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Abstract

A function is algebraic on an algebraA if it can be implicitly defined by
a system of equations on A. In this note we give a semantic characteriza-
tion for algebraic functions on quasiprimal algebras. This characterization
is applied to obtain necessary and suffi cient conditions for a quasiprimal
algebra A to have every one of its algebraic functions be a term function.
We also apply our results to particular algebras such as finite fields and
monadic algebras.

1 Introduction

Let A be an algebra and let ti(x1, . . . , xn, z1, . . . , zm), si(x1, . . . , xn, z1, . . . , zm)
be terms, for i = 1, . . . , k. Suppose that for every (a1, . . . , an) ∈ An the system
of equations

t1(a, z) = s1(a, z)
...

tk(a, z) = sk(a, z)

has a unique solution b ∈ Am. One such system on A implicitly defines m
functions f1, . . . , fm : An → A by letting (f1(a), . . . , fm(a)) be the unique b ∈
Am such that

ti(a, b) = si(a, b), for i = 1, . . . , k.

We call a function f : An → A algebraic on A if it can be implicitly defined
by a system in the above described manner. There are many natural examples
of algebraic functions. For instance, let D = (D,∧,∨, 0, 1) be a complemented
distributive lattice, and consider the complementation operation c : D → D.
This function is implicitly defined by the system

x ∧ z = 0

x ∨ z = 1,

and thus is algebraic on D.
Algebraic functions have some appealing properties, and are an interesting

choice as expanding operations. The authors have investigated the subject of
algebraic functions for general algebras (see [3]) as a natural development of
their study of axiomatizability by sentences of the form ∀∃! ∧ p = q (see [2]).
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A finite algebra A is called quasiprimal if the ternary discriminator, dA :
A3 → A defined by

d
A(a, b, c) =

{
a if a 6= b
c if a = b,

is a term operation of A.
In the current note we provide a complete characterization for algebraic

functions on quasiprimal algebras (Theorem 6). We apply this result to several
particular cases such as finite fields and monadic algebras, and to describe those
quasiprimal algebras in which every algebraic function is a term-function.

2 Preliminaries

Throughout this note an algebra is a model of a first order language without
relation symbols. Let A be an algebra. We write CloA to denote the set of
term-functions of A.

Let γ be an inner isomorphism of A, that is, an isomorphism between sub-
algebras of A. We say that a function f : An → A preserves γ if Dom(γ)
is closed under f , and for any a1, . . . , an ∈ Dom(γ) we have γf(a1, . . . , an) =
f(γ(a1), . . . , γ(an)).

EFD-sentences and algebraic functions

An equational function definition sentence (EFD-sentence for brevity) in the
language L is a sentence of the form

∀x1 . . . xn∃!z1 . . . zm
k∧
i=1

si(x, z) = ti(x, z),

where si, ti are L-terms, n,m ≥ 0. In this note we are only concerned with
EFD-sentences having m ≥ 1, so in the sequel we assume that EFD-sentences
have at least one existential quantifier. Let ϕ be as in the display above and
suppose A � ϕ, the function defined by ϕ in A is the map

An → Am

a 7→ the only b ∈ Am such that
∧k
i=1 si(a, b) = ti(a, b).

We write [ϕ]A to denote this function, and if πj : Am → A is the jth canonical
projection, let [ϕ]Aj = πj◦[ϕ]A, for j = 1, . . . ,m. After introducing this notation
we have an easy way to identify algebraic functions, in fact:

Remark 1 A function is algebraic on A if and only if it is of the form [ϕ]Aj ,
for some EFD-sentence ϕ that holds in A.

For a more thorough account on the basic properties of algebraic functions
we refer the reader to [3]. One elementary fact we do need to mention is:
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Lemma 2 Let ϕ be an EFD-sentence such that A � ϕ, and let B ∈ S(A).
Then B � ϕ iff [ϕ]A(Bn) ⊆ Bm.

Recall that a clone on a set A is a set of operations of finite arity on A
which contains all projections and is closed under composition. Of course, the
term-functions on an algebra A form a clone on A.

As shown in [3], the set of algebraic functions on A is a clone, which we
denote by CloalgA. It is easily seen that CloA ⊆ CloalgA.
We shall need the following:

Lemma 3 Let A be any algebra and let f1, . . . , fk ∈ CloalgA.

