UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS, FISICAS Y NATURALES

PRÁCTICA SUPERVISADA

ANTEPROYECTO DE REHABILITACIÓN PISTA RWY 16/34 AERÓDROMO PÚBLICO CAPITÁN GELARDI - FÁBRICA DE AVIONES S.A.

AUTOR: NIEVAS, JONATHAN GABRIEL

TUTOR: MGTER ING. RICO, MIGUEL

SUPERVISOR: DR. ING. TANCO, ALEJANDRO

AÑO 2016

Centro de Vinculación Gestión de Infraestructura de Transporte Laboratorio Vial

ANTEPROYECTO DE REHABILITACIÓN PISTA RWY 16/34 AERÓDROMO PÚBLICO CAPITÁN GELARDI - FÁBRICA DE AVIONES S.A.

Informe Final

AGRADECIMIENTOS

A toda mi familia, en especial a mis padres, Beba y Víctor, y a mis hermanos mayores, Emanuel y Florencia, por enseñarme a vivir, brindarme educación, por darme consejos que me sirvieron y van a servirme siempre, por el apoyo incondicional, por enseñarme a entender aquello de que "lo que cuesta, vale"; porque gracias a ellos hoy veo una de mis metas más importantes y sin ellos todo hubiese sido más difícil y distinto. A mi primo Marcelo Cuevas por estar siempre.

A mis tíos Roberto y Pedro Cuevas, que son responsables en parte por de haber elegido la carrera de ingeniero civil.

A mis amigas Andrea, Camila, Yohana y Soledad por su infinita amistad, compañía, confianza, charlas y risas. Por esas frases como "seguí, que no te falta nada", "no vayas a aflojar" que las repetían siempre.

A los compañeros que me brindó la Facultad, en especial a Aldana, Claudia, Daiana, Evelyn, Nieves, Cristian C., Cristian G. Elías, Guillermo B., Guillermo F. y Hugo quienes mejor que nadie saben del esfuerzo y el logro que implica la carrera, por los momentos de estudio compartidos, haber aprendido de ellos, por la amistad.

A todos los profesores de la Facultad de Ciencias Exactas, Físicas y Naturales, por las clases, consejos, por la profesionalidad, porque no solo me enseñaron conocimientos teóricos y prácticos, sino que también me han brindado ese pensamiento para tener criterio profesional. Mi agradecimiento particular a los ingenieros Miguel Rico, Alejandro Tanco por darme la oportunidad de trabajar con ellos y a mi ex compañero y actual ingeniero Federico Maldonado por compartir el desarrollo del presente trabajo.

A la Universidad Nacional de Córdoba y a la Facultad de Ciencias Exactas por la enseñanza de primer nivel y por permitirme acceder a la carrera de Ingeniero Civil.

Finalmente a todos aquellos a quienes conozco desde hace apenas unos meses, unos años o que conozco de toda la vida y que no he podido mencionar de manera puntual les agradezco por cada consejo, por cada experiencia y/o momento compartido, por las risas, por el apoyo, pero sobre todo por la confianza y el inmenso cariño que me han demostrado, algunos incluso a pesar de la distancia, pues cada uno de esos detalles me han permitido llegar hasta el día de hoy en que veo realizada una más de mis metas: convertirme en Ingeniero Civil.

ANTEPROYECTO DE REHABILITACIÓN PISTA RWY 16/34 AERÓDROMO PÚBLICO CAPITÁN GELARDI FÁBRICA DE AVIONES S.A

INDICE

IINTR	ODUC	CCION	1
METC	DOL	OGIA UTILIZADA	3
1.	CAR	ACTERIZACION DE LA PISTA	5
1.1.	Cro	oquis de ubicación	5
1.2.	Ori	entación de la pista	5
2.	ANT	ECEDENTES ANALIZADOS	g
3.	TRA	BAJOS DE CAMPAÑA	11
3.1.	Rel	evamiento planialtimétrico	11
3.2.	Ins	pección visual y control de espesores	12
3.3.	Ар	ertura de calicatas	12
3.4.	Ens	sayo de compactación	15
3.5.	Ext	racción de testigos asfálticos	17
3.6.	Eje	cución de ensayos DCP	18
4.	TRA	BAJOS DE LABORATORIO	21
4.1.	Ens	sayos y normas utilizadas	21
4.2.	Car	acterización de los materiales de base	22
4.3.	Car	acterización de los materiales de subrasante	25
5.	ANÁI	LISIS DE LAS CONDICIONES DE DRENAJE	29
5.1.	Int	roducción	29
5.2.	Est	udio hidrológico	29
5.	.2.1.	Delimitación de la cuenca de aporte	30
5.	.2.2.	Determinación de los parámetros físicos de la cuenca	31
5.3.	Cau	udales	36
5.4.	Мс	delo de comportamiento hidráulico mediante HEC-RAS	36
5.	.4.1.	Datos geométricos	36
5.	.4.2.	Datos de flujo	37
5.	.4.3.	Salida del programa	37
5.5.	Coi	nclusiones	40
6.	Méto	do ACN-PCN	43
6.1.	De	finición y objetivos del método	43

6.2.	Software COMFAA	. 44
6.2.	.1. Método de uso de aeronave	. 44
6.2.	.2. Método de evaluación técnica	. 45
6.3.	Reporte de PCN	. 47
7. C	CONSIDERACIÓN DEL TRÁFICO DE OPERACIONES	. 49
8. P	PCN ACTUAL DEL PAVIMENTO	. 51
9. P	PROPUESTAS DE REHABILITACIÓN	55
9.1.	Alternativas de rehabilitación	. 55
9.2.	Determinación de espesores	. 56
10. E	ESTIMACIÓN DE CÓMPUTOS Y PRESUPUESTOS	.59
11. C	CONCLUSIONES Y RECOMENDACIONES	61
11.1.	Conclusiones Técnicas	. 61
11.2.	Conclusiones personales	. 61
12. B	BIBLIOGRAFIA	63
ANEXO	9S	65
ANEXO	O I. RELEVAMIENTO PLANIALTIMÉTRICO	. 67
ANEXO	O II. TRABAJOS DE CAMPO	. 97
ANE	EXO II.A. Apertura de calicatas	. 97
ANE	EXO II.B. Densidad in situ	101
ANE	EXO II.C. Ensayos DCP	103
ANE	EXO II.D. Testigos de concreto asfáltico	118
ANE	EXO II.E. Peso unitarios de testigos de concreto asfáltico	133
ANEXO	O III. TRABAJOS DE LABORATORIO	135
ANE	EXO III. A. Ensayos de compactación y VSR	135
ANEXO	O IV. PLANOS	143
	INDICE DE FIGURAS	
Figura 1 Figura 1	1-1. Imagen satelital. Ubicación de FAdeA S.A	6 7
informe Figura 2 Figura 3 Figura 3	técnico de DPV	9 9 .13 .13
	3-3. Calicata C3 3-4. Calicata C4	

Figura 3-5. Esquema del metodo	. 16
Figura 3-6. Ensayo Método de Arena en pista	. 16
Figura 3-7. Extracción de testigo T13	. 17
Figura 3-8. Componentes y dimensiones del equipo DCP	. 19
Figura 4-1. Granulometría muestras de base	. 23
Figura 4-2. VSR vs Densidad Seca. Muestra M1B	. 24
Figura 4-3. VSR vs Densidad Seca. Muestra M2B	. 25
Figura 4-4. Granulometría muestras de subrasante	
Figura 4-5. VSR vs Densidad Seca. Muestra M1S	
Figura 4-6. VSR vs Densidad Seca. Muestra M2S	
Figura 5-1. Ubicación de la pista	
Figura 5-2. Escurrimiento natural en el área de estudio.	.31
Figura 5-3. Regiones Pluviográficas Provincia de Córdoba (Caamaño Nelly, 1993)	
Figura 5-4. Curvas i-d-F (Zona Centro) obtenidas por el método DIT	. 00 35
Figura 5-5. Sección de progresiva 894.86	
Figura 5-6. Sección de progresiva 976.72	
Figura 5-7. Sección de progresiva 970.72	
Figura 5-8. Modelación hidráulica. Vista 3D.	აი
Figura 6-1. Proceso de cálculo de ACN	. აა 11
Figura 6-1. Froceso de calculo de ACNFigura 6-2. Espesores tomados para cálculos	. 44 15
Figure 6.2. Configuración de la piete de eterrizaia respecta e les colles de redeix	. 40 47
Figura 6-3. Configuración de la pista de aterrizaje respecto a las calles de rodaje	
Figura 8-1. Transformación en estructura equivalente.	
Figura 8-2. Captura del programa COMFAA 3.0	
INDICE DE TABLAS	
Table 2.4. Ubicación de colicatos y conseques de consecutivos	4.5
Tabla 3-1. Ubicación de calicatas y espesores de capa asfáltica	. 10
Table 3.2. Resultados ensayos cono de arena	
Tabla 3-3. Ubicación, espesor y densidad de testigos asfálticos	
Tabla 3-4. Resultados de ensayos DCP	
Table 4.2. Resultados del ensayo de compactación (base)	
Tabla 4-3. Resultado del ensayo de VSR (base)	. 24 25
Table 4.5. Resultados de los ensayos de identificación (subrasante)	. 25
Table 4.5. Resultados del ensayo de compactación (subrasante)	
Tabla 4-6. Resultado del ensayo de VSR (subrasante)	
Tabla 5-1. Caudales de diseño para drenaje de pista.	
Tabla 5-2. Resultados modelación sistema de drenaje.	
Tabla 6-1. Factores de conversión para pavimento convencional	
Tabla 6-2. Niveles estándar de resistencia de la subrasante para pavimentos flexible	
	. 48
Tabla 6-3. Niveles estándar de resistencia de la subrasante para pavimentos rígidos	
Tabla 6-4. Categorías de presión de las ruedas de la aeronave.	
Tabla 7-1. Consideraciones del tráfico aéreo	
	. 48
Tabla 8-1. Paquete estructural adoptado para la pista actual	. 48 . 49
	. 48 . 49 . 51
Tabla 8-1. Paquete estructural adoptado para la pista actual	. 48 . 49 . 51 . 52
Tabla 8-2. Espesores de la estructura estándar equivalente	. 48 . 49 . 51 . 52
Tabla 8-2. Espesores de la estructura estándar equivalente	. 48 . 49 . 51 . 52 . 59

Tabla 10-4. Cómputo y presupuesto estimativo Alternativa 4	60
Tabla 11-1. Presupuesto estimativos alternativas de rehabilitación	61

INTRODUCCION

Este trabajo final tiene por objetivo analizar y plantear, desde el punto de vista estructural e hidráulico (no mejoras geométricas) distintas alternativas para la rehabilitación de la Pista RWY 16/34 del Aeródromo Público "Capitán Omar Darío Gelardi" de la Fábrica de Aviones S.A. (FAdeA S.A.) de la ciudad de Córdoba, la cual es una pista de vuelo visual ya que solo funciona durante el día y que tiene unas dimensiones de 1700 m de largo por 30 metros de ancho aproximadamente. Para la rehabilitación de ésta se realizaron estudios de pavimentos a partir de una serie de ensayos mediante extracción de testigos de asfaltos y apertura de calicatas a diferentes progresivas y a cierta distancia respecto al eje de la pista, para analizar el estado del material existente y poder partir de allí para hacer propuestas de estructura de pavimento nueva.

El estudio del drenaje existente de la pista se analiza para saber si puede evacuar el agua de lluvia de manera eficiente, para ello se hace un estudio hidrológico aplicando un método racional para calcular la tormenta de diseño y un estudio hidráulico utilizando el software HEC-RAS 4.1.0¹ para conocer el funcionamiento del drenaje.

Se hablará del criterio utilizado para el diseño de la estructura de pavimento de la pista utilizando el método de la OACI², conocido como Método ACN-PCN obteniendo los espesores para cada capa mediante el software COMFAA 3.1 de la FAA³.

Como resultado final, el presente Anteproyecto plantea alternativas de intervención para la mejora del estado estructural de la pista en cuestión, y las obras que deberán ejecutarse para su adecuación a las nuevas exigencias de operación planteadas por las autoridades de FAdeA S.A. Asimismo, se detallan algunos de los trabajos que deberán realizarse a fin de elaborar el Proyecto Ejecutivo Definitivo.

El alcance del trabajo realizado comprendió:

- a) evaluación de antecedentes;
- b) inspección visual del área en estudio:
- c) definición del tráfico aéreo de diseño;
- d) definición de alternativas de rehabilitación;
- e) estimación de cómputos y presupuestos.

-

¹ Hydrologic Engineering Center, River Analysis System.

² Organización de Aviación Civil Internacional

³ Federal Aviation Administration.

METODOLOGIA UTILIZADA

Para el desarrollo del Anteproyecto y el cumplimiento del objetivo del estudio se ha empleado la siguiente metodología de trabajo:

a. Topografía

Relevamiento planialtimétrico, con equipo GPS diferencial de doble frecuencia, de la zona de pista (calzada) y de todas las zonas aledañas a ella para una correcta caracterización de las condiciones actuales de drenaje, asociadas al hundimiento del suelo de fundación observado en la primera inspección visual realizada sobre la estructura en cuestión.

b. Evaluación estructural de la calzada

- Inspección visual expeditiva con relevamiento de fallas según norma ASTM D5340.
- Apertura de calicatas, extracción de testigos asfálticos y ejecución de ensayos
 DCP para la estimación de la capacidad portante del pavimento.
- Caracterización en laboratorio de los materiales de base extraídos en las calicatas.
- Caracterización en laboratorio de los materiales de subrasante extraídos en las calicatas.
- Análisis de las condiciones de drenaje (drenaje superficial y subdrenaje) a partir los relevamientos realizados.
- Estimación del PCN actual del pavimento.

c. Anteproyecto de rehabilitación

- Diseño de alternativas de solución para la rehabilitación de la pista.
- Estimación de cómputos métricos.
- Estimación de costos y presupuesto estimativo de las alternativas.

1. CARACTERIZACION DE LA PISTA

1.1. Croquis de ubicación

La **Fábrica Argentina de Aviones "Brigadier San Martín" S.A.**, FAdeA, es una empresa dedicada a la producción y mantenimiento de aeronaves (civiles y militares), autopartes y a la investigación aeroespacial, cuya planta está ubicada al oeste de la capital homónima de la provincia de Córdoba, Argentina como se muestra en la Figura 1-1 se muestra una imagen satelital.

Ubicada sobre la avenida Fuerza Aérea Argentina al 5500, FAdeA es una sociedad anónima de capital estatal creada en diciembre del 2009 cuando el Estado Nacional adquirió el paquete accionario de Lockheed Martin Aircraft Argentina S.A., emplazada en el predio del «Área Logística Córdoba» (Unidad de la Fuerza Aérea Argentina), instalaciones de la desaparecida "Fabrica Militar de Aviones".

1.2. Orientación de la pista

Según la OACI⁴, los factores en cuanto emplazamiento, orientación y cantidad de pistas son:

- a) Las condiciones meteorológicas, sobre todo el coeficiente de utilización de la pista/aeródromo, determinado por la distribución de los vientos, y por la presencia de nieblas localizadas-,
- b) La topografía del emplazamiento del aeródromo y del terreno circundante;
- c) El tipo y volumen del tránsito aéreo al que se habrá de prestar servicio, incluso los aspectos de control del tránsito aéreo;
- d) Cuestiones relacionadas con la performance de los aviones; y
- e) Cuestiones relacionadas con el medio ambiente, principalmente el ruido.

-

⁴ Manual de diseño de Aeródromos, Parte 1, Pistas, Tercera Edición.

Así mismo, la norma dice que hasta donde lo permitan los demás factores, la pista principal debe estar orientada en la dirección del viento predominante y que todas las pistas deben orientarse de modo que las zonas de aproximación y despegue se encuentren libres de obstáculos y, preferentemente, de manera que las aeronaves no vuelen directamente sobre zonas pobladas.

La condición fundamental de orientación es la meteorológica (régimen de vientos) que junto con la longitud de campo de referencia de la aeronave crítica se determina la máxima componente transversal de viento admisible por la misma, que para el caso de la pista analizada es de 24 Km/h (13 nudos) y se busca orientar la pista de manera que el 95% de las veces el viento sople con componente perpendicular a la dirección de avance del avión menor o igual que esa velocidad máxima admisible.

Para decidir la orientación de la pista se puede usar la técnica de la **Rosa de los vientos** para el análisis de los vientos que se muestra en la Figura 1-2. El método de la Rosa de los vientos permite representar simultáneamente la relación que existe entre las características que componen el viento. La información de cada rosa de viento muestra la frecuencia de ocurrencia de los vientos en 16 sectores de dirección (E, ENE, NE, NNE, W, WNW, NW, NNW, ESE, SE, SSE, S, SSW, N, WSW, SW) y en clases de velocidad del viento para una localidad y un periodo de tiempo dado.

