d

dt

∮
q · dl

The integration path can be approximated by the simple rectangle, shown in Fig. 15.34, that
is placed near the separation point such that its upper and lower segments are in the potential
flow region. If the upper velocity qu outside the boundary layer and the lower velocity ql

within the separated bubble are known, then the integration on an infinitesimal rectangle
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Figure 15.34 Nomenclature used to calculate the vorticity shed from a separation point.

becomes

d�s

dt
≈ d

dt
(qu dl − ql dl) ≈ (qu − ql)

dl

dt
= (qu − ql)

(
qu + ql

2

)
= 1

2

(
q2

u − q2
l

)
(15.12)

Here the vertical segments of the rectangle approach zero and their effect on �s is neglected.
In practice, the upper velocity is taken as the potential velocity above the separation point
and is known (at least from the previous time step), whereas the lower velocity is close to
zero. In this case the strength of the latest separated vortex �st becomes

�st = K

2

(
q2

u − q2
l

)
�t (15.13)

where K is a circulation reduction factor and values of 0.5–0.6 are usually used. This latest
separated vortex is placed along the streamline that started at the separation point (say at a
distance (1/2)[(qu + ql)/2]�t from the separation point).

The momentary solution of the airfoil with the separated wake model is described
schematically in Fig. 15.35. If the lifting airfoil is represented by N discrete bound vortices
(circles in the figure) with unknown strength, then N equations representing the zero normal
flow boundary condition can be specified on the N collocation points. The strength of the
latest separated wake vortex �St is known from Eq. (15.13) whereas the strength of the
latest vortex shed at the trailing edge �Wt is calculated by using the Kelvin condition (Eq.
(13.51)):

d�

dt
=

(
d

dt

N∑
i=1

�i

)
airfoil

+ �Wt + �St = 0 (15.14)

So at each time step there are N + 1 unknown vortices �1, �2, . . . , �N , �Wt and N + 1
equations (N boundary conditions at the collocation points plus the Kelvin condition,
Eq. (15.14)). The problem at each time step is solved exactly as described in Section 13.10,
since the addition of the separated wake did not introduce any new additional unknown.
Note that in this solution the Kutta condition is specified at the airfoil’s trailing edge (as a
result of using the lumped-vortex element – see Section 13.10). The wake rollup at each
time step can be performed in a manner similar to that described in Section 13.10 (see Eqs.
(13.131) and (13.132)) and each vortex of the wake (both trailing edge and separated) will
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Figure 15.35 Schematic description of the discrete-vortex model for the airfoil, trailing-edge wake,
and separated wake. The dashed line rectangle surrounds the vortices whose strength is calculated at
each time step.

move with the local velocity (u, w)i by the amount

(�x, �z)i = (u, w)i�t (15.15)

Here the induced velocity (u, w)i is the velocity induced by all the vortices (airfoil and
wakes) in the field. Owing to the singular nature of the vortices, instabilities can develop
during the wake rollup routine calculations, and some methods10.3 use certain smoothing
techniques to improve the wake rollup.

Results of such a calculation without using any wake rollup smoothing technique are
presented in Fig. 15.36. The oscillation is obtained either by moving the separation point
or by changing the vortex strength. The front separation point in this figure is fixed at a
distance of 5% chord from the leading edge.15.26

Another approach (e.g., see Ref. 15.25) is to solve the vorticity transport equation (Eq.
(2.10)) by using discrete vortices. In this case the flow can be rotational and for thick
bodies the Dirichlet boundary condition is applied to the Poisson equation for the stream
function (∇2� = ζ = 0 inside a closed body). For example, the method of modeling the
rotational boundary layer is described schematically in Fig. 15.37, where at a certain point
in the boundary layer vortex elements are introduced. The strength and initial velocity of
the newly introduced vortices can be estimated by assuming a certain effective boundary
layer thickness δe and outer velocity Ue (Ue is obtained from the potential flow solution,
whereas δe can be estimated by using existing boundary layer data on flat plates). The initial
velocity can then be approximated as Ue/2, and the vortex strength is calculated by using
Eq. (15.12) with ql = 0 on the surface:

d�s

dt
≈ U 2

e

2
(15.16)

In some models one set of (bound) discrete vortices is placed around the solid surface in a
fixed position and the strengths are calculated at each time step by applying the Dirichlet
boundary condition on the surface (see Fig. 15.38). During the second time step these
vortices are allowed to translate with the flow and a new set of “bound” vortices is created.
Results of such a calculation15.27 are presented in Fig. 15.39. Note that in this method both
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Figure 15.36 Vortex wake rollup behind a separated flat plate. Front separation point was fixed at
x/c = 0.05, α = 30◦, and the time step is �t Q∞/c = 0.1. From Ref. 15.26. Reprinted with permission
from Cambridge University Press.

the tangential and the normal velocity components on the body are zero since the flow is
rotational. However, at each time step a large number of new vortices is being created,
compared to only two per time step in the method of Ref. 15.23. Consequently, some
vortex number reduction schemes (which combine several nearby vortices) and wake rollup
reshaping methods can be found in the literature.10.3,15.25

Figure 15.37 Model for forming discrete vortices in an attached boundary layer.
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Figure 15.38 Modeling of flow separation by discrete vortices. The dashed circles represent the fixed
location of the newly created vortices and the no-slip boundary condition is specified on the solid
boundary.

The extension of these two-dimensional models to three dimensions is somewhat more
elaborate. For example, methods that are based on the stream function and solve two-
dimensional rotational flows cannot be extended automatically to three dimensions (see
Chapter 1 or 2). A possible simple extension to the thin lifting surface of Section 13.12 was
done in Ref. 15.28 mainly to explain the results of some flow visualizations obtained during
high angle of attack testing of unswept wing general aviation airplanes. An imaginary
sequence leading to this model is described schematically in Fig. 15.40. The first frame
(Fig. 15.40a) shows the time-averaged vortex core positions of the shear layers originating
at the leading and trailing edges of a hypothetical two-dimensional flow. The figure shows
only the most recent vortices but the complete wake in the two-dimensional section will
have a pattern similar to the Karman street shape of Fig. 15.28 (section AA). Also, if
the wing geometry is purely two dimensional ( = ∞), then those vortex lines will be
initially straight (hypothetically). However, a spanwise instability will develop15.29 between
the leading-edge vortex and its image (reflected by the wing upper surface). This pair of
vortex lines (the one above the leading edge and its reflection) will develop an instability
similar to the one we have seen for the trailing wake vortices (e.g., Fig. 15.4, and also
Ref. 15.1). This wave shape disturbance will grow with time and eventually break up into
the cellular patterns shown in Fig. 15.40c. Figure 15.40d shows the surface-oil patterns
appearing in Fig. 15.32 that can be explained by this simplistic model (note that the two
edges of the mushroom shape correspond to the vortex ring “touch down” points).

The addition of large-scale vortex rings15.28 to the panel model of a thin wing for simu-
lating the large-scale effects of this separated flow are shown in Fig. 15.41. In this model
the location and spanwise width of the separated flow cells must be specified (based on flow
visualizations). Once this information is supplied to the otherwise potential flow solver, the

Figure 15.39 Simulation of the separated flow by the vortex tracing method. (Courtesy of P. R.
Sparlat,15.27 NASA Ames Research Center.) Reprinted with permission. Copyright AIAA.
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Figure 15.40 Schematic description of the instability sequence of a straight vortex line (representing
the vorticity shed from the leading edge) leading to the cellular formations observed on separated
rectangular wings.

fluid dynamic loads on the lifting surface can be calculated and, as shown in Ref. 15.28, the
lift variation as a result of the separation line movement can be explained.

15.4.3 Flow Separation on Wings with Highly Swept Leading
Edge – Experimental Observations

The high angle of attack separated flow pattern, based on numerous flow visual-
izations (see Refs. 15.30–15.33), over highly swept wings (e.g., a small delta wing) in
terms of the cross-flow is depicted in section BB of Fig. 15.28. If the leading-edge radius is
small (sharp L.E.) then such L.E. vortices will be present at angles of attack as low as 10◦.
Because of these vortices, the actual flowfield is entirely different from what would have
been expected according to the attached-flow model of slender-wing theory (Section 8.2.2).
Also, when the leading edge is sharp, the location of the separation line is fixed along

Figure 15.41 Simple vortex ring model for the flow separation over unswept, finite aspect ratio
rectangular wings.
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Figure 15.42 Schematic description of the primary and secondary vortex pattern (in the crossflow
plane) of the flow over a slender delta wing and the resulting pressure distribution. From Ref. 15.34,
published by AGARD/NATO.

the leading edge, and the flowfield appears not to be sensitive to changes in the Reynolds
number.

The effect of this vortical flow (due to the leading-edge vortices) on the pressure dis-
tribution is shown in Fig. 15.42. The two large suction peaks on the upper surface of the
wing are due to the high-speed flow induced by these vortices. This high velocity creates
a secondary shear flow near and on the wing’s upper surface and results in a secondary
(and sometimes even a tertiary) vortex that is much smaller and weaker; its effect is shown
in the figure. The above shape of the spanwise pressure distribution (see Ref. 15.34) is
maintained along the chord (Fig. 15.43) but the suction force is the strongest near the wing
apex. This spanwise pressure distribution is entirely different from the pressure difference
data results of the linear theory in Fig. 8.21. Furthermore, the lift coefficient of the wing
with leading-edge separation (up to α ≈ 45◦) is considerably larger than predicted by the
linear theory (Eq. (8.94)). The difference between the linear value (of (π/2) α in the low
angle of attack case) and the actual lift is often referred to as “vortex lift” (and is shown in
Fig. 15.44). So in this case of wings with highly swept leading edges, the lift is increased
owing to leading-edge separation, unlike in the unswept wing case where the lift is reduced.
This fact was realized by many aircraft designers and many modern airplanes have such
highly swept lifting surfaces, called strakes (see Fig. 15.45). For example, if such a strake
is added in front of a less swept back wing then the vortex originating from the strake
will induce low pressures, similar to those in Fig. 15.43, on the upper surface of the main
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Figure 15.43 Schematic description of upper-surface pressure distribution (based on the results of
Ref. 15.34) on an = 1 delta wing at α = 20◦.

wing. Therefore, the total gain in lift will surpass the lift of the strake alone, as shown in
Fig. 15.45.

As mentioned earlier, in contrast to the unswept wing case, the lift of a slender wing is
larger when the leading edge is sharper, as shown in Fig. 15.46 (here α − αL0 is used since
there is a lift difference due to effective camber between wing A and wing B). In this case

Figure 15.44 Comparison of the slender wing theory based lift curve with experimental results.
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Figure 15.45 Effect of strakes on the lift of a slender wing/body configuration. From Skow, A. M.,
Titiriga, A., and Moore, W. A., “Forebody/Wing Vortex Interactions and Their Influence on Departure
and Spin Resistance,” published by AGARD/NATO in CP 247 – High Angle of Attack Aerodynamics,
1978.

Figure 15.46 Effect of leading-edge shape on the lift of a slender delta wing.
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Figure 15.47 Flow visualization in water of leading-edge vortex burst. From Lambourne, N. C.,
and Bryer, D. W., ARC R&M 3282, 1962. Reproduced with the permission of the Controller of Her
Majesty’s Stationery Office.

the lift of delta wing A is slightly larger then the lift of the inverted wing, and in both cases
the lift is larger than in the case of a rounded leading edge. So in general, when the flow
is turned more sharply (when viewed in the two-dimensional cross section as in Fig. 15.28,
section BB) the vortex will be stronger, resulting in more suction force. As the leading-edge
radius increases, the lift usually decreases and depends more on the Reynolds number. Also,
in this case of leading-edge separation the “classical” suction force at the leading edge is
lost and therefore the drag force will be larger than for the elliptic case of Section 8.2.2.
Consequently, the resultant force due to the pressure difference on the lifting surface will
act normal to the surface and therefore the drag can be estimated by

CD = CL tan α (15.17)

A more careful examination of Fig. 15.44 reveals that the highly swept wing stalls,
too, at a fairly large angle of attack. This stall, though, is somewhat different from the
unswept wing stall and is due to “vortex burst” (or breakdown). This condition is shown
by the flow visualization of Fig. 15.47, and at a certain point the axial velocity in the
vortex core is reduced and the vortex becomes unstable, its core bursts, and the induced
suction on the wing disappears. The pressure distribution on the delta wing (from Ref.
15.35) for several angles of attack, shown in Fig. 15.48, shows this effect of vortex lift
and vortex burst. So, as a result of the vortex burst the lift of the wing is reduced and
a condition similar to stall is observed. Flow visualizations sometimes show the burst
as a sudden spiral growth in the vortex core (see Fig. 15.47) and this is called “spiral
burst”; in other instances it is seen as a bubble burst (hence it is called “bubble burst”
or “bubble instability”). The onset of vortex burst was investigated by many investiga-
tors and the results for a delta wing can be summed up best by observing Fig. 15.49
from Polhamus.15.36 (Incidently, Polhamus developed a method of estimating the vortex lift
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Figure 15.48 Upper-surface pressure distribution on a slender delta wing (semispan, = 1.46) at
various angles of attack and beyond stall. From Ref. 15.35. Reprinted with permission. Copyright
AIAA.

Figure 15.49 Stability boundaries of leading-edge vortices for flat delta wings in incompressible
flow. (Adapted from Ref. 15.36.)
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Figure 15.50 Schematic description of the crossflow due to asymmetric leading-edge vortices.

based on the leading-edge suction analogy; for more details the reader is referred to Ref.
15.36 or Section 19.7 of Ref. 15.4.) The abscissa in Fig. 15.49 shows the wing aspect ratio,
and the ordinate indicates the angle of attack range. The curve on the right-hand side in-
dicates the boundary at which vortex burst will reach the wing’s trailing edge. The method
of reading this figure can be demonstrated by taking the delta wing of Fig. 15.44 ( = 1)
and, for example, gradually increasing its angle of attack. This gradual increase will cause
the vortex burst, which is far behind the trailing edge, to move gradually forward. Accord-
ing to this figure, at about α = 35◦–40◦ the vortex burst will pass forward of the trailing
edge and spoil the lift and initiate the wing stall. Moreover, for larger wing aspect ratios
(less L.E. sweep) the burst will occur at lower angles of attack. As the wing becomes very
slender the leading-edge vortices become very strong and the burst is delayed. But for these
wings another flow phenomenon, called “vortex asymmetry,” is observed. This situation
occurs when the physical spanwise space is reduced and consequently one vortex raises
above the other (Fig. 15.50). Usually any random disturbance can cause this instability to
develop and changes in the asymmetry from side to side are also possible. The onset of
this condition is depicted by the left-hand curve in Fig. 15.49. For example, if the angle
of attack on an = 0.5 delta wing is gradually increased, then over α ≈ 20◦ the vortex
asymmetry will develop. If the angle of attack is increased, say up to α = 40◦, the lift will
still grow and probably near α = 45◦ the vortex burst will advance beyond the trailing edge
and wing stall will be initiated. In general the condition of an asymmetric vortex pattern is
nondesirable because of the large rolling moments caused by this asymmetry. Furthermore,
the pattern of asymmetry is sensitive to disturbances and can arbitrarily flip from side to
side. The presence of a vertical fin (e.g., a rudder) between the two vortices or a central
body (as in missiles) can have a stabilizing effect and delay the appearance of this vortex
asymmetry.

To conclude this discussion on experimental data of slender wings, a set of typical lift
coefficient data is presented in Figs. 15.51 and 15.52. Note that in the data of Shanks15.37

leading-edge sweep angle rather than wing aspect ratio is presented (but for delta wings
= 4cot	, where 	 is the aft-sweep angle). The lift of slender rectangular wings (Fig.

15.52) is enhanced too by the side edge vortex lift, and the effect of the vortex lift on the
wing is similar to the case of the slender delta wings (mainly when wing < 1, and the
leading and side edges are sharp). In this case, though, the flowfield is somewhat more
complex because of the presence of a leading-edge separation bubble, which is noticeable
for sharp leading-edge wings (Fig. 15.53). This bubble is created by the time-dependent
leading-edge vortex shedding (as in Fig 15.28) but its effect is small compared to the vortex
lift of the side-edge vortices (when < 1).
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Figure 15.51 Lift and drag coefficient versus angle of attack for several slender delta wings (Re =
3.2 × 105) (Adapted from Ref. 15.37.)

15.4.4 Modeling of Highly Swept Leading-Edge Separation

The modeling of leading-edge separation from highly swept wings is somewhat
simpler than the modeling of the unswept leading-edge separation. The primary reason
is that in this case the vorticity generated at the leading edge is immediately conveyed
downstream by the chordwise flow and since there is no vorticity accumulation near the
leading edge there is no time-dependent wake shedding (as in the unswept leading-edge
case). Modeling is possible if the basic information about the location of the flow separation
line and the strength of the separated shear layer is supplied to the potential flow solution.
Usually such information is generated by a local viscous solution, experiments, or even
by using some parameters obtained from the potential flow solution. For example, when
modeling the flow over low aspect ratio delta wings with sharp leading edges, the location
of the separation line is fixed along the sharp leading edge (recall that a sharper leading edge
results in a stronger L.E. vortex and more vortex lift; Fig. 15.46). In regard to specifying the
strength of the leading-edge shear layer (leading-edge wake), two of the more frequently
used possibilities are:

1. Estimate vortex strength by using Eq. (15.13), which requires the calculation of the
velocity above and below the wake. In this case the effect of leading-edge radius
can be included in the K coefficient such that K = 0.6 for a sharp leading edge
and some smaller values of K may be used as the leading-edge radius increases.

2. Treat the L.E. wake as a regular wake. This second approach is simpler and seems
to yield reasonable results in the range of α = 10◦–35◦. The strength of the wake
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Figure 15.52 Normal force coefficient versus angle of attack for several slender flat rectangular
wings (Re = 0.3–1.7 × 106). From Winter, H., “Flow Phenomena on Plates and Airfoils of Short
Span,” NACA TM 798, 1937.

panel adjacent to the wake (Fig. 15.54) is then calculated by a Kutta condition as
in Eq. (9.15):

μW = μU − μL (15.18)

where μU and μL are the corresponding upper and lower surface doublet strengths
along the separation line (see also Fig. 13.37).

The shape of the separated wake can be calculated by the methods presented in Sec-
tion 15.1 and in the following examples the calculations are based on the time-stepping

Figure 15.53 Schematic description of the leading- and side-edge vortex rollup on a slender rectan-
gular thin wing.
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Figure 15.54 Vortex ring (or constant-strength doublet) model for both trailing- and leading-edge
wakes shed from slender delta wings.

method15.38,15.39,12.13 (which is based on the unsteady flow formulation of Chapter 13). The
wake rollup is obtained by gradually releasing vortex wake panels from the sharp L.E.,
similarly to the wake-shedding process at the trailing edge, until the fully developed wake
shape is obtained. This is shown schematically in Fig. 15.55 for several time steps and for
simplicity only the longitudinal vortex lines are shown (but the wake is constructed by using
vortex rings, as shown in Fig. 15.54). The vortex rollup is determined by the momentary
velocity induced by the wing and its wakes (as described in Section 13.12, Eqs. (13.153) and
(13.154)). Results for the lift curve of this delta wing (based on this model) are presented
in Fig. 15.56. At the lower angles of attack (less than ∼10◦), the lift curve slope is well
predicted by the linear formulation of R.T. Jones (Eq. (8.94)) (CL = (π /2)α). At higher
incidences, however, the leading-edge vortices increase the lift, as indicated by a sample
of experimental results (Refs. 15.40–15.42). This vortex lift is not predicted by the basic
linear panel method (using only the trailing-edge wake) since the leading-edge wake and
its vortex lift is not included. The addition of the separated L.E. vortex model (shown in

Figure 15.55 Sequence of vortex wake shedding and vortex rollup. From Ref. 15.38. Reprinted with
permission. Copyright AIAA.
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Figure 15.56 Comparison between experimental and calculated lift coefficient for a slender delta
wing (using a panel method12.13 with leading-edge vortex model).

Fig. 15.57) increases the wing’s lift and improves the comparison with the experimental
data. At very high angles of attack (above 40◦), however, vortex breakdown results in the
wing’s lift loss, a condition that is not modeled here.

The spanwise pressure distribution at the x/c = 0.5 station is presented in Fig. 15.58.
The wing model consists of 248 panels with 12 spanwise equally spaced panels, and the
nondimensional time step is 0.1 chord (Q∞�t/c = 0.1). Results for a denser computation

Figure 15.57 Simulation of leading-edge vortex rollup by releasing vortex ring panels from the
leading and trailing edges.
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Figure 15.58 Comparison between calculated and experimental spanwise pressure distribution on a
slender delta wing.

grid (328 panels, 16 spanwise panels, Q∞�t/c = 0.05) are shown by the solid line, and
both computations show the suction peaks caused by the leading-edge vortices. The exper-
imental results with the turbulent boundary layer of Ref. 15.34 (Re = 0.9 × 106 for both
experiments) indicate a secondary vortex near the leading edge that was not modeled here.
In general, it was found that the lift of the delta wing was less sensitive to a coarser grid
and larger time steps than the pressure distribution over the wing’s surface. In cases when
computer time saving is considered and larger time steps are applied, the spanwise pressure
distribution would smear, but the lift will change by only a few percent.

For a demonstration of more complex motions, the wake lines behind a delta wing having
an aspect ratio of 0.71, undergoing a coning motion, are presented in Fig. 15.59. The wing
angle of attack α was set relative to the x, y, z frame of reference (pitching along x/c = 0.6),
and then the wing was rotated about the x axis at the rate φ̇. Computed rolling moments
are compared with the experimental data of Ref. 15.43 in Fig. 15.60. The slopes of the
computed rolling moment curves, which change rapidly with variations of angle of attack,

Figure 15.59 Vortex wake lines behind a slender delta wing moving forward in a coning motion.
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Figure 15.60 Rolling moment versus coning rate for a slender delta wing in a coning motion.

compare reasonably well with the experiments. For angles of attack higher than 30◦ and for
roll rates φ̇b/2Q∞ larger than 0.1, vortex breakdown bends the experimental curves and
larger differences between the experiment and the computations are detected.

15.5 Possible Additional Features of Panel Codes

a. Modeling of Propulsion Effects
Many fluid dynamic problems involve high-energy jets where the jet speed and

stagnation pressure are considerably higher than the corresponding free-stream values (as
in the case of a jet airplane or a jet-assisted vertical takeoff airplane). Even though the jet
flow is compressible and its mixing process with the outer flow is highly viscous, there are
several models for simulating the far field effect of confined jets on the otherwise potential
outer flow. Such a model is described schematically in Fig. 15.61 and here the outer shear
layer of the lifting jet is modeled by linearly varying (along the jet axis) doublet panels12.11

(which are equal to a constant-strength vortex sheet). Lower speed inlet or auxiliary exit
flows can be simulated in many panel codes by simply allowing a transpiration velocity in
the normal flow boundary condition, as shown for the inlet flow in Fig. 15.61. The method
of including this transpiration velocity in the boundary condition is given by Eq. (15.6):

∂(� + �∞)

∂n
= Vn (15.6)

but here Vn is a prescribed average jet velocity. When the Dirichlet boundary condition
is used then the source term of Eq. (9.12) (e.g., in the panel code VSAERO12.11) can be
modified such that

σ = n · Q∞ − Vn (15.19)
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Figure 15.61 Some simple inlet and exhaust jet panel models.

The inlet model of Fig. 15.61 is useful mainly to describe the principle of specifying the
inlet inflow but for good computational results the inlet must be modeled with more details
as shown in Fig. 15.62. In this case the nacelle inlet is modeled in detail by a large number
of panels and the inflow is specified deep inside the nacelle, near an imaginary compressor
inlet disk. When the jet is ejected at a large angle relative to the main flow direction then the

Figure 15.62 Detailed panel model of the tilt-nacelle airplane and its inlets, using 2546 panels per
side. (Courtesy of S. Iguchi, M. Dudley, and D. Ashby, 1988, and NASA Ames Research Center.)
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Figure 15.63 Panel model for the plume of the jet ejected normal to the flight direction. (Courtesy
of George A. Howell, General Dynamics.)

shape of the jet centerline (Fig. 15.63) is usually calculated with the use of some empirical
formula, which relies on the jet initial velocity and the velocity in the potential field into
which the jet flows. Consequently, an iterative process is used in some cases in which the
jet boundary is treated as a wake (see wake rollup in Section 15.1).

