
ar
X

iv
:1

21
2.

52
79

v2
  [

m
at

h.
Q

A
] 

 1
7 

Ju
l 2

01
3

LIFTING VIA COCYCLE DEFORMATION

NICOLÁS ANDRUSKIEWITSCH; IVÁN ANGIONO; AGUSTÍN GARCÍA IGLESIAS;
AKIRA MASUOKA; CRISTIAN VAY

Abstract. We develop a strategy to compute all liftings of a Nichols
algebra over a finite dimensional cosemisimple Hopf algebra. We pro-
duce them as cocycle deformations of the bosonization of these two. In
parallel, we study the shape of any such lifting.

1. Introduction

Let A be a finite-dimensional Hopf algebra whose coradical is a Hopf
subalgebra H. Then the graded algebra associated to the coradical filtration
of A is again a Hopf algebra, which is given by a smash product grA ≃
R#H, for R =

⊕
n≥0R

n a graded Hopf algebra in H
HYD, the category of

Yetter-Drinfeld modules over H. Let V = R1, then the subalgebra of R
generated by V is the Nichols algebra B(V ) [AS2]; this is a braided Hopf
algebra in H

HYD which is also defined for every V ∈ H
HYD by a universal

quotient T (V )/J (V ), for J (V ) an ideal generated by homogeneous elements
of degree ≥ 2.

If grA = B(V )#H, then A is called a lifting or deformation of B(V ) (over
H). Hence, deformations of B(V ) give rise to new examples of Hopf algebras.
Moreover, there are classes of Hopf algebras (as pointed Hopf algebras over
abelian groups) in which every example arises as such a deformation.

1.1. The problem. In this article, we develop a strategy to compute all
the liftings or deformations of a Nichols algebra. More precisely, we consider

a Hopf algebra H which is finite-dimensional and cosemisimple;(1.1)

V ∈ H
HYD such that dimV <∞ and J (V ) is finitely generated.(1.2)

The problem is to describe all Hopf algebras A such that

grA ≃ B(V )#H.(1.3)

Notice that the coradical of A is isomorphic to H by (1.3), see [AS2]. This
problem is one of the steps in the Lifting Method [AS1, AS2], see also the
generalization proposed in [AC]. To deal with it, we split it into two parts:

(a) To detect the shape of all possible deformations.
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(b) To show that these proposed deformations actually are so.

Problem (a) is usually taken by examination of the comodule structure
of the first term of the coradical filtration, what would give possible defor-
mations by defining relations, see Section 4.

However it is not apparent that the proposed deformations have the de-
sired property; namely, such deformation A would bear an epimorphism
B(V )#H ։ grA but whether this is an isomorphism requires an extra rea-
soning. This is Problem (b) and there have been different approaches to
face up to it: the Diamond Lemma [AS1, AG2, AV1]; a reduction to the
first term of the coradical filtration followed by some representation the-
ory, assuming that the Nichols algebra is quadratic [GGI]; a combination of
deformation by cocycles and an examination of the PBW basis [AS3].

We briefly recall this last approach highlighting some features that are
present in the strategy below; see loc. cit. for more details and undefined
notation. There, H is assumed to be the group algebra of a finite abelian
group Γ (with some restrictions on the order) and V ∈ H

HYD has a finite-
dimensional Nichols algebra; therefore, by the restrictions alluded to, V is
of Cartan type and gives rise to a Dynkin diagram ∆. The defining ideal
J (V ) is generated by three kind of relations:

(i) Serre relations in the same connected component of ∆,
(ii) Serre relations between vertices in different connected components,
(iii) powers of root vectors.

It is then shown that in any deformation A the Serre relations in the same
connected component still hold, and the other relations deform respectively
to the so-called linking relations, controlled by a family of parameters λ, and
the so-called power of root vector relations, controlled by a second family of
parameters µ. Hence the A should be of the form u(D,λ,µ) = T (V )#H/J ,
where the ideal J is generated by:

(i) Serre relations (in the same connected component),
(ii) linking relations,
(iii) power of root vector relations.

To show that u(D,λ,µ) has the desired dimension dimB(V )|Γ|, the proce-
dure in [AS3] goes as follows.

(a) Let U(D,λ) = T (V )#H/J0, where the ideal J0 is generated by
the Serre relations (in the same connected component) and the link-
ing relations. Then U(D,λ) has the “right” basis; it is proved by
induction on the number of connected components, via cocycle de-
formation in the inductive step.

(b) Finally, u(D,λ) = U(D,λ)/J1, where J1 is generated by the power
of root vector relations, has the right dimension by a delicate argu-
ment using centrality of these last relations in U(D,λ).

1.2. The background. The family of Hopf algebras u(D,λ,µ) contains the
liftings of quantum linear spaces defined in [AS1]. It was shown in [Ma2]
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that these liftings of quantum linear spaces are cocycle deformations of their
associated graded Hopf algebras. Further work in this direction was done
in [D, BDR, GrM]; in this last paper it was stated that any Hopf algebra
u(D,λ,µ) is a cocycle deformation of its associated graded Hopf algebra,
but the argument had a gap and a complete proof was given in [Ma4].

The result in [Ma4] is first extended to the non-abelian case in [GIM]
where it is shown that every finite-dimensional pointed Hopf algebra H over
S3 or S4 is again a cocycle deformation of grH. In [AV2] it is shown that
this is also the case for finite-dimensional copointed Hopf algebras over S3.
Also, in [GIV] this is shown for some pointed or copointed Hopf algebras
associated to affine racks. In all of these papers the results are achieved by
computing Hopf biGalois objects. In [GM], the authors pick up the work
in [GrM] to explicitly compute cocycles as exponentials of Hochschild 2-
cocycles. They show that every finite-dimensional pointed Hopf algebra H
over the dihedral groups D4t is a cocycle deformation of grH.

1.3. The strategy. In the present paper, we propose to reverse the order
and start by computing all cocycle deformations following ideas in [Ma4].
Observe that, since a deformation by cocycle affects only the multiplica-
tion, the coradical filtration of a cocycle deformation A of B(V )#H remains
unchanged, hence it is isomorphic to B(V )#H as coalgebras. Also, it is
possible to decide when A is a lifting of B(V ) over H.

Set T (V ) = T (V )#H, H = B(V )#H. Our strategy is as follows:

(a) We decompose a minimal set of generators of the ideal defining B(V )
and recover H as the last link in a chain of subsequent quotients
T (V ) ։ B1#H ։ · · · ։ Bn#H ։ H. We choose this decomposi-
tion in such a way that every intermediate quotient is achieved by
dividing by primitive elements in Bi, i = 1, . . . , n.

(b) At each step, we compute the Galois objects of Hi+1 as quotients of
the Galois objects of Hi, following the results in [Gu]. We start with
the trivial Galois object for T (V ). In the final step, we have a set
Λ of Galois objects of H and hence a list of cocycle deformations L,
which arise as L ≃ L(A,H), for A ∈ Λ as in [S1].

(c) We check that any lifting is obtained as one of these deformations.

The paper is organized as follows: In Section 2 we fix the notation and
introduce the preliminaries on Hopf algebras, Nichols algebras, cocycles and
Hopf Galois objects. In Section 3 we recall the two theorems in [Gu] about
cleft and Galois objects of quotient Hopf algebras and study the validity of
the hypotheses of these results in order to apply them in our context. In
Section 4 we investigate the shape of any lifting candidate of a Nichols alge-
bra B(V ). We also study this problem in the opposite sense, that is to say
we investigate the shape of the graded algebra associated to a deformation.
Finally, in Section 5 we present our strategy to compute all cocycle defor-
mations of B(V )#H. As an illustration, we apply it to classify all liftings
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of a Nichols algebra associated to an example with diagonal braiding. We
end this article with a question related to the extent of this strategy.

2. Conventions and preliminaries

2.1. Conventions. The base field, denoted by k, is assumed to be alge-

braically closed. Let G be a group; then Z(G), resp. Ĝ, denotes its center,

resp. the group of multiplicative characters. If χ ∈ Ĝ and V is a G-module,
then V χ denotes the isotypic component of V of type χ. Let A be a k-algebra
and S ⊂ A a subset. Then we denote by Z(A) the center of A, by 〈S〉 (or
〈S〉A if an explicit mention to A is needed) the two-sided ideal generated by
S and by k〈S〉 the subalgebra generated by S.

Let H be a Hopf algebra. We will use the (summation free) Sweedler’s
notation for the comultiplication ∆, ε will denote the counit and S the
antipode. Where needed, we stress the connection with H by a subscript H,
e.g. ∆H . We denote byH[0] the coradical ofH and by (H[n])n∈N the coradical
filtration; G(H) is the group of group-like elements. For g, h ∈ G(H), we
denote by Pg,h(H) = {u ∈ H : ∆(u) = u⊗ h+ g⊗ u} the set of (g, h) skew-
primitive elements in H; P(H) = P1,1(H) for short. If A is a right (resp.
left) H-comodule algebra, then AcoH (resp. coHA) denotes the subalgebra
of right (resp. left) coinvariants. The right adjoint action of H on itself is

adr(h)(b) = S(h(1))bh(2), b, h ∈ H.(2.1)

Right, resp. left, coactions are denoted by ρ, resp. λ. We shall also use
the Sweedler’s notation for coactions.

Given a Hopf algebra H with bijective antipode, we denote by H
HYD, resp.

YDH
H , the category of left, resp. right, Yetter-Drinfeld modules over H. If

K ⊆ H is a Hopf subalgebra, then YDH
K is the category whose objects areH-

comodules and K-modules, with the compatibility inherited from YDH
H , and

H-colinear, K-linear morphisms. We refer to [Mo] for unexplained notation
and notions about Hopf algebras.

We say that (g, χ), with g ∈ G(H) and χ ∈ Alg(H,k), is a YD-pair when
the following equivalent conditions hold for all h ∈ H:

χ(h) g = χ(h(2))h(1) g S(h(3)) ⇐⇒ χ(h(1)) g h(2) = h(1) g χ(h(2)).(2.2)

In particular, such g should belong to Z(G(H)). If (g, χ) is a YD-pair,
then k

χ
g denotes the vector space k with coaction x 7→ g ⊗ x and action

h·x = χ(h)x, for x ∈ k, h ∈ H; (2.2) guarantees that kχg ∈ H
HYD. Conversely,

any one-dimensional Yetter-Drinfeld module over H arises in this way. If
V ∈ H

HYD, then V χ
g denotes the isotypic component of V of type k

χ
g .

We refer to [M, EGNO, Mü] for details about braided Hopf algebras, that
is Hopf algebras in braided tensor categories. Recall that a Nichols algebra
B(V ) =

⊕
n≥0 B

n(V ) is a graded braided Hopf algebra in H
HYD generated

by V = B1(V ) that coincides with the space P(B(V )) of primitive elements
in B(V ). We denote by J (V ) =

⊕
n≥2 J

n(V ) the defining ideal of B(V ),
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i.e. B(V ) = T (V )/J (V ). See [AS2] for more details. A pre-Nichols algebra
is an intermediate graded braided Hopf algebra between T (V ) and B(V ),
see [Ma4].

2.2. Cocycles. Let H be a Hopf algebra. A 2-cocycle σ : H ⊗H → k is a
convolution-invertible linear map h⊗ k 7→ σ(h, k) satisfying, for x, y, z ∈ H,

σ(x, 1) = σ(1, x) = ε(x) and(2.3)

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)).(2.4)

Let σ be a 2-cocycle. Then ·σ : H ⊗H → H, given by

x ·σ y = σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3)), x, y ∈ H,(2.5)

defines an associative product on the vector spaceH with unit 1H . Moreover,
the collection (H, ·σ , 1H ,∆, ε,Sσ) is a Hopf algebra with antipode Sσ =
f ∗ S ∗ f−1, for f = σ ◦ (id⊗S) ◦∆. This Hopf algebra is denoted Hσ.