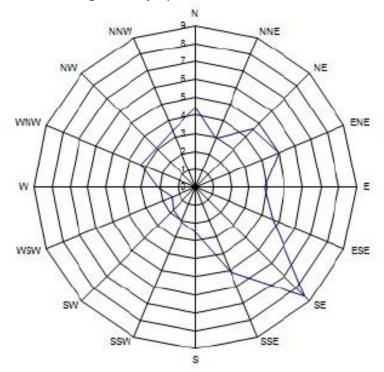
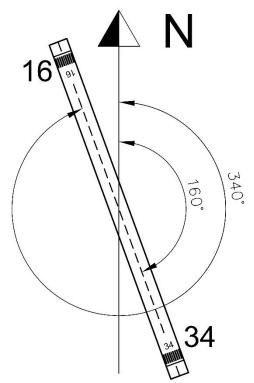


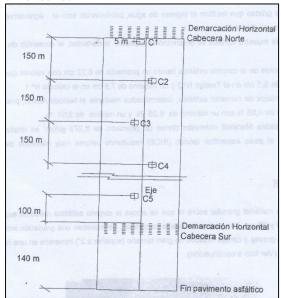
Figura 1-2. Ejemplo de Rosa de los vientos.


La aeropista del Aeródromo Público Capitán Omar Darío Gelardi, está orientada de noroeste a sureste ya que en esta dirección se encuentran los vientos dominantes, denominando la pista con los números 16 – 34 como se muestra en la Figura 1-3.

Como resultado de la orientación, con respecto al norte magnético, se realiza una medición del azimut en el sentido de las agujas del reloj, que en este caso los azimutes resultantes fueron 160º y 340º, anotando solo los dos primeros dígitos enteros de estos para la designación de la pista, cuyos números estarán colocados en los extremos de la

pista, en forma invertida, con el fin de que los pilotos de las aeronaves tengan una mejor orientación visual como se muestra en la Figura 1-3.

Figura 1-3. Esquema de orientación de la pista


2. ANTECEDENTES ANALIZADOS

La Dirección Provincial de Vialidad (DPV) realizó, entre Diciembre de 2005 y Febrero de 2006 y a pedido de la empresa Lockheed Martin S.A., la extracción de 7 testigos asfálticos de la carpeta del rodamiento (P1 a P7 como se muestran en la Figura 2-1) y la apertura de 5 calicatas (C1 a C5 en la Figura 2-2).

Demarcación ...
Cabecera Norte Demarcación Horizontal 110 m P7 P5 P6 6 m 3 m P3 6 m 5 m 140 m Eje 6 m 5 m PZ P1 50 m Demarcación Horizontal Cabecera Sur 140 m Fin pavimento asfáltico

Figura 2-1. Croquis de ubicación de testigos de concreto asfáltico (sin escala) según informe técnico de DPV.

En las calicatas, de 0.90 m de profundidad, se determinaron tanto los espesores de la carpeta de rodamiento y de la capa de base como las densidades in situ de la base y del suelo de subrasante. En todos los casos se realizaron hincas dinámicas de cono (DCP) hasta los 0,90 m de profundidad a fin de conocer el perfil resistente de los materiales granulares.

Tanto los testigos asfálticos como el material asfáltico recuperado de las calicatas fueron remitidos a Laboratorio para su análisis. Con igual fin se tomaron muestras de las dos capas granulares.

A continuación se resumen los principales resultados obtenidos.

Carpeta asfáltica

Sobre cada muestra tomada se determinó el espesor, la densidad (Ensayo VN - E12 - 67), el contenido de asfalto Ensayo (VN - E17 – 87) y la granulometría.

El espesor promedio de la carpeta asfáltica fue 6,22 cm, con valores que oscilan entre un mínimo de 5,1 cm para el testigo P2 y un máximo de 7,8 cm para la calicata C1.

El porcentaje medio de cemento asfáltico, determinado mediante método Abson, fue de 4.65%.

La densidad Marshall media, por su parte, fue de 2,273 gr/cm³ que se analizaron en comparación con el peso específico teórico (RICE) resultando valores muy elevados de vacíos residuales.

• Base granular

Los espesores en la capa de base fueron uniformes y variaron entre 29 cm y 33 cm.

Las densidades in situ, medidas por el método de la arena, arrojaron valores en las cinco calicatas que oscilaron entre 2,06 gr/cm³ y 2,117 gr/cm³, promediando un grado de compactación del 96% respecto de la Densidad Máxima obtenida en el ensayo AASHTO T-180 (5 capas, 56 golpes por capa, realizado con la humedad Optima).

El Valor Soporte Relativo, calculado para el 97% de la Densidad Máxima del Proctor del material dio valores de entre 27% y 31%, siendo valores obtenidos muy bajos en relación con lo solicitado para bases granulares de estructuras de pavimentos de caminos (80% según Normas de Vialidad Nacional).

Finalmente, los ensayos DCP dieron una tasa de penetración promedio de 9,0 mm/golpe.

Subrasante

Inmediatamente por debajo de la base granular se encontró una capa de suelo limoso a limo arcilloso el cual fue clasificado como A4 (8) según la clasificación H.R.B.

Las densidades in situ, también medidas por el método de la arena, arrojaron valores que oscilaron entre 1,36 gr/cm³ y 1,63 gr/cm³, promediando un grado de compactación del 83% respecto de la densidad máxima obtenida en el ensayo AASHTO T-180.

El Valor Soporte Relativo, calculado para el 90% de la densidad máxima del material arrojó un valor medio de 11%.

Por su parte, los ensayos DCP dieron una tasa de penetración promedio de 20,9 mm/golpe.

3. TRABAJOS DE CAMPAÑA

Para la elaboración de este Anteproyecto los trabajos de campo realizados incluyeron:

- a) relevamiento planialtimétrico de la pista y zonas aledañas;
- b) inspección visual del estado superficial de la pista;
- c) apertura de calicatas y
- d) extracción de testigos asfálticos.

3.1. Relevamiento planialtimétrico

Para el levantamiento topográfico se utilizaron receptores GPS TRIMBLE R6 (GNSS doble frecuencia) tanto para la base como para el móvil y vinculados por una controladora TRIMBLE TSC-3. Los cálculos fueron realizados con el software TRIMBLE BUSINESS CENTER y en ese cálculo se ajustaron a las coordenadas Gauss Kruguer Faja 4 sistema POSGAR 07 (referencia WGS84). Para ello, se utilizaron los datos provistos por la estación permanente (RAMSAC) UCOR ubicada en la Facultad de Ciencias Exactas, Físicas y Naturales (Ciudad Universitaria) de la Universidad Nacional de Córdoba. Con esa vinculación y utilizando en campaña el procedimiento "stop and go" con post procesamiento, todo el relevamiento se relacionó con precisión geodésica.

Con los datos obtenidos se procedió a calcular las curvas de nivel y el perfil longitudinal de la pista. Tanto la pista como la zona de drenaje quedo caracterizada conforme al estado del arte, obteniendo una base de datos topográficos suficientes para la elaboración de Anteproyecto y proyecto de mejora de drenaje, de geometría de pavimento y banquinas y de movimientos de suelos si fuesen necesarios.

En total se relevaron 1425 puntos cuyas propiedades (identificación, coordenadas y descripción) se detallan en las Tablas del ANEXO I. RELEVAMIENTO PLANIALTIMETRICO..

El relevamiento mostró las diferencias de cota de ambas cabeceras, 507,16 metros para la cabecera noroeste y 501,60 metros para la cabecera sureste, dando una pendiente promedio de 3,3 por mil. Sin embargo, la topografía real del eje de pista muestra una pendiente de 5,6 por mil para los primeros 1000 metros de pista desde la cabecera noroeste, y a partir de allí hasta la cabecera sureste la cota permanece casi invariable mostrando un tramo prácticamente horizontal en los últimos 700 metros de pista. Tomando como origen de las progresivas la cabecera noroeste, en la progresiva 1000 se observa la máxima diferencia de cota entre el eje de la pista y la línea de rasante media que resulta de unir ambas cabeceras con una recta, esta diferencia es de 2,30 metros y se corresponde con los hundimientos que se observan a simple vista.

Esta morfología se mantiene en la margen oeste de la pista confirmando los problemas de drenaje que se suelen observar en épocas de lluvias de relativa intensidad. Entre las progresivas 1000 y 1500 se observan los mayores deterioros de la pista y la tendencia de cruce de aguas superficiales en dirección este. Como se verá más adelante también son más elevados los contenidos de agua de subrasante y base en esta zona de la pista.

Finalmente como parte del relevamiento se fijaron las coordenadas de las calicatas abiertas y del lugar de extracción de cada uno de los testigos (ver más adelante). También se relevó la superficie bacheada, omitiendo sólo algunas reparaciones antiguas superficiales; esta superficie se concentra exclusivamente en la mitad sur de la pista a partir de la progresiva 1000.

3.2. Inspección visual y control de espesores

A fin de caracterizar el estado superficial de la pista, se realizó una inspección visual expeditiva con identificación de fallas de acuerdo a la normativa ASTM D-5340 ("Standard Test Method for Airport Pavement Condition Index Surveys"). Para ello, en función de la condición observada durante la primera visita a la pista y el relevamiento planialtimétrico, se identificaron 2 secciones: una entre progresivas 0 y 900 (mitad norte) y otra entre progresivas 900 y 1700 (mitad sur). En cada una de estas secciones se inspeccionaron 4 unidades de muestra de 750 m² (30 m de ancho por 25 m de largo) seleccionadas aleatoriamente.

Como resultado de la inspección realizada, el estado superficial de la pista pudo calificarse en forma general como "aceptable". La mitad sur de la pista, en peor estado, presentó algunas fisuraciones por asentamiento, fisuras longitudinales (en coincidencia con juntas constructivas) y peladuras; estas últimas dos fallas mostraron desprendimientos moderados de material lo que representa una situación peligrosa para las aeronaves por una potencial ingestión en las turbinas. Sobre la cabecera la pista presentó también ahuellamientos debido, seguramente, a la aplicación de cargas estáticas. Como ya se mencionó, los aproximadamente 5550 m² de bacheos relevados, en buen estado, se concentraron exclusivamente en esta mitad de la pista.

La mitad norte mostró un mejor estado general, con fisuras longitudinales, peladuras (con desprendimientos) y ahuellamientos sobre la cabecera pero de menor intensidad. Indudablemente esta diferencia de condición entre ambas secciones de la pista está directamente relacionada con los problemas de drenaje mencionados en el apartado anterior.

En el ANEXO IV. PLANOS, por su parte, puede visualizarse la dimensión y distribución de los bacheos realizados sobre la pista.

Cabe destacar que en caso de decidirse la rehabilitación de la pista, el proyecto ejecutivo deberá contemplar un relevamiento pormenorizado de las fallas de manera de definir y cuantificar las reparaciones previas a ejecutar.

3.3. Apertura de calicatas

Para la determinación de espesores, densidades in situ y la obtención de muestras de los materiales granulares se abrieron cuatro calicatas a lo largo de la pista, de 1,20 m de ancho por 1,20 m de largo. La ubicación de las calicatas se fijó, alternadamente a ambos lados del eje, en forma aleatoria priorizando la evaluación de la mitad sur de la pista, en la que como ya se dijo se observaron los mayores problemas de drenaje y deterioro.

La Tabla 3-1 resume la ubicación de las calicatas y los espesores de concreto asfáltico (CA) y base granular (BG) medidos en ellas. En promedio, se registraron valores de 6,68 cm para la capa asfáltica y de 27,5 cm para la base granular. En este último caso, los espesores mostraron cierta variabilidad siendo el coeficiente de variación (CV) del 21,5%. Las Figura 3-1, 3-2, 3-3 y 3-4 muestran las calicatas y los valores de espesores medidos.

Figura 3-1. Calicata C1.

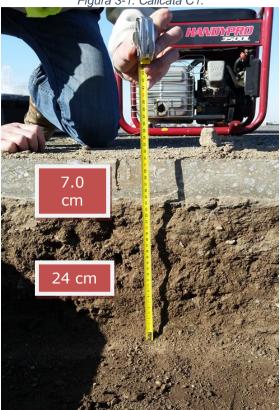
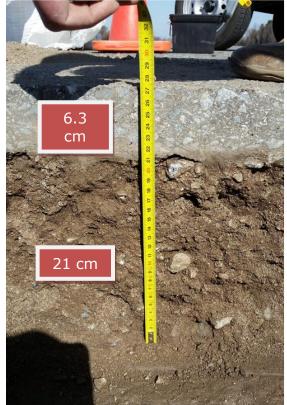
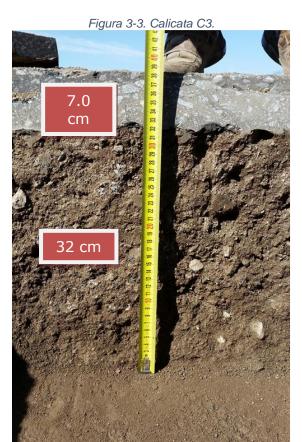




Figura 3-2. Calicata C2.

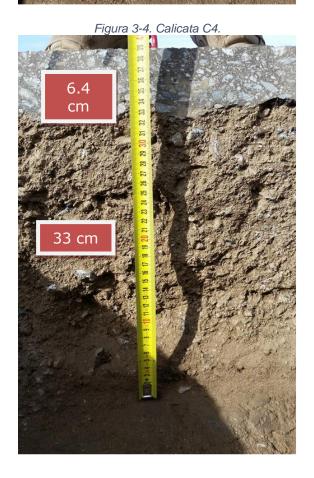


Tabla 3-1. Ubicación de calicatas y espesores de capa asfáltica.

	U	bicación	Ecocor	Ecocor
Calicata	Prog. (m)	Dist. al eje (m)	Espesor CA (cm)	Espesor BG (cm)
C1	962.10	6.8 (Oeste)	7.0	24
C2	1409.70	7.3 (Este)	6.3	21
C3	1574.40	4.0 (Oeste)	7.0	32
C4	420.10	3.5 (Este)	6.4	33

3.4. Ensayo de compactación

La compactación de suelos y materiales estabilizados es el proceso por el cual se obliga a las partículas a ponerse más en contacto unas con otra. Se realiza generalmente por medios mecánicos, produciéndose la expulsión del aire de los poros. Puede decirse que la compactación es el mejor parámetro indirecto para medir o calificar las propiedades mecánicas de un suelo (es más práctico medir densidades que algún parámetro de resistencia como el Valor Soporte Relativo in situ), para ello existe una amplia correlación experimental que avala su empleo con este propósito

La compactación se mide cuantitativamente por la densidad seca del suelo (peso de las partículas sólidas del suelo por unidad de volumen, [gr/cm³]; [Kg/dm³]).

Los controles de compactación en la fundación de un pavimento pueden ser destructivos o no destructivos. Los ensayos destructivos involucran la excavación y remoción de parte de la capa, mientras que los ensayos no destructivos miden Indirectamente por medio de radiaciones nucleares. Como método de control de compactación en el presente trabajo se utilizó un método destructivo o más conocido como Método de Cono de Arena, Figura 3-5 y 3-6, detallado en la norma de Vialidad Nacional VN-E8-66, CONTROL DE COMPACTACIÓN POR EL MÉTODO DE LA ARENA.Los ensayos de densidad in situ realizados sobre la subrasante arrojaron un valor medio de 1,516 gr/cm³ correspondiente a un grado de compactación (GC) del 85.6%. Las humedades naturales estuvieron en todos los casos por encima de sus humedades óptimas de compactación con diferencias que variaron entre un 1,9% y un 6,5%; la mayor diferencia se manifestó precisamente en la Calicata C1 ubicada en correspondencia con la zona más baja de la pista en donde se acumulan las aguas de lluvia.

En el caso de la base los ensayos de densidad arrojaron un valor in situ medio de 2,117 gr/cm³ y un grado de compactación del 95,3%. Por considerárselo no representativo, dada la uniformidad de las densidades medidas en las calicatas C1, C3 y C4 y los resultados de los ensayos DCP en estos materiales, se descartó el valor determinado en C2 afectado posiblemente por alguna alteración durante el proceso de extracción de la capa asfáltica. Respecto a las humedades naturales, éstas estuvieron en promedio 1,5% por debajo de sus óptimas de compactación.

Teniendo en cuenta la similitud entre las humedades y densidades medidos por la DPV en Enero (estación húmeda) de 2006 y los valores medidos como parte de este trabajo en Agosto (estación seca) de 2015, puede asumirse que estas densidades y humedades corresponden a los valores de equilibrio de la estructura luego de más de 20 años de servicio.

Figura 3-5. Esquema del método.

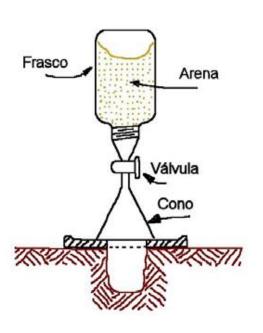


Figura 3-6. Ensayo Método de Arena en pista.