(1) There is an EFD-sentence ϕ such that A � ϕ and

f1, . . . , fk ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Am).

(2) Cloalg (A,f1, . . . , fk) = CloalgA.

Proof. (1). Let ϕi = ∀x1 . . . xni∃!z1 . . . zmi
εi(x, z) be such that [ϕi]

A
1 = fi, for

i = 1, . . . , k, and let n = max{ni : i = 1, . . . , k}. If we take

ϕ = ∀x1 . . . xn∃!z11 . . . z1m1
. . . zk1 . . . z

k
mk

ε1(x, z
1
1 , . . . , z

1
m1

)∧. . .∧εk(x, zk1 , . . . , z
k
mk

)

it is clear that ϕ has the desired property.

(2). First note that Cloalg (A,f1, . . . , fk) = Cloalg((A,f1, . . . , fk−1), fk), thus it
suffi ces to prove the case k = 1. Let f ∈ Cloalg (A,f1) and let ϕ = ∀x∃!z ε(x, z)
be an EFD-sentence of the expanded language such that f = [ϕ]

(A,f1)
1 . By

means of a routine inductive argument we can suppose w.l.o.g. that each term
occurring in ϕ is either a variable or a basic operation applied to variables. Take
ψ = ∀y∃!w δ(y, w) such that f1 = [ψ]A1 . Let ε

′(x, z, u1) be the formula obtained
by taking the first occurrence of a term of the form f1(v1, . . . , vn) in ε(x, z) and
replacing it by a new variable u1. Next, take

ϕ′ = ∀x∃!zu1 . . . ul ε′(x, z, u1) ∧ δ(v1, . . . , vn, u),

where u2, . . . , ul are new variables. Observe that [ϕ′]
(A,f1)
1 = f and ϕ′ has one

less occurrence of f1 than ϕ. Thus, it can be proved by induction that there is
an EFD-sentence λ in the language of A such that [λ]A1 = f .

Quasiprimal algebras

Recall from the Introduction that a quasiprimal algebra is a finite algebra having
the ternary discriminator as a term-operation. We shall need the following
characterization of quasiprimal algebras by A. Pixley:

Theorem 4 ([7]) For a finite algebra A the following are equivalent:

(1) A is quasiprimal.

(2) If f : An → A, with n ≥ 1, preserves all inner isomorphisms of A then
f ∈ CloA.
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3 Main results

A fixed-point subalgebra of A is a subalgebra of A having as its universe the
fixed-point set of an automorphism of A. A class of models C has the finite
intersection property if given A ∈ C and A ⊇ B,C ∈ C, such that B ∩ C 6= ∅,
then B ∩ C ∈ C. Before we can state our main result we need to introduce a
closure operator on S(A). Given F ⊆ S(A) we define K(F) to be the smallest
subset of S(A) such that:

- F ⊆ K(F)

- all trivial subalgebras of A are in K(F)

- K(F) is closed under fixed-point subalgebras

- K(F) has the finite intersection property

- K(F) is closed under isomorphisms relative to S(A).

Lemma 5 Let A be a quasiprimal algebra, and let F ⊆ S(A). Then, there is
an EFD-sentence ϕ such that F = Mod(ϕ) ∩ S(A) if and only if K(F) = F .

Proof. We prove the nontrivial direction. Since K(F) = F , Theorem 1 of [4]
says that there is a finite set Σ of ∀∃!-sentences such that F = Mod(Σ)∩ S(A).
A detailed inspection of the way the sentences of Σ are built in the proof of the
aforementioned theorem shows that the matrix of each one of these sentences
is satisfiable by trivial algebras. (For this to be true it is a key fact that all
trivial subalgebras of A are in F .) Now, by the well known translation result
for quasiprimal algebras [8], we can obtain a set Σ′ of EFD-sentences such that
Mod(Σ′) ∩ S(A) = Mod(Σ) ∩ S(A) = F . Finally, it is a routine exercise to
check that the conjunction of EFD-sentences is logically equivalent to an EFD-
sentence.

We are now ready to present our characterization of algebraic functions in
quasiprimal algebras.