The group of convolution-invertible linear functionals of H acts on the
set Z2(H,k) of 2-cocycles. If α ∈ Hom(H,k) is convolution-invertible, then

σα(x, y) = α(x(1))α(y(1))σ(x(2), y(2))α
−1(x(3)y(3)), ∀x, y ∈ H

is again a 2-cocycle and α−1 ∗ id ∗α : Hσα −→ Hσ is an isomorphism of Hopf
algebras. The quotient of Z2(H,k) under this action is denoted H2(H,k).

Remarks 2.1. Let H be a Hopf algebra and let σ : H⊗H → k be a 2-cocycle.
Since the comultiplications of H and Hσ coincide, we have

(a) The coradicals of H and Hσ coincide.
(b) The coradical filtrations of H and Hσ coincide; this is valid for any

wedge filtration (e.g. the standard filtration defined in [AC]).
(c) If C and D are subcoalgebras of H, then C ·D = C ·σ D.
(d) Let C be a subcoalgebra stable by the antipode SH . Let K be the

subalgebra of H generated by C (a Hopf subalgebra indeed) and set
σ′ = σ|K⊗K. Then Kσ′ is the subalgebra of Hσ generated by C.

Given a 2-cocycle σ : H ⊗ H → k there is another way to define an
associative product on H:

x ·(σ) y = σ(x(1), y(1))x(2)y(2), x, y ∈ H.(2.6)

We denote this algebra byH(σ). Then ∆ : H(σ) → H(σ)⊗H is an algebra map

and H(σ) becomes a right H-comodule algebra. Moreover,
(
H(σ)

)coH
= k.

2.3. Galois objects. Let H be a Hopf algebra and let A be a right H-
comodule algebra with k ≃ AcoH . Then A is a (right) H-Galois object if
the canonical linear map can : A ⊗ A → A ⊗ H, a ⊗ b 7→ ab(0) ⊗ b(1) is
an isomorphism. Left H-Galois objects are defined analogously. We set
Gal(H) = {isomorphism classes of (right) H-Galois objects}. Let H,L be
Hopf algebras. An (L,H)-bicomodule algebra is an (L,H)-biGalois object
if it is both a left L-Galois object and a right H-Galois object.
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Let A be a right H-comodule algebra, B = AcoH . The extension B ⊂ A is
called cleft if there exists an H-colinear convolution-invertible map γ : H →
A or, equivalently when A ≃ B#σH for some 2-cocycle σ : H ⊗H → B, see
[Mo, Section 7] and [DT2]. We may assume that γ(1) = 1, in which case γ
is called a section. The cocycle σ is given by

σ(h, k) = γ(h(1))γ(k(1))γ
−1(h(2)k(2)), h, k ∈ H.(2.7)

If AcoH = k, then A is called cleft object. Set

Cleft(H) := {isomorphism classes of H-cleft objects} ≃ H2(H,k).

Remarks 2.2. (1) B ⊂ A is a cleft extension if and only if A is an H-Galois
extension and has the normal basis property, i.e. A ≃ B ⊗ H as right
H-comodules and left B-modules [DT2]. If γ : H → A is a section, then

can−1(a⊗ h) = aγ−1(h(1))⊗ γ(h(2)), a ∈ A, h ∈ H.(2.8)

(2) If H is pointed, then any H-Galois extension is cleft [Gu, Remark 10].

Given a right H-Galois object A, there is a Hopf algebra L = L(A,H)
attached to the pair (A,H) in such a way that A becomes an (L,H)-biGalois
object [S1, Section 3]. As an algebra, L(A,H) = (A⊗Aop)coH ; the coprod-
uct ∆L and the coaction λ : A→ L⊗A are:

∆L

(∑

i

xi ⊗ yi

)
=

∑

i

xi(0) ⊗ can−1(1⊗ xi(1))⊗ yi,
∑

i

xi ⊗ yi ∈ L;

λ(x) = x(0) ⊗ can−1(1⊗ x(1)), x ∈ A.(2.9)

Here can−1 is the inverse of the right canonical map can : A⊗A→ A⊗H.
In turn, the inverse of the left canonical map can : A⊗A→ L(A,H)⊗A is:

can−1
(
(
∑

i

xi ⊗ yi)⊗ a
)
=

∑

i

xi ⊗ yia,
∑

i

xi ⊗ yi ∈ L, a ∈ A.(2.10)

The Hopf algebra L is uniquely characterized by this property [S1, Theorem
3.3]: if L′ is another bialgebra and λ′ is a left L′-coaction on A making it an
(L′,H)-biGalois object, then there exists a unique isomorphism ϑ : L → L′

such that λ′ = (ϑ⊗ id)λ. Explicitly, see [S1, Lemma 3.2],

ϑ
(∑

i

xi ⊗ yi

)
⊗ 1A =

∑

i

λ′(xi)(1⊗ yi),
∑

i

xi ⊗ yi ∈ L.(2.11)

Remark 2.3. If σ ∈ Z2(H,k), then L(H(σ),H) ≃ Hσ [S1, Theorem 3.9].

3. Hopf Galois objects for quotient Hopf algebras

Our argument involves a recurrence on a chain of Hopf algebra quotients.
We will use [Gu, Theorems 4 & 8], which we cite next, to study cocycle
deformations for a quotient Hopf algebra.

We start with some preliminaries. Let π : L → K be a projection of
Hopf algebras with bijective antipode. Then the right coideal subalgebra
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X = coKL of the left coinvariants is an algebra in YDL
L with the right

adjoint action (2.1) and the coaction given by the restriction of ∆.
Let A ∈ Gal(L). For h ∈ L, write

∑
i ℓi(h)⊗ri(h) = can−1(1⊗h) ∈ A⊗A.

Then A is an algebra in YDL
L via the Miyashita-Ulbrich action [DT1]

a ↼ h =
∑

i

ℓi(h)ari(h), a ∈ A, h ∈ L.(3.1)

If A,B are algebras in YDL
L, Alg

L
L(A,B) denotes the set of algebra mor-

phisms in YDL
L between them.

Theorem 3.1. [Gu, Theorem 4] Let L, K, π and X = coKL be as above.
Assume that L is left and right K-coflat. There are bijective correspondences

Gal(K)
Φ //

{(A, f) : [A] ∈ Gal(L), f ∈ AlgLL(X,A)}/ ∼,Ψ
oo

Ψ
(
[(A, f)]

)
= [A/Af(X+)], Φ

(
[B]

)
= [(B�KL, x 7→ 1⊗ x)] .

The equivalence ∼ is defined so that (A, f) ∼ (A′, f ′) if and only if there
exists an isomorphism α : A→ A′ of L-comodule algebras such that f ′ = α◦
f . The coaction on A/Af(X+) is given by (τ⊗π)λA, for τ : A→ A/Af(X+)
the projection. If B ∈ Gal(K), then the L-coaction on B�KL is idB ⊗∆L.

If there is a subcoalgebra of L that is mapped isomorphically onto the
coradical of K, then this correspondence restricts to cleft objects. �

There is another approach to compute cleft objects of quotient Hopf al-
gebras given by an expansion of [Gu, Theorem 8]. To prove this, we will use
the following result of Takeuchi. Let us recall that a right coideal subalgebra
B of a Hopf algebra H is normal when it is stable under the right adjoint
action (2.1).

Theorem 3.2. [T2, Theorem 3.2] Let H be a Hopf algebra with bijective
antipode. There exist mutually inverse bijective correspondences between the
set of Hopf ideals I such that H is H/I-coflat and the set of normal right
coideal subalgebras B such that H is right B-faithfully flat given by

I Hopf ideal  X (I) = HcoH/I ;

B normal right coideal subalgebra I(B) = HB+. �

If A,A′ are right L-comodule algebras, then AlgL(A,A′) is the set of
comodule algebra morphisms between them. If X ⊂ L is a right coideal
subalgebra, then N(X) is the subalgebra generated by {S(h(1))xh(2) : h ∈
L, x ∈ X}; this is the normal subalgebra generated by X.

Theorem 3.3. Let L be a Hopf algebra with bijective antipode. Let Y ⊂ L
be a right coideal subalgebra. Set I = LY +L and K = L/I; then K is a



8 ANDRUSKIEWITSCH; ANGIONO; GARCÍA IGLESIAS; MASUOKA; VAY

quotient Hopf algebra of L. Assume that L is K-coflat and that L is faithfully
flat over N(Y ). Then there are bijective correspondences

(3.2) Cleft(K)
Φ // {

(A, f) :
[A] ∈ Cleft(L), f ∈ AlgL(Y,A)
such that Af(Y +)A 6= A

}
/ ∼,

Ψ
oo

Ψ
(
[(A, f)]

)
= [A/Af(Y +)A], Φ

(
[B]

)
= [(B�KL, x 7→ 1⊗ x)] .

The corresponding coactions and the relation ∼ are as in Theorem 3.1.

Proof. Set X = N(Y ). First, we use Theorem 3.2 to show X = coKL.
Indeed, we have, on the one hand, I(X) = LN(Y )+ = LY +L = I. On the
other, X (I) = coKL and the statement follows.

The proof now runs as that of [Gu, Theorem 8], as the hypotheses coKL∩
L[0] ⊆ N(Y ) (which we recover trivially) and that of L being pointed in loc.

cit. are precisely used to show N(Y ) = coKL. �

In order to apply Theorems 3.1 and 3.3 we need to investigate when a Hopf
algebra L is coflat over a quotient Hopf algebra K. This will be the content
of Subsection 3.1. For Theorem 3.3, we need to study when L is faithfully
flat over a right coideal subalgebra, we will also deal with this question in
the next subsection. Also, see Section 5.9 for a detailed comparison of these
two theorems.

3.1. On the coflatness of quotients. Fix a Hopf algebra H with bijective
antipode. Let R be a connected (i.e. the coradical of R is k) Hopf algebra
in H

HYD. In particular, the antipode of R, hence that of A = R#H, is
bijective. Clearly, see [Ma3, Section 1], we have

• If B is a right coideal subalgebra of R, then R/RB+ is a quotient
left R-module coalgebra of R.

• If T is a quotient left R-module coalgebra of R, then the left T -
coinvariants coTR form a right coideal subalgebra of R.

Recall that the structures on R arise from the obvious Hopf algebra maps
H → A → H, whose composite is the identity on H, as follows: we have
R = AcoH , so that R is a left coideal subalgebra of A, and is thus an algebra
and left H-comodule, while we have R = A/AH+, so that R is a quotient
left A-module coalgebra of A, and is thus a coalgebra and left H-module; the
last left H-module structure coincides with the adjoint action. Let P (resp.
Q) denote the braided Hopf algebra in Hop

HopYD (resp. Hcop

HcopYD) which arises
from Hop → Aop → Hop (resp. Hcop → Acop → Hcop). Then P = Q = R
as vector spaces. As an algebra, P equals the opposite algebra Rop of R,
while as a coalgebra, Q equals the co-opposite coalgebra Rcop of R.

Lemma 3.4. (i) The sub-objects (resp., right coideal subalgebras) of R in
H
HYD coincide with those of P in Hop

HopYD.

(ii) The quotient objects (resp., left module coalgebras) of R in H
HYD

coincide with those of Q in Hcop

HcopYD.
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Proof. (i) Since the comultiplication does not change, R = P as left comod-
ules over the coalgebra H = Hop. If h = S−1

H (k) ∈ H, a ∈ A, then the
adjoint actions of H and Hop are related by

adH h(a) = h(1)aSH(h(2)) = k(1) ·op a ·op SHop(k(2)) = adHop k(a).