En la Tabla 3-2 se resumen todos los resultados de los ensayos de densidad, mientras que las planillas correspondientes se incluyen en el ANEXO II. TRABAJOS DE CAMPO que acompañan al presente Informe. En el ANEXO IV. PLANOS se detalla la ubicación de las calicatas relevada con GPS.

Tabla 3-2. Resultados ensayos cono de arena

	_	Ensayos in situ – Control de compactación						
Coliooto		Base		Subrasante				
Calicata	Densidad	Humedad	GC	Densidad	Humedad	GC		
	(gr/cm ³)	(%)	(%)	(gr/cm ³)	(%)	(%)		
C1	2,111	5,5	95,3	1,473	21,4	83,8		
C2	2,041	5,3	91,8	1,466	18,5	82,3		
C3	2,125	6,0	95,5	1,570	19,8	88,1		
C4	2,113	4,4	95,0	1,553	19,5	88,4		

3.5. Extracción de testigos asfálticos

Para la verificación de espesores y la posterior realización de ensayos DCP se calaron en total quince testigos asfálticos. La ubicación de los testigos T1 a T11 se fijó aleatoriamente a lo largo de la pista distribuyéndose en forma de tresbolillo. Los restantes 4 testigos (T12 a T15) se extrajeron al costado de las calicatas C1 a C4 a fin de poder correlacionar los resultados de los ensayos DCP y los valores de CBR obtenidos en laboratorio con la menor alteración posible de las capas. La Figura 3-7 muestra la extracción del testigo T13 sobre el costado "este" de la calicata C3.

Los testigos fueron remitidos al laboratorio en donde se les determinó el espesor y la densidad (según VN-E-12-67). Omitiendo los valores correspondientes a T10 y T11, por ser extraídos en zonas de bacheo, el espesor promedio fue de 5,85 cm, con un CV de 15%, un mínimo de 4,24 cm para el testigo T6 y un máximo de 7,38 cm para el testigo T7. Con la misma consideración, la densidad promedio fue de 2,26 gr/cm³, con un CV de 1,6%, un mínimo de 2,195 gr/cm³ para el testigo T6 y un máximo de 2,326 gr/cm³ para el testigo T1.

Las progresivas de extracción se detallan en la Tabla 3-3 junto con los espesores y densidades medidas. En el ANEXO IV. PLANOS se detalla la ubicación de los testigos relevada con GPS. Las fotografías de los testigos se presentan en el ANEXO II. TRABAJOS DE CAMPO.

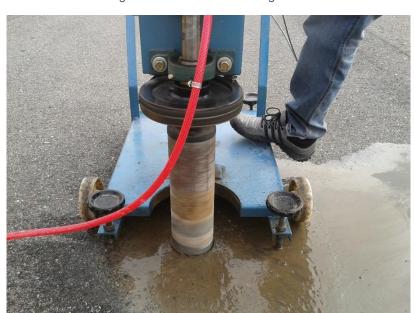
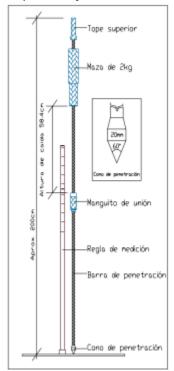


Figura 3-7. Extracción de testigo T13.

Tabla 3-3. Ubicación, espesor y densidad de testigos asfálticos.

	Ubicacio	ón	Espesor	Densidad	
Testigo	Prog. (m)	Dist. al eje (m)	(cm)	(g/cm ³)	Observaciones
T1	42,4	1,6 (Oeste)	6,17	2,326	Valor máximo de densidad
T2	255,9	9,7 (Este)	6,14	2,253	
T3	501,8	9,6 (Oeste)	6,33	2,247	
T4	692,8	1,1 (Oeste)	6,33	2,298	
T5	905,2	9,5 (Este)	4,53	2,281	
Т6	1112,0	4,3 (Este)	4,24	2,195	Valor mínimo de espesor y densidad
T7	1287,1	10,4 (Oeste)	7,38	2,301	Valor máximo de espesor
T8	1469,2	10,5 (Este)	5,93	2,256	
T9	1623,7	3,7 (Oeste)	6,35	2,232	
T10	1504,6	0,8 (Oeste)	10,00	2,390	Extraído en zona de bacheo
T11	1235,5	2,8 (Este)	7,42	2,276	Extraído en zona de bacheo
T12	962,1	6,8 (Oeste)	5,54	2,271	Extraído al costado de calicata C1
T13	1409,7	7,3 (Este)	4,90	2,263	Extraído al costado de calicata C2
T14	1574,4	4,0 (Oeste)	6,63	2,257	Extraído al costado de calicata C3
T15	420,1	3,5 (Este)	5,59	2,204	Extraído al costado de calicata C4

3.6. Ejecución de ensayos DCP


En los orificios dejados por los testigos se realizaron ensayos DCP (Penetrómetro Dinámico de Cono) siguiendo los alineamientos básicos de la norma ASTM D 6951-03 hasta una profundidad aproximada de 80 cm.

El penetrómetro dinámico de cono (DCP) es una herramienta muy utilizada en la actualidad para realizar auscultaciones in situ, especialmente en el ámbito vial. Se han desarrollado diferentes correlaciones entre los resultados del DCP y parámetros característicos del suelo, como el Valor Soporte Relativo (CBR), el Módulo Resiliente y la Resistencia a la Compresión no Confinada.

Este ensayo permite, además de estimar los espesores de materiales con comportamiento similar, obtener una tasa de penetración (DN) que puede ser relacionada con el Valor Soporte Relativo de material como medida indirecta de su resistencia. El DCP es un equipo que evalúa la resistencia que opone un suelo a ser penetrado por un cono de dimensiones normalizadas mediante la determinación de la penetración lograda por un cono de 20 mm de diámetro con 60º de ángulo de ataque, que remata una barra de acero de 16 mm de diámetro, hincado mediante impactos de un martillo de 8 kg de peso que cae libremente desde una altura de 575 mm, la Figura 3-8 muestra los componentes y dimensiones básicos del equipo. La penetración mediante golpes con el DCP depende de la densidad relativa de los materiales y el perfil de resistencia del suelo a distintas profundidades, lo cual se obtiene contando el número de golpes necesarios para penetrar una distancia determinada.

Figura 3-8. Componentes y dimensiones del equipo DCP.

En todos los casos, los ensayos se ejecutaron al día siguiente de la extracción del testigo respectivo y fueron procesados con el software UK DCP 3.1. Los resultados se resumen en la Tabla 3-4.

El espesor promedio de la base fue de 26,8 cm, con un coeficiente de variación de 19,9%. Ambos valores resultaron consistentes con los medidos en las calicatas (27,5 cm y 21,5% respectivamente).

Por su parte, la tasa de penetración promedio fue de 6,1 mm/golpe para la base y de 21,5 mm/golpe para la subrasante. En este último caso, se descartó la tasa de penetración registrada en el testigo T13 por considerarse inconsistente debido a algún error de lectura.

Finalmente, si se consideran en forma separada los resultados obtenidos en los testigos T1 a T11 de aquellos obtenidos al costado de las calicatas (T12 a T15) la tasa de penetración media resulta 5,9 mm/golpe y 21,4 mm/golpe para la base y subrasante respectivamente para el primer caso y 6,9 mm/golpe y 21,4 mm/golpe respectivamente para el segundo.

Las planillas correspondientes se incluyen en el ANEXO II. TRABAJOS DE CAMPO.

Tabla 3-4. Resultados de ensayos DCP.

	Ensayos ii	n situ	
	Bas		Subrasante
Testigo	Espesor	DCP	DCP
	(cm)	(mm/g)	(mm/g)
T1	32,4	6,3	23,7
T2	22,9	8,9	22,7
T3	25,9	5,0	24,4
T4	29,3	5,1	16,2
T5	23,9	5,9	18,4
T6	22,5	6,1	17,4
T7	21,4	4,9	15,7
T8	17,3	8,0	34,4
T9	34,9	5,6	20,7
T10	26,2	3,3	22,8
T11	33,4	5,7	19,9
T12	23,2	6,6	19,0
T13	23,7	7,5	13,4 ⁵
T14	33,7	7,9	22,7
T15	31,2	5,4	22,5

 $^{^{5}}$ Valor descartado por considerarse inconsistente debido a algún error de lectura

4. TRABAJOS DE LABORATORIO

4.1. Ensayos y normas utilizadas

Todas las muestras extraídas de las calicatas, tanto de base como de subrasante, fueron remitidas al laboratorio en donde se les realizaron los siguientes ensayos:

Granulometría:

- Tamizado de suelo por vía húmeda (Norma VN-E1-65). Esta Norma detalla el procedimiento a seguir para establecer la distribución porcentual de las partículas finas de un suelo, o fracción fina de un material granular, de tamaño inferior a los tamices IRAM 2,0 mm (Nº 10), IRAM 425 micrómetros (Nº 40) e IRAM 75 micrómetros (Nº 200).
- Análisis mecánico de materiales granulares (Norma VN-E7-65). Esta norma detalla el procedimiento a seguir para establecer la distribución porcentual de las partículas que componen un material granular, que se usara en la construcción de terraplenes, bases o sub-bases, en función de su tamaño y dibujar la curva representativa del mismo.

Límites de consistencia:

- Límite Líquido (Norma VN-E2-65). Esta norma detalla el procedimiento a seguir para determinar el límite líquido de un suelo. El Límite Líquido se define como el contenido de humedad, expresado en por ciento del peso del suelo seco, existente en un suelo en el límite entre el estado plástico y el estado líquido del mismo. Este límite se define arbitrariamente como el contenido de humedad necesario para que las dos mitades de una pasta de suelo de 1 cm. de espesor fluya y se unan en una longitud de 12 mm, aproximadamente, en el fondo de la muesca que separa las dos mitades, cuando la cápsula (cuenco de Casagrande) que la contiene golpea 25 veces desde una altura de 1 cm., a la velocidad de 2 golpes por segundo.
- Límite plástico, Índice de plasticidad (Norma VN-E3-65). Esta norma detalla el procedimiento a seguir para determinar el Límite Plástico de un suelo. El Límite Plástico se define como el contenido de humedad existente en un suelo, expresado en por ciento del peso de suelo seco, en el límite entre el estado plástico y el estado sólido del mismo. Este límite se define arbitrariamente como el más bajo contenido de humedad con el cual el suelo, al ser moldeado en barritas cilíndricas de menor diámetro cada vez, comienza a agrietarse cuando las barritas alcanzan a tener 3 mm de diámetro.

Clasificación HRB (Highway Research Board):

Clasificación de suelos (Norma VN-E4-84). El sistema de clasificación de suelos del H.R.B⁶, para obras de ingeniería, está basado en el comportamiento de los suelos utilizados en obras viales. Los suelos de similares capacidades portantes y condiciones de servicio, fueron agrupados en siete grupos básicos, desde el A-1 al A-7.

_

⁶ Highway Research Board

Los suelos de cada grupo tienen, dentro de ciertos límites, características en común. A menudo, dentro de cada grupo hay una amplia variación en las capacidades portantes, cuyos valores pueden ser comunes a distintos grupos. Por ejemplo, un suelo A-2 puede contener materiales con capacidad portante más alta que los de una A-1, y en condiciones excepcionales puede ser inferior a la de los mejores suelos de los grupos A-6 y A-7. En consecuencia, si solo se conoce de un suelo, el grupo al que pertenece en la clasificación del H.R.B, su capacidad portante puede variar entre límites amplios. La calidad de los suelos, para ser utilizados en subrasantes, va disminuyendo desde el A-1al A-7, que es el más pobre.

En los últimos años, estos siete grupos básicos de suelos, fueron divididos en subgrupos y se ideó el índice de grupo, para diferenciar aproximadamente algunos suelos dentro de cada grupo. Los índices de grupo, aumentan su valor con la disminución de la condición del suelo para constituir subrasantes. El crecimiento del índice de grupo, en cada grupo básico de suelos, refleja los efectos combinados de los crecimientos del límite líquido e índice de plasticidad, y el decrecimiento de los materiales gruesos en detrimento de la capacidad portante de las subrasantes.

Compactación y Valor Soporte Relativo

- Compactación de suelos (Norma VN-E5-93). Esta norma detalla el procedimiento a seguir para estudiar las variaciones del peso unitario de un suelo en función de los contenidos de humedad, cuando se lo somete a un determinado esfuerzo de compactación. Los resultados del ensayo permiten establecer la Humedad óptima con la que se obtiene el mayor valor del Peso unitario, llamado Densidad seca máxima.
- Determinación de Valor Soporte e hinchamiento de suelos (Norma VN-E6-84). Esta norma detalla el procedimiento a seguir para conocer el "valor soporte relativo" de un suelo y determinar su hinchamiento. El Valor Soporte Relativo (V.S.R.) de un suelo es la resistencia que ofrece al punzado una probeta del mismo, moldeada bajo ciertas condiciones de densificación y humedad, y ensayada bajo condiciones preestablecidas. Se la expresa como porcentaje respecto de la resistencia de un suelo tipo tomado como patrón. El hinchamiento es el aumento porcentual de altura, referido a la altura inicial, que experimente una probeta de suelo cuando la humedad de la misma aumenta por inmersión, desde la humedad inicial de compactación hasta la alcanzada por la probeta al término del periodo de inmersión.

Los resultados obtenidos se presentan a continuación.

4.2. Caracterización de los materiales de base

El resultado de los ensayos de granulometría, límites de consistencia y la clasificación HRB resultante se resumen en la Tabla 4-1. Como puede apreciarse, la muestra C1 presentó una granulometría ligeramente más fina que las restantes; no obstante esto, las cuatro muestras resultaron no plásticas (IP = 0). En la Figura 4-1 se grafican las curvas granulométricas de las muestras ensayadas junto con el entorno especificado por la DNV para bases granulares. Se manifiesta en general un faltante de tamaños intermedios y bajo contenido de finos.

Tabla 4-1. Resultados de los ensayos de identificación (base).

Calicata		Pasar	nte tamiz				
	³ / ₄ " (%)	Nº10 (%)	Nº40 (%)	Nº200 (%)	LL (%)	IP (%)	Clasif. HRB
C1	95.0	57.7	26.8	4.4	24.4	0	A-1-b
C2	91.6	46.9	19.0	2.3	23.9	0	A-1-a
C3	92.0	49.8	22.0	3.7	25.5	0	A-1-a
C4	94.0	45.9	17.6	3.5	25.3	0	A-1-a

Considerando los resultados anteriores, y en función de la homogeneidad de las muestras, los materiales se combinaron para la ejecución de los ensayos de Valor Soporte Relativo. Las muestras combinadas y el resultado de los ensayos de compactación se indican en la Tabla 4-2.

Figura 4-1. Granulometría muestras de base.

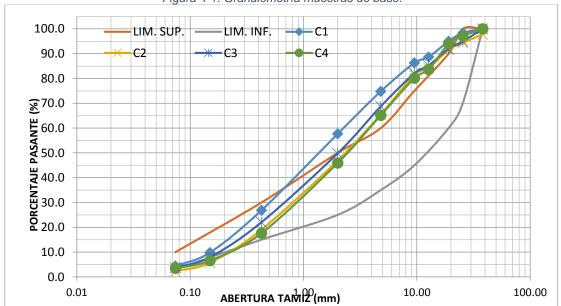
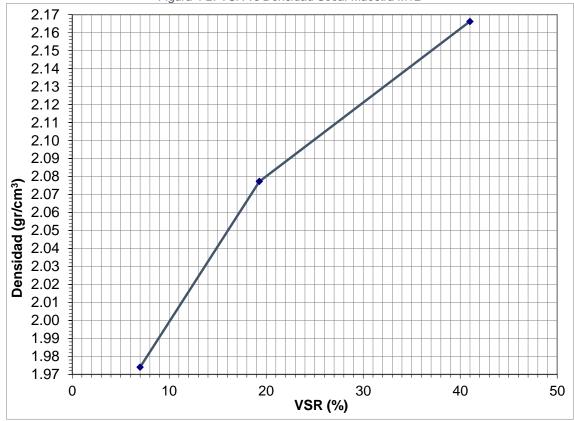


Tabla 4-2. Resultados del ensayo de compactación (base).