Theorem 6 Let A be quasiprimal, and let f : An → A with n ≥ 1. T.f.a.e.:

(1) f is algebraic on A.

(2) There are f1, . . . , fm−1 : An → A such that:

(a) every trivial subalgebra of A is closed under f, f1, . . . , fm−1, and

(b) if B,C are subalgebras ofA such that f(b), f1(b), . . . , fm−1(b) ∈ B for
every b ∈ Bn, and γ : B→ C is an isomorphism, then f, f1, . . . , fm−1
preserve γ.

(3) f preserves isomorphisms between members of K(A).
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(4) f ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ) for some EFD-sentence ϕ such that Mod(ϕ)∩
S(A) = K(A).

Furthermore, if ϕ is any EFD-sentence satisfying Mod(ϕ)∩S(A) = K(A)
then

CloalgA = Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ).

Proof. (1)⇒(2). This is easy.
(2)⇒(3). Let F = {B ∈ S(A) : f(b), f1(b), . . . , fm−1(b) ∈ B, for every b ∈ Bn}.
It is straightforward to check that K(F) = F , and since A ∈ F we have
K(A) ⊆ F . Thus (3) follows.
(3)⇒(4). Lemma 5 produces an EFD-sentence ϕ such that Mod(ϕ) ∩ S(A) =
K(A). Let Ae = (A, [ϕ]A1 , . . . , [ϕ]Ak ). Observe that from Lemma 2 we have
S (Ae) = K(A), and so f preserves inner isomorphisms of Ae. Thus, by Theo-
rem 4, f is a term-function of Ae, and we have proven (4).

(4)⇒(1). Direct from Lemma 3.
Finally, observe that the only fact used about ϕ in (3)⇒(4) is that Mod(ϕ)∩

S(A) = K(A), thus (1) and (4) are equivalent for any such ϕ, proving the
furthermore part.

Interestingly, a result almost identical to the above holds for a class of alge-
bras broader than that of quasiprimal ones.

Corollary 7 Suppose A is a finite algebra having the discriminator as an al-
gebraic function. Then (1)-(3) of Theorem 6 are equivalent for A, and these
three conditions are equivalent to

(4′) f ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ) for some EFD-sentence ϕ such that Mod(ϕ)∩
S(A) = K(A) and dA ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ).

Furthermore, if ϕ is any EFD-sentence satisfying Mod(ϕ) ∩ S(A) = K(A)
and dA ∈ Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ), then

CloalgA = Clo(A, [ϕ]A1 , . . . , [ϕ]Ak ).

Proof. Observe that the proofs of (4)⇒(1)⇒(2)⇒(3) of Theorem 6 are valid for
any algebra A. We prove (3)⇒(4′). Let A∗ be the expansion obtained from A
by adding the ternary discriminator as a basic operation. Since A and A∗ have
the same subalgebras and inner isomorphims it is clear that K(A∗) = K(A). So,
Theorem 6 says that there is an EFD-sentence ψ such that Mod(ψ) ∩ S(A∗) =
K(A∗), and f ∈ Clo(A∗, [ψ]A

∗

1 , . . . , [ψ]A
∗

k ). By (2) of Lemma 3, the functions
[ψ]A

∗

1 , . . . , [ψ]A
∗

k are algebraic on A, and now by (1) of the same lemma, there
is an EFD-sentence ϕ such that

f ∈ Clo(A∗, [ψ]A
∗

1 , . . . , [ψ]A
∗

k ) ⊆ Clo(A, [ϕ]A1 , . . . , [ϕ]Am).

It remains to check that Mod(ϕ) ∩ S(A) = K(A). Clearly, K(A) ⊆ Mod(ϕ) ∩
S(A), since A � ϕ. Finally, if B ∈ Mod(ϕ) ∩ S(A), from the inclusion in
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the display above it follows that B is closed under [ψ]A
∗

1 , . . . , [ψ]A
∗

k . Thus, by
Lemma 2,

B∗ ∈ Mod(ψ) ∩ S(A∗) = K(A∗).

and hence B ∈ K(A).
The furthermore part is proved exactly as in Theorem 6.

Recall that the quaternary discriminator on a set A is the function

sA(x, y, z, w) =

{
z if x = y,

w if x 6= y.