This settles the claim for sub-objects. Let now X be a sub-object of R,
or equivalently of P . Clearly, X is a subalgebra of R if and only if it is
a subalgebra of P = Rop. For x ∈ R, let x 7→

∑
x(1) ⊗ x(2) denote the

coproduct on R. Then the coproduct ∆(x) on A is given by

∆(x) = (x(2))(−1)(S
−1
H ((x(2))(−2))⇀ x(1))⊗ (x(2))(0).

Hence ∆P is given by x 7→ S−1
H ((x(2))(−1))⇀ x(1)⊗ (x(2))(0). It follows that

X is a right coideal of R, if and only if it is such of P . (ii) is similar. �

Let B be a right coideal subalgebra of R in H
HYD. Then one can define

the category (HHYD)RB of right (R,B)-Hopf modules in H
HYD; a right (R,B)-

Hopf module is here a right B-module and right R-comodule in H
HYD which

satisfies the compatibility condition formulated as in the ordinary situation,

but involving the braiding R⊗B
≃

−→ B ⊗R.

Lemma 3.5. Every object M in (HHYD)RB includes a sub-object X in H
HYD

such that the action map X ⊗B →M is a bijection, necessarily an isomor-
phism in (HHYD)B.

Proof. The lemma follows from the following claim.

Claim. If M 6= 0, then M includes a non-zero sub-object N in (HHYD)RB
which includes a sub-object X in H

HYD such that X ⊗B
≃

−→ N .

Indeed, assume that we have proven the claim. We consider all pairs
(N,X), where N is a sub-object of M in (HHYD)RB , and X is a sub-object

of N in H
HYD such that X ⊗B

≃
−→ N naturally, and introduce the natural

order given by inclusion to the pairs. By Zorn’s Lemma we have a maximal
pair (N,X). To see N = M , suppose on the contrary N ( M . With the

assumed fact applied to M/L, we have sub-objects Ñ ⊂M in (HHYD)RB and

X̃ ⊂ Ñ in H
HYD such that N ( Ñ , X ( X̃ and X̃/X ⊗ B

≃
−→ Ñ/N . A

map of short exact exact sequences which is isomorphic on the kernels and

the cokernels shows that X̃ ⊗ B
≃
−→ Ñ , which contradicts the maximality

of (N,X), and hence shows N =M . This argument is the same as the one
in [Ra, Proposition 1].

We now prove the claim. Suppose 0 6= M ∈ (HHYD)RB . We wish to prove
M includes a nonzero pair. Set X =M coR. This is a subject of M in H

HYD,
and is the socle socM of the right R-comodule M , whence X 6= 0. The
tensor product X ⊗B is naturally an object in (HHYD)RB whose R-comodule
socle soc(X ⊗ B) = X. We see that f : X ⊗ B → M , f(v ⊗ b) = vb is a
morphism in (HHYD)RB , which is injective since it is restricted to the identity
on the socles. If L = Im f = XB then (N,X) is a desired pair. �
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Proposition 3.6. Let R be a connected Hopf algebra in H
HYD.

(a) R is a free left and right module over every right coideal subalgebra.

(b) R is a cofree left and right comodule over every quotient left module
coalgebra T .

(c) B 7→ R/RB+ and T 7→ co TR give a bijection between the set of right
coideal subalgebras B of R and the set of quotient left R-module
coalgebras T of R.

(d) If B and T correspond to each other via this bijection, then there

exists a left T -colinear and right B-linear isomorphism T⊗B
≃

−→ R.

Proof. (a) Let B be a right coideal subalgebra. First, we prove the right
B-freeness. Notice that R ∈ (HHYD)RB . The right B-freeness in (a) follows
from Lemma 3.5. By Lemma 3.4 (i), the just proved result applied to the
P of the lemma implies the left B-freeness1.

(c) Let T be as in (b), and set B = co TR. We see that the natural
left T -comodule structure R → T ⊗ R on R is right B-linear. The base
extension along B → R induces a right B-linear and left T -colinear map
g : R ⊗B R → T ⊗ R. This is induced from the canonical isomorphism

R⊗R
≃

−→ R⊗R, and hence is a surjection. Note that T is also connected.
Since R is left B-free as was shown in (a), the left T -comodule socle of

R ⊗B R equals B ⊗B R. It follows that g is injective, and hence bijective,
since it restricts to idR on the left T -comodule socles.

The bijection g together with the left B-freeness of R shows that R is an
injective cogenerator (or equivalently, faithfully coflat) as a left T -comodule;
see also [Ma3, Proposition 1.4(1)]. The desired one-to-one correspondence
follows just as in the ordinary situation; see [Ma3, Proposition 1.4(2)].

(d) Let B and T correspond to each other. The left T -injectivity of R
allows the inclusion k → R of left T -comodules to extend to a unit-preserving
left T -colinear map h : T → R. The right B-linearization of h

hB : T ⊗B → R, hB(t⊗ b) = h(t)b

is right B-linear and left T -colinear and injective, since it restricts to idB on
the T -comodule socles. It is an isomorphism, since T ⊗B is T -injective.

(b) Let T be as in (b). We see from Part (d) that R is left T -cofree.
Lemma 3.4 (ii) shows that R is also right T -cofree. �

Corollary 3.7. Let H be a cosemisimple Hopf algebra, let R,T be connected
braided Hopf algebras in H

HYD, such that T is a quotient of R. Then R#H
is left and right cofree over T#H. In particular, it is left and right coflat.

Proof. As H is cosemisimple, the coalgebra surjection id⊗ ε : T#H → T is
a cosemisimple coextension, that is a left or right T#H-comodule is injective

1One can define the analogous category B(HHYD)R. But, it is impossible to discuss as
above, because for M ∈ B(HHYD)R, the right R-comodule B ⊗McoR is not isomorphic to
a direct sum of copies of B, and so soc(B ⊗McoR) = McoR may not be true.
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if it is injective as a T -comodule. Since R is left T -cofree as a T -comodule
and so left T -injective, it follows that R#H, being left T -injective, is left
T#H injective. Note that the coradical of T#H is isomorphically liftable
to the coradical of R#H, since both of them coincide with H. It follows by
the left version of [Sc, Theorem 4.2] that there is a left T#H-colinear and
right coT#H(R#H)-linear isomorphism

R#H ≃ T#H ⊗ co T#H(R#H).

By switching the sides one can present R#H, T#H as smash products
H#R′, H#T ′ of braided Hopf algebras R′, T ′ in YDH

H , such that T ′ is a
quotient of R′, and prove that R′ is right (and left) T ′-injective, which shows
as above that there is a right T#H-colinear and left (R#H)co T#H -linear
isomorphism R#H ≃ (R#H)co T#H ⊗ (T#H), by [Sc, Theorem 4.2]. �

Corollary 3.8. Let R be a connected braided Hopf algebra in H
HYD and let

B ⊆ R be a left coideal subalgebra. Let L = R#H, then B#1 is a left coideal
subalgebra of L and L is a left B#1-free module.

If Y = S(B#1), then L is a right Y -free module. In particular, it is right
Y -faithfully flat.

Proof. The formula for ∆R#H shows that B#1 is a left coideal subalgebra.
Now, the first statement follows since L is left R-free and R is left B-free by
Proposition 3.6 (a). The second is straightforward. �

4. The shape of all possible deformations

LetH be as in (1.1) and A be a Hopf algebra whose coradical is isomorphic
to H. In the first part of this section, we assume that H is also semisimple
(e. g. when the characteristic of k is 0) and analyze the structure of A.

A fundamental information is that there exists a coalgebra H-bimodule
projection Π : A → H such that Π|H = idH [AMŞ, Theorem 5.9.c)]. Hence
A is a Hopf bimodule coalgebra over H via the left and right multiplication
and the coactions ρL = (Π ⊗ id)∆ and ρR = (id⊗Π)∆. Let P0 = 0, P1 =
{x ∈ A : ∆(x) = ρL(x) + ρR(x)} and

Pn = {x ∈ A : ∆(x)− ρL(x)− ρR(x) ∈

n−1∑

i=1

Pi ⊗ Pn−i}.

Then Pn = A[n]∩kerΠ [AN, Lemma 1.1]. Clearly, Pn is a Hopf sub-bimodule
of A[n] and A[n]/A[n−1] = Pn/Pn−1.

The canonical projection πn : A[n] → A[n]/A[n−1] is a Hopf bimodule map
and it has a section ιn since H is semisimple and cosemisimple. Therefore

A ≃ H ⊕
⊕

n≥1

ιn(Pn/Pn−1)

as Hopf bimodule. We extend πn to be 0 in
⊕

m>n ιm(Pm/Pm−1), n > 0,
and set π0 = Π. We shall generally omit ιm.
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We recall the structure of grA. As vector spaces, grA(n) = A[n]/A[n−1] =
Pn/Pn−1. The multiplication and comultiplication of grA are

πn(x)πm(y) = πn+m(xy) and

∆grA(πn(x)) =

n∑

i=0

πi(x(1))⊗ πn−i(x(2)), x ∈ A[n], y ∈ A[m].

By abuse of notation, π0 denotes the projection grA ։ H with kernel
⊕n>0 grA(n) and π0|H = id. Then grA is a Hopf bimodule over H via the
left and right multiplication and the coactions (π0⊗ id)∆grA, (id⊗π0)∆grA.

It is well-known that grA ≃ (grA)coH#H as Hopf algebras. In [AMŞ,
Theorem 5.23], it is shown that AcoH is a coalgebra in H

HYD such that

A ≃ AcoH#H as coalgebras and the multiplication in A is recovered with
an extra structure on AcoH , see also [S2].

Lemma 4.1. πn : ιn(Pn/Pn−1) → grA(n) is an isomorphism of Hopf bi-
modules over H for all n. Therefore AcoH ≃ (grA)coH in H

HYD.

Proof. If x ∈ ιn(Pn/Pn−1) and h ∈ H, then πn(hx) = π0(h)πn(x) and
πn(xh) = πn(x)π0(h). Also,

(id⊗π0)∆
gr(πn(x)) =

n∑

i=0

πi(x(1))⊗ π0 ◦ πn−i(x(2)) = πn(x(1))⊗ π0(x(2))

= (πn ⊗ id)(id⊗Π)∆(x) = (πn ⊗ id)ρ(x).

Analogously, πn is a left comodule map. The last assertion is easy. �

Remark 4.2. Assume that the dimension of A is finite. If the isomorphism
AcoH ≃ (grA)coH in Lemma 4.1 is also of coalgebras, then A ≃ grA as
coalgebras; thus A is a cocycle deformation of grA by [S1, Corollary 5.9].

We fix V ∈ H
HYD with dimV < ∞. Let B(V ) = T (V )/J (V ) be the

Nichols algebra of V see [AS2] and set T (V ) = T (V )#H.

Definition 4.3. A lifting map is an epimorphism φ : T (V ) → A of Hopf
algebras such that φ|H = idH and φ|V#H : V#H → P1 is an isomorphism
of Hopf bimodules over H.

Proposition 4.4. [AV1, Proposition 2.4] Let A be a Hopf algebra whose
coradical is a Hopf subalgebra isomorphic to H. Then A is a lifting of B(V )
over H if and only if there exists a lifting map φ : T (V ) → A. �

The case H = kΓ, Γ an abelian group, in the above proposition has been
previously considered, see for instance [Kh, He].

From now on, we assume that A is a lifting of B(V ) over H with lifting
map φ : T (V ) → A. In particular, V is a submodule of A in H

HYD.
Let Bn

J be a basis of J n(V ) and extend it to a basis Bn ∪ Bn
J of V ⊗n.