Since a vortex ring model results in a large velocity near the jet outer boundary and a
lower velocity at the center of the jet (which is incorrect and limits the use of such models
to far field effects only) more refined jet models have been tried. One approach is to model
the wake boundary by using constant-strength doublets (similarly to a solid surface), and
the jet entrainment that is obtained from empirical data is modeled by a surface source
distribution on the jet boundaries (PMARC9.7). The jet centerline shape in this case, too,
can be calculated again by using empirical formulas or by a time-stepping wake rollup
routine (see Section 15.1).

b. Internal Flows
In situations when internal flows are modeled as in the case of channel flows,

or when studying wind-tunnel/model combined flowfields, then some methods allow the
reversal of the direction of the normal n to the surface. For example, Fig. 15.64 depicts
such a situation, where the turning vane geometry inside a wind tunnel is analyzed. For the
basic problem, the free-stream velocity can be specified at the inflow plane as Vn = Q∞
and some other velocity at the exit plane (usually reduced by the inflow/exit plane cross-
sectional area ratio). When the Dirichlet boundary condition is applied to the region outside
of the wind tunnel the far field boundary disappears and the influence coefficient matrix
becomes singular such that the doublet solution is unique to within an arbitrary constant
(also if the free stream is set by prescribed sources at the inlet and exit planes then the other
sources will be equal to zero – according to Eq. (9.12)). This difficulty may be overcome by
specifying the doublet value on one of the panels (e.g., a value of zero on the wind-tunnel
inlet plane). Also, an additional equation is added based on mass conservation of the inlet
and exit flows. More details about this approach are provided in Ref. 9.8.

c. Free-Surface Flows
The assumptions of inviscid aerodynamics are applicable to many problems in

the field of marine hydrodynamics. Most marine vehicles are large, the water flow can be
considered as incompressible, and the kinematic viscosity of water is an order of magnitude
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Figure 15.64 Panel model for the internal flow to study the aerodynamics of turning vanes inside a
wind tunnel. (Courtesy of D. Ashby, 1986, and NASA Ames Research Center.)

less than for air. Consequently, the Reynolds number is high and the methodology developed
here is immediately applicable to deep-water flows (e.g, the flow over a submarine). However,
many ships operate near the water surface, which deforms in the presence of the moving
vehicle. This deformation of the free surface complicates the boundary conditions when the
free-surface shape is not known. For example, Fig. 15.65 depicts the side view of a domain
where the flow region of interest V is bounded by the lower surface SL , by the upper surface
SU , by a floating vessel SB1, and by a submerged but close to the upper surface hydrofoil SB2

(the boundary at the left and right sides extends to infinity). For simplicity, let us consider
the steady-state problem where the solid surfaces SB1 and SB2 move to the left at a constant
speed U∞. The shape of the free surface SU , expressed in an inertial coordinate system (as
shown in the figure) attached to the moving vehicle, is

z = η(x, y, ) (15.20)

and the z = 0 plane coincides with the undisturbed free surface. The kinematic boundary
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Figure 15.65 Nomenclature used for the free-surface flow model.

condition on this surface (with no flow normal to the boundary) is obtained by using Eq.
(2.24). Hence, F = (z − η) = 0, and

DF

Dt
= ∂�∗

∂z
− ∇�∗ · ∇η = 0 (15.21)

The total velocity potential �∗ is defined here as �∗ = � + U∞x , where � is the pertur-
bation potential (note that ∂η/∂z = 0).

A second condition for the free surface emerges because of the non-negligible density
of the water and because a deformation of the surface will have an effect on the pressure.
Consequently, the Bernoulli equation (Eq. (2.32)) is used for this dynamic boundary con-
dition. Let us write the equation for a point on z = 0 far from any disturbance, where pa is
the undisturbed atmospheric pressure, and for a point on the deformed free surface:

pa

ρ
+ 1

2
U 2

∞ = p

ρ
+ 1

2
(∇�∗)2 + gη (15.22)

where g is the gravitational acceleration. Taking the gradient of this equation, and assuming
that the pressure variations are negligible, we obtain

1

2
∇(∇�∗)2 + g∇η = 0

Taking the dot product with ∇�∗ and replacing the last term by ∂�∗/∂z (since based on
Eq. (15.21) ∇�∗ · ∇η = ∂�∗/∂z) we get

1

2
∇�∗ · ∇(∇�∗)2 + g

∂�∗

∂z
= 0 (15.23)

This is the combined boundary condition for the free surface (SU ). A linearized form can
be obtained by neglecting the smaller terms:

U 2
∞

∂2�∗

∂x2
+ g

∂�∗

∂z
= 0 on z = 0 (15.24)

In the light of the derivations in Eq. (15.24), �∗ can be replaced by the perturbation potential
�. Several two-dimensional solutions describing surface wave motion, based on a similar
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Figure 15.66 Surface waves behind a tanker ship. (Computations with the code VSAERO/
FSWAVE.15.44 Courtesy of M. Hughes.)

formulation, can be found in Chapter 6 of Ref. 7.1. These principles for modeling free-
surface flows have been incorporated into three-dimensional panel methods. For example,
Ref. 15.44 describes a method where the free surface is divided into rectilinear source panels
and those are elevated to a fixed height above the maximum expected wave amplitude (to
avoid singularity). These elevated sources account for the normal velocity (“blowing”)
increments necessary to model the surface normal velocity. During the iterative solution
process, the strength of the sources above the free surface are known (from a previous
iteration) and the solution of �∗ in V is obtained by using constant-strength source and
doublet panels on the body surfaces (e.g., SB1 and SB2) as described in Chapter 12. Once the
solution (in terms of the source and doublet distributions on the solid bodies) for this iteration
is known, the combined dynamic and kinematic condition (Eq. (15.24), which sometimes is
simplified even more) is evaluated at z = 0. Reference 15.44 suggests a further simplification
of this condition in order to accelerate the iterative process. In following iterations the free-
surface source strength is updated, until the condition of Eq. (15.24) converges. Note that in
this model the free surface is an imaginary surface since the source panels are not moving
with the surface waves, and only their strength changes. Figure 15.66 depicts the results of
such a calculation. The surface waves behind a tanker ship are clearly visible, and note the
angle of the waves and their spacing, which is similar to experimental observations.
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APPENDIX A

Airfoil Integrals

The following integrals are reprinted from Ref. 7.2.

1.
∮ 1

−1

1

x − ξ
dξ = ln

1 + x

1 − x

2.
∮ 1

−1

ξ

x − ξ
dξ = x ln

1 + x

1 − x
− 2

3.
∮ 1

−1

ξ 2

x − ξ
dξ = x

(
x ln

1 + x

1 − x
− 2

)

4.
∮ 1

−1

ξ 3

x − ξ
dx = x2

(
x ln

1 + x

1 − x
− 2

)
− 2

3

5.
∮ 1

−1

ξ n

x − ξ
dξ = x

∮ 1

−1

ξ n−1

x − ξ
dξ − 1 − (−1)n

n

6.
∮ 1

−1

1√
1 − ξ 2(x − ξ )

dξ = 0

7.
∮ 1

−1

1√
1 − ξ 2(x − ξ )

dξ = −π

8.
∮ 1

−1

ξ 2√
1 − ξ 2(x − ξ )

dξ = −πx

9.
∮ 1

−1

ξ 3√
1 − ξ 2(x − ξ )

dξ = −π

(
x2 + 1

2

)

10.
∮ 1

−1

ξ 4√
1 − ξ 2(x − ξ )

dξ = −πx

(
x2 + 1

2

)

11.
∮ 1

−1

ξ 5√
1 − ξ 2(x − ξ )

dξ = −π

(
x4 + 1

2
x2 + 3

8

)

12.
∮ 1

−1

ξ 6√
1 − ξ 2(x − ξ )

dξ = −πx

(
x4 + 1

2
x2 + 3

8

)

13.
∮ 1

−1

ξ n√
1 − ξ 2(x − ξ )

dξ = x
∮ 1

−1

ξ n−1√
1 − ξ 2(x − ξ )

dξ

− π

2
[1 − (−1)n]

1(3) · · · (n − 2)

2(4) · · · (n − 1)
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14.
∮ 1

−1

√
1 − ξ 2

x − ξ
dξ = πx

15.
∮ 1

−1

ξ
√

1 − ξ 2

x − ξ
dξ = π

(
x2 − 1

2

)

16.
∮ 1

−1

ξ 2
√

1 − ξ 2

x − ξ
dξ = πx

(
x2 − 1

2

)

17.
∮ 1

−1

ξ 3
√

1 − ξ 2

x − ξ
dξ = π

(
x4 − 1

2
x2 − 1

8

)

18.
∮ 1

−1

√
1 + ξ√

1 − ξ (x − ξ )
dξ = −π

19.
∮ 1

−1

ln 1+ξ

1−ξ

x − ξ
dξ = 1

2

(
ln2 1 + x

1 − x
− π2

)

20.
∮ 1

−1

ξ ln 1+ξ

1−ξ

x − ξ
dξ = 1

2
x

(
ln2 1 + x

1 − x
− π2

)

21.
∮ 1

−1

ξ 2 ln 1+ξ

1−ξ

x − ξ
dξ = 1

2
x2

(
ln2 1 + x

1 − x
− π2

)
− 2

22.
∮ 1

−1

ξ 3 ln 1+ξ

1−ξ

x − ξ
dξ = 1

2
x3

(
ln2 1 + x

1 − x
− π2

)
− 2x

23.
∮ 1

−1

ξ 4 ln 1+ξ

1−ξ

x − ξ
dξ = 1

2
x4

(
ln2 1 + x

1 − x
− π2

)
− 2x2 − 4

3

24.
∮ 1

−1

ξ n ln 1+ξ

1−ξ

x − ξ
dξ = x

∮ 1

−1

ξ n−1 ln 1+ξ

1−ξ

x − ξ
dξ − 2

n
[1 − (−1)n−1]

(n/2)−1∑
v = 0

1

n − 1 − 2v

25.
∮ 1

−1

1√
1 + ξ (x − ξ )

dξ = 1√
1 + x

ln

√
2 + √

1 + x√
2 − √

1 + x

26.
∮ 1

−1

√
1 + ξ

x − ξ
dξ = √

1 + x ln

√
2 + √

1 + x√
2 − √

1 + x
− 2

√
2

27.
∮ 1

−1

ln 1+ξ

1−ξ√
1 − ξ 2(x − ξ )

dξ = − π2

√
1 − x2

28.
∮ 1

−1

ξ ln 1+ξ

1−ξ√
1 − ξ 2(x − ξ )

dξ = −π2 x√
1 − x2

29.
∮ 1

−1

ξ 2 ln 1+ξ

1−ξ√
1 − ξ 2(x − ξ )

dξ = −π

(
2 + π

x2

√
1 − x2

)

30.
∮ 1

−1

ξ 3 ln 1+ξ

1−ξ√
1 − ξ 2(x − ξ )

dξ = −πx

(
2 + π

x2

√
1 − x2

)
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31.
∮ 1

−1

ξ 4 ln 1+ξ

1−ξ√
1 − ξ 2(x − ξ )

dξ = −π

(
5

3
+ 2x2 + π

x2

√
1 − x2

)

32.
∮ 1

−1

ξ n ln 1+ξ

1−ξ√
1 − ξ 2(x − ξ )

dξ = x
∫ 1

−1

ξ n−1 ln 1+ξ

1−ξ√
1 − ξ 2(x − ξ )

dξ−π [1 − (−1)n−1]

(
n

2
− 1

)
!

×
(n/2)−1∑
v = 0

(−1)v(1)(3) · · · (v)

2v(2v + 1)(v!)2
(

n
2 − 1 − v

)
!
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APPENDIX B

Singularity Distribution Integrals

The Integral I1

Consider the integral

I1 =
∫ x2

x1

ln[(x − x0)2 + z2] dx0 (B.1)

Let X = x − x0 and dX = −dx0; then

I1 = −
∫ x−x2

x−x1

ln(X2 + z2) dX (B.2)

This integral appears in Gradshteyn (Ref. 6.3, p. 205), and the result is

I1 = −
[

X ln(X2 + z2) − 2X + 2z tan−1 X

z

]∣∣∣∣
x−x2

x−x1

(B.3)

Returning to the original variables we obtain

I1 = (x − x1) ln[(x − x1)2 + z2] − (x − x2) ln[(x − x2)2 + z2]

− 2(x2 − x1) + 2z

[
tan−1 x − x1

z
− tan−1 x − x2

z

]
(B.4)

The derivatives of this integral with respect to the x and z coordinates are

∂ I1

∂x
= 2(x − x1)2

(x − x1)2 + z2
+ ln[(x − x1)2 + z2] − 2(x − x2)2

(x − x2)2 + z2

− ln[(x − x2)2 + z2] + 2z

[ −z

(x − x2)2 + z2
+ z

(x − x1)2 + z2

]

= ∂ I1

∂x
= ln

(x − x1)2 + z2

(x − x2)2 + z2
(B.5)

and for the derivative in the z direction we have

∂ I1

∂z
= 2(x − x1)z

(x − x1)2 + z2
− 2(x − x2)z

(x − x2)2 + z2
+ 2

[
tan−1 x − x1

z
− tan−1 x − x2

z

]

+ 2z

[
(x − x2)

(x − x2)2 + z2
− x − x1

(x − x1)2 + z2

]
= ∂ I1

∂z

= 2

[
tan−1 x − x1

z
− tan−1 x − x2

z

]
(B.6)
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With the use of Eq. (B.1) we can also write

∂ I1

∂z
= 2

∫ x2

x1

z(
x − x2

0

) + z2
dx0 (B.7)

Let us integrate Eq. (B.7) directly with the use of the polar coordinate transformation (see
Fig. 10.6)

x − x0 = r cos θ (B.8a)

z = r sin θ (B.8b)

Take the differential of Eqs. (B.8) to get

−dx0 = −r sin θ dθ + cos θ dr

0 = r cos θ dθ + sin θ dr

and solve for dx0:

dx0 = rdθ

sin θ
(B.8c)

Substitute Eqs. (B.8) into Eq. (B.7) to get

∂ I1

∂z
= 2

∫ θ2

θ1

dθ = 2(θ2 − θ1)

= 2

(
tan−1 z

x − x2
− tan−1 z

x − x1

)
(B.9)

We equate Eq. (B.6) to Eq. (B.9) to obtain

tan−1 x − x1

z
− tan−1 x − x2

z
= tan−1 z

x − x2
− tan−1 z

x − x1
(B.10)

and substitution into Eq. (B.4) yields

I1 = (x − x1) ln[(x − x1)2 + z2] − (x − x2) ln[(x − x2)2 + z2]

− 2(x2 − x1) + 2z

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(B.11)

The Integral I2

Consider the integral

I2 =
∫ x2

x1

tan−1 z

x − x0
dx0 (B.12)

Let X = z
x−x0

and dx0 = zX−2dX, and then

I2 = z
∫ z

x−x2

z
x−x1

X−2 tan−1 X dX (B.13)



P1: FHB

CB329-App-B CB329/Katz June 26, 2000 11:56 Char Count= 0

542 Appendix B / Singularity Distribution Integrals

Following the results of Ref. 6.3 (p. 210) for this integral, I2 becomes

I2 = −z

[
X−1 tan−1 X + 1

2
ln

1 + X2

X2

]∣∣∣∣
z

x−x2

z
x−x1

= −z

[
x − x2

z
tan−1 z

x − x2
− x − x1

z
tan−1 z

x − x1

+ 1

2
ln

(x − x2)2 + z2

z2
− 1

2
ln

(x − x1)2 + z2

z2

]

I2 = (x − x1) tan−1 z

x − x1
− (x − x2) tan−1 z

x − x2
+ z

2
ln

(x − x1)2 + z2

(x − x2)2 + z2

(B.14)

The Integral I3

Consider the integral

I3 =
∫ x2

x1

x0 ln[(x − x0)2 + z2] dx0 (B.15)

Let X = x − x0 and dX = −dx0; then

I3 = −
∫ x−x2

x−x1

(x − X ) ln(X2 + z2) dX

= −x
∫ x−x2

x−x1

ln(X2 + z2) dX +
∫ x−x2

x−x1

X ln(X2 + z2) dX

= x I1 + 1

2
[(X2 + z2) ln(X2 + z2) − X2]|x−x2

x−x1
(B.16)

following p. 205 of Ref. 6.3. This becomes (after inserting the limits)

I3 = x I1 + 1

2
{[(x − x2)2 + z2] ln[(x − x2)2 + z2]

− [(x − x1)2 + z2] ln[(x − x1)2 + z2] + (x − x1)2 − (x − x2)2}
Substitution of I1 from (B.11) yields

I3 = ln[(x − x1)2 + z2]

[
x(x − x1) − (x − x1)2

2
− z2

2

]

+ ln[(x − x2)2 + z2]

[
− x(x − x2) + (x − x2)2

2
− z2

2

]

+ 2xz

[
tan−1 z

x − x2
− tan−1 z

x − x1

]

+ 1

2
[(x − x1)2 − (x − x2)2] − 2x(x2 − x1)

and finally

I3 = x2 − x2
1 − z2

2
ln[(x − x1)2 + z2] − x2 − x2

2 − z2

2
ln[(x − x2)2 + z2]

+ 2xz

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
+ x(x1 − x2) + x2

1 − x2
2

2
(B.17)
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The derivatives of this integral with respect to the x and z coordinates are

∂ I3

∂x
= x ln[(x − x1)2 + z2] + (

x2 − x2
1 − z2

) (x − x1)

(x − x1)2 + z2
− x ln[(x − x2)2 + z2]

− (
x2 − x2

2 − z2
) (x − x2)

(x − x2)2 + z2
+ 2z

[
tan−1 z

x − x2
− tan−1 z

x − x1

]

+ 2zx

[
− z

(x − x2)2 + z2
+ z

(x − x1)2 + z2

]
+ (x1 − x2)

= x ln
(x − x1)2 + z2

(x − x2)2 + z2
+ 2z

[
tan−1 z

x − x2
− tan−1 z

x − x1

]

+ (x1 − x2) + (x + x1)
(x − x1)2 + z2

(x − x1)2 + z2
− (x + x2)

(x − x2)2 + z2

(x − x2)2 + z2

and finally

∂ I3

∂x
= x ln

(x − x1)2 + z2

(x − x2)2 + z2
+ 2z

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
+ 2(x1 − x2)

(B.18)

∂ I3

∂z
= − z ln[(x − x1)2 + z2] + z

(
x2 − x2

1 − z2
)

(x − x1)2 + z2
+ z ln[(x − x2)2 + z2]

− z

(
x2 − x2

2 − z2
)

(x − x2)2 + z2
+ 2x

[
tan−1 z

x − x2
− tan−1 z

x − x1

]

+ 2zx

[
x − x2

(x − x2)2 + z2
− x − x1

(x − x1)2 + z2

]
= z ln

(x − x2)2 + z2

(x − x1)2 + z2

+ 2x

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
− z

(x − x1)2 + z2

(x − x1)2 + z2
+ z

(x − x2)2 + z2

(x − x2)2 + z2

= z ln
(x − x2)2 + z2

(x − x1)2 + z2
+ 2x

[
tan−1 z

x − x2
− tan−1 z

x − x1

]
(B.19)

The Integral I4

Consider the integral

I4 =
∫ x2

x1

x0 tan−1 z

x − x0
dx0 (B.20)

Let X = z
x−x0

, dx0 = zX−2dX, and x0 = x − zX−1. Then

I4 = xz
∫ z

x−x2

z
x−x1

X−2 tan−1 X dX − z2
∫ z

x−x2

z
x−x1

X−3 tan−1 X dX = x I2 − z2 I5

According to Ref. 6.3 (p. 209)

I5 =
∫

X−3 tan−1 X dX = − X−2

2
tan−1 X + 1

2

∫
X−2 dX

1 + X2
(B.21)
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Substituting the result for the second integral from p. 66 of Ref. 6.3 we obtain

I5 = − X−2

2
tan−1 X + 1

2
[−X−1 − tan−1 X ] = −1

2
tan−1 X (1 + X−2) − 1

2X

With the use of I2 from (B.14) we get

I4 = x

[
(x − x1) tan−1 z

x − x1
− (x − x2) tan−1 z

x − x2
+ z

2
ln

(x − x1)2 + z2

(x − x2)2 + z2

]

+ z2

2
[(1 + X−2) tan−1 X + X−1]|

z
x−x2

z
x−x1

= xz

2
ln

(x − x1)2 + z2

(x − x2)2 + z2
+ z

2
(x1 − x2) + tan−1 z

x − x1
{x(x − x1)

− 1

2
[(x − x1)2 + z2]} − tan−1 z

x − x2
{x(x − x2) − 1

2
[(x − x2)2 + z2]}

and finally

I4 = xz

2
ln

(x − x1)2 + z2

(x − x2)2 + z2
+ z

2
(x1 − x2) + x2 − x2

1 − z2

2
tan−1 z

x − x1

− x2 − x2
2 − z2

2
tan−1 z

x − x2
(B.22)
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APPENDIX C

Principal Value of the Lifting
Surface Integral IL

Consider the integral appearing in Eq. (8.68). It is of a general singular form

IL =
∫ b

a

f (x0)

(x − x0)2
dx0 (C.1)

The principal value of this integral (also called the finite part) is given by Mangler (see
Ashley and Landahl,4.1 pp. 132–133) as

∫ b

a

f (x0)

(x − x0)2
dx0 = lim

ε→0

[∫ x−ε

a

f (x0)

(x − x0)2
dx0 +

∫ b

x+ε

f (x0)

(x − x0)2
dx0 − 2

f (x)

ε

]

(C.2)

As is the case with the Cauchy principal value in Section 5.1, if the integral can be evaluated
in closed form the correct principal value can be obtained by simply ignoring the limit
process as long as the arguments of all logarithms are taken as their absolute values.

BrandaoC.1 has provided alternate expressions for the Cauchy (see Eq. (5.18)) and
Mangler principal values that do not require a limiting process (which normally must be
performed numerically.) These results lead to the following:

∫ b

a

f (x0)

(x − x0)
dx0 =

∫ b

a

f (x0) − f (x)

(x − x0)
dx0 + f (x) ln

x − a

b − x
(C.3)

∫ b

a

f (x0)

(x − x0)2
dx0 =

∫ b

a

f (x0) − f (x) + f ′(x)(x − x0)

(x − x0)2
dx0

+ f (x)

[
1

x − b
− 1

x − a

]
+ f ′(x) ln

b − x

x − a

Reference

[C.1] Brandao, M. P., “Improper Integrals in Theoretical Aerodynamics: The Problem Revisited,” AIAA

Journal, Vol. 25, No. 9, 1987, pp. 1258–1260.
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APPENDIX D

Sample Computer Programs

This appendix lists several computer programs that are based on the methods
presented in the previous chapters. These FORTRAN programs were prepared mainly by
students during regular class work and their algorithms were not optimized for clear pro-
gramming and computational efficiency. Also, an effort was made to list only the simplest
versions without interactive and graphic input/output sections owing to the rapid changes
and improvements in computer operation systems. In spite of this brevity these computer
programs can help the readers to construct their baseline algorithms upon which their cus-
tomized computer programs may be developed.

D.1 Two-Dimensional Panel Methods

1. Grid generator for van de Vooren airfoil shapes, based on the formulas of Sec-
tion 6.7. The program also calculates the exact chordwise velocity components
and pressure coefficient for the purpose of comparison. All the two-dimensional
codes (Programs 3–11) use the input generated by this subroutine.

D.1.1 Two-Dimensional Panel Methods Based on the Neumann Boundary Condition

2. Discrete vortex, thin wing method, based on Section 11.1.1.
3. Constant strength source method (based on Section 11.2.1). Note that the matrix

solver (SUBROUTINE MATRX) is attached to this program only and is not listed
with Programs 4–11, for brevity.

4. Constant strength doublet method, based on Section 11.2.2.
5. Constant strength vortex method, based on Section 11.2.3.
6. Linear strength source method, based on Section 11.4.1.
7. Linear strength vortex method, based on Section 11.4.2.

D.1.2 Two-Dimensional Panel Methods Based on the Dirichlet Boundary Condition

8. Constant strength doublet method, based on Section 11.3.2.
9. Constant strength source/doublet method, based on Section 11.3.1.