Each discriminator is obtainable from the other as a term-operation [1]. Thus
for any algebra A we have

sA ∈ CloalgA⇐⇒ d
A ∈ CloalgA.

As shown in [5], it is possible to describe those algebras in which the quater-
nary discriminator is mono-algebraic, i.e., algebraic and definable by an EFD-
sentence with only one existential quantifier.

Theorem 8 ([5]) Let A be a finite algebra and let Q be the quasivariety gen-
erated by A. The following are equivalent:

(1) The quaternary discriminator is mono-algebraic on A.

(2) Q has equationally definable relative principal congruences, and every non-
trivial subalgebra of A is a relatively simple member of Q.

So Corollary 7 applies to all algebras satisfying (2) of Theorem 8.
To give a quick example, let 3 be the simple 3-element de Morgan algebra.

It is easy to see that the quasivariety generated by 3 coincides with the variety
generated by 3, and it is well known that this variety has equationally definable
principal congruences. Now, 3 has no proper automorphisms, so K (3) = {3}
and it follows that every finitary operation is an algebraic function on 3 (cf.
Proposition 11 below).

4 Applications and examples

Quasiprimal algebras without new algebraic functions An interesting
application of Theorem 6 is the following:

Theorem 9 Let A be a quasiprimal algebra. The following are equivalent:

(1) If f : An → A, with n ≥ 1, is algebraic on A then f ∈ CloA.

(2) S(A) = K(A).
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Proof. (1)⇒(2) For the sake of contradiction suppose there is B ∈ S(A)\K(A).
As K(A) is closed under non-empty intersections, there is a smallest C ∈ K(A)
such that B ⊆ C. Let b1, . . . , bn be an enumeration of B, and let a ∈ C \ B.
Define f : An → A by

f(x) =

{
γ(a) if γ(b) = x and γ is an isom. between members of K(A),
x1 otherwise.

To see that f is well defined suppose γ(b) = δ(b). Observe that by the minimality
of C we have that C ⊆ Dom(γ) ∩ Dom(δ), thus we may actually assume C =
Dom(γ) = Dom(δ). Now B ⊆ Fix(δ−1 ◦ γ) ∈ K(A), and so C ⊆ Fix(δ−1 ◦ γ).
Clearly this yields γ(a) = δ(a).
Next we prove that f satisfies (3) of Theorem 6. We only show that f

preserves the universes of algebras in K(A). Take D ∈ K(A) and suppose γ is
an isomorphism between members of K(A) such that γ(b) ∈ D. Observe that
γ(C) is the smallest member of K(A) containing γ(B). Thus f(γ(b)) = γ(a) ∈
γ(C) ⊆ D. We conclude that f is algebraic on A, but since f(b) = a /∈ B, f
cannot be a term-function.

(2)⇒(1) This follows directly from Theorems 4 and 6.

For example, let A be a finite set and take A = (A,dA). Since every permu-
tation of A is an isomorphism of A it follows that K(A) = P(A) = S(A), where
P(A) stands for the power set of A. Thus, CloalgA = CloA.

Monadic algebras Recall that every finite and simple monadic algebra is
of the form M = (M,∧,∨,c , c0, 0, 1) where (M,∧,∨,c , 0, 1) is a finite boolean
algebra and c0 is a unary operation on A satisfying

c0(x) =

{
0 if x = 0
1 if x 6= 0.

Finite and simple monadic algebra are quasiprimal. For proofs of these facts
and a more detailed account on monadic algebras see [1]. It is easy to check
that given S a subalgebra of M, there is an automorphism γ of M such that
Fix(γ) = S. Thus, applying Theorem 9 yields

CloalgM = CloM.

It is worth mentioning that this fact was obtained through different means in
[3].

Finite fields LetGF(pn) be the finite field of order pn, considered as a model
of the language {+,−, ·, 0, 1}. Note that the term

x(x− y)p
n−1 + z(1− (x− y)p

n−1)

represents the ternary discriminator in GF(pn). It is well known that the auto-
morphism group of GF(pn) is cyclic and consists of the successive powers of the
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Frobenius automorphism γ(x) = xp. Also, for each divisor d of n, GF(pn) has
exactly one subalgebra Sd of order pd, which is isomorphic with GF(pd), and
these are all the subalgebras of GF(pn). Now, given d a divisor of n, observe
that Fix(γd) = Sd and thus

CloalgGF(pn) = CloGF(pn).