Combinación de muestras	Denominación	Densidad máxima (gr/cm³)	Humedad óptima (%)
C1	M1B	2.216	7.3
C2-C3-C4	M2B	2.225	6.7

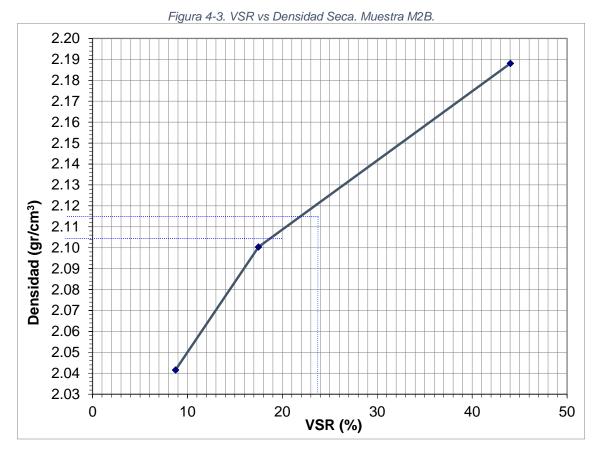
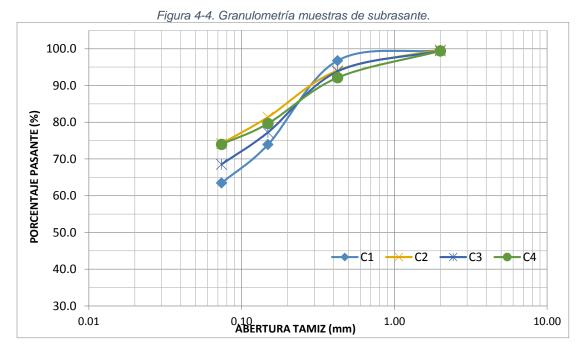

Los ensayos de Valor Soporte Relativo dieron los resultados presentados en la Tabla 4-3. Representando en estas relaciones "VSR – Densidad" los valores de densidad medidos en las calicatas se obtuvo un VSR de 28% para la base de la calicata C1, de 25% para la base de la calicata C3 y de 22% para la base de la calicata C4; en promedio el VSR fue de 25% para las condiciones in situ. En función de esta baja resistencia, la capa fue considerada y modelada como subbase en las evaluaciones estructurales realizadas.

Tabla 4-3. Resultado del ensayo de VSR (base).

N° golpes	Muestra M1B		Muestra M2B	
	Densidad (gr/cm³)	CBR (%)	Densidad (gr/cm³)	CBR (%)
12	1.97	7	2.04	9
25	2.08	19	2.10	17
56	2.17	41	2.19	44

Figura 4-2. VSR vs Densidad Seca. Muestra M1B

El ANEXO III. TRABAJOS DE LABORATORIO se incluyen las planillas correspondientes.


4.3. Caracterización de los materiales de subrasante

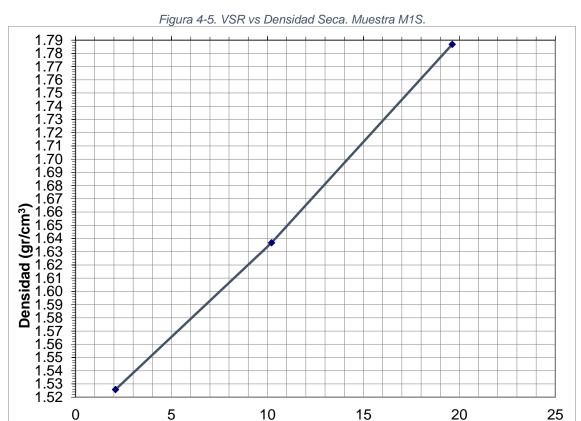
El resultado de los ensayos de granulometría, límites de consistencia y clasificación HRB de los materiales de subrasante se resumen en la Tabla 4-4. Como se observa, los materiales extraídos de las calicatas C1 y C4 resultaron suelos algo plásticos del grupo A-4 mientras que los de las calicatas C2 y C3 fueron identificados como A-6 presentando una plasticidad media. En la Figura 4-4 se muestran las curvas granulométricas de las muestras de subrasante.

PT PT PT LP IP LL Clasif. Nº10 Nº40 Nº200 Calicata (%) **HRB** (%) (%) (%) (%) (%) 99.6 96.8 C1 63.5 31.2 21.5 9.7 A-4 (4) C2 99.7 94.1 74.2 33.7 20.5 13.2 A-6 (9) C3 99.4 93.8 68.5 32.6 21.3 11.3 A-6 (6) C4 99.4 92.1 74.0 29.9 22.8 7.1 A-4 (4)

Tabla 4-4. Resultados de los ensayos de identificación (subrasante).

Al igual que con la base, las muestras de subrasante se combinaron en función de sus características para la ejecución de los ensayos de Valor Soporte Relativo. Las combinaciones y los resultados de los ensayos de compactación, acordes a este tipo de suelos, se reflejan en la Tabla 4-5.

Tabla 4-5. Resultados del ensayo de compactación (subrasante).


Tabla 4-5. Resultados del erisayo de compactación (subrasante).						
Combinación de muestras	Denominación	Densidad máxima (gr/cm³)	Humeda d óptima (%)			
C1-C4	M1S	1.758	14.9			
C2-C3	M2S	1.782	16.6			

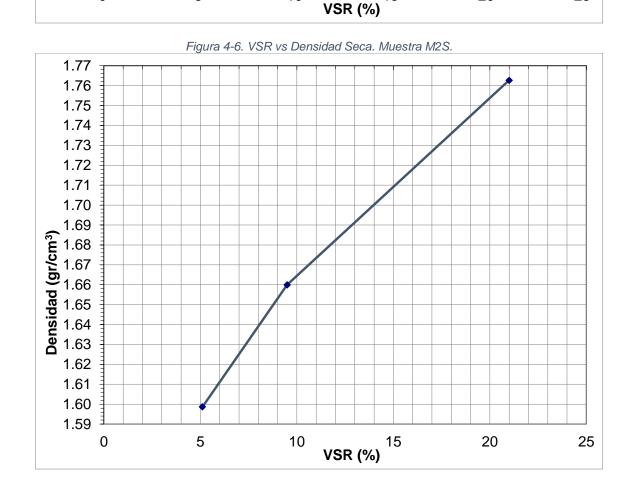

Los ensayos de Valor Soporte Relativo dieron para la subrasante los resultados presentados en la Tabla 4-6. Dadas las densidades obtenidas para la menor energía de compactación del ensayo (12 golpes por capa), sólo la densidad in situ registrada en la calicata C4 pudo representarse en la relación "VSR – Densidad" de la muestra M1S. Llevando a esta relación una densidad de 1,553 gr/cm³ el VSR de la subrasante es del 4%. Finalmente, considerando que la tasa de penetración obtenida en el ensayo DCP de la calicata C4 fue de 22,5 mm/golpe, mayor que la tasa de penetración promedio de la pista (21,5 mm/golpe), este valor de VSR fue el adoptado como representativo de las condiciones actuales de la subrasante. El ANEXO III. TRABAJOS DE LABORATORIO incluye las planillas correspondientes.

Tabla 4-6. Resultado del ensayo de VSR (subrasante).

N° golpes	Muestra M1S		Muestra M2S	
	Densidad	CBR		CBR
	(gr/cm ³)	(%)	(gr/cm ³)	(%)
12	1.526	2	1.599	5
25	1.637	10	1.660	9
56	1.787	20	1.763	20

5. ANÁLISIS DE LAS CONDICIONES DE DRENAJE

5.1. Introducción

La existencia de un sistema adecuado de drenaje para la evacuación de las aguas, tanto superficiales como subterráneas, resulta vital para la seguridad del avión y duración de vida útil de los pavimentos. Un drenaje inadecuado implica la formación de charcos en la superficie del pavimento, que pueden resultar peligroso para el despegue y aterrizaje de los aviones. Un mal drenaje también puede implicar un deterioro rápido de los pavimentos al cambiar las condiciones de humedad de su fundación. Las pendientes suaves, tanto en sentido longitudinal como es en el caso de la pista en estudio (pendiente promedio de 5‰) como en el sentido transversal y las amplias superficies pavimentadas presentan, frecuentemente, dificultades para conseguir un buen drenaje en los aeropuertos.

Un sistema eficaz de drenaje en un aeropuerto tiene las siguientes funciones:

- Interceptar y desviar de las corrientes de aguas superficiales y subterráneas que se originan en los terrenos adyacentes al aeropuerto.
- Evacuación del agua superficial en los aeropuertos.
- Evacuación de las aguas subterráneas en los mismos.

El presente estudio tiene por objeto definir de manera estimativa los escurrimientos que se producen en la zona de emplazamiento de la pista para distintos periodos de recurrencia producidos en la cuenca a la que pertenece el emplazamiento de la pista de aterrizaje de la fábrica de aviones FAdeA S.A. para luego analizar y concluir, en forma general, sobre el funcionamiento actual de los elementos de drenaje.

5.2. Estudio hidrológico

El cálculo de la FAA (Federal Aviation Administration) para el drenaje superficial de un aeropuerto se basa en la fórmula empírica del Método Racional. La idea detrás del método racional es que si la lluvia con intensidad i empieza en forma instantánea y continua en forma indefinida, la tasa de escorrentía continuará hasta que se llegue al tiempo de concentración t_c , en el cual toda la cuenca está contribuyendo al flujo en la salida. El producto de la intensidad de la lluvia i y el área de la cuenca A es el caudal de entrada al sistema, $i \cdot A$, y la relación entre este caudal y el caudal pico Q (que ocurre en el tiempo t_c a una sección del canal dada) se conoce como el coeficiente de escorrentía C (0<C<1). Éste se expresa en la formula racional:

$$Q = \frac{C \cdot i \cdot A}{360}$$

En esta fórmula, **Q** es el caudal de agua a evacuar de la cuenca a drenar en metros cúbicos por segundo; **C** es el coeficiente adimensional de escorrentía; **i** es la intensidad especifica en milímetros de lluvia por hora, para el tiempo de concentración del agua a evacuar, **A** es el área a drenar en hectáreas y 360 es un factor de conversión de unidades. La duración de lluvia utilizada para la determinación de la intensidad de precipitación de diseño es el tiempo de concentración en la cuenca.

Sin embargo existen cuencas compuesta por subáreas o subuencas de diferentes características superficiales como es el caso de la cuenca de aporte donde está emplazada la pista de aterrizaje. Como resultado, se requiere un análisis compuesto

que tenga en cuenta las diferentes características superficiales, es así que se calcula un coeficiente de escorrentía ponderado.

Las suposiciones asociadas con el método racional son:

- La tasa de escorrentía pico calculada en el punto de salida de la cuenca es una función de la tasa de lluvia promedio durante el tiempo de concentración, es decir, el caudal pico no resulta de una lluvia más intensa, de menor duración, durante la cual solamente una porción de la cuenca contribuye a la escorrentía a la salida de ésta.
- El tiempo de concentración empleado es el tiempo para que la escorrentía se establezca y fluya desde la parte más remota del área de drenaje hacia el punto de entrada del alcantarillado que se está diseñando.
- La lluvia es constante en el tiempo y uniforme en el espacio.
- Se aplica para cuencas chicas de aporte.

5.2.1. Delimitación de la cuenca de aporte

La delimitación de la cuenca de aporte fue realizada en base a las cartas topográficas de la Dirección de Catastro de la Municipalidad de Córdoba (escala 1:5000, con curvas de nivel equidistantes 2.00 m), a las curvas de nivel obtenidas con el software Global Mapper 16 y a las imágenes satelitales de Google Earth.

Los límites de la cuenca principal quedan definidos por la Av. Fuerza Aérea Argentina, las vías del ex Ferrocarril Mitre y la pista de aterrizaje (ver Figura 5-1); dentro de ella, la subcuenca efectivamente considerada es la demarcada en la Figura 5-2, mientras que el resto de los escurrimientos se realizan tal como se muestra en dicha figura. Dicha cuenca cuenta con un área de 148 Ha aproximadamente.

Figura 5-1. Ubicación de la pista.

Figura 5-2. Escurrimiento natural en el área de estudio.

5.2.2. Determinación de los parámetros físicos de la cuenca

Entre la lluvia y el caudal escurrido a la salida de la cuenca ocurren varios fenómenos que condicionan la relación entre ambos y que básicamente están controlados por las características geomorfológicas de la cuenca y su cobertura. Dichas características se clasifican en dos tipos: las que condicionan el *volumen* de escurrimiento, como el área y tipo de suelo; y las que determinan la *velocidad de respuesta*, como son las pendientes de la cuenca, la cubierta, etc.

Área de la cuenca.

El área de la cuenca es un parámetro fundamental que condiciona el volumen de escurrimiento pluvial y se define como la superficie en proyección horizontal delimitada

por las calles antes mencionadas. Dicha cuenca cuenta con un área de 148 Ha aproximadamente.

Longitud del cauce

Al no tener un cauce principal bien definido, se toma como longitud la máxima longitud que recorre el agua de lluvia desde el punto más alto hasta la salida de la cuenca (donde se registra el máximo caudal). La longitud adoptada es de 3,1 Km.

Pendiente del cauce principal

Uno de los indicadores más importantes del grado de respuesta de una cuenca ante una tormenta es la pendiente del cauce principal. Dado que la misma varía a lo largo del cauce, es necesario definir una pendiente media; para lo cual existen varios métodos. Sin embargo para el presente trabajo se empleó uno de los más sencillos, sino el más. El mismo establece que la pendiente media del cauce principal es igual al desnivel entre los extremos de la corriente dividido por su longitud medida en planta.

$$s = \frac{\Delta H}{L}$$

Donde s: pendiente media del cauce principal (m/m), ΔH : desnivel entre los extremos del cauce principal (m), L: longitud en planta del cauce principal (m).

Se adopta una pendiente media del 5‰ obtenida a partir del desnivel existente entre los extremos de la corriente y su longitud medida en planta.

Tormenta de diseño

La tormenta de diseño es la secuencia de precipitaciones capaz de provocar el caudal de diseño de la cuenca analizada. Su determinación implica definir el periodo de recurrencia, la duración de la lluvia, la intensidad y la lámina total precipitada.

La Provincia de Córdoba cuenta actualmente con valiosos estudios sobre tormentas de diseño realizados por el Instituto Nacional del Agua - Centro de la Región Semiárida (INA - CIRSA). Esta repartición elaboró el trabajo "Regionalización de Precipitaciones Máximas para la Provincia de Córdoba" (Caamaño Nelly, 1993), a partir de los registros de 141 estaciones pluviométricas y 7 pluviográficas, 6 en toda la provincia de Córdoba y una en la provincia de Santa Fe.

Los datos de un pluviógrafo se pueden suponer representativos de otros sitios (aledaños o no), en particular de estaciones pluviométricas, si se cumplen las siguientes condiciones, que habilitan el traslado directo de las intensidades medidas:

- a) La distancia entre la región de análisis y la estación no debe superar los 150 Km;
- b) La diferencia de lluvia media anual entre ambas zonas no supere los 100 mm;
- c) La diferencia de cota sea inferior a 200 m;
- d) Las características fisiográficas deben ser similares;
- e) En la distancia mencionada en a) no se atraviese ningún cordón montañoso.

Según este análisis del CIRSA, el área en estudio queda comprendida en la Zona Centro (Figura 5-3), la cual tiene como pluviógrafo base la estación Córdoba Observatorio. Este será empleado verificando todas las condiciones de aplicabilidad.

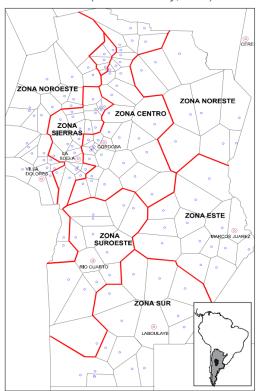


Figura 5-3. Regiones Pluviográficas Provincia de Córdoba (Caamaño Nelly, 1993).

Periodo de Retorno (TR)

Los sistemas hidrológicos son afectados por eventos extremos, cuya magnitud está inversamente relacionada con la frecuencia de ocurrencia. Por definición, el periodo de retorno o recurrencia T es el tiempo promedio durante el cual se espera que la magnitud analizada sea en promedio igualada o superada, al menos, una vez.

Se han adoptado diferentes periodos de retorno según el riesgo de fallo R de la obra el cual se define como la probabilidad de que se produzca un suceso con un periodo de retorno T en alguno de los próximos n años, matemáticamente se expresa como:

$$R = 1 - \left(1 - \frac{1}{T}\right)^n$$

Para el estudio preliminar se determinaron los caudales para recurrencias de 5, 10, 15 y 25 años.

Duración (d)

La duración de una tormenta de diseño se adopta igual o levemente superior al tiempo de concentración (t_c) de la cuenca. Este criterio permite que el caudal máximo se origine por la contribución de toda el área de aporte. El tiempo de concentración se define como el máximo tiempo de traslado que una gota de lluvia efectiva necesita para poder alcanzar la sección de salida de la cuenca.

Para el cálculo del tiempo de concentración se consideraron dos métodos: el Método Racional Generalizado (MRG) y el método de Kirpich:

Método Racional Generalizado (MRG):

$$t_c = \frac{60 \cdot L}{H^{0,3}}$$

Donde L = longitud del cauce principal (Km), H = diferencia de nivel de la cuenca (m).

Método de Kirpich:

$$t_c = 3,9756 \cdot L^{0,77} \cdot s^{-0,385}$$

Donde L = longitud del cauce principal (Km), s = es la pendiente media en m/m.