We still denote by Bn the basis of the quotient Bn(V ). Then B =
⋃

n B
n is

a basis of B(V ), BJ =
⋃

n B
n
J is a basis of J (V ). Let BH be a basis of H.
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Remarks 4.5. By Lemma 4.1 we have that:

(a) {φ(x) −Π(φ(x)) : x ∈ Bn
J } ⊂ Pn−1.

(b) {φ(x)h −Π(φ(x))h : x ∈ Bi, h ∈ BH , 0 < i ≤ n} is a basis of Pn.

(c) φ(B2)H = ι2(P2/P1) and A[2] ≃ (B(V )#H)[2] as coalgebras.

(d) {φ(x)h : x ∈ B, h ∈ BH} is a basis of A. Let ι : A → T (V ) be the
linear map identifying this basis of A with B#H.

The shape of the liftings is given by the following proposition. If M ⊂
T (V ) is a Yetter-Drinfeld submodule, we define the ideal

IM = 〈m− ιφ(m) |m ∈M〉.

Proposition 4.6. Let M ⊂ T (V ) be a Yetter-Drinfeld submodule which
generates J (V ). If IM is a Hopf ideal, then A = T (V )/IM .

Proof. Let A′ := T (V )/IM ; since IM is contained in the kernel of the lifting
map φ, we have an epimorphism A′ ։ A and IM ∩ (k⊕ V )#H = 0. Hence
the coradical of A′ is H by [Mo, Corollary 5.3.5]. Then gr(A′) ≃ R#H
where R ≃ T (V )/J for a braided Hopf ideal J ⊆ J (V ). Clearly M ⊂ J , cf.
Remark 4.5 (a), then J = J (V ) and dim(A′

[n]/A
′
[n−1]) = dim(A[n]/A[n−1])

for all n ∈ N, hence the proposition follows. �

If there are no ambiguities, we identify (k ⊕ V )#H with its image by φ
omitting the map ι. We explore a case where the hypothesis of Proposition
4.6 is satisfied.

Definition 4.7. A submoduleM of T (V ) in H
HYD is compatible with φ when

∆(φ(m)) = φ(m)⊗ 1 +m(−1) ⊗ φ(m(0)) for all m ∈M.

Assume M ⊂ T (V ) is compatible with φ. For m ∈ M , we may see φ(m)
as an element of (k⊕V )#H. Fix a basis {mi}1≤i≤r ofM and let {cij}i,j ⊂ H
be the set of comatrix elements associated to M and {mi}1≤i≤r, that is

(mi)(−1) ⊗ (mi)(0) =
∑

j

cij ⊗mj, 1 ≤ i ≤ r.(4.1)

If M is simple, then the set {cij}i,j is linearly independent and spans a
simple coalgebra. Next lemma helps us to describe the image φ(M).

Lemma 4.8. Let M ⊂ T (V ) be compatible with φ. Then

(a) π1 ◦ φ|M :M → V is a morphism in H
HYD.

(b) Assume that M is simple and V ≃Mm⊕P with m maximum. Then
there exist λ1, . . . , λm ∈ k such that

π1 ◦ φ|M ≃ λ1 idM ⊕ · · · ⊕ λm idM ⊕ 0.

(c) For {mi}1≤i≤r, {cij}i,j as in (4.1) there exist a1, . . . , ar ∈ k such
that

(π0 ◦ φ)(mi) = ai −

r∑

j=1

ajcij i = 1, . . . , r.
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(d) Let Θ : A → A′ be an isomorphism of Hopf algebras and let φ′ :
T (V ) → A′ be a lifting map. If there is no v ∈ V such that h · v =
ε(h)v for all h ∈ H, then Θφ(V ) = φ′(V ).

Proof. (a) Clearly φ(M) ⊂ A[1]. Since π1◦φ|M is a morphism of bicomodules
over H by Lemma 4.1, (π1 ◦ φ)(M) ⊂ V . (b) is a particular case of (a). We
prove (c). Recall that H

HYD is a semisimple category, so M =
⊕n

l=1Ml

where each Ml is a simple H-comodule. If M is a simple H-comodule, then
(c) follows from [AV1, Lemma 2.1] since

∆((π0 ◦ φ)(mi)) = (π0 ◦ φ)(mi)⊗ 1 +
∑

j

cij ⊗ (π0 ◦ φ)(mj).

Otherwise the same argument can be applied on each simple summand Ml.
(d) If we consider A[1] as a right H-comodule via the projection (ε#1)◦Θ,

then Θφ(V ) ⊂ (k ⊕ φ′(V ))#1. Now if we consider A′
[1] as a left H-module

via ad ◦Θ, then (d) follows by hypothesis. �

Lemma 4.8 has been refined in the copointed case, i.e. when H is the
function algebra on a finite group, in [GIV, Lemma 3.1].

Lemma 4.9. Let M,N ⊂ T (V ) be Yetter-Drinfeld submodules.

(a) If M is included in the homogeneous component of minimum degree
of J (V ), then M is compatible with φ.

(b) Assume that M is compatible with φ, IM is a Hopf ideal and

∆(n)− n⊗ 1− n(−1) ⊗ n(0) ∈ IM ⊗ T (V ) + T (V )⊗ IM(4.2)

holds for every n ∈ N . Then N is compatible with φ and IM⊕N is a
Hopf ideal.

Proof. (a) By hypothesis, M ⊂ P(T (V )) and then M is compatible with φ.
(b) Since IM ⊂ kerφ, N is compatible with φ by (4.2). Moreover, apply-

ing Lemma 4.8 (a) and (c), we see that 〈m − φ(m)〉m∈N is a Hopf ideal in
T (V )/IM by (4.2). Hence IM⊕N is a Hopf ideal of T (V ). �

Definition 4.10. A good module of relations is a graded Yetter-Drinfeld
submodule M =

⊕t
i=1M

ni ⊂ T (V ) where Mni ⊆ T ni(V ), with Mni 6= 0
and ni < ni+1 for all i, which generates J (V ) such that the Yetter-Drinfeld
submodules

⊕s
i=1M

ni ,Mns+1 ⊂ T (V ) satisfy (4.2) for all s = 1, . . . , t− 1.

Now we describe the liftings of B(V ) over H when J (V ) is generated by
a good module of relations.

Theorem 4.11. Let A be a lifting of B(V ) over H, with lifting map φ. Let
M be a good module of relations for B(V ). Then A ≃ T (V )/IM .

Proof. Follows from Proposition 4.6 and Lemma 4.9. �

Theorem 4.11 characterizes the liftings in the case in which the relations
are deformed by elements in the first term of the coradical filtration. This is
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the case in [AS3, AG2, AV1, GGI, FG] (actually in those papers, the relations
are deformed by elements in the zeroth term of the coradical filtration).
However, there exist examples in which this does not hold, see Example
4.12 below, also [He, GIV].

Example 4.12. [GIV, Theorem 5.4] Set k = C and let F5 denote the finite
field of 5 elements. Consider the affine rack X = (F5, 2) and the constant
cocycle q ≡ −1. The Nichols algebra B(X, q), computed in [AG1], has
dimension 1280 and can be presented by generators x0, . . . , x4 and relations

x2i , xixj + x2j−ixi + x3i−2jx2j−i + xjx3i−2j 0 ≤ i, j ≤ 4,

x1x0x1x0 + x0x1x0x1.
(4.3)

Let C8 be the cyclic group of order 8 and let t denote a generator. Consider
C8 acting on Z5 by t · i = 2i, i ∈ Z5, and set Γ = Z5⋊2C8. Then B(X, q) can
be realized in kΓ

kΓYD. Let H = B(X, q)#kΓ. Set gi = i× t ∈ Γ, i ∈ Z5. Let
V be the linear span of {x0, . . . , x4}. If L is a deformation of B(X, q), then
there exist scalars λ1, λ2, λ3 ∈ k such that L is the quotient of T (V )#kΓ by
the ideal generated by

x20 − λ1(1− g20), x0x1 + x2x0 + x3x2 + x1x3 − λ2(1− g0g1),

x1x0x1x0 + x0x1x0x1 − sX − λ3(1− g20g1g2),

for sX = λ2 (x1x0 + x0x1) + λ1 g
2
1(x3x0 + x2x3) − λ1 g

2
0(x2x4 + x1x2) +

λ2λ1 g
2
0(1−g1g2) ∈ L[2]. Hence, the relation x1x0x1x0+x0x1x0x1 of B(X, q)

is not deformed by elements in the first term of the coradical filtration.

4.1. The shape of the Hopf algebra L(A,H). Let H, V be as in (1.1),
(1.2) and B be a pre-Nichols algebra over V . We set H = B#H and let π :
T (V ) → H be the canonical projection. Consider T (V ) as an H-comodule
algebra via (id⊗π)∆T (V ). Let A ∈ Gal(H) be provided with a projection
τ : T (V ) → A which is a morphism of comodule algebras.

We shall need explicit presentations of the Hopf algebra L(A,H).

Proposition 4.13. Let ℘ = (τ ⊗ τ)(id⊗S)∆T (V ) ∈ Alg(T (V ), A ⊗ Aop).
Then L(A,H) = ℘(T (V )).

Proof. On one hand, observe that (id⊗S)∆T (V ) : T (V ) → L(T (V ),T (V )) is
a Hopf algebra isomorphism. On the other hand, there is a Hopf algebra map
L(T (V ),T (V )) → L(A,H) making the following diagram commutative:

L(T (V ),T (V )) �
� //

��

T (V )⊗ T (V )

τ⊗τ

��
L(A,H) �

� // A⊗A,
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which gives rise to

L(T (V ),T (V ))⊗ T (V )
can−1

//

��

T (V )⊗ T (V )

τ⊗τ

��
L(A,H)⊗A

can−1
// A⊗A.

Hence τ ⊗ τ restricts to a surjection L(T (V ),T (V )) ։ L(A,H) and the
proposition follows. �

4.2. The graded Hopf algebra associated to a cocycle deformation.

Let H, V be as in (1.1), (1.2) and let B be a pre-Nichols algebra over V . We
set H = B#H and let σ : H⊗H → k be a 2-cocycle. Let F = (Fn)n≥0 be the
filtration of Hσ induced by the graduation of H. Then grFHσ = Hσ = H
as coalgebras. Notice that, if B is a Nichols algebra, then F coincides with
the coradical filtration.

The items (a) and (b) of the next proposition are [MO, Theorem 2.7,
Corollary 3.4], see also [AFGV, Theorem 3.8].

Proposition 4.14. (a) There is an isomorphism of graded Hopf alge-

bras grFHσ ≃ B′#Hσ, for B
′ a pre-Nichols algebra over V ′ ∈ Hσ

Hσ
YD.

Here V ′ is the H-comodule V with action

x ⇀σ v = σ(x(1), v(−1)) (x(2) ⇀ v(0))(0) σ
−1((x(2) ⇀ v(0))(−1), x(3))(4.4)

for x ∈ Hσ, v ∈ V ; here V is identified with a subspace of T (V )#H,
with H-action given by the adjoint. Furthermore, the product in B′

is given by x · y = σ(x(−1), y(−1))x(0)y(0), for x, y ∈ B′ homogeneous.
(b) With the notation in (a), if B = B(V ) is the Nichols algebra of V ,

then B′ = B(V ′).
(c) Let A ∈ Cleft(H) with section γ : H → A and consider the induced

cocycle σ(x ⊗ y) = γ(x(1))γ(y(1))γ
−1(x(2)y(2)), x, y ∈ H, see (2.7).

Assume γ|H ∈ Alg(H,A). Then grFHσ ≃ B#H.
(d) Suppose that H = kG, G a finite group. In particular, Hσ = H. Let

{x1, . . . , xθ} be a basis of V with xi ∈ V
gi, gi ∈ G, 1 ≤ i ≤ θ. If

σ(g, gi) = σ(ggig
−1, g), g ∈ G, 1 ≤ i ≤ θ,(4.5)

then V ′ = V ∈ H
HYD.