10. Linear strength doublet method, based on Section 11.5.2.
11. Quadratic strength doublet method, based on Section 11.6.2.

D.2 Three-Dimensional Programs

12. Influence of a three-dimensional, constant strength source/doublet element, based
on Sections 10.4.1 and 10.4.2.

13. Three-dimensional vortex lattice method for rectilinear lifting surfaces (with
ground effect), based on Section 12.3.

546
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14. Three-dimensional panel method, using constant strength sources and doublets
with the Dirichlet boundary condition, based on Section 12.5.

D.3 Time-Dependent Programs

15. Sudden acceleration of a flat plate at angle of attack (using a single lumped vortex
element). This program solves numerically the example of Section 13.7, but the
strengths of the airfoil vortex and the wake latest vortex are obtained algebraically
(and there is no matrix solution phase).

16. Unsteady motion of a thin rectangular lifting surface (solution is based on the model
of Section 13.12, which is an upgrade of the vortex lattice method of Program 13).

C PROGRAM No. 1: GRID GENERATOR FOR 2-D AIRFOILS
C ----------------------------------------------

C THIS PROGRAM IS AN AUTOMATED COMPLEX AIRFOIL TRANSFORMATION OF THE
C TYPE PRESENTED BY VAN DE VOOREN AND DE JONG (1970). THE RESULTING
C AIRFOIL MAY HAVE A NON-ZERO TRAILING EDGE ANGLE. THIS FORMULATION
C IS FOR NON-CAMBERED AIRFOILS ONLY (PROGRAMMED BY STEVEN YON, 1989).

OPEN(8,FILE='AFOIL2.DAT',STATUS='NEW')
OPEN(10,FILE='CP.DAT',STATUS='NEW')

WRITE(6,*)
* 'READY TO START VAN DE VOOREN TRANSFORMATION'
WRITE(6,*) 'ENTER THICKNESS COEFF. E'
READ(5,*) E
WRITE(6,*) 'ENTER T.E. ANGLE COEFF. K'
READ(5,*) AK
TL=1.0
A=2*TL*(E+1)**(AK-1)/(2**AK)
WRITE(6,*) 'ENTER THE ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958
WRITE(6,*) 'ENTER NUMBER OF AIRFOIL PANELS, M'
WRITE(6,*) 'WITH WHICH TO MODEL THE AIRFOIL'
WRITE(6,*)
* '(NOTE THAT M SHOULD BE AN EVEN FACTOR OF 360)'
READ(5,*) M
ITHETA=360/M

C THE DO LOOP WILL RUN THROUGH THE CIRCLE PLANE WITH
C THE SPECIFIED ANGULAR INTERVAL AND TRANSFORM EACH
C POINT TO THE AIRFOIL PLANE

DO I=0,360,ITHETA
IF(I.EQ.0.OR.I.EQ.360) THEN
X=1
Y=0
CP=1
WRITE(8,*) X,' ,',Y
IF(AK.EQ.2.AND.I.EQ.0) GOTO 25
IF(AK.EQ.2.AND.I.EQ.360) GOTO 25
WRITE(10,*) X,' ,',CP
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25 CONTINUE
GOTO 100

ELSE
GOTO 50

END IF

50 CONTINUE
TH=I/57.2958
R1=SQRT((A*(COS(TH)-1))**2+(A*SIN(TH))**2)
R2=SQRT((A*(COS(TH)-E))**2+(A*SIN(TH))**2)
IF(TH.EQ.0) THEN
TH1=1.5708
ELSE
TH1=(ATAN((A*SIN(TH))/(A*(COS(TH)-1))))+3.1415927
END IF

IF(COS(TH)-E.LT.0.AND.SIN(TH).GT.0) THEN
TH2=(ATAN((A*SIN(TH))/(A*(COS(TH)-E))))+3.1415927
ELSE IF(COS(TH)-E.LT.0.AND.SIN(TH).LT.0) THEN
TH2=(ATAN((A*SIN(TH))/(A*(COS(TH)-E))))+3.1415927
ELSE IF(COS(TH)-E.GT.0.AND.SIN(TH).LT.0) THEN
TH2=(ATAN((A*SIN(TH))/(A*(COS(TH)-E))))+

* 2*3.1415927
ELSE
TH2=(ATAN((A*SIN(TH))/(A*(COS(TH)-E))))
END IF

C THIS PART COMPUTES THE TRANSFORMED POSITIONS

COM1=((R1**AK)/(R2**(AK-1)))/((COS((AK-1)
* *TH2))**2+(SIN((AK-1)*TH2))**2)

X=COM1*(COS(AK*TH1)*COS((AK-1)*TH2)
* +SIN(AK*TH1)*SIN((AK-1)*TH2))+TL

Y=COM1*(SIN(AK*TH1)*COS((AK-1)*TH2)
* -COS(AK*TH1)*SIN((AK-1)*TH2))

WRITE(8,*) X,' ,',Y

C THIS PART COMPUTES THE TRANSFORMED PRESSURE
C DISTRIBUTION

A1=COS((AK-1)*TH1)*COS(AK*TH2)+SIN((AK-1)*TH1)
* *SIN(AK*TH2)
B1=SIN((AK-1)*TH1)*COS(AK*TH2)-COS((AK-1)*TH1)
* *SIN(AK*TH2)
C1=(COS(AK*TH2))**2+(SIN(AK*TH2))**2
P=A*(1-AK+AK*E)
D1=A1*(A*COS(TH)-P)-B1*A*SIN(TH)
D2=A1*A*SIN(TH)+B1*(A*COS(TH)-P)

TEMP=2*C1*(SIN(AL)-SIN(AL-TH))/(D1**2+D2**2)
COM2=TEMP*(R2**AK)/(R1**(AK-1))

VX=D1*SIN(TH)+D2*COS(TH)
VY=-(D1*COS(TH)-D2*SIN(TH))
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CP=1-COM2**2*(VX**2+VY**2)

WRITE(10,*) X,' ,',CP

100 CONTINUE
END DO

CLOSE(8)
CLOSE(10)
STOP
END

C PROGRAM No. 2: DISCRETE VORTEX METHOD (THIN WING, ELLIPTIC CAMBER)
C -----------------------------------------------------------------
C
C DISCRETE VORTEX MODEL FOR THIN AIRFOILS (JOE KATZ, CIRCA 1986)

DIMENSION GAMMA(52),XC(52),ZC(52),X(52),Z(52)
DIMENSION ENX(52),ENZ(52),A(52,52),IP(52)
DIMENSION DL(52),DCP(52),DCP1(52)

C
N=10
C=1.0
EPSILON=0.1*C
ALFA1=10.0
PAY=3.141592654
ALFA=ALFA1*PAY/180.0
RO=1.
V=1.
UINF=COS(ALFA)*V
WINF=SIN(ALFA)*V
QUE=0.5*RO*V*V

C
C GRID GENERATION (N PANELS)
C

DX=C/N
DO 1 I=1,N

C COLLOCATION POINT
XC(I) = C/N*(I-0.25)
ZC(I) = 4.*EPSILON*XC(I)/C*(1.-XC(I)/C)

C VORTEX POINT
X(I) = C/N*(I-0.75)
Z(I) = 4.*EPSILON*X(I)/C*(1.-X(I)/C)

C NORMAL AT COLLOCATION POINT; N=(ENX,ENZ)
DETADX=4.*EPSILON/C*(1.-2.*XC(I)/C)
SQ=SQRT(1+DETADX**2)
ENX(I)= -DETADX/SQ

1 ENZ(I)= 1./SQ
C
C INFLUENCE COEFFICIENTS
C

DO 3 I=1,N
DO 2 J=1,N
CALL VOR2D(XC(I),ZC(I),X(J),Z(J),1.0,U,W)
A(I,J)=U*ENX(I)+W*ENZ(I)

2 CONTINUE
C THE RHS VECTOR IS PLACED IN THE GAMMA VECTOR

GAMMA(I)=-UINF*ENX(I)-WINF*ENZ(I)
3 CONTINUE
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C
C SOLUTION OF THE PROBLEM: RHS(I)=A(I,J)*GAMMA(I)
C

CALL DECOMP(N,52,A,IP)
CALL SOLVER(N,52,A,GAMMA,IP)

C
C AERODYNAMIC LOADS
C

BL=0.0
DO 4 I=1,N
DL(I)=RO*V*GAMMA(I)
DCP(I)=DL(I)/DX/QUE

C DCP1 IS THE ANALYTIC SOLUTION
DD=32.*EPSILON/C*SQRT(X(I)/C*(1.-X(I)/C))
DCP1(I)=4.*SQRT((C-X(I))/X(I))*ALFA+DD

4 BL=BL+DL(I)
CL=BL/(QUE*C)
CL1=2.*PAY*(ALFA+2*EPSILON/C)

C CL1, DCP1 - ARE THE EXACT SOLUTIONS
C
C OUTPUT

WRITE(6,14)
WRITE(6,15) V,CL,CL1,N,ALFA1
DO 5 I=1,N

5 WRITE(6,16)I,X(I),DCP(I),DCP1(I)
C
14 FORMAT( ' THIN AIRFOIL WITH ELLIPTIC CAMBER ')
15 FORMAT( ' V=',F7.1,3X,'CL=',F7.3,3X,'CL(EXACT)=',F7.3,3X,

*'N= ',I6,3X,'ALPHA= ',F6.1)
16 FORMAT( I5,3X,'X=',F8.2,5X,'DCP=',F8.2,3X,'DCP(EXACT)=',5F6.2)
C

C PLOTTER OUTPUT IS PLACED HERE (e.g. DCP AND DCP1 - VS - X/C)
C

STOP
END

C
SUBROUTINE VOR2D(X,Z,X1,Z1,GAMMA,U,W)

C CALCULATES INFLUENCE OF VORTEX AT (X1,Z1)
PAY=3.141592654
U=0.0
W=0.0
RX=X-X1
RZ=Z-Z1
R=SQRT(RX**2+RZ**2)
IF(R.LT.0.001) GOTO 1
V=0.5/PAY*GAMMA/R
U=V*(RZ/R)
W=V*(-RX/R)

1 CONTINUE
RETURN
END

C

C THE FOLLOWING SUBROUTINES ARE LISTED WITH THE STEADY STATE
C VORTEX LATTICE SOLVER (PROGRAM No. 13).
C
C SUBROUTINE DECOMP(N,NDIM,A,IP)
C SUBROUTINE SOLVER(N,NDIM,A,B,IP)
C
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C PROGRAM No. 3: CONSTANT STRENGTH SOURCE
C ---------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF SOURCE PANELS WITH
C CONST. STRENGTH (ALPHA=0, NEUMANN B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400),G(400)
REAL TH(400)

OPEN(8,FILE='CPS.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1

WRITE(6,*)'SKIP THE MATRIX REDUCTION? 1=YES, 2=N0'
READ(5,*) ANS

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT PANELING TO CLOCKWISE
DO I=1,M+1
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH COLLOCATION POINTS
DO I=1,M

CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M
DO J=1,M
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C CONVERT COLLOCATION POINT TO LOCAL PANEL COORDS.
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)
X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)

X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))
X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0

C FIND R1, R2, TH1, TH2
R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)

TH1=ATAN2(Z,X)

TH2=ATAN2(Z,X-X2)

C COMPUTE VELOCITY IN LOCAL REF. FRAME
IF(I.EQ.J) THEN
UL=0
WL=0.5
ELSE
UL=1/(2*3.141593)*LOG(R1/R2)
WL=1/(2*3.141593)*(TH2-TH1)
END IF

C RETURN VELOCITY TO GLOBAL REF. FRAME
U=UL*COS(-TH(J))+WL*SIN(-TH(J))
W=-UL*SIN(-TH(J))+WL*COS(-TH(J))

C A(I,J) IS THE INFLUENCE COEFF. DEFINED BY THE
C TANGENCY CONDITION. B(I,J) IS THE INDUCED LOCAL
C TANGENTIAL VELOCITY TO BE USED IN CP CALCULATION.

A(I,J)=-U*SIN(TH(I))+W*COS(TH(I))
B(I,J)=U*COS(TH(I))+W*SIN(TH(I))

END DO

A(I,N)=SIN(TH(I))

END DO

C SOLVE FOR THE SOLUTION VECTOR OF SOURCE STRENGTHS

IF(ANS.EQ.1) GOTO 200
CALL MATRX(A,N,G)

C CONVERT SOURCE STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND CP'S
C ON EACH OF THE PANELS

200 CONTINUE

DO I=1,M
VEL=0
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DO J=1,M
VEL=VEL+B(I,J)*G(J)
END DO
CP=1-(VEL+COS(TH(I)))**2
WRITE(8,*) CO(I,1),' ,',CP
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=0'

STOP
END

SUBROUTINE MATRX(A,N,G)

C MATRX IS A MATRIX REDUCER OF THE GAUSSIAN TYPE
C A(I,J) IS THE MATRIX, A(I,N) IS THE RHS VECTOR
C AND G(I) IS THE SOLUTION VECTOR.

REAL A(400,400),TEMP(400,400),G(400)

C INITIALIZE THE G VECTOR TO ALL ZEROES
DO I=1,N-1
G(I)=0
END DO

C CONVERT COEFFICIENT MATRIX TO
C UPPER TRIANGULAR FORM

DO I=1,N-1
5 IF(ABS(A(I,I)).LT.0.0000001) GOTO 9

P=A(I,I)
DO J=I,N
A(I,J)=A(I,J)/P
END DO

DO K=I+1,N-1
P2=A(K,I)
DO L=I,N
A(K,L)=A(K,L)-P2*A(I,L)
END DO
END DO
END DO

C BACK SUBSTITUTE TRIANGULARIZED MATRIX TO GET
C VALUES OF SOLUTION VECTOR

DO I=N-1,1,-1
G(I)=A(I,N)
DO J=1,N-1
A(I,I)=0
G(I)=G(I)-A(I,J)*G(J)
END DO
END DO

RETURN

C ORDER MATRIX SO THAT DIAGONAL COEFFICIENTS ARE
C NOT =0 AND STOP IS MATRIX IS SINGULAR
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9 IF(I.NE.N-1) THEN
DO J=1,N
TEMP(I,J)=A(I,J)
A(I,J)=A(I+1,J)
A(I+1,J)=TEMP(I,J)
END DO
GOTO 5
ELSE
GOTO 10
END IF

10 WRITE(6,*) 'NO SOLUTION'
STOP
END

C PROGRAM No. 4: CONSTANT STRENGTH DOUBLET
C ----------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF DOUBLET PANELS WITH
C CONST. STRENGTH (NEUMANN B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400),G(400)
REAL TH(400)

OPEN(8,FILE='CPD.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1
WRITE(6,*) 'ENTER ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT PANELING TO CLOCKWISE
DO I=1,M+1
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
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TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH COLLOCATION POINTS
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M
DO J=1,M

C CONVERT THE COLLOCATION POINT
C TO LOCAL PANEL COORDS.

XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)
X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)
X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))
X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0

R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)

C COMPUTE THE VELOCITY INDUCED AT THE ITH
C COLLOCATION POINT BY THE JTH PANEL

IF(I.EQ.J) THEN
UL=0
WL=-1/(3.14159265*X)
ELSE
UL=0.15916*(Z/(R1**2)-Z/(R2**2))
WL=-0.15916*(X/(R1**2)-(X-X2)/(R2**2))
END IF

U=UL*COS(-TH(J))+WL*SIN(-TH(J))
W=-UL*SIN(-TH(J))+WL*COS(-TH(J))

C A(I,J) IS THE COMPONENT OF VELOCITY INDUCED IN THE
C DIRECTION NORMAL TO PANEL I BY PANEL J AT THE ITH
C COLLOCATION POINT

A(I,J)=-U*SIN(TH(I))+W*COS(TH(I))
B(I,J)=U*COS(TH(I))+W*SIN(TH(I))

END DO

C INCLUDE THE INFLUENCE OF THE WAKE PANEL
R=SQRT((CO(I,1)-PT2(M,1))**2
* +(CO(I,2)-PT2(M,2))**2)

U=0.15916*(CO(I,2)/(R**2))
W=-0.15916*(CO(I,1)-PT2(M,1))/(R**2)

A(I,N)=-U*SIN(TH(I))+W*COS(TH(I))
B(I,N)=U*COS(TH(I))+W*SIN(TH(I))
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A(I,N+1)=COS(AL)*SIN(TH(I))-SIN(AL)*COS(TH(I))

END DO

C PREPARE THE MATRIX FOR SOLUTION BY PROVIDING
C A KUTTA CONDITION

DO I=1,N+1
A(N,I)=0
END DO
A(N,1)=-1
A(N,M)=1
A(N,N)=-1

C SOLVE FOR THE SOLUTION VECTOR OF DOUBLET STRENGTHS

N=N+1

CALL MATRX(A,N,G)

C CONVERT DOUBLET STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND CP'S
C ON EACH OF THE PANELS

200 CONTINUE

DO I=1,M
TEMP=0
DO J=1,M+1
TEMP=TEMP+B(I,J)*G(J)
END DO
IF(I.NE.1.AND.I.NE.M) THEN
R=SQRT((CO(I+1,1)-CO(I-1,1))**2

* +(CO(I+1,2)-CO(I-1,2))**2)
VLOC=(G(I+1)-G(I-1))/R
ELSE IF(I.EQ.1) THEN
R=SQRT((CO(2,1)-CO(1,1))**2

* +(CO(2,2)-CO(1,2))**2)
VLOC=(G(2)-G(1))/R
ELSE IF(I.EQ.M) THEN
R=SQRT((CO(M,1)-CO(M-1,1))**2

* +(CO(M,2)-CO(M-1,2))**2)
VLOC=(G(M)-G(M-1))/R
END IF

VEL=COS(AL)*COS(TH(I))+SIN(AL)*SIN(TH(I))
* +TEMP+VLOC/2

CP=1-VEL**2
WRITE(8,*) CO(I,1),' ,',CP

END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=', G(M+1)

STOP
END
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C PROGRAM No. 5: CONSTANT STRENGTH VORTEX
C ---------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF VORTEX PANELS WITH
C CONST. STRENGTH (NEUMANN B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400),G(400)
REAL VEL(400),VELT(400),TH(400),DL(400)

OPEN(8,FILE='CPV.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1
WRITE(6,*) 'ENTER ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT PANELING TO CLOCKWISE
DO I=1,N
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH COLLOCATION POINTS
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M
DO J=1,M

C CONVERT COLLOCATION POINT INTO LOCAL PANEL COORDS.
X2T=PT2(J,1)-PT1(J,1)
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Z2T=PT2(J,2)-PT1(J,2)
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)

X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0
X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))

C SAVE PANEL LENGTHS FOR LATER USE
IF(I.EQ.1) THEN
DL(J)=X2
END IF

R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)

TH1=ATAN2(Z,X)
TH2=ATAN2(Z,X-X2)

IF(I.EQ.J) THEN
UL=0.5
WL=0
ELSE
UL=0.15916*(TH2-TH1)
WL=0.15916*LOG(R2/R1)
END IF

U=UL*COS(-TH(J))+WL*SIN(-TH(J))
W=-UL*SIN(-TH(J))+WL*COS(-TH(J))

C A(I,J) IS THE COMPONENT OF VELOCITY NORMAL TO
C THE AIRFOIL INDUCED BY THE JTH PANEL AT THE
C ITH COLLOCATION POINT.

A(I,J)=-U*SIN(TH(I))+W*COS(TH(I))
B(I,J)=U*COS(TH(I))+W*SIN(TH(I))

END DO

A(I,N)=COS(AL)*SIN(TH(I))-SIN(AL)*COS(TH(I))

END DO

C REPLACE EQUATION M/4 WITH A KUTTA CONDITION
DO J=I,M+1
A(M/4,J)=0
END DO
A(M/4,1)=1
A(M/4,M)=1

C SOLVE FOR THE SOLUTION VECTOR OF VORTEX STRENGTHS

CALL MATRX(A,N,G)

C CONVERT SOURCE STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND CP'S
C ON EACH OF THE PANELS



P1: FCH

CB329-App-D CB329/Katz August 25, 2000 16:16 Char Count= 0

D.3 Time-Dependent Programs 559

200 CONTINUE

CL=0
DO I=1,M

TEMP=0
DO J=1,M
TEMP=TEMP+B(I,J)*G(J)
END DO
VEL(I)=TEMP+COS(AL)*COS(TH(I))

* +SIN(AL)*SIN(TH(I))
CL=CL+VEL(I)*DL(I)

END DO

WRITE(6,*) 'SMOOTH THE VELOCITY DISTRIBUTION?'
WRITE(6,*) '1=YES'
WRITE(6,*) '2=NO'
READ(5,*) ANS1

DO I=2,M
IF(ANS1.EQ.1) THEN
CP=1-((VEL(I)+VEL(I-1))/2)**2
WRITE(8,*) PT2(I-1,1),' ,',CP
ELSE
CP=1-VEL(I)**2
WRITE(8,*) CO(I,1),' ,',CP
END IF
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=', CL

STOP
END

C PROGRAM No. 6: LINEAR STRENGTH SOURCE
C -------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF SOURCE PANELS WITH
C LINEAR STRENGTH (ALPHA=0, NEUMANN B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400),G(400),V(400)
REAL TH(400)

OPEN(8,FILE='CPLS.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1
AL=0

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT PANELING TO CLOCKWISE
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DO I=1,N
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

TH(M+1)=0

C ESTABLISH COLLOCATION POINTS
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

WRITE(6,*) 'ENTER X COORD. OF WAKE POINT'
READ(5,*) XX
CO(M+1,1)=XX
CO(M+1,2)=0

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M+1
DO J=1,M

C CONVERT COLLOCATION POINT TO LOCAL PANEL COORDS.
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)
X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)

X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))
X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0

C FIND R1, R2, TH1, TH2
R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)

TH1=ATAN2(Z,X)
TH2=ATAN2(Z,X-X2)

C COMPUTE VELOCITY COMPONENTS AS FUNCTIONS OF
C SIGMA1 AND SIGMA2. THESE VELOCITIES ARE IN
C THE JTH REFERENCE FRAME.
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IF(I.EQ.J) THEN
U1L=0.15916
U2L=-0.15916
W1L=-0.5*(X-X2)/X2
W2L=0.5*(X)/X2
ELSE
W1L=-(Z*LOG(R2/R1)+X*(TH2-TH1)-X2*(TH2-TH1))/

* (6.28319*X2)
W2L=(Z*LOG(R2/R1)+X*(TH2-TH1))/(6.28319*X2)
U1L=((X2-Z*(TH2-TH1))-X*LOG(R1/R2)+

* X2*LOG(R1/R2))/(6.28319*X2)
U2L=-((X2-Z*(TH2-TH1))-X*LOG(R1/R2))/(6.28319*X2)
END IF

C TRANSFORM THE LOCAL VELOCITIES INTO THE GLOBAL
C REFERENCE FRAME.

U1=U1L*COS(-TH(J))+W1L*SIN(-TH(J))
U2=U2L*COS(-TH(J))+W2L*SIN(-TH(J))
W1=-U1L*SIN(-TH(J))+W1L*COS(-TH(J))
W2=-U2L*SIN(-TH(J))+W2L*COS(-TH(J))

C COMPUTE THE COEFFICIENTS OF SIGMA IN THE
C INFLUENCE MATRIX

IF(J.EQ.1) THEN
A(I,1)=-U1*SIN(TH(I))+W1*COS(TH(I))
HOLDA=-U2*SIN(TH(I))+W2*COS(TH(I))
B(I,1)=U1*COS(TH(I))+W1*SIN(TH(I))
HOLDB=U2*COS(TH(I))+W2*SIN(TH(I))
ELSE IF(J.EQ.M) THEN
A(I,M)=-U1*SIN(TH(I))+W1*COS(TH(I))+HOLDA
A(I,N)=-U2*SIN(TH(I))+W2*COS(TH(I))
B(I,M)=U1*COS(TH(I))+W1*SIN(TH(I))+HOLDB
B(I,N)=U2*COS(TH(I))+W2*SIN(TH(I))
ELSE
A(I,J)=-U1*SIN(TH(I))+W1*COS(TH(I))+HOLDA
HOLDA=-U2*SIN(TH(I))+W2*COS(TH(I))
B(I,J)=U1*COS(TH(I))+W1*SIN(TH(I))+HOLDB
HOLDB=U2*COS(TH(I))+W2*SIN(TH(I))
END IF

END DO

A(I,N+1)=SIN(TH(I))

END DO

N=M+2

IF(M.EQ.10) THEN
DO I=1,11
WRITE(6,10) A(I,1),A(I,2),A(I,3),A(I,4),A(I,5),A(I,6),

* A(I,7),A(I,8),A(I,9),A(I,10),A(I,11)
END DO

END IF

C SOLVE FOR THE SOLUTION VECTOR OF SOURCE STRENGTHS
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CALL MATRX(A,N,G)

C CONVERT SOURCE STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND CP'S
C ON EACH OF THE PANELS.