Ambas ecuaciones dan el tiempo de concentración en minutos adoptando las unidades antes mencionadas de las variables intervinientes.

Reemplazando los valores se encuentra para el MRG un tiempo de 82 minutos, mientras que para el método de Kirpich un tiempo de 73 minutos. Para el sistema estudiado la duración de la lluvia de diseño se adoptó en 80 minutos.

Intensidad de precipitación puntual

La intensidad de Iluvia *i* es la tasa promedio de Iluvia en milímetros por hora para una cuenca o subcuencas de drenaje particular. La intensidad se selecciona con base en la duración de Iluvia de diseño y el periodo de retorno.

La intensidad de la lluvia se obtuvo a partir de las curvas i-d-F (Figura 5-4) desarrolladas por el CIRSA (Centro de la Región Semiárida del Instituto Nacional del Agua) para la Zona Centro de la Provincia de Córdoba; esta zona tiene como como pluviógrafo base el instalado en el Observatorio Córdoba. Así, para periodos de recurrencia de 5, 10, 15 y 25 años y una duración de tormenta (d) de 80 minutos, se obtuvieron las intensidades de Iluvia necesarias.

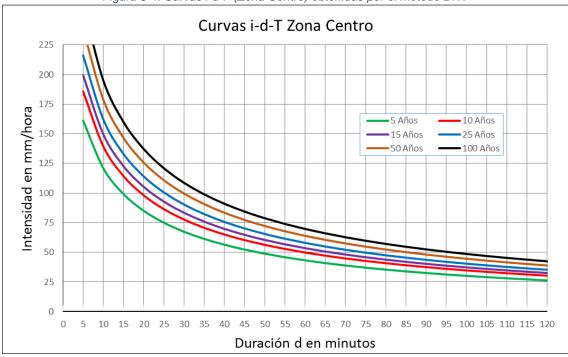


Figura 5-4. Curvas i-d-F (Zona Centro) obtenidas por el método DIT.

Coeficiente de escorrentía

El coeficiente de escorrentía C es la variable menos precisa del método racional. Su uso en la formula implica una relación fija entre la tasa de escorrentía pico y la tasa de lluvia para la cuenca de drenaje, lo cual no es cierto en la realidad. La proporción de la lluvia total que alcanzarán los drenajes de tormenta depende del porcentaje de permeabilidad, de la pendiente y de las características de encharcamiento de la superficie. Superficies impermeables, tales como los pavimentos o techos de las naves industriales de la fábrica, producirán una escorrentía de casi el cien por ciento después de que la superficie haya sido completamente mojada, independientemente de la pendiente. Inspecciones de campo e imágenes satelitales son útiles para la estimación de este parámetro.

El coeficiente de escorrentía también depende de las características y las condiciones de humedad del suelo. La tasa e infiltración disminuye a medida que la lluvia continúa y también es influenciada por las condiciones de humedad antecedentes en el suelo. Otros factores que influyen en el coeficiente de escorrentía son la intensidad de lluvia, la proximidad del nivel freático, el grado de compactación del suelo, la porosidad del subsuelo, la vegetación, la pendiente del suelo y el almacenamiento por depresión.

El área en estudio es heterogénea ya que cuenta con una zona en donde la lluvia caída escurre en casi su totalidad, esto es la Escuela de Aviación Militar y la fábrica FAdeA S.A. y una parte de vegetación con pasto en condiciones medias donde parte escurre y parte es retenido por dicha vegetación e infiltrada por el suelo. A su vez se observa de imágenes satelitales y por las curvas de nivel que dicha zona carece de encharcamientos.

Por todas estas consideraciones, se utilizó un coeficiente de escorrentía ponderado e igual a 0.54.

5.3. Caudales

Con los datos obtenidos recién resumidos se calcularon los caudales para distintas tormentas o periodos de recurrencia. Los resultados aplicando el método racional se muestran en la Tabla 5-1.

Tabla 5-1. Caudales de diseño para drenaje de pista.

_	Área cuenca efectiva (Ha)			Coeficiente de escorrentía			Intensidad	Caudal
(años)	Total	Cubierta vegetal	Fábrica	Cubierta vegetal	Fábrica	Ponderad o	mm/hr	m³/seg
5	137.0	53%	47%	0.30	0.80	0.54	35.4	7.2
10	137.0	53%	47%	0.30	0.80	0.54	40.8	8.3
15	137.0	53%	47%	0.30	0.80	0.54	43.8	8.9
20	137.0	53%	47%	0.30	0.80	0.54	45.9	9.4
25	137.0	53%	47%	0.30	0.80	0.54	47.5	9.7

5.4. Modelo de comportamiento hidráulico mediante HEC-RAS.

Se modeló el sistema de drenaje de la cuneta oeste de la pista de aterrizaje por medio del software HEC-RAS 4.1.0 que permite simular el escurrimiento en canales tanto naturales como artificiales, en régimen permanente e impermanente y analizar la erosión de estos entre otras funciones. Es importante aclarar que esta versión hace un análisis unidireccional, otras versiones más avanzadas como HEC-RAS 5.1 hacen un análisis bidimensional pero tiene otras consideraciones y se lo usa en problemas más complicados o con más precisión.

El programa HEC-RAS 4.1.0 utiliza las ecuaciones de *flujo gradualmente variado*⁷ mediante el método del *paso estándar* para resolver el problema y así definir tirantes y velocidades medias en cada sección, variables que son las más importantes.

Entre las limitaciones de HEC-RAS 4.1.0 se pueden nombrar:

- El flujo es estacionario (el programa cuenta con un módulo de flujo inestacionario).
- El flujo es gradualmente variado (excepto en las estructuras hidráulicas).
- El flujo es unidimensional.
- Los cauces tienen pendientes "pequeñas" (menores a 10 %)

La ejecución de una simulación con el programa HEC-RAS 4.1.0 requiere de las siguientes especificaciones:

- Datos Geométricos
- Datos de flujo

5.4.1. Datos geométricos

Contienen datos como el alineamiento de la cuneta, perfil longitudinal, perfiles transversales y pendientes. Los datos introducidos al modelo son los que actualmente cuenta la cuneta, ya que son puntos topográficos relevados en campo mediante GPS.

⁷ PARTE III, Ven Tee Chow (1994), Hidráulica de canales abiertos.

Se modeló además el sistema de alcantarillas con el que cuenta el sistema de drenaje actual que consta de dos alcantarillas de 80 cm de diámetro y una de 40 cm de diámetro, todas de hormigón. En esta entrada de datos se debe ingresar la rugosidad de la cuneta, la cual se define mediante el coeficiente de rugosidad de Manning n que depende del tipo de revestimiento de la misma. Dado que la cuneta es de cubierta vegetal periódicamente cortada, se adoptó n=0,035.

5.4.2. Datos de flujo

Consiste en datos de caudal. Como primera aproximación se corrió el programa con caudales cinco valores de caudales, (0,25; 0,50; 0,75; 1,00 y 1,25 m³/seg) dándole las condiciones de contorno correspondientes para un análisis a régimen permanente y uniforme. La condición de contorno ingresada es la pendiente de energía en la sección de aguas abajo, recordando que en flujo uniforme las pendiente del canal, la pendiente del pelo libre de agua y la pendiente de energía son iguales

5.4.3. Salida del programa

Los resultados obtenidos muestran que para un caudal de 1,25 m³/seg, el agua escurre sobre el pavimento de la pista en las secciones ubicadas entre las progresivas 894,86 y 1050.00, cercanas a la cabecera sur. Las Figura 5-5, 5-6 y 5-7 muestran algunas de las salidas del software. En estas Figuras, la escala vertical es mayor a la horizontal a fin de apreciar mejor las secciones transversales. El extremo derecho corresponde el borde de la pista, el que como puede verse cual en la progresiva 976.72 es desbordado. La Tabla 5-2 resume los resultados y la Figura 5-8 muestra una vista tridimensional del sistema de drenaje de la pista.

Figura 5-5. Sección de progresiva 894.86

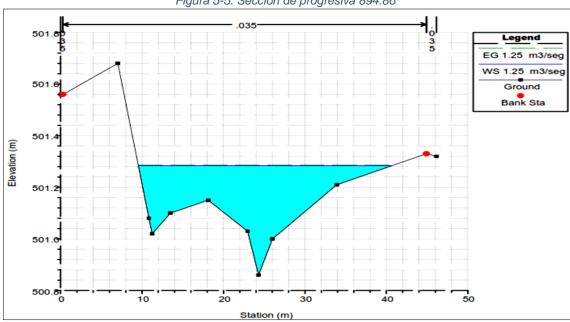
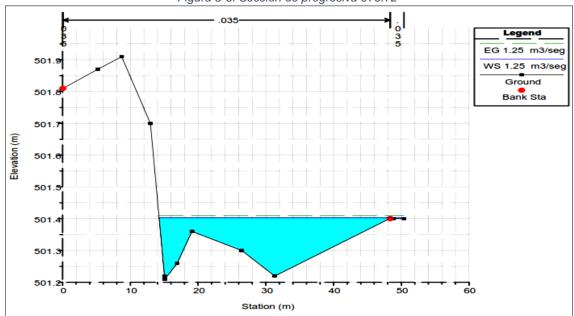



Figura 5-6. Sección de progresiva 976.72

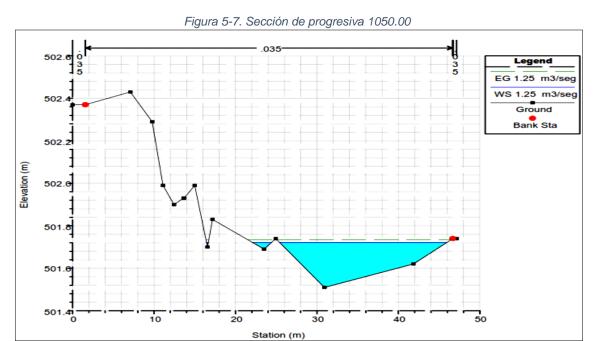
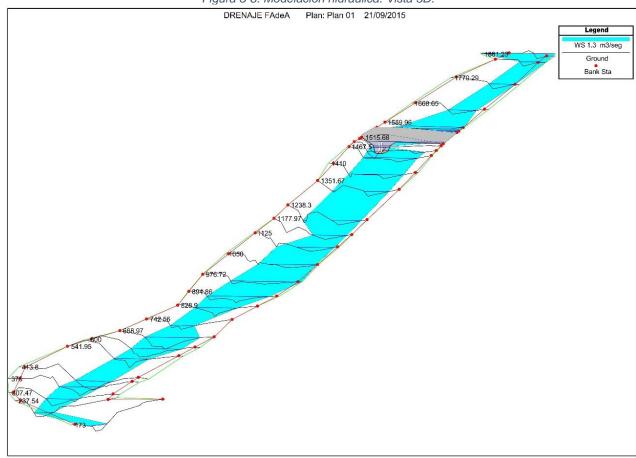



Figura 5-8. Modelación hidráulica. Vista 3D.

5.5. Conclusiones

Dado que para un periodo de recurrencia de 5 años el caudal de diseño es de 6,9 m³/seg se verifica, luego de las modelaciones realizadas, la insuficiencia y/o inadecuidad del sistema actual de drenaje no verifica debiendo mejorárselo.

Tabla 5-2. Resultados modelación sistema de drenaje.

Prog.	Q Total	Cota solera	Cota pelo agua	Tirante	Pendiente	Velocida d	Área mojada	Ancho superficial	Nº Froude
	(m³/s)	(m)	(m)	(m)	(m/m)	(m/s)	(m^2)	(m)	
1881.23	1.25	506.36	506.68	0.32	0.0044	0.68	2.17	19.34	0.47
1850.94	1.25	506.18	506.46	0.28	0.0106	0.85	1.55	13.20	0.69
1770.29	1.25	505.55	505.86	0.31	0.0058	0.63	2.00	12.87	0.51
1668.65	1.25	504.97	505.24	0.27	0.0065	0.61	2.04	14.85	0.53
1589.96	1.25	504.55	505.0.	0.45	0.0019	0.31	4.03	33.19	0.28
1569.84	1.25	504.52	505.0	0.48	0.0001	0.11	11.15	40.06	0.07
1562.94	1.25	504.25	505.0	0.75	0.0002	0.14	9.09	38.93	0.09
1520.00					Alcantarillad				
1515.68	1.25	503.96	504.48	0.52	0.0006	0.37	3.35	8.49	0.19
1508.52	1.25	504.04	504.46	0.42	0.0022	0.56	2.23	8.05	0.34
1490.40	1.25	503.94	504.38	0.44	0.0077	0.69	1.82	12.68	0.58
1467.50	1.25	503.98	504.23	0.25	0.0066	0.48	2.59	27.30	0.50
1410.00	1.25	503.48	503.77	0.29	0.0096	0.55	2.28	26.31	0.59
1351.67	1.25	502.97	503.29	0.32	0.0072	0.64	1.94	14.07	0.55
1238.30	1.25	502.3	502.59	0.29	0.0053	0.55	2.26	16.40	0.48
1177.97	1.25	502.01	502.28	0.27	0.0051	0.54	2.31	17.08	0.47
1125.00	1.25	501.8	502.06	0.26	0.0036	0.46	2.70	19.16	0.39
1050.00	1.25	501.51	501.72	0.21	0.0056	0.49	2.54	23.10	0.47
976.72	1.25	501.21	501.4	0.19	0.0036	0.37	3.40	36.15	0.37
894.86	1.25	500.86	501.28	0.42	0.0008	0.24	5.13	31.16	0.19
828.90	1.25	500.68	501.23	0.55	0.0009	0.29	4.33	21.30	0.20
742.56	1.25	500.74	500.96	0.22	0.0253	1.02	1.23	11.62	1.00
668.97	1.25	500.23	500.98	0.75	0.0001	0.12	10.42	27.63	0.06
600.00	1.25	500.44	500.97	0.53	0.0003	0.19	6.65	25.11	0.12
541.95	1.25	500.36	500.93	0.57	0.0022	0.42	3.01	17.64	0.32
413.80	1.25	500.3	500.87	0.57	0.0002	0.19	6.50	21.19	0.11
375.00	1.25	500.3	500.85	0.55	0.0009	0.29	4.25	21.11	0.21
307.47	1.25	500.33	500.78	0.45	0.0011	0.35	3.61	16.30	0.23
237.54	1.25	500.35	500.6	0.25	0.0081	0.73	1.71	11.18	0.60
173.00	1.25	500.04	500.41	0.37	0.0016	0.38	3.26	16.70	0.28

6. MÉTODO ACN-PCN

6.1. Definición y objetivos del método

El método Número de Clasificación de Aeronaves (ACN) – Número de Clasificación de Pavimentos (PCN) se utiliza para determinar la resistencia de una estructura de pavimento de pistas, plataformas y calles de rodaje de aeropuertos siempre y cuando den servicio a aeronaves de masa superior a los 5,700 kg.

Cuando se utiliza este método se puede determinar el efecto que una aeronave en particular en diversas estructuras de pavimentos a través de un único número (ACN), el cual depende del peso y configuración de ruedas de la aeronave, el tipo de pavimento y la resistencia del terreno de fundación. Al ACN se le puede definir como el número que expresa el efecto relativo que una aeronave de configuración dada ocasiona en una estructura de pavimento dependiendo de la resistencia que posea la subrasante.

Por otro lado, cuando se habla de PCN se refiere al número que expresa la capacidad de carga que un pavimento posee sin restricciones, la obtención de este valor no requiere de información específica de las aeronaves ni información detallada del pavimento.

El objetivo del método es buscar que el valor de PCN siempre sea mayor o igual al valor de ACN para que no exista ningún tipo de limitación en el uso de la estructura, en caso contrario se podrá utilizar el pavimento a partir de ciertas restricciones, las cuales consisten en permitir que la aeronave de ACN mayor al PCN ocupe la estructura únicamente un número limitado de veces a lo largo de la vida útil de la misma.

La escala utilizada por el método tiene como límite inferior al cero y no existe límite superior, esto aplica tanto para el número de clasificación de aeronaves, ACN, como para el de pavimentos, PCN; además se trata de una escala continúa.

El valor ACN en pavimentos rígidos difiere del obtenido en flexibles, esto se debe a que cada uno utiliza parámetros diferentes para su determinación. A partir de dichos parámetros se deriva de manera matemática la carga de rueda simple con la cual se realizan análisis de interacción entre el tren de aterrizaje y el pavimento. En este análisis se supone que el esfuerzo que ocasiona la carga de rueda es igual en toda la estructura por ello es que no es necesario especificar el espesor del pavimento. Cabe mencionar que la presión de la rueda simple corresponde a un valor estandarizado de 1,25 MPa.

Como las aeronaves pueden operar con diversas combinaciones de tren de carga sobre los pavimentos de las diferentes estructuras de un aeropuerto, la OACI adopta un procedimiento estandarizado para la determinación del ACN el cual consiste en elegir el máximo ACN calculado a partir de las características de peso y centro de gravedad de cada aeronave.