Proof. (a) By Remarks 2.1 (d), grFH is generated by Hσ ⊕ (F1/Hσ). Then

grFHσ ≃ B′#Hσ, where B′ is a pre-Nichols algebra over V ′ := B′1. Since
the comultiplication is unchanged, V ′ = V as Hσ-comodules and in grFHσ

x ⇀σ v = x(1) ·σ v ·σ Sσ(x(2))

for all x ∈ Hσ, v ∈ V ′. Using that ∆(v) = v ⊗ 1 + v(−1) ⊗ v(0), (4.4) follows
as in the proof of [MO, Theorem 2.7]. Finally, if x ∈ Bn and y ∈ Bm,
then x ·σ y = σ(x(−1), y(−1))x(0)y(0) plus terms of degree lesser than m+ n.
(b) follows since the coalgebra structure is unchanged. (c) follows since
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σ|H⊗H = ε⊗ ε. For (d), the cocommutativity implies Hσ = H and plugging
(4.5) into (4.4), we have V ′ = V . �

5. The strategy for computing cocycle deformations

Let H, V be as in (1.1), (1.2). We explain how to compute cocycle
deformations of B(V )#H that are liftings of B(V ) over H; depending on
the context, this may eventually lead to all liftings. We fix a minimal set G
of homogeneous generators of J (V ); G is finite by assumption.

Assume L is a cocycle deformation, say L = (B(V )#H)σ . We seek for
conditions for L to be a lifting of B(V ) over H. Let A be a B(V )#H-Galois
object such that L ≃ L(A,B(V )#H). By Proposition 4.14 (b), one has

grL ≃ B(V ′)#Hσ, V
′ ∈ Hσ

Hσ
YD. If σ|H⊗H

∗
= ε ⊗ ε, then grL ≃ B(V )#H

by (2.5) and (4.4). Now the equality ∗ is achieved when the object A is
cleft with a section γ : B(V )#H → A that satisfies γ|H ∈ Alg(H,A), by
Proposition 4.14 (c). In conclusion, we look for cleft objects A with a section
γ : B(V )#H → A satisfying this property.

5.1. Adapted stratifications. A stratification of G is a decomposition as
a disjoint union G = G0 ∪ G1 ∪ · · · ∪ GN . For 0 ≤ k ≤ N , we set

B0 := T (V ), H0 = T (V )#H = T (V ),

Bk := T (V )/〈G0 ∪ G1 ∪ · · · ∪ Gk−1〉, Hk = Bk#H.

ClearlyHN+1 = B(V )#H. Let πk : T (V ) → Hk be the canonical projection.
If k < N , then Gk identifies with its image in Bk, by minimality of G.

We say that the stratification G = G0 ∪ G1 ∪ · · · ∪ GN is adapted when it
satisfies the following properties:

(1) Gk is a basis of a Yetter-Drinfeld submodule of P(Bk); then 〈Gk〉
is a Hopf ideal of Bk, 〈Gk〉#H is a Hopf ideal of Hk and therefore
Hk+1 ≃ Hk/〈Gk〉#H is a Hopf algebra.

(2) GN is a basis of a Yetter-Drinfeld submodule of BN and k〈GN 〉 is a
left coideal subalgebra of BN , but not necessarily GN ⊂ P(BN ).

Examples 5.1. (a) A standard choice is to take Gk such that (the im-
age of) Gk is a basis of the subspace of P(Bk) generated by all its
homogeneous elements of degree ≥ 2, for all k.

(b) Assume that H = kΓ, Γ a finite abelian group, or more generally
that V is a direct sum of one-dimensional Yetter-Drinfeld modules.
We may choose an adapted stratification with cardGj = 1 for all j.

It is not always possible to choose a stratification G = G0 ∪ G1 ∪ · · · ∪ GN

in which cardGj = 1 for each j, see the next example.



18 ANDRUSKIEWITSCH; ANGIONO; GARCÍA IGLESIAS; MASUOKA; VAY

Example 5.2. Keep the notation in Example 4.12. The adapted stratifica-
tion of B(X, q) considered in [GIV, Theorem 5.4] is:

G0 = {x2i : i ∈ F5},

G1 = {xixj + x2j−ixi + x3i−2jx2j−i + xjx3i−2j : i, j ∈ F5},

G2 = {x1x0x1x0 + x0x1x0x1}.

The Yetter-Drinfeld submodule of Bk generated by Gk is simple, k = 0, 1, 2.

5.2. The strategy. Fix G = G0 ∪ G1 ∪ · · · ∪ GN an adapted stratification.
The strategy consists of the following steps.

(1) Cleft extensions of bosonizations of pre-Nichols algebras. We shall
construct recursively a set Λk ⊂ Cleft(Hk), for all k = 0, . . . , N + 1. We
start with H0 = T (V ) = T (V )#H and the cleft object A0 = T (V ) with
section γ0 = id. Set Λ0 =

{
T (V )

}
⊂ Cleft(H0).

The recursive step is done in one of the following ways, for k = 0, . . . , N :

(1a) We compute the algebra of left coinvariants Xk := coHk+1Hk. Then

we compute AlgHk

Hk
(Xk,Ak), for each Ak ∈ Λk. For each ψ ∈ AlgHk

Hk
(Xk,Ak),

we collect Ak/Akψ(X
+
k ) in Λk+1.

Theorem 3.2 may be useful to deal with the computation of right coideal
subalgebras in this step. However, it usually happens that the computation

of Xk, and a fortiori that of AlgHk

Hk
(Xk,Ak), is too hard. In such case, we

take an alternative route.

(1b) We consider the subalgebra Yk := k〈S(Gk)〉 = S(k〈Gk〉) of Hk. Since
G = G0 ∪ G1 ∪ · · · ∪ GN is an adapted stratification, k〈Gk〉 is a left coideal
subalgebra of Hk; hence Yk is a right coideal subalgebra of Hk. Also,

Hk+1 = Hk/〈Y
+
k 〉.

We then compute AlgHk(Yk,Ak), for each Ak ∈ Λk. We collect Ak/〈ϕ(Y
+
k )〉

in Λk+1, for each ϕ ∈ AlgHk(Yk,Ak) with

〈ϕ(Y +
k )〉 6= Ak.(5.1)

The alternative (1a) has the advantage to the alternative (1b) to avoid
the checking of (5.1). Note that

• Λk ⊂ Cleft(Hk) by Theorem 3.1 in (1a) or Theorem 3.3 in (1b).

Indeed, this holds for k = 0 and a recursive argument applies since the
coradical of the successive quotients remains unchanged. We can apply
Theorem 3.1 because Hk is Hk+1-coflat, by Corollary 3.7. This also implies
that Hk is faithfully flat over Xk, by Theorem 3.2. As Xk = N(Yk), see
Remark 5.4, we can also apply Theorem 3.3.

(2) Deformations of pre-Nichols algebras. We next compute the Hopf
algebras L(Ak,Hk), for Ak ∈ Λk, 0 < k ≤ N + 1. These are new examples
of Hopf algebras; they are quotients of T (V ) by Propositions 4.13 and 5.8,
which can be computed using Proposition 5.10 and Corollary 5.12.
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(3) Exhaustion. The Hopf algebras L(AN+1,HN+1) for AN+1 ∈ ΛN+1 are
liftings of B(V ) over H, by Proposition 4.14 (b) and (c). We need to check
whether this family of Hopf algebras is an exhaustive list of liftings of B(V )
over H; for this Theorem 4.11 might apply under suitable conditions.

Remark 5.3. A similar strategy is already proposed by Günther in [Gu, page
4399] to compute the cleft objects of a pointed Hopf algebra H which is a
quotient of a pointed Hopf algebra H for which Cleft(H) is known. He
suggests to choose an easy decomposition H = H1 ։ H2 ։ · · · ։ Hn = H
in such a way that Cleft(Hi+1) is easily computable from Cleft(Hi) using
[Gu, Theorems 4 & 8]. He does not, however, investigates how to find that
decomposition or when the method applies, nor relates this process with the
lifting procedure or the classification problem.

5.3. Comments on Xk and Yk. Let X̃k = H
coHk+1

k , Ỹk = k〈Gk〉. The next
picture describes the relation between these subalgebras and the subalgebras
of Hk which are involved in the steps (1a) and (1b).

Xk = coHk+1Hk

uu
S

**

X̃k = H
coHk+1

k55
S−1

ii
� � // HcoH

k = Bk

Yk = k〈S(Gk)〉
uu S **

?�

OO

Ỹk = k〈Gk〉.
?�

OO

55

S−1

ii

Indeed, S2(Gk) = Gk, for k < N . First, if x ∈ P(Bk), then ∆Hk
(x) = x ⊗

1+x(−1)⊗x(0), hence S(x) = −S(x(−1))x(0) and S2(x) = adS(x(−1))(x(0)).

So, Gk, being a Yetter-Drinfeld submodule of P(Bk), is stable under S2.

Remark 5.4. Xk = N(Yk), cf. page 7.

Indeed, let B be the subalgebra generated by h(1)yS(h(2)), h ∈ Hk, y ∈ Ỹk.
By Corollary 3.8, Hk is right N(Yk)-faithfully flat. Now we invoke Theorem
3.2: I(N(Yk)) = 〈Gk〉; but X (〈Gk〉) = Xk, as Hk is Hk+1 ≃ Hk/〈Gk〉#H-
coflat by Corollary 3.7.

As said, the computation of the algebra of coinvariants Xk might be hard;
a potentially easier instance is when Xk = Yk. We analyze when this could
happen in the following Remark.

Remark 5.5. The following are equivalent:

(1) Xk = Yk;
(2) Yk is normal;
(3) For all y ∈ Gk, x ∈ V ,

(5.2) adr(x)(S(y)) = S(x(−1))S(y)x(0) − S(x(−1))x(0)S(y) ∈ Yk;

(4) xS(y)− S(y)x ∈ Yk, for all y ∈ Gk, x ∈ V .
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Proof. (1) ⇒ (2): Xk is normal. (2) ⇒ (1): Yk = N(Yk) = Xk by Remark
5.4. Clearly, (2) ⇒ (3). (3) ⇒ (2): We have to prove that adr(x)(z) ∈ Yk
for all x ∈ Hk, z ∈ Yk. Since adr(x)(zz

′) = adr(x(1))(z) adr(x(2))(z
′), it is

enough to consider z ∈ S(Gk); since adr(xx
′)(z) = adr(x

′) adr(x)(z), it is
enough to consider x ∈ H or x ∈ V . If x ∈ H, u = S−1(x) and y ∈ Gk, then
adr(x)(S(y)) = S(adℓ(u)(y)) = S(u · y) ∈ S(Gk). It only remains the case
z ∈ S(Gk) and x ∈ V , which is (5.2).

(3) ⇒ (4): xS(y) = x(−2)S(x(−1))x(0)S(y)
(5.2)
= x(−2)S(x(−1))S(y)x(0) +

Yk = S(y)x+ Yk. The converse implication is similar. �

5.4. Properties of Ak+1. Fix k ≥ 0 and Ak+1 ∈ Λk+1 which is a quotient
of Ak ∈ Λk. We collect some information about the algebra Ak+1. We start
with some general considerations.

Remarks 5.6. Let H be a Hopf algebra and B be a Hopf algebra in H
HYD.

Set H = B#H with projection and inclusion maps H
π // H
ι

oo . Let A ∈

Cleft(H) with section γ : H → A; assume that γ|H ∈ Alg(H,A). Both H
and A are H-comodules via π. Then

(a) A is a cleft extension of H. Moreover A ≃ E#H, where E = AcoH ,
and p : A → E , p(x) = x(0)γ

−1ιπ(x(−1)) is an H-module projection.
(b) Let S ⊆ E be an H-submodule. Then 〈S〉A = 〈S〉E#H and conse-

quently A/〈S〉A ≃ (E/〈S〉E )#H.
(c) Let I ⊂ A be an ideal and H-subcomodule. Then I = IcoH#H.
(d) Let S ⊂ A be an H-submodule and H-subcomodule. Then 〈S〉A =

〈p(S)〉E#H.