200 CONTINUE

N=M+1

DO I=1,M
VEL=0
DO J=1,N
VEL=VEL+B(I,J)*G(J)
END DO
V(I)=VEL+COS(AL)*COS(TH(I))+SIN(AL)*SIN(TH(I))
END DO

WRITE(6,*) ' '
WRITE(6,*) 'SMOOTH THE VELOCITY DISTRIBUTION?'
WRITE(6,*) '1=YES'
WRITE(6,*) '2=NO'
READ(5,*) ANS1

DO I=2,M
IF(ANS1.EQ.1) THEN
VA=(V(I)+V(I-1))/2
CP=1-VA**2
WRITE(8,*) PT1(I,1), ' ,',CP
ELSE
CP=1-V(I)**2
WRITE(8,*) CO(I,1),' ,',CP
END IF
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=0'

STOP
10 FORMAT(/,F6.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,

* F5.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2)

END

C PROGRAM No. 7: LINEAR STRENGTH VORTEX
C -------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF VORTEX PANELS WITH
C LINEAR STRENGTH (NEUMANN B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400),G(400)
REAL TH(400),DL(400)

OPEN(8,FILE='CPLV.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
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N=M+1
WRITE(6,*) 'ENTER ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

DO I=1,N
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH COLLOCATION POINTS
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M
DO J=1,M

C CONVERT COLLOCATION POINT TO LOCAL PANEL COORDS.
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)
X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)

X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))
X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0

C SAVE PANEL LENGTHS FOR LIFT COEFF. CALC.
IF(I.EQ.1) THEN
DL(J)=X2
END IF

C FIND R1, R2, TH1, TH2
R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)
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TH1=ATAN2(Z,X)
TH2=ATAN2(Z,X-X2)

C COMPUTE VELOCITY COMPONANTS AS FUNCTIONS OF
C GAMMA1 AND GAMMA2. THESE VELOCITIES ARE IN
C THE JTH REFERENCE FRAME.

IF(I.EQ.J) THEN
U1L=-0.5*(X-X2)/(X2)
U2L=0.5*(X)/(X2)
W1L=-0.15916
W2L=0.15916
ELSE
U1L=-(Z*LOG(R2/R1)+X*(TH2-TH1)-X2*(TH2-TH1))/

* (6.28319*X2)
U2L=(Z*LOG(R2/R1)+X*(TH2-TH1))/(6.28319*X2)
W1L=-((X2-Z*(TH2-TH1))-X*LOG(R1/R2)

* +X2*LOG(R1/R2))/(6.28319*X2)
W2L=((X2-Z*(TH2-TH1))-X*LOG(R1/R2))/(6.28319*X2)
END IF

C TRANSFORM THE LOCAL VELOCITIES INTO THE
C GLOBAL REFERENCE FRAME.

U1=U1L*COS(-TH(J))+W1L*SIN(-TH(J))
U2=U2L*COS(-TH(J))+W2L*SIN(-TH(J))
W1=-U1L*SIN(-TH(J))+W1L*COS(-TH(J))
W2=-U2L*SIN(-TH(J))+W2L*COS(-TH(J))

C COMPUTE THE COEFFICIENTS OF GAMMA IN THE
C INFLUENCE MATRIX.

IF(J.EQ.1) THEN
A(I,1)=-U1*SIN(TH(I))+W1*COS(TH(I))
HOLDA=-U2*SIN(TH(I))+W2*COS(TH(I))
B(I,1)=U1*COS(TH(I))+W1*SIN(TH(I))
HOLDB=U2*COS(TH(I))+W2*SIN(TH(I))
ELSE IF(J.EQ.M) THEN
A(I,M)=-U1*SIN(TH(I))+W1*COS(TH(I))+HOLDA
A(I,N)=-U2*SIN(TH(I))+W2*COS(TH(I))
B(I,M)=U1*COS(TH(I))+W1*SIN(TH(I))+HOLDB
B(I,N)=U2*COS(TH(I))+W2*SIN(TH(I))
ELSE
A(I,J)=-U1*SIN(TH(I))+W1*COS(TH(I))+HOLDA
HOLDA=-U2*SIN(TH(I))+W2*COS(TH(I))
B(I,J)=U1*COS(TH(I))+W1*SIN(TH(I))+HOLDB
HOLDB=U2*COS(TH(I))+W2*SIN(TH(I))
END IF

END DO

A(I,N+1)=COS(AL)*SIN(TH(I))-SIN(AL)*COS(TH(I))

END DO

C ADD THE KUTTA CONDITION
A(N,1)=1
A(N,N)=1
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IF(M.EQ.10) THEN
DO I=1,11
WRITE(6,10) A(I,1),A(I,2),A(I,3),A(I,4),A(I,5),A(I,6),A(I,7),

* A(I,8),A(I,9),A(I,10),A(I,11)
END DO
END IF

N=N+1

C SOLVE FOR THE SOLUTION VECTOR OF VORTEX STRENGTHS

CALL MATRX(A,N,G)

C CONVERT VORTEX STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND CP'S
C ON EACH OF THE PANELS.

200 CONTINUE

N=M+1
CL=0

DO I=1,M
VEL=0
DO J=1,N
VEL=VEL+B(I,J)*G(J)
END DO
V=VEL+COS(AL)*COS(TH(I))+SIN(AL)*SIN(TH(I))
CL=CL+V*DL(I)
CP=1-V**2
WRITE(8,*) CO(I,1),' ,',CP
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=',CL

STOP
10 FORMAT(/,F6.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2,

* 1X,F5.2,1X,F5.2,1X,F5.2,1X,F5.2)

END

C PROGRAM No. 8: CONSTANT STRENGTH DOUBLET POTENTIAL
C --------------------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF DOUBLET PANELS WITH
C CONSTANT STRENGTH (DIRICHLET B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400),G(400)
REAL TH(400),DL(400)

OPEN(8,FILE='CPDP.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1
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WRITE(6,*) 'ENTER ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT THE PANELING TO CLOCKWISE
DO I=1,M+1
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH COLLOCATION POINTS
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M
DO J=1,M

C CONVERT COLLOCATION POINTS TO LOCAL
C PANEL(J) COORDINATES.

X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)

X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0
X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))

C SAVE PANEL LENGTHS
IF(I.EQ.1) THEN
DL(J)=X2
END IF

C FIND R AND THETA COMPONENTS
R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)
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TH1=ATAN2(Z,X)
TH2=ATAN2(Z,X-X2)

C COMPUTE INFLUENCE COEFS. A(I,J)
IF(I.EQ.J) THEN
A(I,J)=0.5
ELSE
A(I,J)=-0.15916*(TH2-TH1)
END IF

END DO

C ADD WAKE INFLUENCE
XW=CO(I,1)-PT2(M,1)
ZW=CO(I,2)-PT2(M,2)
DTHW=-ATAN(ZW/XW)

A(I,N)=-0.15916*(DTHW)
A(I,N+1)=(CO(I,1)*COS(AL)+CO(I,2)*SIN(AL))

END DO

C ADD AN EXPLICIT KUTTA CONDITION
A(N,1)=-1
A(N,M)=1
A(N,N)=-1

C SOLVE FOR THE SOLUTION VECTOR OF DOUBLET STRENGTHS

N=N+1

CALL MATRX(A,N,G)

C CONVERT DOUBLET STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND
C CP'S ON EACH OF THE PANELS.

200 CONTINUE

DO I=1,M-1
R=(DL(I)+DL(I+1))/2
VEL=(G(I+1)-G(I))/R
CP=1-VEL**2
WRITE(8,*) PT2(I,1),' ,',CP
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=', G(M+1)

STOP
END

C PROGRAM No. 9: CONSTANT STRENGTH SOURCE/DOUBLET POTENTIAL
C ---------------------------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF SOURCE/DOUBLET PANELS
C WITH CONSTANT STRENGTH (DIRICHLET B.C., PROGRAM BY STEVEN YON, 1989).
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REAL EP(400,2),PT1(400,2),PT2(400,2),TH(400)
REAL CO(400,2),A(400,400),B(400,400),G(400)
REAL EPT(400,2),SIG(400),PHI(400),DL(400)

OPEN(8,FILE='CPSD.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1
WRITE(6,*) 'ENTER ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT PANELING TO CLOCKWISE
DO I=1,M+1
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH SOURCE STRENGTHS (SIGMA=V DOT N)
DO I=1,M
SIG(I)=(COS(AL)*SIN(TH(I))-SIN(AL)*COS(TH(I)))
END DO

C ESTABLISH SURFACE POINTS (COLLOCATION POINTS)
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M

TEMP=0
DO J=1,M

C CONVERT THE COLLOCATION POINT TO LOCAL PANEL COORDS.
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)
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X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)

X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))
X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0

C SAVE PANEL LENGTHS
IF(I.EQ.1) THEN
DL(J)=X2
END IF

C COMPUTE R AND THETA VALUES FOR THE COLOC. POINT
R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)

TH1=ATAN2(Z,X)
TH2=ATAN2(Z,X-X2)

C COMPUTE THE DOUBLET INFLUENCE COEFFICIENTS

IF(I.EQ.J) THEN
A(I,J)=0.5
ELSE
A(I,J)=-0.15916*(TH2-TH1)
END IF

C COMPUTE THE SOURCE INFLUENCE COEFF'S AND ADD
C THEM UP TO GIVE THE RHS

IF(I.EQ.J) THEN
TEMP=TEMP+SIG(J)/3.14159265*(X*LOG(R1))
ELSE
TEMP=TEMP+SIG(J)/6.28319*(X*LOG(R1)

* -(X-X2)*LOG(R2)+Z*(TH2-TH1))
END IF

END DO

C ADD WAKE INFLUENCE COEFF.
XW=CO(I,1)-PT2(M,1)
ZW=CO(I,2)-PT2(M,2)
DTHW=-ATAN(ZW/XW)

A(I,N)=-0.15916*(DTHW)
A(I,N+1)=TEMP

END DO

C ADD AN EXPLICIT KUTTA CONDITION
DO I=1,N+1
A(N,I)=0
END DO
A(N,1)=-1
A(N,M)=1
A(N,N)=-1

C SOLVE FOR THE SOLUTION VECTOR OF DOUBLET STRENGTHS
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N=N+1

CALL MATRX(A,N,G)

C CONVERT DOUBLET STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND CP'S
C ON EACH PANEL.

200 CONTINUE

DO I=1,M
PHI(I)=CO(I,1)*COS(AL)+CO(I,2)*SIN(AL)+G(I)

END DO

DO I=1,M-1
R=(DL(I+1)+DL(I))/2
VEL=(PHI(I)-PHI(I+1))/R
CP=1-VEL**2
WRITE(8,*) PT2(I,1),', ',CP
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=',G(M+1)

STOP
END

C PROGRAM No. 10: LINEAR STRENGTH DOUBLET POTENTIAL
C ------------------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF DOUBLET PANELS WITH
C LINEAR STRENGTH (DIRICHLET B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400),G(400)
REAL TH(400),DL(400)

OPEN(8,FILE='CPLD.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1
WRITE(6,*) 'ENTER ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT PANELING TO CLOCKWISE
DO I=1,N
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO
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C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH COLLOCATION POINTS
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M
DO J=1,M

C CONVERT COLLOCATION POINT TO LOCAL PANEL COORDS.
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)
X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)

X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))
X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0

C SAVE PANEL LENGTHS
IF(I.EQ.1) THEN
DL(J)=X2
END IF

C FIND TH1, TH2, AND R1,R2
R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)

TH1=ATAN2(Z,X)
TH2=ATAN2(Z,X-X2)

C COMPUTE THE POTENTIAL COMPONENTS AS
C FUNCTIONS OF R, TH

IF(I.EQ.J) THEN
PH1=-0.5*(X/X2-1)
PH2=0.5*(X/X2)
ELSE
PH1=0.15916*(X/X2*(TH2-TH1)+Z/X2*

* LOG(R2/R1)-(TH2-TH1))
PH2=-0.15916*(X/X2*(TH2-TH1)+Z/X2*LOG(R2/R1))
END IF
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C COMPUTE THE COEFFICIENTS IN THE INFLUENCE MATRIX

IF(J.EQ.1) THEN
A(I,1)=PH1
HOLDA=PH2
ELSE IF(J.EQ.M) THEN
A(I,M)=HOLDA+PH1
A(I,M+1)=PH2
ELSE
A(I,J)=HOLDA+PH1
HOLDA=PH2
END IF

END DO

C ADD INFLUENCE OF WAKE AS A(M+2)
XW=CO(I,1)-PT2(M,1)
ZW=CO(I,2)-PT2(M,2)
DTHW=-ATAN(ZW/XW)
A(I,M+2)=-0.15916*DTHW

A(I,M+3)=(CO(I,1)*COS(AL)+CO(I,2)*SIN(AL))

END DO

C ADD THE DOUBLET GRADIENT CONDITION
A(M+1,1)=-1
A(M+1,2)=1
A(M+1,M)=1
A(M+1,M+1)=-1

C ADD THE KUTTA CONDITION
A(M+2,1)=-1
A(M+2,M+1)=1
A(M+2,M+2)=-1

N=M+3

C SOLVE FOR THE SOLUTION VECTOR OF DOUBLET STRENGTHS

CALL MATRX(A,N,G)

C CONVERT DOUBLET STRENGTHS INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND
C CP'S ON EACH OF THE PANELS.

200 CONTINUE

DO I=1,M-1
R=(DL(I)+DL(I+1))/2
T1=(G(I)+G(I+1))/2
T2=(G(I+1)+G(I+2))/2
VEL=(T2-T1)/R
CP=1-VEL**2
WRITE(8,*) PT2(I,1),' ,',CP
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=', G(M+2)

STOP
END
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C PROGRAM No. 11: QUADRATIC STRENGTH DOUBLET POTENTIAL
C ----------------------------------------------------

C THIS PROGRAM FINDS THE PRESSURE DISTRIBUTION ON AN ARBITRARY AIRFOIL
C BY REPRESENTING THE SURFACE AS A FINITE NUMBER OF DOUBLET PANELS WITH
C QUADRATIC STRENGTH (DIRICHLET B.C., PROGRAM BY STEVEN YON, 1989).

REAL EP(400,2),EPT(400,2),PT1(400,2),PT2(400,2)
REAL CO(400,2),A(400,400),B(400,400,3),G(400)
REAL DL(400),U1(400),A1(400),B1(400),TH(400)

OPEN(8,FILE='CPQD.DAT',STATUS='NEW')
OPEN(9,FILE='AFOIL2.DAT',STATUS='OLD')

WRITE(6,*) 'ENTER NUMBER OF PANELS'
READ(5,*) M
N=M+1
WRITE(6,*) 'ENTER ANGLE OF ATTACK IN DEGREES'
READ(5,*) ALPHA
AL=ALPHA/57.2958

C READ IN THE PANEL END POINTS
DO I=1,M+1
READ(9,*) EPT(I,1), EPT(I,2)
END DO

C CONVERT PANELING TO CLOCKWISE
DO I=1,M+1
EP(I,1)=EPT(N-I+1,1)
EP(I,2)=EPT(N-I+1,2)
END DO

C ESTABLISH COORDINATES OF PANEL END POINTS
DO I=1,M
PT1(I,1)=EP(I,1)
PT2(I,1)=EP(I+1,1)
PT1(I,2)=EP(I,2)
PT2(I,2)=EP(I+1,2)
END DO

C FIND PANEL ANGLES TH(J)
DO I=1,M
DZ=PT2(I,2)-PT1(I,2)
DX=PT2(I,1)-PT1(I,1)
TH(I)=ATAN2(DZ,DX)
END DO

C ESTABLISH COLLOCATION POINTS
DO I=1,M
CO(I,1)=(PT2(I,1)-PT1(I,1))/2+PT1(I,1)
CO(I,2)=(PT2(I,2)-PT1(I,2))/2+PT1(I,2)
END DO

C ESTABLISH LOCATION OF ADDITIONAL COLLOCATION POINT
WRITE(6,*) 'ENTER X COORD. OF INTERNAL POINT'
READ(5,*) XX
CO(M+1,1)=XX
CO(M+1,2)=0.0
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C ESTABLISH INFLUENCE COEFFICIENTS
DO I=1,M+1
DO J=1,M

C CONVERT COLLOCATION POINT TO LOCAL PANEL COORDS.
XT=CO(I,1)-PT1(J,1)
ZT=CO(I,2)-PT1(J,2)
X2T=PT2(J,1)-PT1(J,1)
Z2T=PT2(J,2)-PT1(J,2)

X=XT*COS(TH(J))+ZT*SIN(TH(J))
Z=-XT*SIN(TH(J))+ZT*COS(TH(J))
X2=X2T*COS(TH(J))+Z2T*SIN(TH(J))
Z2=0

C SAVE PANEL LENGTHS FOR LATER USE
IF(I.EQ.1) THEN
DL(J)=X2
END IF

C FIND TH1, TH2, AND R1, R2
R1=SQRT(X**2+Z**2)
R2=SQRT((X-X2)**2+Z**2)

TH1=ATAN2(Z,X)
TH2=ATAN2(Z,X-X2)

C COMPUTE THE INFLUENCE COEFFICIENTS IN
C THE 'B' MATRIX (UNREDUCED).

IF(I.EQ.J) THEN
B(I,J,1)=0.5
B(I,J,2)=0.5*X
B(I,J,3)=0.5*X**2
ELSE
B(I,J,1)=-0.15916*(TH2-TH1)
B(I,J,2)=-0.15916*(X*(TH2-TH1)+Z*LOG(R2/R1))
B(I,J,3)=0.15916*((X**2-Z**2)*(TH1-TH2)

* -2*X*Z*LOG(R2/R1)-Z*X2)
END IF

END DO
END DO

C ADD DOUBLET GRADIENT CONDITION
B(M+2,1,1)=0
B(M+2,1,2)=1
B(M+2,1,3)=0
B(M+2,M,1)=0
B(M+2,M,2)=1
B(M+2,M,3)=2*DL(M)

C ADD KUTTA CONDITION
B(M+3,1,1)=-1
B(M+3,1,2)=0
B(M+3,1,3)=0
B(M+3,M,1)=1
B(M+3,M,2)=DL(M)
B(M+3,M,3)=(DL(M))**2
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C BACK SUBSTITUTE THE 'B' MATRIX WITH THE
C REGRESSION FORMULA TO GET THE COMPONENTS
C OF THE 'A' MATRIX.

DO I=1,M+3
DO J=M-1,1,-1

B(I,J,1)=B(I,J,1)+B(I,J+1,1)
B(I,J,2)=B(I,J,2)+B(I,J+1,1)*DL(J)+B(I,J+1,2)
B(I,J,3)=B(I,J,3)+B(I,J+1,1)

* *(DL(J))**2+2*B(I,J+1,2)*DL(J)
END DO

A(I,1)=B(I,1,1)
A(I,2)=B(I,1,2)
DO J=1,M
A(I,J+2)=B(I,J,3)
END DO

END DO

C ADD INFLUENCE OF WAKE AS A(I,M+3)
C AND RHS AS A(I,M+4)

DO I=1,M+1
XW=CO(I,1)-PT2(M,1)
ZW=CO(I,2)-PT2(M,2)
DTHW=-ATAN(ZW/XW)

A(I,M+3)=-0.15916*DTHW
A(I,M+4)=(CO(I,1)*COS(AL)+CO(I,2)*SIN(AL))

END DO

C COMPLETE KUTTA COND. BY ADDING WAKE COEFF AND RHS
C TO ROWS M+2 AND M+3

A(M+2,M+3)=0
A(M+2,M+4)=0

A(M+3,M+3)=-1
A(M+3,M+4)=0

N=M+4

C SOLVE FOR THE SOLUTION VECTOR OF DOUBLET STRENGTHS

CALL MATRX(A,N,G)

C CONVERT DOUBLET STRENGTHS, LINEAR CORRECTION
C AND QUADRATIC CORRECTION INTO TANGENTIAL
C VELOCITIES ALONG THE AIRFOIL SURFACE AND CP'S
C ON EACH OF THE PANELS.

200 CONTINUE

C FORWARD SUBSTITUTE USING THE SOLUTION VECTOR TO
C GET THE DOUBLET STRENGTH PARAMETERS
C FOR EACH PANEL.

U1(1)=G(1)
A1(1)=G(2)
DO I=3,M+2
B1(I-2)=G(I)
END DO



P1: FCH

CB329-App-D CB329/Katz August 25, 2000 16:16 Char Count= 0

576 Appendix D / Sample Computer Programs

DO I=1,M-1
U1(I+1)=U1(I)+A1(I)*DL(I)+B1(I)*(DL(I))**2
A1(I+1)=A1(I)+2*B1(I)*DL(I)
END DO

C THE DERIVATIVE OF THE DOUBLET STRENGTH IS THE
C SURFACE SPEED ALONG EACH PANEL.

DO I=1,M
VEL=A1(I)+B1(I)*DL(I)
CP=1-VEL**2
WRITE(8,*) CO(I,1),' ,',CP
END DO

WRITE(6,*) ' '
WRITE(6,*) 'LIFT COEFFICIENT=', G(M+3)

STOP
END

C PROGRAM No. 12: INFLUENCE COEFF. OF A RECTILINEAR SOURCE/DOUBLET PANEL
C -----------------------------------------------------------------

C THIS PROGRAM CALCULATES THE INFLUENCE OF A RECTILINEAR PANEL AT AN
C ARBITRARY POINT. (PROGRAM BY LINDSEY BROWNE, 1988).