El método ACN-PCN necesita de la siguiente información con respecto al pavimento:

- a) Tipo de pavimento;
- b) Categoría del terreno de fundación;
- c) Presión máxima permisible de los neumáticos; y
- d) Método utilizado para la evaluación del pavimento.

Dichos datos están destinados primordialmente a permitir a los encargados de la pista la determinación de los tipos de aeronaves y masas de operación admisibles, y a los

fabricantes la posibilidad de garantizar la compatibilidad entre los pavimentos de los aeropuertos y sus aeronaves futuras. Sin embargo, no es necesario notificar la verdadera resistencia del terreno de fundación ni la máxima presión permisible real de los neumáticos. En consecuencia, las resistencias del terreno de fundación y las presiones de los neumáticos más comunes se han agrupado en categorías.

En el organigrama que sigue a continuación, Figura 6-1, se explica sintéticamente cómo se calcula en ACN de una aeronave según el método ACN-PCN.

MASA DE LA **AERONAVE** ACN Y POSICION **PAVIMENTO** TIPO DE DEL CG **RIGIDO PAVIMENTO ACN PARA** LOS EFECTOS SEPARACION DE DE LA LAS RUEDAS **AERONAVE** SOBRE EL **PAVIMENTO** CATEGORÍA DEL TERRENO DE ACN PRESION DE **FUNDACION PAVIMENTO** LOS FLEXIBLE **NEUMATICOS**

Figura 6-1. Proceso de cálculo de ACN

6.2. Software COMFAA

La FAA ha desarrollado un software que determina los valores de ACN y PCN, este se conoce como COMFAA, la metodología que este sigue para obtener el ACN es la establecida en el apéndice 2 de la Parte 3 del Manual de Diseño de Aeródromos publicado por la OACI. Este programa puede operar en modo ACN y modo Espesor de Pavimentos, para el primer caso, el software calcula el valor ACN en pavimentos flexibles y rígidos, además calcula un espesor de pavimentos para valores definidos de CBR (3, 6, 10 y 15%) y de k (150, 80, 40 y 20 MN/m3) que la OACI utiliza en condiciones específicas del método.

Es importante mencionar que los espesores obtenidos en este caso no pueden utilizarse para el diseño de la estructura, es mejor utilizar los obtenidos en FAArfield.

Para la obtención de PCN se conocen dos métodos "Uso de aeronaves" y "Evaluación Técnica", los valores de ambos pueden ser obtenidos mediante el software COMFFA a partir de los datos de combinación de tráfico y las características del suelo que se posee.

6.2.1. Método de uso de aeronave

Este procedimiento consiste en obtener cada uno de los valores de ACN de las aeronaves pertenecientes a la combinación de tráfico y, de acuerdo al tipo de suelo que se tiene, elegir el mayor como el valor de PCN de la estructura, es el método más sencillo y asume que todas las aeronaves pueden hacer uso del pavimento sin restricción.

6.2.2. Método de evaluación técnica

El método de "Evaluación Técnica" requiere de ciertos datos para poder llevarse a cabo tales como la combinación de tráfico y los datos de cada una de las aeronaves, frecuencia de operación y las condiciones del suelo de cimentación. Este método es más confiable que el de "uso de aeronaves" sin embargo, sólo es una guía, no se debe tomar como un resultado absoluto.

Al hacer uso de este método puede ocurrir que haya aeronaves con ACN mayor al PCN obtenido, en este caso se habla de limitaciones de uso, esto significa que la estructura de pavimento puede resistir únicamente cierto número de pases al año de las aeronaves que resulten tener un valor de ACN muy grande o, en casos muy desfavorables, que el pavimento no pueda dar servicio a estas.

Para este método se tienen que obtener ciertos valores a partir de los cuales se comienza a procesar la información, uno de ellos es el *espesor equivalente*, este se obtiene únicamente cuando se trata de una estructura de tipo flexible pues debido a la gran variedad de combinaciones de capas que se pueden colocar entre la subrasante y la carpeta asfáltica y a los diferentes módulos de los materiales utilizados, resulta más cómodo transformar las estructuras existentes a estructuras convencionales establecidas por la FAA. La Figura 6-2 muestra los espesores de estructura que se definen como entrada en el proceso de cálculo tanto para pavimento flexible como para pavimentos rígidos según la Organización Internacional de Aviación Civil (OACI)

Figura 6-2. Espesores tomados para cálculos.

PAVIMENTO TEORICO DE ASFALTO

PAVIMENTO TEORICO DE HORMIGON DE CEMENTO

Existen dos tipos de estructuras de pavimentos convencionales, la elección entre una y otra dependerá del número de ruedas que se tienen en el tren de aterrizaje principal de las aeronaves de la combinación de tráfico, es decir, cuando el número de ruedas en el tren es menor a 4, entonces se establece que la estructura convencional estará compuesta por una capa asfáltica de tipo P-401/P-403 de 3 pulgadas de espesor, una capa base de tipo P-209 con espesor de 6 pulgadas y una capa sub-base de tipo P-154 cuyo espesor estará determinado por la configuración de la estructura a analizar. Cuando el tren de aterrizaje tiene 4 ruedas o más los espesores cambian a 5 pulgadas para P-401/P-403 y a 8 pulgadas para P-209.

Cuando la estructura existente posee espesores mayores que las especificadas con anterioridad será necesario que los excesos sean convertidos a un espesor correspondiente a la capa de calidad inmediatamente menor mediante el uso de los factores establecidos en la Tabla 6-1, para que, de ese modo, se pueda obtener la estructura convencional que podrá ser utilizada para la obtención del valor PCN. En caso de que la estructura posea espesores menores a los ya mencionados, será necesario convertir las capas de menor calidad en una de mayor utilizando dividiendo por los mismos factores de la Tabla 6-1.

Soil-Cement Base Course

Portland Cement Concrete (PCC)

Subbase Course

1.0 to 1.5

1.0

--

Range Convert to P-401 2.2 to 2.5.

1.2

1.0

De este modo se tiene que, para estructuras con capas que exceden los valores recomendados, el espesor de la estructura convencional resultante será mayor que el espesor de la estructura analizada y, para los pavimentos con capas de menor espesor que los establecidos, el espesor de estructura convencional será menor que el analizado.

Range Recommended Recommended Range Description Structural Item Convert to Convert to Convert to Convert P-209 P-209 P-154 to P-154 Portland Cement Concrete (PCC) P-501 P-401 Plant Mix Bituminous Pavements (HMA) 1.2 to 1.6 1.6 1.7 to 2.3 2.3 P-403 Plant Mix Bituminous Pavements (HMA) 1.2 to 1.6 1.6 1.7 to 2.3 2.3 P-306 Econocrete Subbase Course (ESC) 1.2 to 1.6 1.2 1.6 to 2.3 1.6 P-304 1.2 Cement Treated Base Course (CTB) 1.6 to 2.3 1.2 to 1.6 1.6 P-212 Shell Base Course P-213 Sand-Clay Base Course P-220 Caliche Base Course -----Crushed Aggregate Base Course P-209 1.0 1.0 1.2 to 1.6 1.4 P-208 1.0 1.0 1.0 to 1.5 1.2 Aggregate Base Course 1.0 to 1.5 P-211 Lime Rock Base Course 1.0 1.0 1.2

n/a

n/a

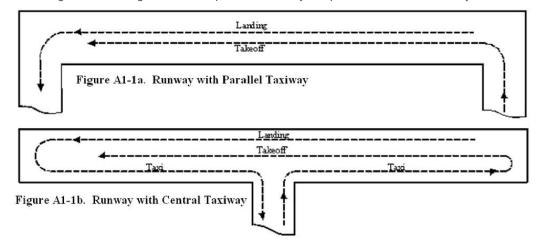
2.5 Recommended

Tabla 6-1. Factores de conversión para pavimento convencional.

Otro concepto importante en el método de evaluación técnica es la relación Pases por Ciclo de Tráfico (P/TC), el cual se define a partir de las prácticas de carga de combustible de las aeronaves y de la configuración que posea la pista de aterrizaje respecto a las calles de rodaje, es decir, si la pista cuenta únicamente con una calle de rodaje central o con dos calles de rodaje paralelas ubicadas en los extremos de la pista.

La Figura 6-3 muestra cómo se realizarían las maniobras de aterrizaje y despegue dependiendo de la configuración geométrica de la pista respecto de las calles de rodaje, por lo que se enumeran las siguientes opciones para el valor P/TC:

- Pista con calles de rodaje paralelas en los extremos: El ciclo de tráfico consiste en un solo paso ya que la carga de la aeronave al momento del despegue es mucho mayor que cuando aterriza, es por ello que el pase que realiza al aterrizar es despreciado y la relación de Pases por Ciclo de Tráfico equivale a la unidad (P/TC=1).
- Pista con calle de rodaje central: En este caso también es despreciado el aterrizaje, sin embargo, la existencia de una pista con calle de rodaje al centro obliga a la aeronave a transitar dos veces por la pista tal como se indica en la Figura 6-3, por tal motivo la relación de Pases por Ciclo de Tráfico equivale a dos (P/TC=2).


P-301

P-154

P-501

Figura 6-3. Configuración de la pista de aterrizaje respecto a las calles de rodaje

Una vez que se ha hecho la equivalencia de espesores reales a convencionales, que se cuenta con la relación P/TC, número de salidas anuales, características de la aeronave y del tren de aterrizaje, es posible obtener el valor de PCN de las estructuras analizadas; a continuación se enumeran los pasos a seguir para obtener dicho valor a partir del Método de Evaluación Técnica haciendo uso del Software COMFAA que provee la FAA:

- Reunir todos los datos relacionados con las aeronaves que forman parte de la combinación de tráfico, es decir, el peso operacional de las aeronaves, tipo de tren de aterrizaje, presión de neumáticos, salidas anuales, relación paso por ciclo de tráfico P/TC e introducir estos valores en la librería externa del programa.
- Conocer la configuración de la pista de aterrizaje con las calles de rodaje, es decir, si se trata de una pista con calle de rodaje central o calles de rodaje laterales, a fin de elegir de manera adecuada la relación P/TC.
- Determinar el valor de CBR que posee el terreno sobre el cual se fundará la estructura a analizar.
- A partir de los factores de conversión, determinar el espesor de la estructura equivalente convencional que se utilizará para introducir en el programa COMFAA.
- Una vez que se introducen los datos de CBR del suelo de cimentación de la estructura del pavimento y del espesor de la estructura equivalente en COMFAA, dicho programa calcula los pesos máximos permisibles para cada aeronave, las coberturas equivalentes, espesor requerido para el total de coberturas equivalentes, espesor requerido de acuerdo al ACN obtenido, CDF y los valores ACN.
- Finalmente se elige el valor ACN de mayor valor como el valor PCN de la estructura, siempre y cuando el valor elegido pertenezca a una aeronave de uso regular, es decir, que tenga un mínimo de 1,000 coberturas.

6.3. Reporte de PCN

Cualquiera que sea el método que se utilice para la obtención del PCN (Uso de Aeronaves o Evaluación Técnica), este número se presenta como una combinación del valor numérico que hace referencia a la resistencia de la estructura y cuatro códigos más que nos indican lo siguiente:

- Tipo de pavimento: Rígido (R) o Flexible (F)
- Resistencia de la subrasante: El método ACN-PCN adopta cuatro niveles estándar de resistencia de la capa sobre la cual se apoya la estructura del pavimento, para pavimentos rígidos y cuatro más para pavimentos flexibles. Dichos niveles se indican en la Tabla 6-2 para pavimentos flexibles y Tabla 6-3 para pavimentos rígidos.
- Presión de la rueda del avión: La cual puede variar de baja a ilimitada, tal como se describe en la Tabla 6-4.
- Método utilizado: Evaluación Técnica (T) y Uso de Aeronaves (U).

Tabla 6-2. Niveles estándar de resistencia de la subrasante para pavimentos flexibles.

Subgrade Strength Category	Subgrade Support CBR-Value	Represents	Code Designation
High	15	CBR ≥ 13	A
Medium	10	8 <cbr<13< td=""><td>В</td></cbr<13<>	В
Low	6	4 <cbr≤8< td=""><td>C</td></cbr≤8<>	C
Ultra Low	3	CBR <u>≤</u> 4	D

Tabla 6-3. Niveles estándar de resistencia de la subrasante para pavimentos rígidos.

Subgrade Strength Category	Subgrade Support k-Value pci (MN/m3)	Represents pci (MN/m3)	Code Designation
High	552.6 (150)	k ≥ 442 (≥120)	A
Medium	294.7 (80)	221 <k<442 (60<k<120)<="" td=""><td>В</td></k<442>	В
Low	147.4 (40)	92 <k<221 (25<k<60)<="" td=""><td>C</td></k<221>	C
Ultra Low	73.7 (20)	k≤92 (≤25)	D

Tabla 6-4. Categorías de presión de las ruedas de la aeronave.

Category	Code	Tire Pressure Range
Unlimited	W	No pressure limit
High	X	Pressure limited to 254 psi (1.75 MPa)
Medium	Y	Pressure limited to 181 psi (1.25 MPa)
Low	Z	Pressure limited to 73 psi (0.50 MPa)

Cada uno de estos caracteres debe ir separado por diagonales, por ejemplo, para un pavimento flexible que al ser revisado mediante el método de evaluación técnica obtuvo un valor numérico de 60, que está cimentado en un terreno de resistencia baja y que da servicio a aeronaves cuya presión de rueda máxima es de 1.5 MPa, su PCN se expresa como 60/F/B/X/T.

7. CONSIDERACIÓN DEL TRÁFICO DE OPERACIONES

El Anteproyecto de rehabilitación de la pista se realizó verificando la posibilidad de operación de dos tipos de aeronaves militares: el Hércules C-130 y el Orion P-3; el primero de la Fuerza Aérea y Ejército Argentino y el segundo de la Armada Argentina.

Como estas aeronaves deben aterrizar en la Fábrica Argentina de Aviones (FAdeA) para realizar trabajos de mantenimiento y actualizaciones electromecánicas, ellos no operarán con carga completa; por este motivo, se les asignó una carga equivalente al 80% del peso máximo de despegue. Tanto para el Hércules C-130 como para el Orion P-3 se asumió un número de 15 operaciones anuales, valor consistente con la cantidad de aeronaves disponibles y vuelos de prueba adicionales.

Finalmente, la estructura de la pista también se verificó para la operación del Fokker F-28, para las mismas condiciones de carga (80% de la carga máxima) y asumiendo 60 operaciones anuales. Todas las consideraciones se resumen en la Tabla 7-1.

La vida del pavimento se fijó en 20 años⁸ de acuerdo con los horizontes de tiempo de las políticas de producción de la Fábrica. Se destaca que aviones de menor porte como el Pampa, Pucará y otros pueden operar ilimitadamente en las propuestas de rehabilitación del pavimento de la pista.

Tabla 7-1. Consideraciones del tráfico aéreo.

Aeronave	Peso máximo de despegue (lb)	Peso considerado (lb)	N° operaciones anuales
Hércules C-130	155000	124000	15
Orion P-3	142000	113600	15
Fokker F-28	65000	52000	60

_

⁸ La vida útil normal de un pavimento es de 20 años sin embargo su expectativa de vida puede variar dependiendo de las condiciones actuales del mismo, las condiciones climáticas y las prácticas de mantenimiento.

8. PCN ACTUAL DEL PAVIMENTO

La determinación del PCN (Pavement Classification Number) actual del pavimento de la pista se realizó con la ayuda del software COMFAA (versión 3.0), que acompaña y aplica la Circular AC 150/5335-5C, "Standardized Method of Reporting Airport Pavement Strength – PCN" de la Federal Aviation Administration (FAA).

El método aplicado fue el denominado "técnico" basado en los resultados de la evaluación estructural realizada. En función de esta evaluación, que incluyó los trabajos de campo y laboratorio presentados, se adoptó para la pista actual el paquete estructural de la Tabla 8-1.

Tabla 8-1. Paquete estructural adoptado para la pista actual.

Espesor (cm)	Capa		
6.05	Capa asfáltica		
27.5	Subbase granular		
Subrasante (CBR 4%)			

A partir de los coeficientes propuestos por la FAA para tal fin, el paquete actual de la pista fue convertido en la estructura estándar equivalente mostrada en la Figura 8-1 y la tabla Tabla 8-2. Entre paréntesis se indica la denominación FAA de las capas consideradas.

Figura 8-1. Transformación en estructura equivalente.

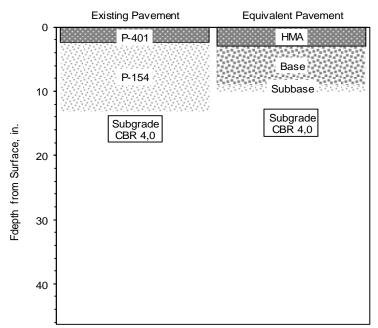


Tabla 8-2. Espesores de la estructura estándar equivalente.