Proof. (a) Clearly, γ is an H-colinear map and thus γι : H → A is a section.
Hence A ≃ E#σH and σ = ε since γ|H ∈ Alg(H,A), cf. (2.7). Last sentence

is [Mo, Lemma 7.2.6]. (b) is easy. (c) 〈IcoH〉A = 〈IcoH〉E#H ⊂ I by (b).
If x ∈ I, then p(x) ∈ IcoH and thus x = p(x(0))γι(π(x(1))) ∈ 〈IcoH〉A.

Finally 〈IcoH〉E = IcoH . (d) By hypothesis, p(S) is an H-submodule. Then
S ⊆ 〈p(S)〉A = 〈p(S)〉E#H ⊆ 〈S〉A, by (b), and the equality holds. �

Lemma 5.7. Let H ⊂ H be Hopf algebras where H is finite-dimensional
and semisimple. If A ∈ Cleft(H), then A is an injective object in YDH

H .

Proof. Recall that YDH
H ≃ ML, with L = H ◮◭τ H

∗ cop, see [M, Exercise
7.2.16]. Here τ =

∑
i S(e

i) ⊗ ei ∈ H∗ cop ⊗ H, for dual bases {ei}, {e
i} of

H and H∗. In particular, L ≃ H ⊗ H∗ cop as algebras and there is a Hopf
algebra projection L։ H, see loc. cit. for details.

As A is cleft, it is H-coflat. As L ։ H is a cosemisimple coextension,
then A is also L-coflat and the lemma follows. �
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The following is a snapshot of the Strategy:

T (V )
γ0=id //

πk

��
πk+1 �

��

T (V )

τk

��
τk+1	

��

///o/o/o/o/o/o/o/o/o/o T (V )

Hk
γk //

π′

k+1

��

Ak

τ ′
k+1

��

///o/o/o/o L(Ak,Hk)

Hk+1
γk+1 // Ak+1

///o/o/o/o/o/o/o L(Ak+1,Hk+1)

Here πk, πk+1 and π′k are the natural projections of Hopf algebras and τ ′k is
the natural projection of algebras which is also Hk+1-colinear via π

′
k+1. The

epimorphisms τk : T (V ) → Ak are defined recursively as follows: If k = 1,
we take τ1 = τ ′1. Given τk, we set τk+1 = τ ′k+1τk. Notice that each τk is a
morphism of right Hk-comodule algebras.

The sections γk, γk+1 are introduced in the next proposition.

Proposition 5.8. (a) The Miyashita-Ulbrich action (3.1) on Ak is:

a ↼ πk(x) = τk(S(x(1)))aτk(x(2)), a ∈ Ak, x ∈ T (V ).(5.3)

(b) There is a section γk : Hk → Ak such that γk |H ∈ Alg(H,Ak),

γk |H = τk |H and γk(xh) = γk(x)γk(h) for all x ∈ Bk, h ∈ H.

(c) If H is semisimple, then the above γk : Hk → Ak is a morphism of
right H-modules and γk(hx) = γk(h)γk(x) for all x ∈ Bk, h ∈ H.

(d) Ak is a cleft extension of H, Ak ≃ Ek#H, where Ek = AcoH
k and

τk(T (V )#1) = γk(Bk#1) = τ ′k(Ek−1#1) = Ek#1.

In particular, Ek ≃ Ek−1/(ker τ
′
k)

coH .

Proof. (a) Let x ∈ T (V ). We compute

can(τk(S(x(1)))⊗ τk(x(2))) = τk(S(x(1)))τk(x(2))(0) ⊗ τk(x(2))(1)

= τk(S(x(1)))τk(x(2))⊗ πk(x(3)) = 1⊗ πk(x).

Then can−1(1⊗ πk(x)) = τk(S(x(1)))⊗ τk(x(2)) and (5.3) follows by (3.1).
(b) First, we may choose γ0 = id, then the statement holds trivially

for k = 0. We now proceed by induction, assume it holds for k. The
inductive step follows as [Sc, Theorem 4.2] in this setting: Notice that Ak

is an injective Hk+1-comodule, since Hk is Hk+1-coflat and Ak is Hk-coflat.
Thus, as γk|H : H → Ak is Hk+1-colinear, there exists a Hk+1-colinear map

ω : Hk+1 → Ak such that ω|H = γk|H . By [T1, Lemma 14] ω is convolution-

invertible, since its restriction to H is. Also τ ′k+1 ω|H ∈ Alg(H,Ak+1). Then
the section γk+1 : Hk+1 → Ak+1 is defined by

xh 7−→ τ ′k+1 ω(x) τ
′
k+1 ω(h), x ∈ Bk+1, h ∈ H.

Note that γk+1(h) = τ ′k+1 ω(h) = τ ′k+1γk(h) = τ ′k+1τk(h) = τk+1(h), h ∈ H.
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(c) If H is semisimple, then Ak is injective in YDHk

H by Lemma 5.7. The
proof of (b) mutatis mutandis shows the first claim. If x ∈ Bk+1, h ∈ H,
then γk+1(hx) = γk+1(adr(S

−1(h(2)))(v)h(1)) = γk+1(h)γk+1(x).

(d) By Remark 5.6 (a), Ak is H-cleft and Ak ≃ Ek#H. As Bk#1 = HcoH
k ,

T (V )#1 = T (V )coH , Ek−1#1 = AcoH
k−1 , we have τk(T (V )#1), γk(Bk#1),

τ ′k(Ek−1#1) ⊆ Ek#1 since all γk, τk and τ ′k are H-colinear. The equality and
the last assertion of (d) follow from Remark 5.6 (c). �

We fix the following setting:

• We denote by ui ∈ P(Bk), 1 ≤ i ≤ n, the elements of Gk. We set
vi = S(ui) ∈ Yk, 1 ≤ i ≤ n. Let U , resp. W , be the linear span of
{ui}1≤i≤n, resp. {vi}1≤i≤n. Notice that U ∈ H

HYD, W ∈ YDH
H .

• Let {eij}1≤i,j≤n ⊂ H be the set of comatrix elements associated to
U and {ui}1≤i≤n, see (4.1). Then

∆(vi) =
n∑

j=1

vj ⊗ S(eij) + 1⊗ vi, 1 ≤ i ≤ n.

• We set C the subcoalgebra of H generated by {S(eij)}1≤i,j≤n.
• We fix a section γk : Hk → Ak such that γk(xh) = γk(x)h, x ∈ Bk,
h ∈ H, see Proposition 5.8. If H is semisimple we assume moreover
that γk is H-linear.

By Proposition 5.8 (b) we can identify H with τk(H) = γk(H) ⊂ Ak.

Lemma 5.9. (a) Let ϕ ∈ AlgHk(Yk,Ak). There are {ci}1≤i≤n ⊂ k with

ϕ(vi) = γk(vi) +
n∑

j=1

cj S(eij).(5.4)

(b) If H is semisimple and ϕ is H-linear, then (ϕ− γk)|W : W → Ak is

a morphism in YDH
H whose image is contained in C.

Proof. (a) As H is cosemisimple, U =
⊕

lMl where each Ml is a simple H-
comodule. We can assume that each ui belongs to some Ml, up to changing
the basis of U . For each i, we restrict to the subcomodule Ml with ui ∈Ml

and consider the corresponding comatrix elements {eij}i,j; they are linearly
independent. To simplify the notation, assume U =Ml is simple.

Set bi = ϕ(vi) − γk(vi) for 1 ≤ i ≤ n. Since ϕ and γk are Hk-colinear,
ρ(bi) =

∑n
j=1 bj ⊗ S(eij). Then {b1, . . . , bn} ⊂ H since H is the socle of

Ak. Moreover, {b1, . . . , bn} ⊂ C. Now, we write bℓ =
∑n

i,j=1 c
ℓ
ijS(eij) for all

1 ≤ ℓ ≤ n, where cℓij ∈ k. We have

∆(bℓ) =
∑

i,j

cℓij∆(S(eij)) =
∑

i,j,s

cℓij S(esj)⊗ S(eis),

ρ(bℓ) =
∑

s

bs ⊗ S(eℓs) =
∑

i,j,s

csij S(eij)⊗ S(eℓs).
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Recall that ∆(bℓ) = ρ(bℓ) since bℓ ∈ H, then cℓij = 0, if ℓ 6= i, and hence

cℓℓj = cssj for all 1 ≤ ℓ, s ≤ n. Therefore we set cj = cℓℓj for each 1 ≤ j ≤ n.

(b) follows from Proposition 5.8 (c). �

5.5. The shape of L(Ak+1,Hk+1). We keep the setting above and also:

• We fix ϕ ∈ AlgHk(Yk,Ak) with cj ∈ k, 1 ≤ j ≤ n, as in (5.4).

• We assume that Ak+1 = Ak/〈ϕ(vi)〉1≤i≤n 6= 0, then Ak+1 ∈ Λk+1.

• We fix a Hopf algebra Lk such that Ak is a (Lk,Hk)-biGalois object.
Let ϑ : L(Ak,Hk) → Lk be the isomorphism in (2.11).

• We identify H →֒ Lk as a Hopf subalgebra via ϑ(id⊗S)∆ since
τk |H = γk |H = idH .

We now describe L(Ak+1,Hk+1) as a quotient of Lk.

Proposition 5.10. L(Ak+1,Hk+1) ≃ Lk/〈ṽi − ci +
∑n

j=1 cjS(eij)〉1≤i≤n

where ṽi ∈ Lk, 1 ≤ i ≤ n, is such that

ṽi ⊗ 1Ak
=

∑

t

γk(vt)(−1) ⊗ γk(vt)(0)γ
−1
k S(eit) + 1⊗ γ−1

k (vi).(5.5)

Proof. We may assume Lk = L(Ak,Hk) ⊂ Ak⊗Ak. The general case follows
by applying ϑ. Set

vi = (γk ⊗ γ−1
k )∆(vi), Eij = (γk ⊗ γ−1

k )∆(S(eji))

for all 1 ≤ i, j ≤ n. Let J =
〈
vi − ci +

∑n
j=1 cjEji

〉
1≤i≤n

, notice that this is

a Hopf ideal since (γk ⊗ γ−1
k )∆ is an (injective) coalgebra map by (2.8) and

(2.9). Set Lk+1 = L(Ak,Hk)/J . We have to show that L(Ak+1,Hk+1) ≃
Lk+1. By [S1, Theorem 3.5], it suffices to prove the following statement.

Claim. Ak+1 is a (Lk+1,Hk+1)-biGalois object.

Set I = 〈ϕ(vi)〉1≤i≤n ⊂ Ak. Let λ : Ak → L(Ak,Hk)⊗Ak be the coaction
as in (2.9). Then λ(I) ⊂ L(Ak,Hk)⊗I+J⊗Ak and thus λ induces a coaction
λ′ : Ak+1 → Lk+1 ⊗Ak+1 such that Ak+1 is a left Lk+1-comodule algebra.
Indeed, it is straightforward to see that
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λ(ϕ(vi)) = λk

(
γk(vi) +

n∑

j=1

cj S(eij)
)

=
∑

t

(
γk(vt) +

n∑

j=1

cj S(etj)
)
⊗ can−1(1⊗ S(eit)) + 1⊗ can−1(1⊗ vi)

=
∑

t,s

γk(vt)⊗ γ−1
k S(est)⊗ γkS(eis) +

∑

s

1⊗ γ−1
k (vs)⊗ γkS(eis)

+
∑

s,t,j

cj S(etj)⊗ γ−1
k S(est)⊗ γkS(eis) + 1⊗ 1⊗ γk(vi)

=
∑

s

(
vs +

∑

j

cjEjs − cs

)
⊗ S(eis) + 1⊗ 1⊗

(
γk(vi) +

∑

s

csS(eis)
)

This also shows that Ak+1 is a (Lk+1,Hk+1)-bicomodule algebra. Let can :
Ak ⊗ Ak → L(Ak,Hk) ⊗ Ak be the Galois map. To conclude, we need to
show that

can(I ⊗Ak +Ak ⊗ I) = J ⊗Ak + L(Ak,Hk)⊗ I.