DIMENSION X(5),Y(5),Z(5)

PI=3.14159
TWOPI=2.0*PI
EPS=1.E-06
PNDS=1.0

C INPUT DOUBLET AND SOURCE STRENGTHS
DUB=1.0/(4.0*PI)
SIG=1.0/(4.0*PI)

OPEN(2,FILE='INDIV',STATUS='UNKNOWN')

C SQUARE/FLAT PANEL
C INPUT COORDINATES

X(1)=-.5
X(2)=.5
X(3)=.5
X(4)=-.5
Y(1)=-.5
Y(2)=-.5
Y(3)=.5
Y(4)=.5
DO 5 I=1,4

Z(I)=0.0
5 CONTINUE

X(5)=X(1)
Y(5)=Y(1)
Z(5)=Z(1)

C MID-POINT AT (0,0,0)
PXO=0.0
PYO=0.0
PZO=0.0
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100 CONTINUE

RJ31 = 0.0
CJK1 = 0.0
VXS = 0.0
VYS = 0.0
VZS = 0.0
VXD = 0.0
VYD = 0.0
VZD = 0.0
VX = 0.0
VY = 0.0
VZ = 0.0

C INPUT POINT OF INTEREST
WRITE(*,*) 'ENTER POINT OF INTEREST (X,Y,Z):'
READ(*,*) PXI, PYI, PZI

PX=PXI-PXO
PY=PYI-PYO
PZ=PZI-PZO

RDIST=SQRT(PX*PX+PY*PY+PZ*PZ)

PNLX=.25*(X(1)+X(2)+X(3)+X(4))
PNLY=.25*(Y(1)+Y(2)+Y(3)+Y(4))
PNLZ=.25*(Z(1)+Z(2)+Z(3)+Z(4))
PNX=PX-PNLX
PNY=PY-PNLY
PNZ=PZ-PNLZ
PNS=SQRT(PNX*PNX+PNY*PNY+PNZ*PNZ)
D1X=X(3)-X(1)
D1Y=Y(3)-Y(1)
D1Z=Z(3)-Z(1)
D2X=X(4)-X(2)
D2Y=Y(4)-Y(2)
D2Z=Z(4)-Z(2)
CRX=D1Y*D2Z-D2Y*D1Z
CRY=D2X*D1Z-D1X*D2Z
CRZ=D1X*D2Y-D2X*D1Y
CRSQ=SQRT(CRX*CRX+CRY*CRY+CRZ*CRZ)
AREA=CRSQ/2.
CNX=CRX/CRSQ
CNY=CRY/CRSQ
CNZ=CRZ/CRSQ
PNN=CNX*PNX+CNY*PNY+CNZ*PNZ
TCMX=(X(3)+X(4))/2. - PNLX
TCMY=(Y(3)+Y(4))/2. - PNLY
TCMZ=(Z(3)+Z(4))/2. - PNLZ
TMS=SQRT(TCMX*TCMX+TCMY*TCMY+TCMZ*TCMZ)
CMX=((X(3)+X(4))/2. - PNLX)/TMS
CMY=((Y(3)+Y(4))/2. - PNLY)/TMS
CMZ=((Z(3)+Z(4))/2. - PNLZ)/TMS
CLX=CMY*CNZ-CNY*CMZ
CLY=CNX*CMZ-CMX*CNZ
CLZ=CMX*CNY-CNX*CMY

DO 20 J=1,4
K=J+1
AX=PX-X(J)



P1: FCH

CB329-App-D CB329/Katz August 25, 2000 16:16 Char Count= 0

578 Appendix D / Sample Computer Programs

AY=PY-Y(J)
AZ=PZ-Z(J)
BX=PX-X(K)
BY=PY-Y(K)
BZ=PZ-Z(K)
SX=X(K)-X(J)
SY=Y(K)-Y(J)
SZ=Z(K)-Z(J)
A=SQRT(AX*AX + AY*AY + AZ*AZ)
B=SQRT(BX*BX + BY*BY + BZ*BZ)
S=SQRT(SX*SX + SY*SY + SZ*SZ)

C SOURCE CONTRIBUTION
SM=SX*CMX+SY*CMY+SZ*CMZ
SL=SX*CLX+SY*CLY+SZ*CLZ
AM=AX*CMX+AY*CMY+AZ*CMZ
AL=AX*CLX+AY*CLY+AZ*CLZ
BM=BX*CMX+BY*CMY+BZ*CMZ
ALL=AM*SL-AL*SM
IF((A+B-S).GT.0.0.AND.S.GT.0.0)THEN

RJ3=ALOG((A+B+S)/(A+B-S))/S
ELSE

RJ3=0.0
ENDIF
PA=PNZ*PNZ*SL + ALL*AM
PB=PA - ALL*SM
RNUM=SM*PNZ*(B*PA - A*PB)
DNOM=PA*PB + PNZ*PNZ*A*B*SM*SM
IF(ABS(PNZ).LT.EPS)THEN

DE=0.0
ELSE

IF(RNUM.NE.0)THEN
DE=ATAN2(RNUM,DNOM)

ELSE
DE=0.0

ENDIF
ENDIF
RJ31 = RJ31 - SIG*ALL*RJ3

CJK1 = CJK1 - DUB*DE
VXS=VXS+SIG*(RJ3*(SM*CLX-SL*CMX)+DE*CNX)
VYS=VYS+SIG*(RJ3*(SM*CLY-SL*CMY)+DE*CNY)
VZS=VZS+SIG*(RJ3*(SM*CLZ-SL*CMZ)+DE*CNZ)

C DOUBLET CONTRIBUTION
AVBX=AY*BZ - AZ*BY
AVBY=AZ*BX - AX*BZ
AVBZ=AX*BY - AY*BX
ADB=AX*BX + AY*BY + AZ*BZ
VMOD=(A+B)/(A*B*(A*B + ADB))
VXD=VXD + DUB*VMOD*AVBX
VYD=VYD + DUB*VMOD*AVBY
VZD=VZD + DUB*VMOD*AVBZ

20 CONTINUE

C LIMITING CASES
DTT=TWOPI
IF(RDIST.GT.0.0)PNDS=PNZ**2/RDIST
IF(PNDS.LT.EPS.AND.RDIST.GT.EPS)THEN

DTT=PNZ*AREA/SQRT(RDIST)/RDIST
ENDIF
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IF(ABS(DTT).LT.ABS(CJK1))CJK1=DTT
IF(RDIST.LT.EPS*EPS)CJK1=-TWOPI

C TOTAL
CJK = CJK1

BJK = RJ31 - PNZ*CJK1
VX=VXD+VXS
VY=VYD+VYS
VZ=VZD+VZS

TVS=SQRT(VXS*VXS+VYS*VYS+VZS*VZS)
TVD=SQRT(VXD*VXD+VYD*VYD+VZD*VZD)
TV=SQRT(VX*VX+VY*VY+VZ*VZ)

WRITE(*,*)'AREA OF PANEL=',AREA
WRITE(*,*)'SOURCE (POTENTIAL)=',BJK

WRITE(*,*)'SOURCE (VELOCITY):'
WRITE(*,*)'VXS=',VXS
WRITE(*,*)'VYS=',VYS
WRITE(*,*)'VZS=',VZS
WRITE(*,*)'TVS=',TVS
WRITE(*,*)'DOUBLET (POTENTIAL):', CJK
WRITE(*,*)'DOUBLET (VELOCITY):'
WRITE(*,*)'VXD=',VXD
WRITE(*,*)'VYD=',VYD
WRITE(*,*)'VZD=',VZD
WRITE(*,*)'TVD=',TVD
WRITE(*,*)'TOTAL VELOCITY:'
WRITE(*,*)'VX=',VX
WRITE(*,*)'VY=',VY
WRITE(*,*)'VZ=',VZ
WRITE(*,*)'TV=',TV

WRITE(*,*)'DO YOU WANT ANOTHER TRY? 1:YES, 2:NO'
READ(*,*) NTRY
IF(NTRY.EQ.1)GO TO 100

STOP
END

C PROGRAM No. 13: RECTANGULAR LIFTING SURFACE (VLM)
C -------------------------------------------------

C 3D-VLM CODE FOR SIMPLE WING PLANFORMS WITH GROUND EFFECT(BYJOE KATZ,1974).
DIMENSION QF(6,14,3),QC(4,13,3),DS(4,13,4)
DIMENSION GAMA(4,13),DL(4,13),DD(4,13),DP(4,13)
DIMENSION A(52,52),GAMA1(52),DW(52),IP(52)
DIMENSION A1(5,13),DLY(13),GAMA1J(5),X(4)
COMMON/NO1/ DS,X,B,C,S,AR,SN1,CS1
COMMON/NO2/ IB,JB,CH,SIGN
COMMON/NO3/ A1
COMMON/NO4/ QF,QC,DXW

C
C ==========
C INPUT DATA
C ==========
C

IB=4
JB=13
X(1)=0.
X(2)=0.
X(3)=4.
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X(4)=4.
B=13.
VT=1.0
ALPHA1=5.0
CH=1000.

C X(1) TO X(4) ARE X-COORDINATES OF THE WING'S FOUR CORNERPOINTS.
C B - WING SPAN, VT - FREE STREAM SPEED, B - WING SPAN,
C CH - HEIGHT ABOVE GROUND
C
C CONSTANTS

DXW=100.0*B
DO 1 I=1,IB
DO 1 J=1,JB

C GAMA(I,J)=1.0 IS REQUIRED FOR INFLUENCE MATRIX CALCULATIONS.
1 GAMA(I,J)=1.0

RO=1.
PAY=3.141592654
ALPHA=ALPHA1*PAY/180.
SN1=SIN(ALPHA)
CS1=COS(ALPHA)
IB1=IB+1
IB2=IB+2
JB1=JB+1

C
C =============
C WING GEOMETRY
C =============
C

CALL GRID
WRITE(6,101)
WRITE(6,102) ALPHA1,B,C,S,AR,VT,IB,JB,CH

C
C ========================
C AERODYNAMIC CALCULATIONS
C ========================
C
C INFLUENCE COEFFICIENTS CALCULATION
C

K=0
DO 14 I=1,IB
DO 14 J=1,JB
SIGN=0.0
K=K+1
CALL WING(QC(I,J,1),QC(I,J,2),QC(I,J,3),GAMA,U,V,W,1.0,I,J)
L=0
DO 10 I1=1,IB
DO 10 J1=1,JB
L=L+1

C A(K,L) - IS THE NORMAL VELOCITY COMPONENT DUE TO A UNIT VORTEX
C LATTICE.
10 A(K,L)=A1(I1,J1)
C ADD INFLUENCE OF WING'S OTHER HALF

CALL WING(QC(I,J,1),-QC(I,J,2),QC(I,J,3),GAMA,U,V,W,1.0,I,J)
L=0
DO 11 I1=1,IB
DO 11 J1=1,JB
L=L+1

11 A(K,L)=A(K,L)+A1(I1,J1)
IF(CH.GT.100.0) GOTO 12
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C ADD INFLUENCE OF MIRROR IMAGE (DUE TO GROUND)
SIGN=10.0
CALL WING(QC(I,J,1),QC(I,J,2),-QC(I,J,3),GAMA,U,V,W,1.0,I,J)
L=0
DO 8 I1=1,IB
DO 8 J1=1,JB
L=L+1

8 A(K,L)=A(K,L)+A1(I1,J1)
C ADD MIRROR IMAGE INFLUENCE OF WING'S OTHER HALF.

CALL WING(QC(I,J,1),-QC(I,J,2),-QC(I,J,3),GAMA,U,V,W,1.0,I,J)
L=0
DO 9 I1=1,IB
DO 9 J1=1,JB
L=L+1

9 A(K,L)=A(K,L)+A1(I1,J1)
SIGN=0.0

12 CONTINUE
C
13 CONTINUE
C
C CALCULATE WING GEOMETRICAL DOWNWASH
C

UINF=VT
VINF=0.0
WINF=0.0

C THIS IS THE GENERAL FORMULATION FOR RIGHT HAND SIDE.
DW(K)=-(UINF*DS(I,J,1)+VINF*DS(I,J,2)+WINF*DS(I,J,3))

14 CONTINUE
C
C SOLUTION OF THE PROBLEM: DW(I)=A(I,J)*GAMA(I)
C

K1=IB*JB
DO 15 K=1,K1

15 GAMA1(K)=DW(K)
CALL DECOMP(K1,52,A,IP)

16 CONTINUE
CALL SOLVER(K1,52,A,GAMA1,IP)

C HERE * THE SAME ARRAY SIZE IS REQUIRED,
C AS SPECIFIED IN THE BEGINNING OF THE CODE
C
C WING VORTEX LATTICE LISTING
C

K=0
DO 17 I=1,IB
DO 17 J=1,JB
K=K+1

17 GAMA(I,J)=GAMA1(K)
C
C ==================
C FORCES CALCULATION
C ==================
C

FL=0.
FD=0.
FM=0.
QUE=0.5*RO*VT*VT
DO 20 J=1,JB
DLY(J)=0.
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DO 20 I=1,IB
IF(I.EQ.1) GAMAIJ=GAMA(I,J)
IF(I.GT.1) GAMAIJ=GAMA(I,J)-GAMA(I-1,J)
DYM=QF(I,J+1,2)-QF(I,J,2)
DL(I,J)=RO*VT*GAMAIJ*DYM

C INDUCED DRAG CALCULATION
CALL WING(QC(I,J,1),QC(I,J,2),QC(I,J,3),GAMA,U1,V1,W1,0.0,I,J)
CALL WING(QC(I,J,1),-QC(I,J,2),QC(I,J,3),GAMA,U2,V2,W2,0.0,I,J)
IF(CH.GT.100.0) GOTO 194
CALL WING(QC(I,J,1),QC(I,J,2),-QC(I,J,3),GAMA,U3,V3,W3,0.0,I,J)
CALL WING(QC(I,J,1),-QC(I,J,2),-QC(I,J,3),GAMA,U4,V4,W4,0.0,I,J)
GOTO 195

194 W3=0.
W4=0.

195 WIND=W1+W2-W3-W4
C ADD INFLUENCE OF MIRROR IMAGE (GROUND).

ALFI=-WIND/VT
DD(I,J)=RO*DYM*VT*GAMAIJ*ALFI

C
DP(I,J)=DL(I,J)/DS(I,J,4)/QUE
DLY(J)=DLY(J)+DL(I,J)
FL=FL+DL(I,J)
FD=FD+DD(I,J)
FM=FM+DL(I,J)*(QF(I,J,1)-X(1))

20 CONTINUE
CL=FL/(QUE*S)
CD=FD/(QUE*S)
CM=FM/(QUE*S*C)

C
C OUTPUT
C

WRITE(6,104) CL,FL,CM,CD
WRITE(6,110)
DO 21 J=1,JB
DO 211 I=2,IB

211 GAMA1J(I)=GAMA(I,J)-GAMA(I-1,J)
DLYJ=DLY(J)/B*JB

21 WRITE(6,103) J,DLYJ,DP(1,J),DP(2,J),DP(3,J),DP(4,J),GAMA(1,J),
1GAMA1J(2),GAMA1J(3),GAMA1J(4)

C
C END OF PROGRAM
100 CONTINUE
C
C FORMATS
C
101 FORMAT(1H ,/,20X,'WING LIFT DISTRIBUTION CALCULATION (WITH GROUND

1 EFFECT)',/,20X,56('-'))
102 FORMAT(1H ,/,10X,'ALFA:',F10.2,8X,'B :',

1F10.2,8X,'C :',F13.2,/,10X,
2'S :',F10.2,8X,'AR :',F10.2,8X,'V(INF) :',F10.2,/,10X,
3'IB :',I10,8X,'JB :',I10,8X,'L.E. HEIGHT:', F6.2,/)

103 FORMAT(1H ,I3,' I ',F9.3,' II ',4(F9.3,' I '),' I ',4(F9.3,' I '))
104 FORMAT(/,1H ,'CL=',F10.4,2X,'L=',F10.4,4X,'CM=',F10.4,3X,

1'CD=',F10.4)
110 FORMAT(1H ,/,5X,'I DL',4X,'II',22X,'DCP',22X,'I I',25X,

1'GAMA',/,118('='),/,5X,'I',15X,'I= 1',11X,'2',11X,'3',11X,
2'4',5X,'I I',5X,'1',11X,'2',11X,'3',11X,'4',/,118('='))

112 FORMAT(1H ,'QF(I=',I2,',J,X.Y.Z)= ',15(F6.1))
113 FORMAT(1H ,110('='))
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C
STOP
END

C
SUBROUTINE GRID
DIMENSION QF(6,14,3),QC(4,13,3),DS(4,13,4),X(4)
COMMON/NO1/ DS,X,B,C,S,AR,SN1,CS1
COMMON/NO2/ IB,JB,CH,SIGN
COMMON/NO4/ QF,QC,DXW

C
PAY=3.141592654

C X(1) - IS ROOT L.E., X(2) TIP L.E., X(3) TIP T.E., AND X(4) IS ROOT T.E.
C IB: NO. OF CHORDWISE BOXES, JB: NO. OF SPANWISE BOXES

IB1=IB+1
IB2=IB+2
JB1=JB+1

C
C WING FIXED VORTICES LOCATION ( QF(I,J,(X,Y,Z))...)
C

DY=B/JB
DO 3 J=1,JB1
YLE=DY*(J-1)
XLE=X(1)+(X(2)-X(1))*YLE/B
XTE=X(4)+(X(3)-X(4))*YLE/B

C XLE AND XTE ARE L.E. AND T.E. X-COORDINATES
DX=(XTE-XLE)/IB
DO 1 I=1,IB1
QF(I,J,1)=(XLE+DX*(I-0.75))*CS1
QF(I,J,2)=YLE
QF(I,J,3)=-QF(I,J,1)*SN1+CH

1 CONTINUE
C WAKE FAR FIELD POINTS

QF(IB2,J,1)=XTE+DXW
QF(IB2,J,2)=QF(IB1,J,2)

3 QF(IB2,J,3)=QF(IB1,J,3)
C
C WING COLLOCATION POINTS
C

DO 4 J=1,JB
DO 4 I=1,IB
QC(I,J,1)=(QF(I,J,1)+QF(I,J+1,1)+QF(I+1,J+1,1)+QF(I+1,J,1))/4
QC(I,J,2)=(QF(I,J,2)+QF(I,J+1,2)+QF(I+1,J+1,2)+QF(I+1,J,2))/4
QC(I,J,3)=(QF(I,J,3)+QF(I,J+1,3)+QF(I+1,J+1,3)+QF(I+1,J,3))/4

C
C COMPUTATION OF NORMAL VECTORS
C

CALL PANEL(QF(I,J,1),QF(I,J,2),QF(I,J,3),QF(I+1,J,1),QF(I+1,J,2),
1QF(I+1,J,3),QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),QF(I+1,J+1,1),
2QF(I+1,J+1,2),QF(I+1,J+1,3),DS(I,J,1),DS(I,J,2),DS(I,J,3),
3DS(I,J,4))

4 CONTINUE
C
C B -IS SEMI SPAN, C -AV. CHORD, S - AREA

S=0.5*(X(3)-X(2)+X(4)-X(1))*B
C=S/B
AR=2.*B*B/S

C
RETURN
END
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C
SUBROUTINE PANEL(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4,C1,C2,C3,S)

C CALCULATION OF PANEL AREA AND NORMAL VECTOR.
A1=X2-X3
A2=Y2-Y3
A3=Z2-Z3
B1=X4-X1
B2=Y4-Y1
B3=Z4-Z1

C NORMAL VECTOR
X=A2*B3-A3*B2
Y=B1*A3-A1*B3
Z=A1*B2-A2*B1
A=SQRT(X**2+Y**2+Z**2)
C1=X/A
C2=Y/A
C3=Z/A

C CALCULATION OF PANEL AREA
E1=X3-X1
E2=Y3-Y1
E3=Z3-Z1
F1=X2-X1
F2=Y2-Y1
F3=Z2-Z1

C NORMAL AREAS (F*B+B*E)
S11=F2*B3-F3*B2
S12=B1*F3-F1*B3
S13=F1*B2-F2*B1
S21=B2*E3-B3*E2
S22=E1*B3-B1*E3
S23=B1*E2-B2*E1
S=0.5*(SQRT(S11**2+S12**2+S13**2)+SQRT(S21**2+S22**2+S23**2))
RETURN
END

C
SUBROUTINE VORTEX(X,Y,Z,X1,Y1,Z1,X2,Y2,Z2,GAMA,U,V,W)

C SUBROUTINE VORTEX CALCULATES THE INDUCED VELOCITY (U,V,W) AT A POI
C (X,Y,Z) DUE TO A VORTEX ELEMENT VITH STRENGTH GAMA PER UNIT LENGTH
C POINTING TO THE DIRECTION (X2,Y2,Z2)-(X1,Y1,Z1).

PAY=3.141592654
RCUT=1.0E-10

C CALCULATION OF R1 X R2
R1R2X=(Y-Y1)*(Z-Z2)-(Z-Z1)*(Y-Y2)
R1R2Y=-((X-X1)*(Z-Z2)-(Z-Z1)*(X-X2))
R1R2Z=(X-X1)*(Y-Y2)-(Y-Y1)*(X-X2)

C CALCULATION OF (R1 X R2 )**2
SQUARE=R1R2X*R1R2X+R1R2Y*R1R2Y+R1R2Z*R1R2Z

C CALCULATION OF R0(R1/R(R1)-R2/R(R2))
R1=SQRT((X-X1)*(X-X1)+(Y-Y1)*(Y-Y1)+(Z-Z1)*(Z-Z1))
R2=SQRT((X-X2)*(X-X2)+(Y-Y2)*(Y-Y2)+(Z-Z2)*(Z-Z2))
IF((R1.LT.RCUT).OR.(R2.LT.RCUT).OR.(SQUARE.LT.RCUT)) GOTO 1 GROUND
R0R1=(X2-X1)*(X-X1)+(Y2-Y1)*(Y-Y1)+(Z2-Z1)*(Z-Z1)
R0R2=(X2-X1)*(X-X2)+(Y2-Y1)*(Y-Y2)+(Z2-Z1)*(Z-Z2)
COEF=GAMA/(4.0*PAY*SQUARE)*(R0R1/R1-R0R2/R2)
U=R1R2X*COEF
V=R1R2Y*COEF
W=R1R2Z*COEF
GOTO 2

C WHEN POINT (X,Y,Z) LIES ON VORTEX ELEMENT; ITS INDUCED VELOCITY IS
1 U=0.
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V=0.
W=0.

2 CONTINUE
RETURN
END

C

SUBROUTINE WING(X,Y,Z,GAMA,U,V,W,ONOFF,I1,J1)
DIMENSION GAMA(4,13),QF(6,14,3),A1(5,13)
DIMENSION DS(4,13,4)
COMMON/NO1/ DS
COMMON/NO2/ IB,JB,CH,SIGN
COMMON/NO3/ A1
COMMON/NO4/ QF

C
C CALCULATES INDUCED VELOCITY AT A POINT (X,Y,Z), DUE TO VORTICITY
C DISTRIBUTION GAMA(I,J), OF SEMI-CONFIGURATION - IN A WING FIXED
C COORDINATE SYSTEM.