Espesor (in)	Сара			
3.0	Capa asfáltica (P-401)			
6.0	Base granular (P-209)			
1.0	Subbase granular (P-154)			
Subrasante (CBR 4%)				

Con esta estructura equivalente y las condiciones y frecuencias de operación indicadas en el apartado 7 CONSIDERACIÓN DEL TRÁFICO DE OPERACIONES se obtuvo un PCN 6/F/D/X/T con ACN de 15, 37 y 29 para el Fokker, el Orion y el Hércules respectivamente; si bien los cálculos consideran un período de 20 años, estos valores ponen de manifiesto la insuficiencia estructural de la pista para las condiciones de operación del tráfico planteadas por FAdeA S.A y la necesidad de rehabilitación. Una captura del programa con los datos cargados y el reporte de salida del COMFAA 3.1 se presentan en la Figura 8-2 y Figura 8-3 respectivamente.

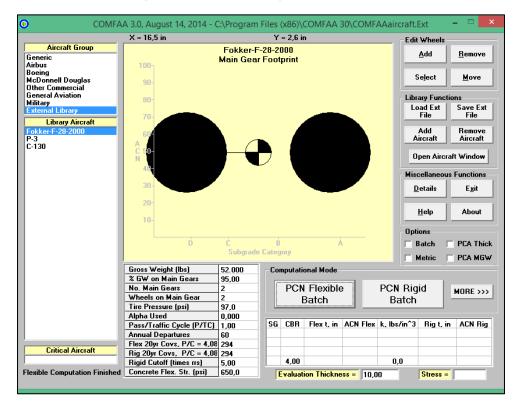
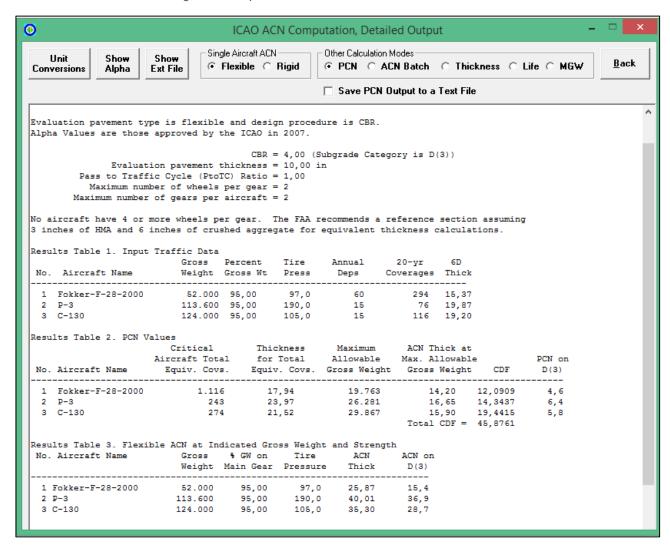



Figura 8-2. Captura del programa COMFAA 3.0.

Figura 8-3. Reporte de salida de COMFAA 3.1.

9. PROPUESTAS DE REHABILITACIÓN

9.1. Alternativas de rehabilitación

El presente Anteproyecto de rehabilitación propone tres áreas de intervención para la readecuación estructural de la pista de aterrizaje de la FAdeA S.A.:

- 1. Adecuación de los drenajes superficiales de la pista y sus laterales
- 2. Mejora de la geometría transversal y longitudinal de la pista, y
- 3. Aumento de la capacidad estructural del pavimento para soportar en forma limitada la operación de aeronaves militares de carga.

Todas las soluciones incluyen la ejecución de drenajes superficiales en el lado oeste de la pista con la ejecución de dos sumideros conectados por caños de hormigón que cruzarán por debajo de la pista en la zona más baja para desembocar en dirección este (del otro lado del pavimento).

La Alternativa 1 consiste en reforzar la estructura con mezcla asfáltica (MA) en caliente (base + carpeta de rodamiento) previo una restitución de gálibo de MA en caliente. Esta alternativa corrige el perfil longitudinal con la reconstrucción de 500 m de pista aproximadamente.

En la Alternativa 2 se remueve la carpeta asfáltica actual del pavimento, se ejecuta una capa de subbase adicional para restitución de gálibo transversal y mejora geométrica longitudinal de la pista y una base estabilizada con cemento cubierta por MA en caliente.

La Alternativa 3 consiste en construir otro pavimento sobre el existente cuidando aspectos del subdrenaje. En esta alternativa se ejecuta una carpeta de MA sobre el pavimento existente para restitución de gálibo transversal y mejora de la resistencia a tracción del pavimento, sobre ésta una base permeable de piedra partida (de muy buena calidad) que se conecta a drenes de subdrenaje lateral; la base se cubre con MA en caliente.

Finalmente, la Alternativa 4 consiste en un refuerzo con pavimento rígido previa restitución de gálibo con MA en caliente.

Resumiendo:

Alternativa 1: Refuerzo de Mezcla Asfáltica (MA)

- Saneo de zona baja próxima a la cabecera sur.
- Instalación de conducto para drenaje escurrimiento superficial.
- Ejecución de base MA para restitución de gálibo.
- Ejecución de base MA.
- Ejecución de carpeta de rodamiento de MA

Alternativa 2: Reconstrucción parcial #1

- * Remoción o fresado completo de la capa asfáltica existente.
- ❖ Instalación de conducto para drenaje escurrimiento superficial.
- Ejecución de subbase granular para restitución de base.
- Ejecución de base estabilizada con cemento.
- Ejecución de carpeta de rodamiento de MA.

Alternativa 3: Reconstrucción parcial #2

- Instalación de conducto para drenaje escurrimiento superficial.
- Ejecución de base de MA para restitución de gálibo.
- Ejecución de base permeable de piedra partida con drenes longitudinales a ambos lados (subdrenaje).
- Ejecución de carpeta de rodamiento de MA.

Alternativa 4: Refuerzo de Hormigón

- Instalación de conducto para drenaje escurrimiento superficial.
- Ejecución de base de MA para restitución de gálibo.
- Ejecución de losa de hormigón.

9.2. Determinación de espesores

La determinación de los espesores mínimos necesarios para cada una de las alternativas planteadas se realizó con el software FAARFIELD (versión 1.305) de la FAA. Las condiciones de operación asumidas para la pista fueron las explicitadas en el apartado 7 CONSIDERACIÓN DEL TRÁFICO DE OPERACIONES y utilizadas en la determinación del PCN actual.

Para un período de diseño de 20 años, los resultados obtenidos fueron los siguientes:

Alternativa 1: Refuerzo de Concreto Asfáltico

- Base de CA para restitución de gálibo: 4 cm
- Base de CA: 10 cm
- Carpeta de rodamiento de CA: 5 cm

Alternativa 2: Reconstrucción parcial #1

- Subbase granular para restitución de base: 10 cm
- Base estabilizada con cemento: 15 cm
- Base de CA: 5 cm

Carpeta de rodamiento de CA: 5 cm

Alternativa 3: Reconstrucción parcial #2

- Base de CA para restitución de gálibo: 6 cm
- Base permeable de piedra partida con drenes longitudinales a ambos lados: 20 cm
- Carpeta de rodamiento de CA: 5 cm

Alternativa 4: Refuerzo de Hormigón

- Base de CA para restitución de gálibo: 4 cm
- Losa de hormigón: 27 cm.

10. ESTIMACIÓN DE CÓMPUTOS Y PRESUPUESTOS

Los cómputos y presupuestos presentados a continuación (Tabla 10-1 a 10-4) contemplan los trabajos que deberían realizarse a fin de materializar las distintas alternativas planteadas en el Anteproyecto. Cabe aclarar que estos cómputos consideran espesores medios para la/s capa/s utilizadas en cada alternativa para restituir el gálibo transversal y mejorar la geometría longitudinal.

Alternativa 1: Refuerzo de Concreto Asfáltico

Tabla 10-1. Cómputo y presupuesto estimativo Alternativa 1.

Ítem	Designación	Computo	Unidad	Precio	Importe
1	Limpieza terreno	18	На	22285.0	401130
2	Movimiento de suelos	10000	m^3	87.5	875000
3	Estabilización de suelos	150	m^3	975.0	146250
4	Ejecución de desagües	200	ml	3547.7	709549
5	Fresado carpeta asfáltica	15000	m ²	432.5	6487500
6	Escarificación de subbase	15500	m^2	230.0	3565000
7	Ejecución de subrasante estabilizada	15500	m ²	315.0	4882500
8	Ejecución de subbase	15500	m²	210.0	3255000
9	Provisión y ejecución base granular	15500	m ²	251.0	3890500
10	Base restitución de galibo	5031.3	Tn	1300.0	6540716
11	Riego de liga	205360	m ²	11.8	2418927
12	Base asfáltica	12578.3	Tn	1251.0	15735441
13	Carpeta rodamiento	6247.5	Tn	1330.5	8312299
	Total				57219811

Alternativa 2: Reconstrucción parcial #1

Tabla 10-2. Cómputo y presupuesto estimativo Alternativa 2.

Ítem	Designación	Computo	Unidad	Precio	Importe
1	Limpieza terreno	18	На	22285.0	401130
2	Movimiento de suelos	10000	m^3	87.5	875000
3	Estabilización de suelos	150	m^3	975.0	146250
4	Ejecución de desagües	200	ml	3547.7	709549
5	Fresado carpeta asfáltica	51000	m^2	432.5	22057500
6	Ejecución de subbase	52700	m^2	84.0	4426800
7	Ejecución de base estabilizada con cemento	52700	m^2	291.0	15335700
8	Riego de curado	51340	m^2	23.6	1209463
9	Riego de liga	102680	m ²	11.8	1209463
10	Base asfáltica	6289.2	Tn	1251.0	7867720
11	Carpeta rodamiento	6247.5	Tn	1330.5	8312299
	Total				62550875

Alternativa 3: Reconstrucción parcial #2

Tabla 10-3. Cómputo y presupuesto estimativo Alternativa 3.

Ítem	Designación	Computo	Unidad	Precio	Importe
1	Limpieza terreno	18	На	22285.0	401130
2	Movimiento de suelos	10000	m3	87.5	875000
3	Estabilización de suelos	150	m3	975.0	146250
4	Ejecución de desagües	200	ml	3547.7	709549
5	Base restitución de galibo	7546.98	Tn	1300.0	9811074
6	Base de piedra partida permeable	51340	m2	602.4	30927216
7	Ejecución de subdrenaje	3400	ml	2430.0	8262000
8	Riego de imprimación	51340	m2	23.6	1209463
9	Riego de liga	51340	m2	11.8	604732
10	Carpeta rodamiento	6247.5	Tn	1330.5	8312299
	Total				61258712

Alternativa 4: Refuerzo de Hormigón

Tabla 10-4. Cómputo y presupuesto estimativo Alternativa 4.

Ítem	Designación	Computo	Unidad	Precio	Importe
1	Limpieza terreno	18	На	22285.0	401130
2	Movimiento de suelos	10000	m3	87.5	875000
3	Estabilización de suelos	150	m3	975.0	146250
4	Ejecución de desagües	200	ml	3547.7	709549
5	Base restitución de galibo	12578.3	Tn	1300.0	16351790
6	Losa de H° C.P.	51000	m2	910.0	46410000
	Total				64893719

11. CONCLUSIONES Y RECOMENDACIONES

11.1. Conclusiones Técnicas

Los presupuestos de cada alternativa planteada se resumen en la Tabla 11-1.

Tabla 11-1. Presupuesto estimativos alternativas de rehabilitación.

Alternativa	Presupuesto
1	57.200.000
2	62.551.000
3	61.259.000
4	64.894.000

Se hace especial consideración a que el Anteproyecto, con sus cómputos y presupuestos, ha sido realizado a efectos de establecer el orden de magnitud del costo asociado a la rehabilitación de la pista para tomar la decisión de seguir con él y ejecución de la obra sobre la alternativa más conveniente.

El Proyecto Ejecutivo deberá ajustar los volúmenes de movimientos de suelos, trabajos o reparaciones previas, mezcla asfáltica para restitución de gálibo, localización de sumideros, pendientes y cotas de drenaje, zonas de reconstrucción, mejoras sobre calles de rodajes y plataforma, prolongación de la pista (en caso de ser necesario), puntos de desagüe exteriores, señalamiento diurno, etc.

De las cuatro alternativas propuestas la Alternativa 1 sería la que arroja resultados más convenientes con un presupuesto 8% más bajo que la media y un 7% más bajo que el presupuesto de la Alternativa 3, alternativa que le sigue en costo, y un 14% más bajo que la Alternativa 4 (presupuesto más elevado). El Proyecto Ejecutivo deberá estudiar en profundidad algunas de las alternativas planteadas ya que todas siguen siendo competitivas.

11.2. Conclusiones personales

Como conclusión personal puedo agregar que realizar la práctica supervisada es vital para poner a un ingeniero en su ámbito de trabajo ya que se relaciona con otros profesionales, con otras herramientas de trabajo y al ser supervisado, tanto de manera interna como externa a la facultad, se ponen en evidencia los conocimientos teórico-prácticos brindado por profesores, se afirman conceptos y se corrigen errores.

Obviamente un trabajo como el realizado en el presente trabajo tiene pocas posibilidades de surgir en el ámbito de trabajo de un ingeniero recién recibido. Es así que los conceptos de diseño de aeródromos son conceptos un tanto singulares, pero los conceptos básicos como lo son manejo de herramientas topográficas, dibujo técnico e interpretación de planos, técnicas de cómputo y presupuesto, entre otros, son conceptos básicos en toda obra de ingeniería.

Finalizando, puedo agregar una frase que dijo un profesor en clase: "Ningún cálculo, por más sofisticado que sea, resuelve un mal diseño", frase que obliga a generar criterio profesional para poner énfasis en el diseño, ya que el cálculo hoy en día hecho por computadoras supera la capacidad del ser humano, pero difícilmente superará dicho criterio de buen diseño.

12. BIBLIOGRAFIA

Airport Design Software (Software de diseño de pavimentos de aeropuertos de la FAA), COMFAA 3.0. (2011). http://www.faa.gov/airports/engineering/design_software/, 23 junio 2015

Caamaño Nelli G. y Dasso C. M. (2003): Lluvias de diseño; Conceptos, técnicas y experiencias. Ed. Científica Universitaria, Córdoba.

Chow V. T. (1994): Hidráulica de Canales Abiertos. Ed. McGraw-Hill Interamericana S.A. Santafe de Bogotá. Colombia.

Chow V. T., Maidment D. R. y Mays L. W. (1994): Hidrología Aplicada. Ed. McGrawHill Interamericana S.A. Santafe de Bogotá. Colombia.

Descarga del software HEC-RAS 4.1 del Cuerpo de Ingenieros de Estados Unidos (US Army Corps of Engineers, http://www.hec.usace.army.mil/software/hec-ras/downloads.aspx, agosto 2014.

Manual de usuario de HEC-RAS 4.1 (2010), http://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 4.1 Users Manual.pdf, agosto 2014

Normas de ensayo de Vialidad Nacional, http://www1.frm.utn.edu.ar/labvial/Normas%20de%20Ensayo.pdf, 2 agosto 2015.

Organización de aviación Civil Internacionaal (1983), Manual de diseño de aeródromos, Parte 3: Pavimentos. Segunda edición.

Organización de aviación Civil Internacionaal (2006), Manual de diseño de aeródromos, Parte 1: Pistas, Tercera edición.

Robert Horonieff (1976), Planificación y diseño de aeropuertos, Librería técnica Bellisco.

U.S. Department of Transportation Federal Aviation Administration, Standardized Method of Reporting Airport Pavement Strength - PCN (2014), http://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5335-5c.pdf, 23 junio 2015.