Indeed, by the above computation, can(I ⊗ Ak + Ak ⊗ I) ⊆ J ⊗ Ak +
L(Ak,Hk) ⊗ I. Now, we show that can−1(J ⊗ Ak + L(Ak,Hk) ⊗ I) ⊆
I ⊗ Ak + Ak ⊗ I, using (2.10). To this end, it is enough to check that
can−1((vi−ci+

∑n
j=1 cjEji)⊗Ak) ⊆ I⊗Ak+Ak⊗I since the other inclusion

is straightforward. This is a consequence of the following computation:

can−1
(
(vi − ci +

n∑

j=1

cjEji)⊗ a
)
=

∑

t

γk(vt)⊗ γ−1
k S(eit)a+ 1⊗ γ−1

k (vi)a

− 1⊗ cia+
∑

j,t

cj γkS(etj)⊗ γ−1
k S(eit)a

(⋆)
=

∑

t

(
γk(vt) +

∑

j

cj S(etj)
)
⊗ γ−1

k S(eit)a

− 1⊗
(∑

t

γk(vt)γ
−1
k S(eit) + ci

)
a

(⋆⋆)
=

∑

t

(
γk(vt) +

∑

j

cj S(etj)
)
⊗ γ−1

k S(eit)a

− 1⊗
∑

t

(
γk(vt)

∑

j

cj S(etj)
)
γ−1
k S(eit)a

for each a ∈ Ak. In the computation above, (⋆), resp. (⋆⋆), follows since
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∑

t

γk(vt)γ
−1
k S(eit) + γ−1

k (vi) = 0, resp.

∑

t

(
γk(vt) +

∑

j

cj S(etj)
)
γ−1
k S(eit) =

∑

t

γk(vt)γ
−1
k S(eit) +

∑

j

cj ε(eij).

This ends the proof of the claim. �

5.6. Adapted stratifications with a stratum of skew-primitive ele-

ments. We add the following assumption to the setting of page 22:

• We assume that Gk is composed of skew-primitive elements in Hk.
Explicitly, ui ∈ Pgi,1(Hk) for some gi ∈ G(Hk) = G(H). In particu-

lar, vi = uig
−1
i ∈ P1,g−1

i

(Hk), so Yk = k〈vi〉1≤i≤n.

Remark 5.11. Let ϕ ∈ AlgHk(Yk,Ak). Lemma 5.9 (a) in this context says
that there exist ci ∈ k, 1 ≤ i ≤ n, such that

ϕ(vi) = γ(vi)− ci g
−1
i .

Let ϕ ∈ AlgHk(Yk,Ak), ci ∈ k be as in Remark 5.11. Assume that
Ak+1 = Ak/〈ϕ(vi)〉1≤i≤n = Ak/〈γ(ui) − ci〉1≤i≤n 6= 0. Let Lk be a Hopf
algebra such that Ak is a (Lk,Hk)-biGalois object.

Proposition 5.10 is formulated in this context as follows, compare with
[Gu, Lemma 11].

Corollary 5.12. L(Ak+1,Hk+1) ≃ Lk/〈ũi − ci(1 − gi)〉1≤i≤n, where ũi ∈
Pgi,1(Lk) is such that

ũi ⊗ 1Ak
= γk(ui)(−1) ⊗ γk(ui)(0) − gi ⊗ γk(ui).(5.6)

Proof. Follows by Proposition 5.10. The fact that ũi ∈ Pgi,1(Lk) follows

since ũi = ϑ
(
(γk ⊗ γ−1

k )∆(ui)
)
and (γk ⊗ γ−1

k )∆ is a coalgebra map. �

5.6.1. A stratum generated by one-dimensional submodules. In this part we
refine the previous setting as follows:

• We assume there is a family of YD-pairs (gi, χi) ∈ G(H)×Alg(H,k)
cf. (2.2), i = 1, . . . , n, such that ui ∈ P(Bk)

χi

gi − 0. We also assume
that ui is homogeneous of degree di ≥ 2. We identify ui with ui#1 ∈
Pgi,1(Hk). Recall that vi = uig

−1
i .

For completeness, we include the proof of the following well-known result.

Lemma 5.13. Assume char k = 0. Let qi = χi(gi), Ni = ord qi. Then k〈vi〉
is either a polynomial algebra or a polynomial algebra truncated at Ni (in
case Ni ≥ 2).

Clearly, qi is a root of 1. If qi = 1, then k〈vi〉 is always a polynomial
algebra. For qi 6= 1, it is possible to check whether k〈vi〉 is truncated in
specific examples.
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Proof. Notice that k〈vi〉 is a Hopf algebra in YDH
H , with braiding determined

by c(vi ⊗ vi) = q−1
i (vi ⊗ vi). Consider the polynomial algebra k[T ] as a

braided Hopf algebra with the analogous braiding. Then the kernel of the
epimorphism ς : k[T ] → k〈vi〉, given by T 7→ vi, is an homogeneous Hopf
ideal of the braided Hopf algebra k[T ] spanned by a primitive element. Thus
ker ς = 0 or 〈TM 〉 for some M , but TM is primitive only when M = 1 or
M = ord q−1

i = Ni. �

In the following lemma we study the set AlgHk

Hk
(Xk,Ak), which is required

for Step (1a) of the Strategy.

Lemma 5.14. Let ψ1, ψ2 ∈ AlgHk

Hk
(Xk,Ak). Fix j, 1 ≤ j ≤ n, with

χj |G(H) 6= ε.

(a) ψ1(vj) = ψ2(vj).
(b) If H is semisimple, then ψ1(vj) = ψ2(vj) = γ(vj).

Proof. (a) Since (γ(vj) ↼ t−1 − χj(t)γ(vj))gj ∈ AcoHk

k = k, we see that
there exists a map aj : G(H) → k such that

γ(vj)↼ t−1 = χj(t)γ(vj) + aj(t)g
−1
j , t ∈ G(H).(5.7)

Note that aj(1) = 0 and aj(ts) = aj(s) + χj(s)aj(t). Let ϕi = ψi|Yk
∈

AlgHk(Yk,Ak). Then ψi(vj) = γ(vj) − c
(i)
j g−1

j by Remark 5.11, for some

c
(i)
j ∈ k, i = 1, 2. As ψi is Hk-linear, we have

0 = ψi(vj)↼ t−1 − χj(t)ψi(vj)
(5.7)
=

(
aj(t) + χj(t)c

(i)
j − c

(i)
j

)
g−1
j .

Thus aj(t) = (1− χj(t))c
(i)
j . If χj |G(H) 6= ε, then c

(1)
j = c

(2)
j =

aj(t)

1− χj(t)
for

t ∈ G(H) with χj(t) 6= 1. (b) aj = 0 by Proposition 5.8 (c). �

Now, we study the set AlgHk(Yk,Ak) for Step (1b) in the Strategy.

Lemma 5.15. Let ϕi ∈ AlgHk(Yk,Ak) and such that 〈ϕi(Y
+
k )〉 6= Ak, i =

1, 2. Fix j, 1 ≤ j ≤ n, with χj |G(H) 6= ε.

(a) ϕ1(vj) = ϕ2(vj).
(b) If H is semisimple, then ϕ1(vj) = ϕ2(vj) = γ(vj).

Proof. Notice that tϕi(vj)t
−1 − χj(t)ϕi(vj) ∈ 〈ϕi(vj)〉. The computation in

Lemma 5.14 shows that aj(t) = (1−χj(t))c
(i)
j since 〈ϕi(vj)〉 ⊆ 〈ϕi(Yk)

+〉. �

5.7. Some tools for diagonal braidings. Let V be a vector space with
a basis ξ1, . . . , ξθ. Let Ni ∈ N, 1 ≤ i ≤ θ. Let Ω = (ωij)1≤i,j≤θ ∈ kθ×θ such
that ωii = 1 and ωijωji = 1 for every i, j. Consider the quantum linear space
associated to Ω, that is

kΩ[ξ1, . . . , ξθ] = T (V )/IΩ, for IΩ = 〈ξiξj − ωijξjξi〉1≤i,j≤θ.
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The following well-known lemma is useful to deal with the Strategy for
braidings of diagonal type.

Lemma 5.16. Fix (λi)1≤i≤θ ∈ kθ such that

λi = 0, when ωNi

ij 6= 1 for some j.(5.8)

Let S ⊆ IΩ and set S′ = S ∪ {ξNi

i − λi}1≤i≤θ. Then T (V )/〈S′〉 6= 0.

Proof. It suffices to consider S = IΩ, as T (V )/〈S′〉 ։ T (V )/〈I ′Ω〉. We can
assume that λi = 0, i = 1, . . . , k and λi 6= 0, if i > k, for some 0 ≤ k ≤ θ.
Set I = 〈IΩ ∪ {ξNi

i }1≤i≤k〉; this is a proper Nθ
0-graded ideal and therefore

the quotient kΩ[ξ1, . . . , ξθ]/〈ξ
Ni

i 〉1≤i≤k = T (V )/I 6= 0.

By (5.8) the elements ξNi

i , k + 1 ≤ i ≤ θ are central in kΩ[ξ1, . . . , ξθ].
Moreover, the subalgebra P ⊂ T (V )/I generated by their images is a poly-
nomial algebra. We consider the 1-dimensional representation M = k of P
given by ξNi

i · 1 = λi and M
′ = T (V )/I ⊗P M the induced representation

of T (V )/I. Notice that the algebra map T (V )/I → EndM ′ factors through
T (V )/〈I ′Ω〉 and hence this algebra is nonzero. �

We will also make use of the following remark.

Remark 5.17. Let {ri}i∈I be a family of monomials in T (V ) and set J =
〈ri〉i∈I . Then (the image of) the set of monomials in T (V ) that do not
contain an ri as a subword is a linear basis of T (V )/J . Indeed, a basis of
T (V ) is given by the collection of all monomials. This set can be splitted in
two subsets: the monomials containing an ri as a subword and those that
do not. The first subset is a linear basis of J .

5.8. An example of diagonal type. Assume k = C. Let ζ ∈ k be a
primitive 9th-root of unity. We apply our strategy to classify the liftings of
the Nichols algebra associated to the diagram

−ζ◦
ζ7

◦ ζ3(5.9)

of [H, Table 1, row 9]. Consider a matrix (qij)1≤i,j≤2 corresponding to (5.9),
that is q11 = −ζ, q22 = ζ3 and q12q21 = ζ7. Let Γ be a finite group such that

there is a realization of this braiding, i.e. there are g1, g2 ∈ Γ, χ1, χ2 ∈ Γ̂
with χj(gi) = qij, 1 ≤ i, j ≤ 2. Set H = kΓ and V ∈ H

HYD the associated
Yetter-Drinfeld module: V has a basis {x1, x2} with xi ∈ V χi

gi , i = 1, 2. Let

x12 = x1x2 − q12x2x1, x112 = x1x12 − q11q12x12x1,(5.10)

x1112 = x1x112 − q211q12x112x1, x122 = x12x2 − q12q22x2x12,

x1,122 = x1x122 − q11q
2
12x122x1.