U=0
V=0
W=0
IB1=IB+1
DO 1 I=1,IB1
DO 1 J=1,JB

C I3 IS WAKE VORTEX COUNTER
I3=I
IF(I.EQ.IB1) I3=IB
VORTIC=GAMA(I3,J)
IF(ONOFF.LT.0.1) GOTO 2
CALL VORTEX(X,Y,Z,QF(I,J,1),QF(I,J,2),QF(I,J,3),QF(I,J+1,1),QF(I,J
1+1,2),QF(I,J+1,3),VORTIC,U1,V1,W1)
CALL VORTEX(X,Y,Z,QF(I+1,J+1,1),QF(I+1,J+1,2),QF(I+1,J+1,3),
3QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),VORTIC,U3,V3,W3)

2 CALL VORTEX(X,Y,Z,QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),QF(I+1,J+1,1
2),QF(I+1,J+1,2),QF(I+1,J+1,3),VORTIC,U2,V2,W2)
CALL VORTEX(X,Y,Z,QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),QF(I,J,1),
4QF(I,J,2),QF(I,J,3),VORTIC,U4,V4,W4)

C

U0=U2+U4+(U1+U3)*ONOFF
V0=V2+V4+(V1+V3)*ONOFF
W0=W2+W4+(W1+W3)*ONOFF
A1(I,J)=U0*DS(I1,J1,1)+V0*DS(I1,J1,2)+W0*DS(I1,J1,3)
IF(SIGN.GE.1.0)
* A1(I,J)=U0*DS(I1,J1,1)+V0*DS(I1,J1,2)-W0*DS(I1,J1,3)
IF(I.EQ.IB1) A1(IB,J)=A1(IB,J)+A1(IB1,J)
U=U+U0
V=V+V0
W=W+W0

C

1 CONTINUE
RETURN
END

C
SUBROUTINE DECOMP(N,NDIM,A,IP)
REAL A(NDIM,NDIM),T
INTEGER IP(NDIM)

C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION.
C N = ORDER OF MATRIX. NDIM = DECLARED DIMENSION OF ARRAY A.
C A = MATRIX TO BE TRIANGULARIZED.
C IP(K) , K .LT. N = INDEX OF K-TH PIVOT ROW.
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C
IP(N) = 1
DO 6 K = 1, N
IF(K.EQ.N) GOTO 5
KP1 = K + 1
M = K
DO 1 I = KP1, N
IF( ABS(A(I,K)).GT.ABS(A(M,K))) M=I

1 CONTINUE
IP(K) = M
IF(M.NE.K) IP(N) = -IP(N)
T = A(M,K)
A(M,K) = A(K,K)
A(K,K) = T
IF(T.EQ.0.E0) GO TO 5
DO 2 I = KP1, N

2 A(I,K) = -A(I,K)/T
DO 4 J = KP1, N
T = A(M,J)
A(M,J) = A(K,J)
A(K,J) = T
IF(T .EQ. 0.E0) GO TO 4
DO 3 I = KP1, N

3 A(I,J) = A(I,J) + A(I,K)*T
4 CONTINUE
5 IF(A(K,K) .EQ. 0.E0) IP(N) = 0
6 CONTINUE

RETURN
END

C
SUBROUTINE SOLVER(N,NDIM,A,B,IP)
REAL A(NDIM,NDIM), B(NDIM), T
INTEGER IP(NDIM)

C SOLUTION OF LINEAR SYSTEM, A*X = B.
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF THE ARRAY A.
C B = RIGHT HAND SIDE VECTOR.
C IP = PIVOT VECTOR OBTAINED FROM SUBROUTINE DECOMP.
C B = SOLUTION VECTOR, X.
C

IF(N.EQ.1) GOTO 9
NM1 = N - 1
DO 7 K = 1, NM1
KP1 = K + 1
M = IP(K)
T = B(M)
B(M) = B(K)
B(K) = T
DO 7 I = KP1, N

7 B(I) = B(I) + A(I,K)*T
DO 8 KB = 1, NM1
KM1 = N - KB
K = KM1 + 1
B(K) = B(K)/A(K,K)
T = -B(K)
DO 8 I = 1, KM1

8 B(I) = B(I) + A(I,K)*T
9 B(1) = B(1)/A(1,1)

RETURN
END



P1: FCH

CB329-App-D CB329/Katz August 25, 2000 16:16 Char Count= 0

D.3 Time-Dependent Programs 587

C PROGRAM No. 14: 3D PANEL METHOD, DIRICHLET B.C. (SOURCE + DOUBLET)
C -----------------------------------------------------------------

C 3D-PANEL CODE FOR SIMPLE WING PLANFORMS. NO TIP PATCH!!!
DIMENSION QF(22,14,3),QC(20,13,3),DS(20,13,10),SIGMA(20,13)
DIMENSION DUB(20,13),DL(20,13),DD(20,13),CP(20,13),DDUBJ(13)
DIMENSION CR(21,13,12)
DIMENSION A(260,260),DUB1(260),RHS(260),IP(260)
COMMON/NO1/ DS,CROOT,CTIP,XTIP,ZTIP,B,S,AR,IB,JB,PAY
COMMON/NO2/ QF,QC,CR,SIGMA,DXW,UT,WT

C
C ==========
C INPUT DATA
C ==========
C

ALPHA1=5.0
CROOT=1.0
CTIP=1.0
XTIP=0.0
ZTIP=0.0
B=10.
VT=1.0
JB=3

C CROOT, CTIP - ROOT AND TIP CHORD, XTIP - AFT SWEEP OF TIP
C B - WING SPAN, VT - FREE STREAM SPEED, IB,JP - CHORD, SPANWISE COUNTERS
C SYMMETRY IS ASSUMED (ONLY THE SEMISPAN IS MODELED)
C CONSTANTS

DXW=100.0*B
RO=1.0
PAY=3.141592654
UT=VT*COS(ALPHA1*PAY/180.0)
WT=VT*SIN(ALPHA1*PAY/180.0)

C
C =============
C WING GEOMETRY
C =============
C

CALL GRID
IB1=IB+1
IB2=IB+2
JB1=JB+1
WRITE(6,101)
WRITE(6,102) ALPHA1,B,CROOT,S,AR,VT,IB,JB
WRITE(6,111)
WRITE(6,113)
DO 8 J=1,JB1
DO 8 I=1,IB2

8 WRITE(6,112) I,J,QF(I,J,1),QF(I,J,2),QF(I,J,3)
111 FORMAT(1H ,' I ',' J ','QF(,I,J,1) QF(I,J,2) QF(I,J,3)')
112 FORMAT(1H ,I3,3X,I3,3F12.4)
113 FORMAT(1H ,46('='))

C
C ========================
C AERODYNAMIC CALCULATIONS
C ========================
C
C INFLUENCE COEFFICIENTS CALCULATION
C
C COLLOCATION POINT COUNTER
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K=0
DO 14 I=1,IB
DO 14 J=1,JB
K=K+1
L=0
RH=0

C INFLUENCING PANEL COUNTER
DO 10 I1=1,IB
DO 10 J1=1,JB
L=L+1
IF(I1.EQ.1) THEN

C CALCULATE WAKE CONTRIBUTION
C FIRST CONVERT COLLOCATION POINT TO PANEL COORDINATES,
C AND THEN CALCULATE INFLUENCE COEFFICIENTS

CALL CONVERT(QC(IB1,J1,1),QC(IB1,J1,2),QC(IB1,J1,3),
1 QC(I,J,1),QC(I,J,2),QC(I,J,3),
2 DS(IB1,J1,1),DS(IB1,J1,2),DS(IB1,J1,3),
3 DS(IB1,J1,4),DS(IB1,J1,5),DS(IB1,J1,6),
4 DS(IB1,J1,7),DS(IB1,J1,8),DS(IB1,J1,9),
5 XC,YC,ZC )
CALL INFLUENCE(WDUB,DSIG,XC,YC,ZC,
1 CR(IB1,J1,1),CR(IB1,J1,2),CR(IB1,J1,3),
2 CR(IB1,J1,4),CR(IB1,J1,5),CR(IB1,J1,6),
3 CR(IB1,J1,7),CR(IB1,J1,8),CR(IB1,J1,9),
4 CR(IB1,J1,10),CR(IB1,J1,11),CR(IB1,J1,12) )

C ADD WING'S IMAGE (SYMMETRY IS ASSUMED)
CALL CONVERT(QC(IB1,J1,1),QC(IB1,J1,2),QC(IB1,J1,3),
1 QC(I,J,1),-QC(I,J,2),QC(I,J,3),
2 DS(IB1,J1,1),DS(IB1,J1,2),DS(IB1,J1,3),
3 DS(IB1,J1,4),DS(IB1,J1,5),DS(IB1,J1,6),
4 DS(IB1,J1,7),DS(IB1,J1,8),DS(IB1,J1,9),
5 XC,YC,ZC )
CALL INFLUENCE(WDUB1,DSIG,XC,YC,ZC,
1 CR(IB1,J1,1),CR(IB1,J1,2),CR(IB1,J1,3),
2 CR(IB1,J1,4),CR(IB1,J1,5),CR(IB1,J1,6),
3 CR(IB1,J1,7),CR(IB1,J1,8),CR(IB1,J1,9),
4 CR(IB1,J1,10),CR(IB1,J1,11),CR(IB1,J1,12) )
DDUBJ(J1)=WDUB+WDUB1
DMU2=DDUBJ(J1)
ELSE
DMU2=0.0
ENDIF
IF(I1.EQ.IB) DMU2=-DDUBJ(J1)

C END OF WAKE INFLUENCE CALCULATION
C CONVERT COLLOCATION POINT TO PANEL COORDINATES

CALL CONVERT(QC(I1,J1,1),QC(I1,J1,2),QC(I1,J1,3),
1 QC(I,J,1),QC(I,J,2),QC(I,J,3),
2 DS(I1,J1,1),DS(I1,J1,2),DS(I1,J1,3),
3 DS(I1,J1,4),DS(I1,J1,5),DS(I1,J1,6),
4 DS(I1,J1,7),DS(I1,J1,8),DS(I1,J1,9),
5 XC,YC,ZC )
CALL INFLUENCE(DMU,DSIG,XC,YC,ZC,
1 CR(I1,J1,1),CR(I1,J1,2),CR(I1,J1,3),
2 CR(I1,J1,4),CR(I1,J1,5),CR(I1,J1,6),
3 CR(I1,J1,7),CR(I1,J1,8),CR(I1,J1,9),
4 CR(I1,J1,10),CR(I1,J1,11),CR(I1,J1,12) )
IF((I1.EQ.I).AND.(J1.EQ.J)) DMU=-0.5

C A PANEL INFLUENCE ON ITSELF IS DMU=1/2
C
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C ADD INFLUENCE OF WING'S IMAGE (OTHER HALF)

CALL CONVERT(QC(I1,J1,1),QC(I1,J1,2),QC(I1,J1,3),
1 QC(I,J,1),-QC(I,J,2),QC(I,J,3),
2 DS(I1,J1,1),DS(I1,J1,2),DS(I1,J1,3),
3 DS(I1,J1,4),DS(I1,J1,5),DS(I1,J1,6),
4 DS(I1,J1,7),DS(I1,J1,8),DS(I1,J1,9),
5 XC,YC,ZC )
CALL INFLUENCE(DMU1,DSIG1,XC,YC,ZC,
1 CR(I1,J1,1),CR(I1,J1,2),CR(I1,J1,3),
2 CR(I1,J1,4),CR(I1,J1,5),CR(I1,J1,6),
3 CR(I1,J1,7),CR(I1,J1,8),CR(I1,J1,9),
4 CR(I1,J1,10),CR(I1,J1,11),CR(I1,J1,12) )

C A(K,L) - IS THE INFLUENCE MATRIX COEFFICIENT
C

A(K,L)=DMU+DMU1-DMU2
RH=RH+(DSIG+DSIG1)*SIGMA(I1,J1)

10 CONTINUE
C
C CALCULATE RHS
C

RHS(K)=RH
14 CONTINUE
C
C SOLUTION OF THE PROBLEM: A(K,L)*DUB(K)=RHS(K)
C

K1=IB*JB
DO 15 K=1,K1

15 DUB1(K)=RHS(K)
CALL DECOMP(K1,260,A,IP)

16 CONTINUE
CALL SOLVER(K1,260,A,DUB1,IP)

C HERE * THE SAME ARRAY SIZE IS REQUIRED,
C AS SPECIFIED IN THE BEGINNING OF THE CODE
C
C WING DOUBLET LATTICE LISTING
C

K=0
DO 17 I=1,IB
DO 17 J=1,JB
K=K+1

17 DUB(I,J)=DUB1(K)
DO 18 J=1,JB

18 DUB(IB1,J)=DUB(1,J)-DUB(IB,J)
C
C ==================
C FORCES CALCULATION
C ==================
C

FL=0.
FD=0.
FM=0.
QUE=0.5*RO*VT*VT
DO 20 J=1,JB
DO 20 I=1,IB

C

I1=I-1
I2=I+1
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J1=J-1
J2=J+1
IF(I.EQ.1) I1=1
IF(I.EQ.IB) I2=IB
IF(J.EQ.1) J1=1
IF(J.EQ.JB) J2=JB

C CHORDWISE VELOCITY
XF=0.5*(QF(I+1,J,1)+QF(I+1,J+1,1))
YF=0.5*(QF(I+1,J,2)+QF(I+1,J+1,2))
ZF=0.5*(QF(I+1,J,3)+QF(I+1,J+1,3))
XR=0.5*(QF(I,J,1)+QF(I,J+1,1))
YR=0.5*(QF(I,J,2)+QF(I,J+1,2))
ZR=0.5*(QF(I,J,3)+QF(I,J+1,3))
DX2=QC(I2,J,1)-XF
DY2=QC(I2,J,2)-YF
DZ2=QC(I2,J,3)-ZF
DX3=QC(I1,J,1)-XR
DY3=QC(I1,J,2)-YR
DZ3=QC(I1,J,3)-ZR
DL1=SQRT((XF-XR)**2+(YF-YR)**2+(ZF-ZR)**2)
DL2=SQRT(DX2**2+DY2**2+DZ2**2)
DL3=SQRT(DX3**2+DY3**2+DZ3**2)
DLL=DL1+DL2+DL3
IF(I.EQ.1) DLL=DL1/2.0+DL2
IF(I.EQ.IB) DLL=DL1/2.0+DL3
QL=-(DUB(I2,J)-DUB(I1,J))/DLL

C SPANWISE VELOCITY
DX=QC(I,J2,1)-QC(I,J1,1)
DY=QC(I,J2,2)-QC(I,J1,2)
DZ=QC(I,J2,3)-QC(I,J1,3)
DR=SQRT(DX**2+DY**2+DZ**2)
QM=-(DUB(I,J2)-DUB(I,J1))/DR

C FIRST ORDER CORRECTION FOR PANEL SWEEP
QL=QL+QM*(DX**2+DZ**2)/DR
QM=QM*(DY**2+DZ**2)/DR
QINF=UT*DS(I,J,9)-WT*DS(I,J,7)
CP(I,J)=1.0-((QINF+QL)**2+QM**2)/(VT**2)
DL(I,J)=-CP(I,J)*DS(I,J,10)*DS(I,J,9)
DD(I,J)=CP(I,J)*DS(I,J,10)*DS(I,J,7)
FL=FL+DL(I,J)
FD=FD+DD(I,J)
FM=FM+DL(I,J)*QC(I,J,1)

20 CONTINUE
CL=FL/(QUE*S)
CD=FD/(QUE*S)
CM=FM/(QUE*S*CROOT)

C
C OUTPUT
C

WRITE(6,110)
DO 21 J=1,JB
DO 21 I=1,IB1

21 WRITE(6,105)I,J,QC(I,J,1),CP(I,J),DL(I,J),DD(I,J),DUB(I,J),
1 SIGMA(I,J)
WRITE(6,104) CL,FL,CM,CD

C
C END OF PROGRAM
100 CONTINUE
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C
C FORMATS
C
101 FORMAT(1H ,/,20X,'INTERNAL POTENTIAL BASED PANEL CODE',

1 /,20X,36('-'))
102 FORMAT(1H ,/,10X,'ALFA:',F10.2,8X,'B :',

1F10.2,8X,'C :',F13.2,/,10X,
2'S :',F10.2,8X,'AR :',F10.2,8X,'V(INF) :',F10.2,/,10X,
3'IB :',I10,8X,'JB :',I10,8X,/)

103 FORMAT(1H ,I3,' I ',F9.3,' II ',4(F9.3,' I '),' I ',4(F9.3,' I '))
104 FORMAT(/,1H ,'CL=',F10.4,2X,'L=',F10.4,4X,'CM=',F10.4,3X,

1'CD=',F10.4)
105 FORMAT(2I4,6F10.4)
110 FORMAT(/,1H ,2X,'I J',7X,'X',8X,'CP',8X,'DL',8X,'DD',7X,

1'DUB',6X,'SIGMA',/,68('='))
C

STOP
END

C
SUBROUTINE GRID
DIMENSION QF(22,14,3),QC(20,13,3),DS(20,13,10),SIGMA(20,13)
DIMENSION CR(21,13,12)
COMMON/NO1/ DS,CROOT,CTIP,XTIP,ZTIP,B,S,AR,IB,JB,PAY
COMMON/NO2/ QF,QC,CR,SIGMA,DXW,UT,WT

C
WRITE(6,9)

9 FORMAT( 1X,'AIRFOIL COORDINATES',/,1X,19('='),/,8X,'X Z')
READ(5,11) IB1
DO 10 I=1, IB1
READ(5,12) QF(I,1,1),QF(I,1,3)

10 WRITE(6,12) QF(I,1,1),QF(I,1,3)
11 FORMAT(I3)
12 FORMAT(3F10.4)
C IB: NO. OF CHORDWISE PANELS, JB: NO. OF SPANWISE PANELS

IB=IB1-1
IB2=IB1+1
JB1=JB+1

C
C CALCULATE PANEL CORNERPOINTS; QF(I,J,(X,Y,Z))
C

DO 3 J=1,JB1
Y=B/2.0/JB*(J-1)
DXLE=XTIP*2.0*Y/B
DZLE=ZTIP*2.0*Y/B
CHORD=CROOT-(CROOT-CTIP)*2.0*Y/B

C B - FULL SPAN, DXLE - LOCAL SWEEP
DO 1 I=1,IB1
QF(I,J,1)=QF(I,1,1)*CHORD+DXLE
QF(I,J,2)=Y
QF(I,J,3)=QF(I,1,3)*CHORD+DZLE

1 CONTINUE
C WAKE FAR FIELD POINTS (QF - IS IN BODY FRAME OF REFERENCE)

QF(IB2,J,1)=QF(IB1,J,1)+DXW
QF(IB2,J,2)=QF(IB1,J,2)
QF(IB2,J,3)=QF(IB1,J,3)

3 CONTINUE
C
C WING COLLOCATION POINTS
C
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DO 4 J=1,JB
DO 4 I=1,IB1
QC(I,J,1)=(QF(I,J,1)+QF(I,J+1,1)+QF(I+1,J+1,1)+QF(I+1,J,1))/4
QC(I,J,2)=(QF(I,J,2)+QF(I,J+1,2)+QF(I+1,J+1,2)+QF(I+1,J,2))/4
QC(I,J,3)=(QF(I,J,3)+QF(I,J+1,3)+QF(I+1,J+1,3)+QF(I+1,J,3))/4

C
C COMPUTATION OF CHORDWISE VECTORS DS(IJ,1,2,3),
C TANGENTIAL AND NORMAL VECTORS DS(IJ,4 TO 9), PANEL AREA DS(IJ,1-10)
C AND SOURCE STRENGTH (SIGMA)
C

CALL PANEL(QF(I,J,1),QF(I,J,2),QF(I,J,3),QF(I+1,J,1),QF(I+1,J,2),
1QF(I+1,J,3),QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),QF(I+1,J+1,1),
2QF(I+1,J+1,2),QF(I+1,J+1,3),DS(I,J,1),DS(I,J,2),DS(I,J,3),
3DS(I,J,4),DS(I,J,5),DS(I,J,6),DS(I,J,7),DS(I,J,8),DS(I,J,9),
4DS(I,J,10))

C
SIGMA(I,J)=DS(I,J,7)*UT+DS(I,J,9)*WT

4 CONTINUE
C
C B -IS FULL SPAN, C -ROOT CHORD, S - AREA

S=0.5*B*(CROOT+CTIP)
C=S/B
AR=B*B/S

C
C TRANSFORM THE 4 PANEL CORNER POINTS INTO PANEL FRAME OF REF.
C THIS IS NEEDED LATER TO CALCULATE THE INFLUENCE COEFFICIENTS

DO 5 J=1,JB
DO 5 I=1,IB1
CALL CONVERT(QC(I,J,1),QC(I,J,2),QC(I,J,3),
1 QF(I,J,1),QF(I,J,2),QF(I,J,3),
2 DS(I,J,1),DS(I,J,2),DS(I,J,3),
3 DS(I,J,4),DS(I,J,5),DS(I,J,6),
4 DS(I,J,7),DS(I,J,8),DS(I,J,9),
5 CR(I,J,1),CR(I,J,2),CR(I,J,3) )
CALL CONVERT(QC(I,J,1),QC(I,J,2),QC(I,J,3),
1 QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),
2 DS(I,J,1),DS(I,J,2),DS(I,J,3),
3 DS(I,J,4),DS(I,J,5),DS(I,J,6),
4 DS(I,J,7),DS(I,J,8),DS(I,J,9),
5 CR(I,J,4),CR(I,J,5),CR(I,J,6) )
CALL CONVERT(QC(I,J,1),QC(I,J,2),QC(I,J,3),
1 QF(I+1,J+1,1),QF(I+1,J+1,2),QF(I+1,J+1,3),
2 DS(I,J,1),DS(I,J,2),DS(I,J,3),
3 DS(I,J,4),DS(I,J,5),DS(I,J,6),
4 DS(I,J,7),DS(I,J,8),DS(I,J,9),
5 CR(I,J,7),CR(I,J,8),CR(I,J,9) )
CALL CONVERT(QC(I,J,1),QC(I,J,2),QC(I,J,3),
1 QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),
2 DS(I,J,1),DS(I,J,2),DS(I,J,3),
3 DS(I,J,4),DS(I,J,5),DS(I,J,6),
4 DS(I,J,7),DS(I,J,8),DS(I,J,9),
5 CR(I,J,10),CR(I,J,11),CR(I,J,12) )

5 CONTINUE
RETURN
END

C
SUBROUTINE PANEL(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4,C1,C2,C3,
1 T1,T2,T3,V1,V2,V3,S)

C X,Y,Z-PANEL CORNERPOINTS, C,T,V-CHORDWISE, TANGENTIAL, NORMAL VECTORS
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C FIRST CALCULATE CHORWISE VECTOR
A1=((X2+X4)-(X1+X3))/2.0
A2=((Y2+Y4)-(Y1+Y3))/2.0
A3=((Z2+Z4)-(Z1+Z3))/2.0
AA=SQRT(A1**2+A2**2+A3**2)
C1=A1/AA
C2=A2/AA
C3=A3/AA

C NEXT, ANOTHER VECTOR IN THIS PLANE
B1=X4-X1
B2=Y4-Y1
B3=Z4-Z1

C NORMAL VECTOR
V1=C2*B3-C3*B2
V2=B1*C3-C1*B3
V3=C1*B2-C2*B1
VV=SQRT(V1**2+V2**2+V3**2)
V1=V1/VV
V2=V2/VV
V3=V3/VV

C TANGENTIAL VECTOR
T1=V2*C3-V3*C2
T2=C1*V3-V1*C3
T3=V1*C2-V2*C1

C CALCULATION OF PANEL AREA
E1=X3-X1
E2=Y3-Y1
E3=Z3-Z1
F1=X2-X1
F2=Y2-Y1
F3=Z2-Z1

C NORMAL AREAS (F*B+B*E)
S11=F2*B3-F3*B2
S12=B1*F3-F1*B3
S13=F1*B2-F2*B1
S21=B2*E3-B3*E2
S22=E1*B3-B1*E3
S23=B1*E2-B2*E1
S=0.5*(SQRT(S11**2+S12**2+S13**2)+SQRT(S21**2+S22**2+S23**2))
RETURN
END

C
SUBROUTINE CONVERT(XO,YO,ZO,XB,YB,ZB,C1,C2,C3,T1,
*T2,T3,V1,V2,V3,XP,YP,ZP)

C TRANSFORMATION OF A FIELD POINT XB,YB,ZB INTO PANEL COORDINATES
C XO,YO,ZO - PANEL COLLOCATION POINT, C,T,V - ARE CHORDWISE,
C TANGENTIAL, AND NORMAL VECTORS

XP=(XB-XO)*C1+(YB-YO)*C2+(ZB-ZO)*C3
YP=(XB-XO)*T1+(YB-YO)*T2+(ZB-ZO)*T3
ZP=(XB-XO)*V1+(YB-YO)*V2+(ZB-ZO)*V3
RETURN
END

C
SUBROUTINE INFLUENCE(A,B,XC,YC,ZC,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,
1 X4,Y4,Z4)

C DOUBLET (A) AND SOURCE (B) INFLUENCE AT POINT (XC,YC,ZC) DUE TO PANEL
C (X1,Y1,Z1,...X4,Y4,Z4), SEE KATZ & PLOTKIN PP 283-6. BY M. VEST, 1993.

PI=3.141592653580732
EP=0.000001
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C EP, PANEL SIDE CUTOFF DISTANCE
C PANEL SIDE (D) DISTANCE (R), E, AND H (EQS. 10.90 & 10.92-10.94)

R1=SQRT((XC-X1)**2+(YC-Y1)**2+ZC**2)
R2=SQRT((XC-X2)**2+(YC-Y2)**2+ZC**2)
R3=SQRT((XC-X3)**2+(YC-Y3)**2+ZC**2)
R4=SQRT((XC-X4)**2+(YC-Y4)**2+ZC**2)

C
D1=SQRT((X2-X1)**2+(Y2-Y1)**2)
D2=SQRT((X3-X2)**2+(Y3-Y2)**2)
D3=SQRT((X4-X3)**2+(Y4-Y3)**2)
D4=SQRT((X1-X4)**2+(Y1-Y4)**2)

C
E1=(XC-X1)**2+ZC**2
E2=(XC-X2)**2+ZC**2
E3=(XC-X3)**2+ZC**2
E4=(XC-X4)**2+ZC**2

C
H1=(XC-X1)*(YC-Y1)
H2=(XC-X2)*(YC-Y2)
H3=(XC-X3)*(YC-Y3)
H4=(XC-X4)*(YC-Y4)

C
C SOURCE (S, B) AND DOUBLET (Q, A) INFLUENCE IN PANEL COORDINATES
C FOR TRIANGULAR PANEL THE 4TH SIDE CONTRIBUTION IS ZERO
C

IF (D1.LT.EP) THEN
S1=0.
Q1=0.

ELSE
F=(Y2-Y1)*E1-(X2-X1)*H1
G=(Y2-Y1)*E2-(X2-X1)*H2
Q1=ATAN2(ZC*(X2-X1)*(F*R2-G*R1),ZC**2*(X2-X1)**2*R1*R2+F*G)
S1=((XC-X1)*(Y2-Y1)-(YC-Y1)*(X2-X1))/D1*LOG((R1+R2+D1)/

* (R1+R2-D1))
ENDIF

C
IF (D2.LT.EP) THEN

S2=0.
Q2=0.

ELSE
F=(Y3-Y2)*E2-(X3-X2)*H2
G=(Y3-Y2)*E3-(X3-X2)*H3
Q2=ATAN2(ZC*(X3-X2)*(F*R3-G*R2),ZC**2*(X3-X2)**2*R2*R3+F*G)
S2=((XC-X2)*(Y3-Y2)-(YC-Y2)*(X3-X2))/D2*LOG((R2+R3+D2)/

* (R2+R3-D2))
ENDIF

C
IF (D3.LT.EP) THEN

S3=0.
Q3=0.