It is interesting to note that in the case of infinite fields the situation changes as
the multiplicative inverse (with 0−1 = 0) is algebraic but not a term-operation.
Moreover, in the case of algebraically closed fields of characteristic 0, the mul-
tiplicative inverse together with the basic operations of the field generate the
clone of algebraic functions (see [6]).

Two simple De Morgan algebras Let D denote the De Morgan algebra in
the picture.

Of course, the language of D is {∨,∧,−, 0, 1}. Let 2 denote the subalgebra of
D with universe {0, 1}, and let c be the complement operation on D.

Proposition 10 For a function f : Dn → D the following are equivalent.

(1) f ∈ CloalgD

(2) f ∈ Clo (D,c )

(3) f({0, 1}n) ⊆ {0, 1} and f preserves the only nontrivial automorphism of
D.

Proof. We show first that the ternary discriminator is algebraic on D. Observe
that the complement operation x 7→ xc is algebraic on D since

ϕc = ∀x∃!z x ∧ z = 0 & x ∨ z = 1

holds in D and x 7→ xc = [ϕc]
D. Further observe that the term

t(x, y) = (xc ∨ y) ∧ (x ∨ yc) ∧ (xc ∨ y) ∧ (x ∨ yc)

represents the equality test on (D,c ). That is, t(D,
c)(x, y) is 1 when x = y and

0 otherwise. So, the term

(x ∧ t(x, y)c) ∨ (z ∧ t(x, y))

represents dD, the ternary discriminator on (D,c ). Thus dD ∈ Clo (D,c ) ⊆
CloalgD.
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So, we can apply Corollary 7 and the fact that K(D) = {D,2} = Mod(ϕc)∩
S(D) to conclude the proof.

Let 3 = ({0, 12 , 1},∨,∧,−, 0, 1) be the three-element De Morgan algebra. For
x ∈ {0, 12 , 1} define

bxc =

{
1 if x = 1
0 if x 6= 1.

Proposition 11 Every function of finite arity on {0, 12 , 1} is algebraic on 3.
Furthermore,

Cloalg 3 = Clo

(
3, b.c , 1

2

)
.

Proof. The EFD-sentence

ϕb.c = ∀x∃!z (x = z ∨ (x ∧ x) & z ∨ z = 1)

witnesses the fact that the function x 7→ bxc is algebraic on D. Next, note that
the term

t(x, y) = bx ∧ yc ∨ bx ∧ yc ∨ bx ∨ x ∨ y ∨ yc

represents the equality test on (3, b.c), and as in the proof of Proposition 10 we
obtain d{0,

1
2 ,1} ∈ Clo (3, b.c) ⊆ Cloalg 3.

Clearly K(3) = {3}, and since the only automorphism of 3 is the identity,
by (3)⇔(1) of Corollary 7 every f : {0, 12 , 1}

n → {0, 12 , 1} is algebraic on 3.
It is a routine exercise to check that if the discriminator and all constant

functions are in the clone of a finite algebra then every finite operation is in that
clone. Since this is true of Clo

(
3, b.c , 12

)
the furthermore part is proved.

References

[1] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer
Verlag, New York - Berlin, 1981.

[2] M. Campercholi and D. Vaggione, Algebraically expandable classes, Algebra
Universalis 61 (2009), no. 2, 151—186.

[3] , Algebraic functions, Studia Logica 98 (2011), 285—306.

[4] , Axiomatizability by ∀∃!-sentences, Archive for Mathematical Logic
(2011), 1—13.

[5] , Implicit definition of the quaternary discriminator, Algebra Univer-
salis (2011), in press.

[6] , An implicit function theorem for algebraically closed fields, Algebra
Universalis 65 (2011), 299—304.

9



[7] K. Kaarli and A. Pixley, Polynomial completeness in algebraic systems, Boca
Raton, FL: Chapman and Hall /CRC. xv, 358 p., 2001.

[8] H. Werner, Discriminator algebras, algebraic representation and model the-
oretic properties, Akademie Verlag, Berlin, 1978.

10