By [An, Example 2.5], B(V ) is presented by generators x1, x2 and relations

x181 = x32 = x1812 = x1112 = x1,122 − a x212 = 0,
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for a = ζ7q12(1 + ζ)−1. We fix the following stratification:

G0 = {x181 , x
3
2}, G1 = {x1,122 − a x212}, G2 = {x1112}, G3 = {x1812}.

(5.11)

Set H = H4 = B(V )#H. Let λ1, λ2 ∈ k be subject to:

λ1 = 0 if χ18
1 6= ε, λ2 = 0 if χ3

2 6= ε.(5.12)

Let A(λ1, λ2) be the quotient of T (V ) by the ideal generated by

x181 − λ1, x32 − λ2, x1,122 − a x212, x1112.(5.13)

Remark 5.18. A(λ1, λ2) 6= 0.

Proof. By Remark 5.6 (b), A(λ1, λ2) ≃ T (V )/J#H where J is the ideal
generated by the relations (5.13). Set ξi = xi, i = 1, 2, ω12 = q12 = ω−1

21 .
Then, in the notation of Lemma 5.16, S := {x1,122 − a x212, x1112} ⊂ IΩ by
(5.10). Condition (5.8) is tantamount to (5.12), and J = 〈S′〉. Thus Lemma
5.16 applies. �

Let L(λ1, λ2) be the quotient of T (V ) by the ideal generated by

x181 − λ1(1− g181 ), x32 − λ2(1− g32), x1,122 − a x212, x1112.

Notice that this is a Hopf ideal, as G0 ∪ G1 ∪ G2 ⊆ P(T (V )).

We will now follow the strategy in Subsection 5.2 in order to find all the
liftings of B(V ) over Γ. We stick to the notation therein.

Proposition 5.19. (a) A(λ1, λ2) is a right H3-Galois object with coac-
tion induced by the comultiplication in T (V ). Moreover,

Λ3 =
{
A(λ1, λ2) : λ1, λ2 as in (5.12)

}
.

(b) L(A(λ1, λ2),H3) ≃ L(λ1, λ2).
(c) Let λ3 ∈ k be subject to:

λ3 = 0 if χ18
1 χ

18
2 6= ε.(5.14)

Then the algebra A(λ1, λ2, λ3) := A(λ1, λ2)/〈x
18
12 − λ3〉 is a right

H-Galois object. Moreover,

Λ4 =
{
A(λ1, λ2, λ3) : λ1, λ2 as in (5.12) and λ3 as in (5.14)

}
.

Proof. Following the Strategy in 5.2, we start by constructing the set Λ1.
For this we use (1b). Consider the subalgebra Y0 of H0 = T (V ) generated
by x181 g

−18
1 and x32g

−3
2 . This is a free associative algebra in two generators.

Then we have AlgH0(Y0,A0) ∼= k2, since every map is determined by its
value on x181 g

−18
1 and x32g

−3
2 and these values must be x181 g

−18
1 −λ1 g

−18
1 and

x32g
−3
2 − λ2 g

−3
2 , for some λ1, λ2 ∈ k, by Remark 5.11. Then Λ1 is the set

of all algebras A1(λ1, λ2) obtained as T (V )/〈x181 − λ1, x
3
2 − λ2〉, for λ1, λ2

subject to (5.12) by Lemma 5.15. Indeed, these algebras are nonzero since
they project over A(λ1, λ2) which is nonzero by Remark 5.18. We denote
by y1, y2 the images of the generators x1, x2 in each one of these quotients.
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For Λ2 we use again (1b). Set Y1 = k〈(x1,122−a x
2
12)g

−2
1 g−2

2 〉 ⊂ H1. Notice
that χ2

1χ
2
2(g

2
1g

2
2) = ζ8 so χ2

1χ
2
2 6= ε. It follows that Y1 is a polynomial alge-

bra. Indeed, by Lemma 5.13 we need to check that z =
(
x1,122 − a x212

)9
6= 0.

Now, z is a linear combination of monomials containing (x21x
2
2)

9 with coef-
ficient 1. So it is nonzero by Remark 5.17. Lemma 5.15 implies that

(
x1,122 − a x212

)
g−2
1 g−2

2 7→ γ1
((
x1,122 − a x212

)
g−2
1 g−2

2

)
,

is the unique possible map in AlgH1(Y1,A1). Let y1,122, y12 ∈ A1 be defined
as in (5.10). It is easy to see that

γ1
((
x1,122 − a x212

)
g−2
1 g−2

2

)
=

(
y1,122 − a y212

)
g−2
1 g−2

2 .

Indeed, γ1
((
x1,122 − a x212

)
g−2
1 g−2

2

)
=

(
y1,122 − a y212

)
g−2
1 g−2

2 −c g−2
1 g−2

2 , for
some c ∈ k by H1-colinearity but c = 0 because γ1 is H-linear. Then Λ2 is
composed of the algebras A2(λ1, λ2) = A1(λ1, λ2)/〈y1,122−a y

2
12〉 with λ1, λ2

subject to (5.12). These are nonzero as they project over A(λ1, λ2).
For Λ3 we also use (1b). Set Y2 = k〈x1112g

−3
1 g−1

2 〉 ⊂ H2. We have
that χ3

1χ2(g
3
1g2) = −ζ6, so χ3

1χ2 6= ε. As above, Y2 is a polynomial al-
gebra. Again, by Lemma 5.13 it is enough to check that x61112 6= 0. For
this, let F be the set composed of the monomials x181 , x32 and those ap-
pearing in the expression of x1,122 − a x212. Set J = 〈F 〉 ⊂ T (V ), then
there exists a projection H2 ։ T (V )/J . As x61112 is a linear combination
of monomials containing (x31x2)

6 with coefficient 1, Remark 5.17 implies
x61112 6= 0 in T (V )/J and hence it is nonzero in H2. Thus Lemma 5.15

implies that x1112g
−3
1 g−1

2 7→ γ2(x1112g
−3
1 g−1

2 ) is the unique possible map in

AlgH2(Y2,A2). Also, it is easy to see that γ2(x1112g
−3
1 g−1

2 ) = y1112g
−3
1 g−1

2 ,
for y1112 defined as in (5.10). We have already seen that the quotients
A2/〈y1112〉 = A(λ1, λ2) are nonzero. We obtain that Λ3 is the set of all the
algebras A(λ1, λ2) and (a) follows. Now (b) holds by Corollary 5.12.

For Λ4, we use (1a), since k〈x1812〉 is a normal subalgebra of H2. This
follows because x1812 is in the center of H3, which can be proved using [GAP],
see also [AAGI]. By Lemma 5.13, X3 is a polynomial algebra. Using [GAP]
again2, we see that

ρ3(y
18
12) = y1812 ⊗ 1 + g181 g

18
2 ⊗ x1812.(5.15)

Hence, γ3(x
18
12) = y1812 + c, for some c ∈ k. Now, if χ18

1 χ
18
2 6= ε, then c = 0

and there is a unique map in AlgH3

H3
(X3,A3), determined by x1812g

−18
1 g−18

2 7→

y1812g
−18
1 g−18

2 by Lemma 5.14. On the other hand, if χ18
1 χ

18
2 = ε, then it

follows by Remark 5.11 that AlgH3

H3
(X3,A3) ∼= k, since for each λ3 ∈ k,

x1812g
−18
1 g−18

2 7→ y1812g
−18
1 g−18

2 − λ3 g
−18
1 g−18

2 induces an algebra morphism

X3 → A3 in YDH3

H3
. Hence (c) follows. �

2This coaction is computed with [GAP] using the method described in [GIV, Appendix].
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Let L(λ1, λ2, λ3) be the quotient of L(λ1, λ2) by the ideal generated by

x1812 − λ3(1− g181 g
18
2 ).

In the next theorem we show that this is a Hopf ideal and that the family
of Hopf algebras L(λ1, λ2, λ3) exhausts the list of liftings of B(V ) over Γ. In
particular, every lifting is a cocycle deformation of B(V )#kΓ.

Theorem 5.20. (a) L(λ1, λ2, λ3) is a cocycle deformation of H.
(b) L(λ1, λ2, λ3) is a lifting of B(V ) over Γ.
(c) Reciprocally, if L is a lifting of B(V ) over Γ, then there are λ1, λ2, λ3

such that L ≃ L(λ1, λ2, λ3).

Proof. (a) We use [GAP] as in (5.15) to see that

γ3(x
18
12)(−1) ⊗ γ3(x

18
12)(0) − g181 g

18
2 ⊗ γ3(x

18
12) = x1812 ⊗ 1.(5.16)

Then x1812 satisfies (5.6). Hence, L(A(λ1, λ2, λ3),H) ≃ L(λ1, λ2, λ3), by
Corollary 5.12.

(b) follows by Proposition 4.14 (b) and (d).
(c) Let φ : T (V ) → L be a lifting map. If r ∈ G0 ∪ G1 ∪ G2, then r is

(g(r), 1)-primitive for g(r) ∈ Γ, hence φ(r) ∈ L1. Let χr ∈ Γ̂ be the character
from the Γ-action on r. Now, the pair (χr, g(r)) is different from (χi, gi),
i = 1, 2 and thus φ(r) ∈ kΓ by Lemma 4.8 (b), see also [AS3, Lemma 6.1].
Indeed, χ18

1 (g181 ) = χ3
2(g

3
2) = 1 and we have already seen that χ2

1χ
2
2(g

2
1g

2
2) =

ζ8, χ3
1χ2(g

3
1g2) = −ζ6. Then there exist λ1, λ2 ∈ k such that φ factorizes

through L(λ1, λ2). By equation (5.16) and Corollary 5.12, x1812 is (g181 g
18
2 , 1)-

primitive in L(λ1, λ2). Also, φ(x1812) ∈ kΓ again by Lemma 4.8 (b). Hence,
there exists λ3 ∈ k such that φ factorizes through L(λ1, λ2, λ3) and induces
an isomorphism since both algebras have dimension dimB(V )|Γ|. �

5.9. A question. Set Ak ∈ Cleft(Hk). To find Ak+1 ∈ Cleft(Hk+1) we can
either apply Theorem 3.1 or Theorem 3.3. As said in Subsection 5.2 both
alternatives present a hard computational obstacle, namely the computation
of Xk or the checking of 〈ϕ(Y +

k )〉 6= Ak. Hence we need an intermediate
Günther’s Theorem exploiting the benefits of both alternatives. That said,
we collect from the examples enough evidence to change alternative (1b) by

(1c) Compute Yk and then AlgHk

H (Yk,Ak).

Actually, in many examples we see that not only ϕ ∈ AlgHk

H (Yk,Ak) in-
duces a nonzero algebra Ak+1 but also that any Ak+1 ∈ Cleft(Hk+1), and

hence any ψ ∈ AlgHk

Hk
(Xk,Ak) is determined by ϕ = ψ|Yk

∈ AlgHk(Yk,Ak).
Furthermore, as Hk is Yk-faithfully flat, see Corollary 3.8,

(1) Xk is the subalgebra generated by Yk · Hk, see Remark 5.4.

Question. Is there a general setting in which any ϕ ∈ AlgHk

H (Yk,Ak) ex-

tends to ψ ∈ AlgHk

Hk
(Xk,Ak) with ψ|Yk

= ϕ?

Assume that H is finite-dimensional and semisimple. Then evidence of a
positive answer is given by (1) above and the fact that
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(2) Ak is an injective object in YDHk

H , see Lemma 5.7.

So, any ϕ ∈ HomHk

H (Yk,Ak) extends to ψ ∈ HomHk

Hk
(Xk,Ak) with ψ|Yk

= ϕ.
As a last word, we recall that:

(3) There is an H-linear section γk : Hk → Ak with γk |H = idH .
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