ELSE
F=(Y4-Y3)*E3-(X4-X3)*H3
G=(Y4-Y3)*E4-(X4-X3)*H4
Q3=ATAN2(ZC*(X4-X3)*(F*R4-G*R3),ZC**2*(X4-X3)**2*R3*R4+F*G)
S3=((XC-X3)*(Y4-Y3)-(YC-Y3)*(X4-X3))/D3*LOG((R3+R4+D3)/

* (R3+R4-D3))
ENDIF

C
IF (D4.LT.EP) THEN
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S4=0.
Q4=0.

ELSE
F=(Y1-Y4)*E4-(X1-X4)*H4
G=(Y1-Y4)*E1-(X1-X4)*H1
Q4=ATAN2(ZC*(X1-X4)*(F*R1-G*R4),ZC**2*(X1-X4)**2*R4*R1+F*G)
S4=((XC-X4)*(Y1-Y4)-(YC-Y4)*(X1-X4))/D4*LOG((R4+R1+D4)/

* (R4+R1-D4))
ENDIF

C
C ADD CONTRIBUTIONS FROM THE 4 SIDES
C

A=-(Q1+Q2+Q3+Q4)/4./PI ! times doublet strength
IF(ABS(ZC).LT.EP) A=0.
B=-(S1+S2+S3+S4)/4./PI-ZC*A ! times source strength
RETURN
END

C
C

SUBROUTINE DECOMP(N,NDIM,A,IP)
REAL A(NDIM,NDIM),T
INTEGER IP(NDIM)

C MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION.
C N = ORDER OF MATRIX. NDIM = DECLARED DIMENSION OF ARRAY A.
C A = MATRIX TO BE TRIANGULARIZED.
C IP(K) , K .LT. N = INDEX OF K-TH PIVOT ROW.
C

IP(N) = 1
DO 6 K = 1, N
IF(K.EQ.N) GOTO 5
KP1 = K + 1
M = K
DO 1 I = KP1, N
IF( ABS(A(I,K)).GT.ABS(A(M,K))) M=I

1 CONTINUE
IP(K) = M
IF(M.NE.K) IP(N) = -IP(N)
T = A(M,K)
A(M,K) = A(K,K)
A(K,K) = T
IF(T.EQ.0.E0) GO TO 5
DO 2 I = KP1, N

2 A(I,K) = -A(I,K)/T
DO 4 J = KP1, N
T = A(M,J)
A(M,J) = A(K,J)
A(K,J) = T
IF(T .EQ. 0.E0) GO TO 4
DO 3 I = KP1, N

3 A(I,J) = A(I,J) + A(I,K)*T
4 CONTINUE
5 IF(A(K,K) .EQ. 0.E0) IP(N) = 0
6 CONTINUE

RETURN
END

C
SUBROUTINE SOLVER(N,NDIM,A,B,IP)
REAL A(NDIM,NDIM), B(NDIM), T
INTEGER IP(NDIM)



P1: FCH

CB329-App-D CB329/Katz August 25, 2000 16:16 Char Count= 0

596 Appendix D / Sample Computer Programs

C SOLUTION OF LINEAR SYSTEM, A*X = B.
C N = ORDER OF MATRIX.
C NDIM = DECLARED DIMENSION OF THE ARRAY A.
C B = RIGHT HAND SIDE VECTOR.
C IP = PIVOT VECTOR OBTAINED FROM SUBROUTINE DECOMP.
C B = SOLUTION VECTOR, X.
C

IF(N.EQ.1) GOTO 9
NM1 = N - 1
DO 7 K = 1, NM1
KP1 = K + 1
M = IP(K)
T = B(M)
B(M) = B(K)
B(K) = T
DO 7 I = KP1, N

7 B(I) = B(I) + A(I,K)*T
DO 8 KB = 1, NM1
KM1 = N - KB
K = KM1 + 1
B(K) = B(K)/A(K,K)
T = -B(K)
DO 8 I = 1, KM1

8 B(I) = B(I) + A(I,K)*T
9 B(1) = B(1)/A(1,1)

RETURN
END

C TYPICAL INPUT FOR SUBROUTINE GRID

19 NACA 0012 AIRFOIL
1.000 0.000
0.905 -0.012
0.794 -0.026
0.655 -0.046
0.500 -0.058
0.345 -0.060
0.206 -0.050
0.095 -0.038
0.024 -0.021
0.000 0.000
0.024 0.021
0.095 0.038
0.206 0.050
0.345 0.060
0.500 0.058
0.655 0.046
0.794 0.026
0.905 0.012
1.000 0.000

C PROGRAM No. 15: SUDDEN ACCELERATION OF A FLAT PLATE (LUMPED VORTEX)
C -----------------------------------------------------------------

C TRANSIENT AERODYNAMIC OF A FLAT PLATE REPRESENTED BY A SINGLE LUMPED
C VORTEX ELEMENT (PREPARED AS A SOLUTION OF HOMEWORK PROBLEMS BY JOE
C KATZ, 1987).

DIMENSION VORTIC(50,3),UW(50,2)
C VORTIC(IT,X,Z,GAMMA)

COMMON/NO1/ IT,VORTIC
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C
NSTEP=20
PAY=3.141592654
RO=1.
UT=50.0
C=1.0
ALFA1=5.0
ALFA=ALFA1*PAY/180.0
SN=SIN(ALFA)
CS=COS(ALFA)
DT=C/UT/4.0
T=-DT
DXW=0.3*UT*DT
WRITE(6,11)

C
C PROGRAM START
C

DO 100 IT=1,NSTEP
T=T+DT

C PATH OF ORIGIN (SX,SZ)
SX=-UT*T
SZ=0.0

C SHEDDING OF WAKE POINTS
VORTIC(IT,1)=(C+DXW)*CS+SX
VORTIC(IT,2)=-(C+DXW)*SN+SZ

C
C CALCULATE MOMENTARY VORTEX STRENGTH OF WING AND WAKE VORTICES
C

A=-1/(PAY*C)
B=1/(2.0*PAY*(C/4.0+DXW))
RHS2=0.0
WWAKE=0.0
IF(IT.EQ.1) GOTO 2
IT1=IT-1

C CALCULATE WAKE INFLUENCE
XX1=0.75*C*CS+SX
ZZ1=-0.75*C*SN+SZ
CALL DWASH(XX1,ZZ1,1,IT1,U,W)
WWAKE=U*SN+W*CS

C CALCULATION OF RHS
DO 1 I=1,IT1

1 RHS2=RHS2-VORTIC(I,3)
2 CONTINUE

RHS1=-UT*SN-WWAKE
C SOLUTION (BASED ON ALGEBRAIC SOLUTION OF TWO EQUATIONS FOR GAMMAT
C AND THE LATEST WAKE VORTEX STRENGTH VORTIC(IT,3).

VORTIC(IT,3)=1/(B/A-1.0)*(RHS1/A-RHS2)
GAMMAT=RHS2-VORTIC(IT,3)

C
C WAKE ROLLUP
C

IF(IT.LT.1) GOTO 5
DO 3 I=1,IT
XX1=0.25*C*CS+SX
ZZ1=-0.25*C*SN+SZ
CALL VOR2D(VORTIC(I,1),VORTIC(I,2),XX1,ZZ1,GAMMAT,U,W)
CALL DWASH(VORTIC(I,1),VORTIC(I,2),1,IT,U1,W1)
U=U+U1
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W=W+W1
UW(I,1)=VORTIC(I,1)+U*DT
UW(I,2)=VORTIC(I,2)+W*DT

3 CONTINUE
DO 4 I=1,IT
VORTIC(I,1)=UW(I,1)

4 VORTIC(I,2)=UW(I,2)
5 CONTINUE

C
C AERODYNAMIC LOADS
C

IF(IT.EQ.1) GAMAT1=0.0
QUE=0.5*RO*UT*UT
DGAMDT=(GAMMAT-GAMAT1)/DT
GAMAT1=GAMMAT

C CALCULATE WAKE INDUCED DOWNWASH
XX1=0.75*C*CS+SX
ZZ1=-0.75*C*SN+SZ
CALL DWASH(XX1,ZZ1,1,IT,U,W)
WW=U*SN+W*CS
L=RO*(UT*GAMMAT+DGAMDT*C)
D=RO*(-WW*GAMMAT+DGAMDT*C*SN)
CL=L/QUE/C
CD=D/QUE/C

C
C OUTPUT
C

CLT=CL/(2.0*PAY*SN)
GAM1=GAMMAT/(PAY*UT*C*SN)
SX1=SX-UT*DT
WRITE(6,10) IT,SX1,CD,CL,GAM1,CLT

C
100 CONTINUE
10 FORMAT(I3,10F7.3)
11 FORMAT(' SUDDEN ACCELARATION OF A FLAT PLATE',/,38('='),//,

*' IT',4X,'SX',5X,'CD',5X,'CL',3X,'GAMMAT',3X,'CLT')
STOP
END

C
SUBROUTINE DWASH(X,Z,I1,I2,U,W)

C CALCULATES DOWNWASH INDUCED BY IT-1 WAKE VORTICES
DIMENSION VORTIC(50,3)
COMMON/NO1/ IT,VORTIC
U=0.0
W=0.0
DO 1 I=I1,I2
CALL VOR2D(X,Z,VORTIC(I,1),VORTIC(I,2),VORTIC(I,3),U1,W1)
U=U+U1
W=W+W1

1 CONTINUE
RETURN
END

C
SUBROUTINE VOR2D(X,Z,X1,Z1,GAMMA,U,W)

C CALCULATES INFLUENCE OF VORTEX AT (X1,Z1)
PAY=3.141592654
U=0.0
W=0.0
RX=X-X1
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RZ=Z-Z1
R=SQRT(RX**2+RZ**2)
IF(R.LT.0.001) GOTO 1
V=0.5/PAY*GAMMA/R
U=V*(RZ/R)
W=V*(-RX/R)

1 CONTINUE
RETURN
END

C PROGRAM No. 16: UNSTEADY RECTANGULAR LIFTING SURFACE (VLM)
C ----------------------------------------------------------

C THIS IS A 3-D LINEAR CODE FOR RECTANGULAR PLANFORMS (WITH GROUND EFFECT)
C IN UNSTEADY MOTION USING THE VORTEX LATTICE METHOD (BY JOE KATZ, 1975).

DIMENSION ALF(5),SNO(5),CSO(5),ALAM(4),GAMA1J(5)
DIMENSION QF(5,16,3),QC(4,13,3),BB(13),DLY(13)
DIMENSION GAMA(4,13),DL(4,13),DP(4,13),DS(4,13),DLT(4,13),DD(4,13)
DIMENSION A1(4,13),QW(50,14,3),VORTIC(50,13),UVW(50,14,3)
DIMENSION QW1(50,14,3),VORT1(50,13),US(13)
DIMENSION A(52,52),GAMA1(52),WW(52),DW(52),IP(52),ALAMDA(2)
DIMENSION WTS(4,13),X15(50),Y15(50),Y16(50),Y17(50),Z15(50)
COMMON VORTIC,QW,VORT1,QW1,QF,A1
COMMON IT,ALF,SNO,CSO,BB,QC,DS,ALAMDA,DXW
COMMON/NO1/ SX,SZ,CS1,SN1,GAMA
COMMON/NO2/ IB,JB,CH,SIGN
COMMON/NO3/ IW

C
C MODES OF OPERATION
C
C 1. STEADY STATE : SET DT=DX/VT*IB*10, AND NSTEPS=5
C 2. SUDDEN ACCELERATION : SET DT=DX/VT/4. AND NSTEPS= UP TO 50
C 3. HEAVING OSCILLATIONS: BH=HEAVING AMPL. OM= FREQ.
C 4. PITCH OSCILLATIONS : OMEGA=FREQUENCY, TETA=MOMENTARY ANGLE
C 5. FOR COMPUTATIONAL ECONOMY THE PARAMETER IW MIGHT BE USED
C NOTE; INDUCED DRAG CALCULATION INCREASES COMPUTATION TIME AND
C CAN BE DISCONNECTED.
C
C
C INPUT DATA
C

IB=4
JB=13
NSTEPS=50
NW=5
DO 100 IPROG=1,IPROG1

C NW - IS THE NUMBER OF (TIMEWISE) DEFORMING WAKE ELEMENTS.
C IB = NUMBER OF CHORDWISE PANELS, JB = NO. OF SPANWISE PANELS
C NSTEPS = NO. OF TIME STEPS.

PAY=3.141592654
RO=1.
BH=0.0
OM=0.0
VT=50.0
C=1.
B=6.0
DX=C/IB
DY=B/JB
CH=10000.*C
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C C=CHORD; C=ROOT CHORD, B=SEMI SPAN, DX,DY=PANEL DIMENSIONS,
C CH=GROUND CLEARANCE, VT=FAR FIELD VELOCITY.

ALFA1=5.0
ALFAO=0.0
ALFA=(ALFA1+ALFAO)*PAY/180.0
DO 2 I=1,IB

2 ALF(I)=0.
ALF(IB+1)=ALF(IB)

C ALF(IB+1) IS REQUIRED ONLY FOR QF(I,J,K) CALCULATION IN GEO.
ALAMDA(1)=90.*PAY/180.
ALAMDA(2)=ALAMDA(1)

C ALAMDA(I) ARE SWEP BACK ANGLES. (ALAMDA < 90, SWEEP BACKWARD).
DT=DX/VT/4.0
T=-DT

C TIME IN SECONDS
DXW=0.3*VT*DT
DO 3 J=1,JB

3 BB(J)=DY
C
C CONSTANTS
C

K=0
DO 1 I=1,IB
DO 1 J=1,JB
K=K+1
WW(K)=0.0
DLT(I,J)=0.0
VORTIC(I,J)=0.0
VORT1(I,J)=0.0

C GAMA(I,J)=1. IS REQUIRED FOR INFLUENCE MATRIX CALCULATIONS.
1 GAMA(I,J)=1.

C CALCULATION OF COLLOCATION POINTS.
C

CALL GEO(B,C,S,AR,IB,JB,DX,DY,0.0,ALFA)
C GEO CALCULATES WING COLLOCATION POINTS QC,AND VORTEX TIPS QF

WRITE(6,101)
ALAM1=ALAMDA(1)*180./PAY
ALAM2=ALAMDA(2)*180./PAY
WRITE(6,102) ALFA1,ALAM1,B,C,ALAM2,S,AR,IB,JB,CH
DO 31 I=1,IB
ALL=ALF(I)*180./PAY

31 WRITE(6,111) I,ALL
DO 4 I=1,JB,2

4 WRITE(6,105) I,BB(I)
IB1=IB+1
JB1=JB+1

C
C =============
C PROGRAM START
C =============
C
C

DO 100 IT=1,NSTEPS
C

T=T+DT
C
C PATH INFORMATION
C
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SX=-VT*T
DSX=-VT
CH1=CH
IF(CH.GT.100.0) CH1=0.0
SZ=BH*SIN(OM*T)+CH1
DSZ=BH*OM*COS(OM*T)

C DSX=DSX/DT DSZ=DSZ/DT
TETA=0.0
OMEGA=0.0
VT=-COS(TETA)*DSX-SIN(TETA)*DSZ
SN1=SIN(TETA)
CS1=COS(TETA)
WT=SN1*DSX-CS1*DSZ
DO 6 I=1,IB
SNO(I)=SIN(ALFA+ALF(I))

6 CSO(I)=COS(ALFA+ALF(I))
C
C ===========================
C VORTEX WAKE SHEDDING POINTS
C ===========================
C

DO 7 J=1,JB1
QW(IT,J,1)=QF(IB1,J,1)*CS1-QF(IB1,J,3)*SN1+SX
QW(IT,J,2)=QF(IB1,J,2)
QW(IT,J,3)=QF(IB1,J,1)*SN1+QF(IB1,J,3)*CS1+SZ

7 CONTINUE
C
C ========================
C AERODYNAMIC CALCULATIONS
C ========================
C
C INFLUENCE COEFFICIENTS CALCULATION

K=0
DO 14 I=1,IB
DO 14 J=1,JB
SIGN=0.0
K=K+1
IF(IT.GT.1) GOTO 12

C MATRIX COEFFICIENTS CALCULATION OCCURS ONLY ONCE FOR THE
C TIME-FIXED-GEOMETRY WING.

CALL WING(QC(I,J,1),QC(I,J,2),QC(I,J,3),GAMA,U,V,W)
L=0
DO 10 I1=1,IB
DO 10 J1=1,JB
L=L+1

C A(K,L) - IS THE NORMAL VELOCITY COMPONENT DUE TO A UNIT VORTEX
C LATTICE.
10 A(K,L)=A1(I1,J1)
C ADD INFLUENCE OF WING OTHER HALF PART

CALL WING(QC(I,J,1),-QC(I,J,2),QC(I,J,3),GAMA,U,V,W)
L=0
DO 11 I1=1,IB
DO 11 J1=1,JB
L=L+1

11 A(K,L)=A(K,L)+A1(I1,J1)
IF(CH.GT.100.0) GOTO 12

C ADD INFLUENCE OF MIRROR IMAGE.
SIGN=10.0
XX1=QC(I,J,1)*CS1-QC(I,J,3)*SN1+SX
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ZZ1=QC(I,J,1)*SN1+QC(I,J,3)*CS1+SZ
XX2=(XX1-SX)*CS1+(-ZZ1-SZ)*SN1
ZZ2=-(XX1-SX)*SN1+(-ZZ1-SZ)*CS1
CALL WING(XX2,QC(I,J,2),ZZ2,GAMA,U,V,W)
L=0
DO 8 I1=1,IB
DO 8 J1=1,JB
L=L+1

8 A(K,L)=A(K,L)+A1(I1,J1)
C ADD MIRROR IMAGE INFLUENCE OF WING'S OTHER HALF.

CALL WING(XX2,-QC(I,J,2),ZZ2,GAMA,U,V,W)
L=0
DO 9 I1=1,IB
DO 9 J1=1,JB
L=L+1

9 A(K,L)=A(K,L)+A1(I1,J1)
SIGN=0.0

12 CONTINUE
IF(IT.EQ.1) GOTO 13

C CALCULATE WAKE INFLUENCE
XX1=QC(I,J,1)*CS1-QC(I,J,3)*SN1+SX
ZZ1=QC(I,J,1)*SN1+QC(I,J,3)*CS1+SZ
CALL WAKE(XX1,QC(I,J,2),ZZ1,IT,U,V,W)
CALL WAKE(XX1,-QC(I,J,2),ZZ1,IT,U1,V1,W1)
IF(CH.GT.100) GOTO 121
CALL WAKE(XX1,QC(I,J,2),-ZZ1,IT,U2,V2,W2)
CALL WAKE(XX1,-QC(I,J,2),-ZZ1,IT,U3,V3,W3)
GOTO 122

121 U2=0.0
U3=0.0
V2=0.0
V3=0.0
W2=0.0
W3=0.0

122 CONTINUE
C WAKE INDUCED VELOCITY IS GIVEN IN INERTIAL FRAME

U=U+U1+U2+U3
W=W+W1-W2-W3
U11=U*CS1+W*SN1
W11=-U*SN1+W*CS1

C WW(K) IS THE PREPENDICULAR COMPONENT OF WAKE INFLUENCE TO WING.
WW(K)=U11*SNO(I)+W11*CSO(I)

13 CONTINUE
C
C CALCULATE WING GEOMETRICAL DOWNWASH
C

DW(K)=-VT*SNO(I)+QC(I,J,1)*OMEGA-WT
C FOR GENERAL MOTION DW(K)=-VT*SIN(ALFA)+OMEGA*X

WTS(I,J)=W11
C W11 - IS POSITIVE SINCE THE LATEST UNSTEADY WAKE ELEMENT IS
C INCLUDED IN SUBROUTINE WING
14 CONTINUE
C
C SOLUTION OF THE PROBLEM: DW(I)=WW(I)+A(I,J)*GAMA(I)
C

K1=IB*JB
DO 15 K=1,K1

15 GAMA1(K)=DW(K)-WW(K)
IF(IT.GT.1) GOTO 16
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C FOR NONVARIABLE WING GEOMETRY (WITH TIME), MATRIX INVERSION
C IS DONE ONLY ONCE.

CALL DECOMP(K1,52,A,IP)
16 CONTINUE

CALL SOLVER(K1,52,A,GAMA1,IP)
C HERE * THE SAME ARRAY SIZE IS REQUIRED,
C AS SPECIFIED IN THE BEGINNING OF THE CODE
C
C WING VORTEX LATTICE LISTING
C

K=0
DO 17 I=1,IB
DO 17 J=1,JB
K=K+1

17 GAMA(I,J)=GAMA1(K)
C
C WAKE SHEDDING
C

DO 171 J=1,JB
C LATEST WAKE ELEMENTS LISTING
162 VORTIC(IT,J)=GAMA(IB,J)

VORTIC(IT+1,J)=0.0
171 CONTINUE
C
C ===========================
C WAKE ROLLUP CALCULATION
C ===========================
C

IW=1
IF(IT.EQ.1) GOTO 193
IF(IT.GE.NW) IW=IT-NW+1

C NW IS THE NUMBER OF (TIMEWISE) DEFORMING WAKE ELEMENTS.
I1=IT-1
JS1=0
JS2=0
DO 18 I=IW,I1
DO 18 J=1,JB1
CALL VELOCE(QW(I,J,1),QW(I,J,2),QW(I,J,3),U,V,W,IT,JS1,JS2)
UVW(I,J,1)=U*DT
UVW(I,J,2)=V*DT
UVW(I,J,3)=W*DT

18 CONTINUE
C

DO 19 I=IW,I1
DO 19 J=1,JB1
QW(I,J,1)=QW(I,J,1)+UVW(I,J,1)
QW(I,J,2)=QW(I,J,2)+UVW(I,J,2)
QW(I,J,3)=QW(I,J,3)+UVW(I,J,3)

19 CONTINUE
C
193 CONTINUE
C
C ==================
C FORCES CALCULATION
C ==================
C

FL=0.
FD=0.
FM=0.
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FG=0.0
QUE=0.5*RO*VT*VT
DO 20 J=1,JB
SIGMA=0.
SIGMA1=0.0
DLY(J)=0.
DO 20 I=1,IB
IF(I.EQ.1) GAMAIJ=GAMA(I,J)
IF(I.GT.1) GAMAIJ=GAMA(I,J)-GAMA(I-1,J)
DXM=(QF(I,J,1)+QF(I,J+1,1))/2.

C DXM IS VORTEX DISTANCE FROM LEADING EDGE
SIGMA1=(0.5*GAMAIJ+SIGMA)*DX
SIGMA=GAMA(I,J)
DFDT=(SIGMA1-DLT(I,J))/DT

C DFDT IS THE VELOCITY POTENTIAL TIME DERIVATIVE
DLT(I,J)=SIGMA1
DL(I,J)=RO*(VT*GAMAIJ+DFDT)*BB(J)*CSO(I)

C INDUCED DRAG CALCULATION
CALL WINGL(QC(I,J,1),QC(I,J,2),QC(I,J,3),GAMA,U1,V1,W1)
CALL WINGL(QC(I,J,1),-QC(I,J,2),QC(I,J,3),GAMA,U2,V2,W2)
IF(CH.GT.100.0) GOTO 194
XX1=QC(I,J,1)*CS1-QC(I,J,3)*SN1+SX
ZZ1=QC(I,J,1)*SN1+QC(I,J,3)*CS1+SZ
XX2=(XX1-SX)*CS1+(-ZZ1-SZ)*SN1
ZZ2=-(XX1-SX)*SN1+(-ZZ1-SZ)*CS1
CALL WINGL(XX2,QC(I,J,2),ZZ2,GAMA,U3,V3,W3)
CALL WINGL(XX2,-QC(I,J,2),ZZ2,GAMA,U4,V4,W4)
GOTO 195

194 W3=0.
W4=0.

195 W8=W1+W2-W3-W4
C ADD INFLUENCE OF MIRROR IMAGE (GROUND).

CTS=-(WTS(I,J)+W8)/VT
DD1=RO*BB(J)*DFDT*SNO(I)
DD2=RO*BB(J)*VT*GAMAIJ*CTS
DD(I,J)=DD1+DD2

C
DP(I,J)=DL(I,J)/DS(I,J)/QUE
DLY(J)=DLY(J)+DL(I,J)
FL=FL+DL(I,J)
FD=FD+DD(I,J)
FM=FM+DL(I,J)*DXM
FG=FG+GAMAIJ*BB(J)

20 CONTINUE
CL=FL/(QUE*S)
CD=FD/(QUE*S)
CM=FM/(QUE*S*C)
CLOO=2.*PAY*ALFA/(1.+2./AR)
IF(ABS(CLOO).LT.1.E-20) CLOO=CL
CLT=CL/CLOO
CFG=FG/(0.5*VT*S)/CLOO

C
C ======
C OUTPUT
C ======
C
C PLACE PLOTTER OUTPUT HERE (e.g. T,SX,SZ,CL,CD,CM)
C
C OTHER OUTPUT
C
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WRITE(6,106) T,SX,SZ,VT,TETA,OMEGA
WRITE(6,104) CL,FL,CM,CD,CLT,CFG
I2=5
IF(IT.NE.I2) GOTO 100
WRITE(6,110)
DO 21 J=1,JB
DO 211 I=2,IB

211 GAMA1J(I)=GAMA(I,J)-GAMA(I-1,J)
DLYJ=DLY(J)/BB(J)

21 WRITE(6,103) J,DLYJ,DP(1,J),DP(2,J),DP(3,J),DP(4,J),GAMA(1,J),
1GAMA1J(2),GAMA1J(3),GAMA1J(4)
IF(IT.NE.I2) GOTO 100
WRITE(6,107)
DO 23 I=1,IT
WRITE(6,109) I,(VORTIC(I,K1),K1=1,13)
DO 23 J=1,3
WRITE(6,108) J,(QW(I,K,J),K=1,14)

23 CONTINUE
C
C END OF PROGRAM
100 CONTINUE
C
C FORMATS
C
101 FORMAT(1H ,/,20X,'WING LIFT DISTRIBUTION CALCULATION (WITH GROUND

1 EFFECT)',/,20X,56('-'))
102 FORMAT(1H ,/,10X,'ALFA:',F10.2,8X,'LAMDA(1) :',F10.2,8X,'B :',

1F10.2,8X,'C :',F13.2,/,33X,
2'LAMDA(2) :',F10.2,8X,'S :',F10.2,8X,'AR :',F13.2,/,33X,
3'IB :',I10,8X,'JB :',I10,8X,'L.E. HEIGHT:', F6.2,/)

103 FORMAT(1H ,I3,' I ',F9.3,' II ',4(F9.3,' I '),' I ',4(F9.3,' I '))
104 FORMAT(1H ,'CL=',F10.4,2X,'L=',F10.4,4X,'CM=',F10.4,3X,'CD=',F10.4

1,3X,'L/L(INF)=',F10.4,4X,'GAMA/GAMA(INF)=',F10.4,/)
105 FORMAT(1H ,9X,'BB(',I3,')=',F10.4)
106 FORMAT(1H ,/,' T=',F10.2,3X,'SX=',F10.2,3X,'SZ=',F10.2,3X,'VT=',

1F10.2,3X,'TETA= ',F10.2,6X,'OMEGA= ',F10.2)
107 FORMAT(1H ,//,' WAKE ELEMENTS,',//)
108 FORMAT(1H ,'QW(',I2,')=',22(F6.2))
109 FORMAT(1H ,' VORTIC(IT=',I3,')=',17(F6.3))
110 FORMAT(1H ,/,5X,'I DL',4X,'II',22X,'DCP',22X,'I I',25X,

1'GAMA',/,118('='),/,5X,'I',15X,'I= 1',11X,'2',11X,'3',11X,
2'4',5X,'I I',5X,'1',11X,'2',11X,'3',11X,'4',/,118('='))

111 FORMAT(1H ,9X,'ALF(',I2,')=',F10.4)
112 FORMAT(1H ,'QF(I=',I2,',J,X.Y.Z)= ',15(F6.1))
113 FORMAT(1H ,110('='))
C

STOP
END

C
C SUBROUTINE VORTEX(X,Y,Z,X1,Y1,Z1,X2,Y2,Z2,GAMA,U,V,W)
C USE THIS SUBROUTINE FROM PROGRAM NO. 13.
C

SUBROUTINE WAKE(X,Y,Z,IT,U,V,W)
DIMENSION VORTIC(50,13),QW(50,14,3)
COMMON VORTIC,QW
COMMON/NO2/ IB,JB,CH,SIGN
COMMON/NO3/ IW

C CALCULATES SEMI WAKE INDUCED VELOCITY AT POINT (X,Y,Z) AT T=IT*DT,
C IN THE INERTIAL FRAME OF REFERENCE
C
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U=0
V=0
W=0
I1=IT-1
DO 1 I=1,I1
DO 1 J=1,JB
VORTEK=VORTIC(I,J)
CALL VORTEX(X,Y,Z,QW(I,J,1),QW(I,J,2),QW(I,J,3),QW(I+1,J,1),
1QW(I+1,J,2),QW(I+1,J,3),VORTEK,U1,V1,W1)
CALL VORTEX(X,Y,Z,QW(I+1,J,1),QW(I+1,J,2),QW(I+1,J,3),QW(I+1,J+1,1
2),QW(I+1,J+1,2),QW(I+1,J+1,3),VORTEK,U2,V2,W2)
CALL VORTEX(X,Y,Z,QW(I+1,J+1,1),QW(I+1,J+1,2),QW(I+1,J+1,3),
3QW(I,J+1,1),QW(I,J+1,2),QW(I,J+1,3),VORTEK,U3,V3,W3)
CALL VORTEX(X,Y,Z,QW(I,J+1,1),QW(I,J+1,2),QW(I,J+1,3),QW(I,J,1),
4QW(I,J,2),QW(I,J,3),VORTEK,U4,V4,W4)
U=U+U1+U2+U3+U4
V=V+V1+V2+V3+V4
W=W+W1+W2+W3+W4

1 CONTINUE
RETURN
END

C
SUBROUTINE VELOCE(X,Y,Z,U,V,W,IT,JS1,JS2)
DIMENSION GAMA(4,13)
COMMON/NO1/ SX,SZ,CS1,SN1,GAMA
COMMON/NO2/ IB,JB,CH,SIGN

C SUBROUTINE VELOCE CALCULATES INDUCED VELOCITIES DUE TO THE WING
C AND ITS WAKES IN A POINT (X,Y,Z) GIVEN IN THE INERTIAL FRAME OF
C REFERENCE.
C

X1=(X-SX)*CS1+(Z-SZ)*SN1
Y1=Y
Z1=-(X-SX)*SN1+(Z-SZ)*CS1
CALL WAKE(X,Y,Z,IT,U1,V1,W1)
CALL WAKE(X,-Y,Z,IT,U2,V2,W2)
CALL WING(X1,Y1,Z1,GAMA,U3,V3,W3)
CALL WING(X1,-Y1,Z1,GAMA,U4,V4,W4)
U33=CS1*(U3+U4)-SN1*(W3+W4)
W33=SN1*(U3+U4)+CS1*(W3+W4)

C INFLUENCE OF MIRROR IMAGE
IF(CH.GT.100.0) GOTO 1
X2=(X-SX)*CS1+(-Z-SZ)*SN1
Z2=-(X-SX)*SN1+(-Z-SZ)*CS1
CALL WAKE(X,Y,-Z,IT,U5,V5,W5)
CALL WAKE(X,-Y,-Z,IT,U6,V6,W6)
CALL WING(X2,Y1,Z2,GAMA,U7,V7,W7)
CALL WING(X2,-Y1,Z2,GAMA,U8,V8,W8)
U77=CS1*(U7+U8)-SN1*(W7+W8)
W77=SN1*(U7+U8)+CS1*(W7+W8)
GOTO 2

1 CONTINUE
U5=0.0
U6=0.0
U77=0.0
V5=0.0
V6=0.0
V7=0.0
V8=0.0
W5=0.0
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W6=0.0
W77=0.0

2 CONTINUE
C VELOCITIES MEASURED IN INERTIAL FRAME

U=U1+U2+U33+U5+U6+U77
V=V1-V2+V3-V4+V5-V6+V7-V8
W=W1+W2+W33-W5-W6-W77
RETURN
END

C
SUBROUTINE WING(X,Y,Z,GAMA,U,V,W)
DIMENSION GAMA(4,13),QF(5,16,3),A1(4,13),VORTIC(50,13),QW(50,14,3)
DIMENSION ALF(5),SNO(5),CSO(5),VORT1(50,13),QW1(50,14,3)
COMMON VORTIC,QW,VORT1,QW1,QF,A1
COMMON IT,ALF,SNO,CSO
COMMON/NO2/ IB,JB,CH,SIGN

C
C CALCULATES SEMI WING INDUCED VELOCITY AT A POINT (X,Y,Z) DUE TO WI
C VORTICITY DISTRIBUTION GAMA(I,J) IN A WING FIXED COORDINATE SYSTE

U=0
V=0
W=0
DO 7 I=1,IB
DO 7 J=1,JB

C
CALL VORTEX(X,Y,Z,QF(I,J,1),QF(I,J,2),QF(I,J,3),QF(I,J+1,1),QF(I,J
1+1,2),QF(I,J+1,3),GAMA(I,J),U1,V1,W1)
CALL VORTEX(X,Y,Z,QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),QF(I+1,J+1,1
2),QF(I+1,J+1,2),QF(I+1,J+1,3),GAMA(I,J),U2,V2,W2)
CALL VORTEX(X,Y,Z,QF(I+1,J+1,1),QF(I+1,J+1,2),QF(I+1,J+1,3),
3QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),GAMA(I,J),U3,V3,W3)
CALL VORTEX(X,Y,Z,QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),QF(I,J,1),
4QF(I,J,2),QF(I,J,3),GAMA(I,J),U4,V4,W4)

C
U0=U1+U2+U3+U4
V0=V1+V2+V3+V4
W0=W1+W2+W3+W4
A1(I,J)=U0*SNO(I)+W0*CSO(I)
IF(SIGN.GE.1.0) A1(I,J)=U0*SNO(I)-W0*CSO(I)
U=U+U0
V=V+V0
W=W+W0

C
7 CONTINUE

RETURN
END

C
SUBROUTINE WINGL(X,Y,Z,GAMA,U,V,W)
DIMENSION GAMA(4,13),QF(5,16,3),A1(4,13),VORTIC(50,13),QW(50,14,3)
DIMENSION ALF(5),SNO(5),CSO(5),VORT1(50,13),QW1(50,14,3)
COMMON VORTIC,QW,VORT1,QW1,QF,A1
COMMON IT,ALF,SNO,CSO
COMMON/NO2/ IB,JB,CH,SIGN

C
C CALCULATES INDUCED VELOCITY AT A POINT (X,Y,Z) DUE TO LONGITUDINAL
C VORTICITY DISTRIBUTION GAMAX(I,J) ONLY(SEMI-SPAN), IN A WING FIXED
C COORDINATE SYSTEM + (T.E. UNSTEADY VORTEX).
C ** SERVES FOR INDUCED DRAG CALCULATION ONLY **
C
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U=0.
V=0.
W=0.
DO 7 I=1,IB
DO 7 J=1,JB

C
CALL VORTEX(X,Y,Z,QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),QF(I+1,J+1,1
2),QF(I+1,J+1,2),QF(I+1,J+1,3),GAMA(I,J),U2,V2,W2)
CALL VORTEX(X,Y,Z,QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),QF(I,J,1),
4QF(I,J,2),QF(I,J,3),GAMA(I,J),U4,V4,W4)

C
U=U+U2+U4
V=V+V2+V4
W=W+W2+W4

7 CONTINUE
C
C ADD INFLUENCE OF LATEST UNSTEADY WAKE ELEMENT:

I=IB
DO 8 J=1,JB
CALL VORTEX(X,Y,Z,QF(I+1,J+1,1),QF(I+1,J+1,2),QF(I+1,J+1,3),
3QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),GAMA(I,J),U3,V3,W3)
U=U+U3
V=V+V3
W=W+W3

8 CONTINUE
C

RETURN
END

C
SUBROUTINE GEO(B,C,S,AR,IB,JB,DX,DY,DGAP,ALFA)
DIMENSION BB(13),ALF(5),SN(5),CS(5),SNO(5),CSO(5)
DIMENSION QF(5,16,3),QC(4,13,3),DS(4,13)
DIMENSION VORTIC(50,13),QW(50,14,3),A1(4,13),ALAMDA(2)
DIMENSION VORT1(50,13),QW1(50,14,3)
COMMON VORTIC,QW,VORT1,QW1,QF,A1
COMMON IT,ALF,SNO,CSO,BB,QC,DS,ALAMDA,DXW

C
PAY=3.141592654

C IB:NO. OF CHORDWISE BOXES, JB:NO. OF SPANWISE BOXES
IB1=IB+1
JB1=JB+1
DO 2 I=1,IB1
SN(I)=SIN(ALF(I))

2 CS(I)=COS(ALF(I))
CTG1=TAN(PAY/2.-ALAMDA(1))
CTG2=TAN(PAY/2.-ALAMDA(2))
CTIP=C+B*(CTG2-CTG1)
S=B*(C+CTIP)/2.
AR=2.*B*B/S

C
C WING FIXED VORTICES LOCATION ( QF(I,J,(X,Y,Z))...)
C

BJ=0.
DO 3 J=1,JB1
IF(J.GT.1) BJ=BJ+BB(J-1)
Z1=0.
DC1=BJ*CTG1
DC2=BJ*CTG2
DX1=(C+DC2-DC1)/IB



P1: FCH

CB329-App-D CB329/Katz August 25, 2000 16:16 Char Count= 0

D.3 Time-Dependent Programs 609

C DC1=LEADING EDGE X, DC2=TRAILING EDGE X
DO 1 I=1,IB
QF(I,J,1)=DC1+DX1*(I-0.75)
QF(I,J,2)=BJ
QF(I,J,3)=Z1-0.25*DX1*SN(I)

1 Z1=Z1-DX1*SN(I)
C THE FOLLOWING LINES ARE DUE TO WAKE DISTANCE FROM TRAILING EDGE

QF(IB1,J,1)=C+DC2+DXW
QF(IB1,J,2)=QF(IB,J,2)

3 QF(IB1,J,3)=Z1-DXW*SN(IB)
C
C WING COLLOCATION POINTS
C

DO 4 J=1,JB
Z1=0.
BJ=QF(1,J,2)+BB(J)/2.
DC1=BJ*CTG1
DC2=BJ*CTG2
DX1=(C+DC2-DC1)/IB
DO 4 I=1,IB
QC(I,J,1)=DC1+DX1*(I-0.25)
QC(I,J,2)=BJ
QC(I,J,3)=Z1-0.75*DX1*SN(I)
Z1=Z1-DX1*SN(I)

4 DS(I,J)=DX1*BB(J)
C
C ROTATION OF WING POINTS DUE TO ALFA
C

SN1=SIN(-ALFA)
CS1=COS(-ALFA)
DO 6 I=1,IB1
DO 6 J=1,JB1
QF1=QF(I,J,1)
QF(I,J,1)=QF1*CS1-QF(I,J,3)*SN1
QF(I,J,3)=QF1*SN1+QF(I,J,3)*CS1
IF((I.EQ.IB1).OR.(J.GE.JB1)) GOTO 6
QC1=QC(I,J,1)
QC(I,J,1)=QC1*CS1-QC(I,J,3)*SN1
QC(I,J,3)=QC1*SN1+QC(I,J,3)*CS1

6 CONTINUE
C

RETURN
END

C
C THE FOLLOWING SUBROUTINES ARE LISTED WITH THE STEADY STATE
C VORTEX LATTICE SOLVER (PROGRAM No. 13).
C
C SUBROUTINE VORTEX(X,Y,Z,X1,Y1,Z1,X2,Y2,Z2,GAMA,U,V,W)

C SUBROUTINE DECOMP(N,NDIM,A,IP)

C SUBROUTINE SOLVER(N,NDIM,A,B,IP)
C
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Index

Acceleration of fluid particle, 9
Added mass, 192–194, 385–387, 398
Aerodynamic center, 110
Aerodynamic loads, 85–87
Aerodynamic twist, 181
Airfoil

circular arc, 134–135, 138–139
Joukowski, 135–137, 139–140
multielement, 311–312
NACA nomenclature, 499
van de Vooren, 137–138, 140–141

Angle of attack
definition, 75
effective, 171–172
induced, 171–172
zero lift, 109

Angular velocity, 21–22
Aspect ratio, 175

Barrier, 29
Bernoulli’s equation, 28–29
Biot-Savart Law, 36–41
Blasius formula, 128
Body forces, 7
Bound vortex, 89–90
Boundary conditions

Dirichlet, 49, 208–209
inviscid flow, 18, 27–28
Neumann, 49, 207–208
no slip, 11
small-disturbance, 76–78
solid surface, 11
unsteady flow, 372–373

Boundary layer (Laminar)
Blasius solution, 461–463
classical equations, 18–19, 448–452
displacement thickness, 454–455
far wake solution, 472–473
friction coefficient, 465
Goldstein singularity, 471–472
integral kinetic energy equation, 474
integral kinetic energy shape factor equation,

474–475
Karman-Pohlhausen method, 468–469
momentum thickness, 465
second-order equations, 452–456
shape factor, 465
similar solutions, 457–459

stagnation point solution, 461–462
Thwaites method, 469–471
viscous-inviscid interaction, 475–480
von Karman integral momentum equation, 463–467

Camber function, 78
Canard, 485–486
Cauchy integral theorum, 123
Cauchy principal value, 98
Cauchy-Riemann conditions, 42, 123
Center of pressure, 109
Circular cylinder flow

lifting, 65–66
non-lifting, 62–65

Circulation
definition, 23
rate of change, 25–26

Collocation point, 115
Complex plane, 142
Complex variable approach

circle plane, 128–130
complex potential, 125–126
complex velocity, 126
conformal mapping, 125, 128
Joukowski transformation, 128–137
van de Vooren airfoil, 137–138

Composite expansion, 161–162
Compressibility, 19, 90–92, 226–227
Coning motion, 443–445, 527–528
Continuity equation, 7–9, 11–12
Coordinate systems

cartesian, 1
cylindrical, 11
spherical, 12

Corner, flow in, 55–56, 127
Cosine panel spacing, 277–278
Crossflow plane, 185
Crow instability, 486–487
Cusped trailing edge, 137, 211–212, 325–327

d’Alembert’s paradox, 107–108
Del (gradient) operator

cartesian coordinates, 8
cylindrical coordinates, 11
definition, 8
spherical coordinates, 12

Delta wing, 192, 404–407, 516–523
Dihedral, 350–351
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Dimensional analysis, 17–19
Dirichlet boundary condition, 49, 208–209
Divergence theorem, 8
Divergence, vector field

cartesian coordinates, 9
cylindrical coordinates, 12
spherical coordinates, 12

Doublet
distribution, 47–48, 72, 235–236,

239–241, 242–244
quadrilateral, 247–250
three-dimensional, 47–48, 51–54
two-dimensional, 48, 57–58, 231

Downwash
definition, 170–171
lifting-line, 169–172

Drag
definition, 86
friction drag, 506
induced drag, 173–175, 201–204

Drag coefficient, 69, 87

Effective angle of attack, 171–172
Ellipse, flow past, 99–100
Elliptic lift distribution, 173–178
Euler angles, 369
Euler equation, 11
Euler number, 16
Eulerian method, 1

Flap, 113–114, 298, 501–505
Flat plate

airfoil, 110–112, 130–131
in normal flow, 133–134
oscillation of, 396–399
sudden acceleration of, 381–387

Flow similarity, 19
Fluid element, 1, 5
Force, 4–6
Fourier series, 106
Free stream, 54
Free-surface flows, 530–533
Froude number, 15–16
Fuselage, effect on lift, 360–361

Gap, effect on wing, 364–366
Geometric twist, 181
Glauert integral, 98
Green’s theorem, identity, 30, 44–45
Ground effect

inclusion in computation scheme, 338–340
lumped vortex, 116–118
rectangular wings, 350
unsteady flow, 431, 433

Helmholtz vortex theorems, 34
Horseshoe vortex, 168–171, 256–258

Images, method of
circle, 144–146
parallel walls, 142–144
plane wall, 141–142

Incompressible fluid, 9
Induced angle of attack, 171–172
Induced drag, 173–175, 201–204, 336–338, 346–347
Infinity condition, 28
Influence coefficient definition, 214
Irrotational flow, 23

Jones, R. T., method of, 192–194
Joukowski transformation, 128–137

Kelvin theorem, 25–26
Kinematic viscosity, 16
Kutta condition, 88–89, 209–213, 375–376, 416–419
Kutta-Joukowski theorem, 66–67, 128

generalized, 146–149

Lagrangian method, 2
Laminar bubble, 496, 499
Laplace’s equation

cylindrical coordinates, 11
definition, 27
spherical coordinates, 12

Leading edge separation, 496, 516–528
Leading edge suction, 107–108, 131–133
Lift, 86
Lift coefficient

definition, 69, 87
for finite wings, 175
maximum, 497, 504
for thin airfoils, 109

Lift slope, 109–110, 175–176
Lifting line, 167–183, 331–338
Lifting surface, 82–85

numerical, 340–351
unsteady, 479–491

Local (leading edge) solution, 157–160
Lumped vortex element, 134–135

Mach number, 16
Mapping, 125
Matched asymptotic expansions, 160–163
Material derivative, 9, 11–12
Milne-Thomson circle theorem, 144–146
Moment coefficient, 87
Momentum equation, 7–13
Multielement wing, 363–364, 501–504

Navier-Stokes equations, 10–13
Neumann boundary condition, 30, 49, 207–208
Newton’s second law, 7, 10
Normal force, 86
Normal stress, 6
No-slip condition, 11
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Panel methods, 206–226, 262–367
Parabolic arc airfoil, 112–113, 268–270
Pathlines, 3
Perturbation methods, 151–166
Poisson’s equation, 36
Prandtl-Glauert rule, 91–92
Pressure, 6
Pressure coefficient, 16, 430
Propulsion effects, 528–530

Rankine’s oval, 60–62
Reduced frequency, 373, 418–419
Residue theorem, 124
Reynold’s number, 16
Rotor, 379, 504–506

Separated flow, 69, 508–516
Separation point, 509, 511
Shear stress, 6
Side force, 86
Similarity of flow, 19
Slat, 534–535
Slender body theory, 195–201
Slender wing theory, 184–195

in unsteady motion, 400–407
Source

distribution, 47–48, 70–72, 233–234,
238–239

quadrilateral, 245–247
three-dimensional, 47–51
two-dimensional, 48, 56–57, 230–231

Sphere, flow past, 67–69
Stagnation flow, 55–56
Stagnation point, 56
Stall, 536–537, 542
Starting vortex, 168, 364–365
Stokes theorem, 22
Streak lines, 3
Stream function, 41–43
Streamline, 3–4
Stress vector, 4–6
Strouhal number, 15, 539
Sudden acceleration

flat plate, 381–387
rectangular wing, 429–431

Superposition principle, 60
Surface forces, 4

Swept wings, 347–349
Symmetric airfoil, 94–100
Symmetric wing, 79–82

Tandem airfoils, 116
Tangential stress, 6
Taper ratio, 349–350
Theodorsen lift deficiency function, 398–399
Thickness function, 78
Thin-airfoil theory, 94–121
Transition, 523, 526
Transpiration velocity, 227–228, 476, 491–492
Trefftz plane, 202–204
Turbulent boundary layer, 487–495
Twist, 172, 181–183

Uniqueness of solution of Laplace’s equation,
30–32

van de Vooren airfoil, 137–138, 140–141
Velocity, 1–2
Velocity potential, 26

perturbation, 77
total, 77

Viscosity coefficient, 6
Vortex

Asymmetry, 520–522
Burst (breakup), 520–522
core, 36, 254–255
distribution, 73, 236–237, 241–242
filament, 32–34
horseshoe, 168–171, 296–297
irrotational, 36, 58–60
lift, 517–522
line, 32, 38–41, 251–255
ring, 250–251, 255–256
two-dimensional, 34–36, 231–232

Vorticity
definition, 22
rate of change, 24–25

Wake, 83–85, 87–90, 364, 508–509
Wake rollup, 483–487, 512–514
Wind tunnel wall interference, 118–119, 163–165,

363–364, 530

Zero-lift angle of attack, 109
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