ANEXOS

ANEXO I. RELEVAMIENTO PLANIALTIMÉTRICO

Project information		Coordinate	
Project information		System	
Name:	Fadea Total.vce	Name:	Argentina (POSGAR94)
Size:	11 MB	Datum:	WGS 1984
Modified:	07/08/2015 7:19:08 PM (UTC:-3)	Zone:	Faja 4
Time zone:	Argentina Standard Time	Geoid:	
Reference number:		Vertical dat	um:
Description:			

Referencias: B. Pav: Borde de Pavimento

<u>T.N</u>: Terreno Natural <u>Eje Calle de Rodaje</u>

B.P.E: Borde de Pista Este

Eje Pista

B.P.O: Borde Pista Oeste

ALCANTARILLA: Cota de Ala de alcantarilla

T.N. ALCANT. CAMINO: Cota en Terreno Natural de Alcantarilla

CAMARA: Tapa Ubicada en Sector Este

MASTIL TN: Cota de Terreno Natural en Mastil de Vertice Noreste

Point List

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
26	4380013.055	6521689.297	505.905	B. Pav.
27	4380012.241	6521696.058	505.844	B. Pav.
28	4380011.925	6521701.109	505.904	B. Pav.
29	4380011.112	6521711.164	505.954	B. Pav.
30	4380010.426	6521717.858	506.004	B. Pav.
31	4380009.886	6521725.879	506.044	B. Pav.
32	4380009.170	6521732.779	506.058	B. Pav.
33	4380008.440	6521741.628	506.096	B. Pav.
34	4380007.604	6521749.601	506.105	B. Pav.
35	4380007.120	6521757.612	506.163	B. Pav.
36	4380005.792	6521767.427	506.156	B. Pav.
37	4380005.384	6521777.564	506.147	B. Pav.
38	4380004.581	6521785.409	506.119	B. Pav.
39	4380003.962	6521793.571	506.171	B. Pav.
40	4380003.255	6521801.265	506.206	B. Pav.
41	4380003.059	6521804.977	506.214	B. Pav.
42	4380002.246	6521812.500	506.262	B. Pav.
43	4380001.715	6521819.089	506.304	B. Pav.
44	4380001.396	6521823.718	506.323	B. Pav.
45	4380000.690	6521832.285	506.356	B. Pav.
46	4379999.956	6521841.280	506.394	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
47	4379999.049	6521850.077	506.419	B. Pav.
48	4379998.479	6521858.062	506.487	B. Pav.
49	4379997.737	6521866.342	506.507	B. Pav.
50	4379996.836	6521876.506	506.565	B. Pav.
51	4379996.438	6521881.846	506.570	B. Pav.
52	4379995.505	6521891.798	506.629	B. Pav.
53	4379994.706	6521901.919	506.699	B. Pav.
54	4379994.249	6521906.967	506.690	B. Pav.
55	4379993.364	6521917.032	506.718	B. Pav.
56	4379992.454	6521928.445	506.777	B. Pav.
57	4379991.108	6521940.370	506.786	B. Pav.
58	4379981.043	6521939.811	506.932	B. Pav.
59	4379979.677	6521954.500	506.943	B. Pav.
60	4379979.077	6521968.518	506.943	B. Pav.
61	4379976.963	6521983.888	506.937	B. Pav.
62	4379976.963	6521998.737	506.939	B. Pav.
63	4379973.382	6522013.533	507.012	B. Pav.
64	4379974.304			
65	4379972.932	6522028.656 6522043.659	507.079	B. Pav.
			507.163	B. Pav.
66 67	4379970.139	6522059.151	507.147	B. Pav.
	4379968.687	6522075.782	507.262	B. Pav.
68	4379967.983	6522083.499	507.328	B. Pav.
69	4379967.001	6522093.230	507.382	B. Pav.
70	4379965.131	6522110.412	507.578	B. Pav.
71	4379969.979	6522113.831	507.538	B. Pav.
72	4379972.923	6522104.284	507.424	EJE CALLE RODAJE
73	4379976.478	6522093.456	507.289	B. Pav.
74	4379981.718	6522099.463	507.277	B. Pav.
75	4379978.646	6522109.204	507.411	EJE CALLE RODAJE
76	4379975.577	6522118.177	507.483	B. Pav.
77	4379981.873	6522123.072	507.457	B. Pav.
78	4379985.328	6522114.394	507.389	EJE CALLE RODAJE
79	4379988.893	6522105.654	507.252	B. Pav.
80	4379995.742	6522109.373	507.204	B. Pav.
81	4379992.216	6522118.991	507.349	EJE CALLE RODAJE
82	4379988.912	6522128.202	507.416	B. Pav.
83	4379995.130	6522133.032	507.345	B. Pav.
84	4379999.703	6522123.124	507.260	EJE CALLE RODAJE
85	4380004.102	6522111.877	507.097	B. Pav.
86	4380011.727	6522113.348	506.996	B. Pav.
87	4380007.389	6522126.517	507.156	EJE CALLE RODAJE
88	4380002.553	6522138.837	507.280	B. Pav.
89	4380008.554	6522143.552	507.230	B. Pav.
90	4380014.757	6522128.625	507.084	EJE CALLE RODAJE
91	4380021.177	6522112.560	506.905	B. Pav.
92	4380025.561	6522110.901	506.889	B. Pav.
93	4380018.287	6522129.270	507.077	EJE CALLE RODAJE
94	4380011.452	6522145.689	507.234	B. Pav.
95	4380011.697	6522146.128	507.240	B. Pav.
96	4380018.341	6522148.883	507.190	B. Pav.
97	4380024.685	6522151.561	507.225	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
98	4380030.768	6522154.114	507.117	B. Pav.
99	4380039.137	6522157.608	506.939	B. Pav.
100	4380042.954	6522148.069	506.907	B. Pav.
101	4380036.106	6522145.560	507.118	B.P.E
102	4380029.615	6522142.706	507.230	EJE PISTA
103	4380023.386	6522139.890	507.167	B.P.O
104	4380015.954	6522136.667	507.191	B. Pav.
105	4380019.735	6522127.399	507.052	B. Pav.
106	4380026.350	6522130.026	507.109	B.P.O
107	4380033.129	6522132.233	507.183	EJE PISTA
108	4380039.556	6522134.706	507.099	B.P.E
109	4380047.223	6522137.579	506.797	B. Pav.
110	4380050.882	6522128.390	506.738	B. Pav.
111	4380044.254	6522125.480	507.019	B.P.E
112	4380037.705	6522123.206	507.094	EJE PISTA
113	4380031.197	6522121.250	507.111	B.P.O
114	4380023.514	6522117.967	506.960	B. Pav.
115	4380030.404	6522120.139	507.086	B. P. O
116	4380027.909	6522106.022	506.857	B. Pav.
117	4380036.114	6522108.950	507.019	B.P.O
118	4380041.944	6522111.086	507.029	EJE PISTA
119	4380050.066	6522114.102	506.913	B.P.E
120	4380055.828	6522116.229	506.703	B. Pav.
121	4380060.212	6522105.375	506.651	B. Pav.
122	4380054.317	6522103.694	506.881	B.P.E
123	4380046.266	6522100.339	506.975	EJE PISTA
124	4380040.599	6522098.069	506.940	B.P.O
125	4380032.736	6522094.720	506.729	B. Pav.
126	4380037.512	6522083.770	506.625	B. Pav.
127	4380042.600	6522085.448	506.820	B.P.O
128	4380051.045	6522088.613	506.888	EJE PISTA
129	4380056.563	6522090.669	506.846	B.P.E
130	4380064.933	6522093.884	506.639	B. Pav.
131	4380068.780	6522083.575	506.601	B. Pav.
132	4380060.603	6522080.692	506.797	B.P.E
133	4380055.177	6522078.451	506.821	EJE PISTA
134	4380049.306	6522076.585	506.794	B.P.O
135	4380041.355	6522073.332	506.560	B. Pav.
136	4380045.524	6522062.632	506.482	B. Pav.
137	4380053.774	6522065.771	506.678	B.P.O
138	4380059.458	6522067.792	506.728	EJE PISTA
139	4380064.924	6522069.689	506.703	B.P.E
140	4380073.389	6522072.863	506.527	B. Pav.
141	4380077.764	6522062.237	506.447	B. Pav.
142	4380069.061	6522059.406	506.601	B.P.E
143	4380063.768	6522056.983	506.640	EJE PISTA
144	4380058.005	6522055.042	506.635	B.P.O
145	4380049.980	6522051.443	506.464	B. Pav.
146	4380054.426	6522040.883	506.427	B. Pav.
147	4380062.490	6522044.068	506.549	B.P.O
148	4380068.193	6522046.291	506.561	EJE PISTA

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
149	4380073.798	6522048.297	506.526	B.P.E
150	4380082.006	6522051.778	506.401	B. Pav.
151	4380086.296	6522040.716	506.356	B. Pav.
152	4380078.090	6522037.322	506.466	B.P.E
153	4380072.683	6522035.237	506.507	EJE PISTA
154	4380067.066	6522033.095	506.475	B.P.O
155	4380058.865	6522029.932	506.343	B. Pav.
156	4380063.049	6522019.441	506.277	B. Pav.
157	4380068.508	6522021.556	506.384	B.P.O
158	4380077.023	6522024.723	506.450	EJE PISTA
159	4380082.356	6522026.970	506.422	B.P.E
160	4380090.537	6522029.757	506.244	B. Pav.
161	4380095.036	6522019.039	506.162	B. Pav.
162	4380086.874	6522015.782	506.367	B.P.E
163	4380081.357	6522013.831	506.383	EJE PISTA
164	4380075.746	6522011.247	506.342	B.P.O
165	4380067.677	6522007.745	506.186	B. Pav.
166	4380007.377	6521997.269	506.177	B. Pav.
167	4380077.304	6521999.786	506.237	B.P.O
168	4380077.304	6522002.492	506.325	EJE PISTA
169	4380083.763			B.P.E
170	4380091.488	6522004.199 6522007.219	506.303 506.130	
171	4380099.778	6521997.727	506.067	B. Pav.
				B. Pav.
172	4380095.068	6521995.015	506.223	B.P.E EJE PISTA
173 174	4380089.584	6521992.996	506.262	
	4380083.860	6521991.105	506.214	B.P.O
175	4380075.580	6521988.375	506.097	B. Pav.
176	4380079.882	6521978.185	506.021	B. Pav.
177	4380087.925	6521981.359	506.162	B.P.O
178	4380093.488	6521983.498	506.189	EJE PISTA
179	4380098.894	6521985.680	506.199	B.P.E
180	4380107.288	6521988.765	505.984	B. Pav.
181	4380111.523	6521978.856	505.906	B. Pav.
182	4380102.998	6521975.768	506.153	B.P.E
183	4380097.567	6521973.749	506.133	EJE PISTA
184	4380091.823	6521971.683	506.108	B.P.O
185	4380083.600	6521968.418	505.933	B. Pav.
186	4380087.473	6521958.589	505.849	B. Pav.
187	4380096.111	6521961.208	506.035	B.P.O
188	4380101.626	6521963.547	506.066	EJE PISTA
189	4380107.214	6521965.558	506.073	B.P.E
190	4380115.352	6521968.906	505.818	B. Pav.
191	4380119.602	6521959.016	505.755	B. Pav.
192	4380111.066	6521955.633	505.994	B.P.E
193	4380105.752	6521953.576	505.990	EJE PISTA
194	4380100.163	6521951.308	505.954	B.P.O
195	4380091.985	6521948.149	505.787	B. Pav.
196	4380096.015	6521938.439	505.686	B. Pav.
197	4380104.024	6521941.958	505.883	B.P.O
198	4380109.394	6521944.659	505.944	EJE PISTA
199	4380114.814	6521946.676	505.940	B.P.E

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
200	4380123.197	6521950.015	505.696	B. Pav.
201	4380127.148	6521939.981	505.637	B. Pav.
202	4380118.991	6521936.280	505.863	B.P.E
203	4380113.664	6521933.849	505.873	EJE PISTA
204	4380108.133	6521931.726	505.847	B.P.O
205	4380100.048	6521928.262	505.655	B. Pav.
206	4380104.133	6521918.047	505.641	B. Pav.
207	4380112.459	6521921.265	505.790	B.P.O
208	4380117.931	6521923.269	505.824	EJE PISTA
209	4380123.614	6521925.210	505.778	B.P.E
210	4380132.046	6521928.402	505.528	B. Pav.
211	4380135.972	6521918.241	505.494	B. Pav.
212		6521915.333	505.721	B.P.E
213	4380127.543 4380122.025	6521913.261		EJE PISTA
	4380122.023		505.812	B.P.O
214		6521911.233	505.725	
215	4380108.162	6521908.000	505.595	B. Pav.
216	4380112.348	6521898.339	505.552	B. Pav.
217	4380120.656	6521900.805	505.659	B.P.O
218	4380126.296	6521902.685	505.766	EJE PISTA
219	4380131.964	6521904.350	505.666	<u>B.P.E</u>
220	4380140.411	6521907.697	505.462	<u>B. Pav.</u>
221	4380144.496	6521897.217	505.378	B. Pav.
222	4380136.146	6521894.011	505.619	<u>B.P.E</u>
223	4380130.834	6521891.534	505.679	EJE PISTA
224	4380125.298	6521889.268	505.609	B.P.O
225	4380117.132	6521886.172	505.477	B. Pav.
226	4380121.474	6521875.478	505.381	B. Pav.
227	4380129.395	6521879.268	505.545	B.P.O
228	4380134.890	6521881.442	505.620	EJE PISTA
229	4380140.420	6521883.596	505.580	B.P.E
230	4380148.919	6521886.828	505.335	B. Pav.
231	4380152.779	6521876.985	505.310	B. Pav.
232	4380144.410	6521873.605	505.515	B.P.E
233	4380139.116	6521871.244	505.546	EJE PISTA
234	4380133.615	6521869.027	505.484	B.P.O
235	4380125.533	6521865.804	505.336	B. Pav.
236	4380129.511	6521855.641	505.260	B. Pav.
237	4380137.553	6521859.217	505.416	B.P.O
238	4380142.963	6521861.335	505.482	EJE PISTA
239	4380148.547	6521863.423	505.440	B.P.E
240	4380157.021	6521866.815	505.288	B. Pav.
241	4380160.908	6521857.375	505.245	B. Pav.
242	4380152.377	6521854.252	505.353	B.P.E
243	4380147.036	6521851.674	505.442	EJE PISTA
244	4380141.566	6521849.441	505.371	B.P.O
245	4380133.424	6521846.133	505.191	B. Pav.
246	4380137.760	6521836.103	505.177	B. Pav.
247	4380145.782	6521838.966	505.344	B.P.O
248	4380151.401	6521840.960	505.366	EJE PISTA
249	4380156.946	6521842.845	505.319	B.P.E
250	4380165.346	6521846.213	505.194	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
251	4380169.437	6521835.910	505.117	B. Pav.
252	4380160.995	6521832.813	505.305	B.P.E
253	4380155.545	6521830.457	505.301	EJE PISTA
254	4380150.053	6521828.312	505.240	B.P.O
255	4380141.994	6521825.370	505.138	B. Pav.
256	4380146.233	6521815.332	505.090	B. Pav.
257	4380154.187	6521818.187	505.190	B.P.O
258	4380159.809	6521820.173	505.284	EJE PISTA
259	4380165.290	6521822.131	505.288	B.P.E
260	4380173.903	6521825.073	505.074	B. Pav.
261	4380177.939	6521814.477	504.970	B. Pav.
262	4380169.801	6521811.118	505.215	B.P.E
263	4380164.336	6521809.124	505.253	EJE PISTA
264	4380158.682	6521807.151	505.161	B.P.O
265	4380150.598	6521804.146	505.039	B. Pav.
266	4380150.598	6521793.806	504.930	B. Pav.
267	4380154.073	6521796.834	505.151	B.P.O
268	4380168.494	6521798.945	505.200	EJE PISTA
269	4380173.941	6521800.776	505.200	B.P.E
270	4380173.941	6521804.002	504.922	B. Pav.
271			504.870	B. Pav.
272	4380186.444 4380178.313	6521793.989 6521790.329	505.084	B.P.E
273	4380178.313	6521788.238	505.084	EJE PISTA
274	4380167.131	6521786.150	505.124	B.P.O
275	4380159.106	6521783.199	504.914	B. Pav. B. Pav.
276	4380162.990	6521772.971	504.880	
277	4380171.452	6521775.653	505.055	B.P.O
278	4380176.966	6521777.860	505.102	EJE PISTA
279	4380182.697	6521779.647	505.020	B.P.E
280	4380191.003	6521782.998	504.788	B. Pav.
281	4380195.158	6521772.689	504.772	B. Pav.
282	4380186.676 4380181.215	6521769.478	504.974	B.P.E
283		6521767.504	505.042	EJE PISTA
284	4380175.515	6521765.458	504.994	B.P.O
285	4380167.434	6521762.077	504.877	B. Pav.
286	4380172.265	6521750.356	504.784	B. Pav.
287	4380180.459	6521753.548	504.909	B.P.O
288	4380186.262	6521755.687	504.957	EJE PISTA
289	4380191.191	6521758.460	504.922	B.P.E
290	4380199.494	6521761.881	504.714	B. Pav.
291	4380203.775	6521751.487	504.648	B. Pav.
292	4380195.589	6521747.719	504.842	B.P.E
293	4380190.346	6521745.214	504.878	EJE PISTA
294	4380184.808	6521742.857	504.845	B.P.O
295	4380176.557	6521739.331	504.690	B. Pav.
296	4380180.948	6521728.937	504.611	B. Pav.
297	4380189.179	6521732.019	504.780	B.P.O
298	4380194.991	6521733.677	504.815	EJE PISTA
299	4380200.594	6521735.120	504.797	B.P.E
300	4380209.181	6521738.071	504.528	<u>B. Pav.</u>
301	4380214.653	6521724.783	504.472	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
320	4380171.975	6521751.158	504.794	B. Pav.
321	4380180.188	6521754.587	504.931	B.P.O
322	4380185.709	6521756.571	504.960	EJE PISTA
323	4380191.085	6521758.774	504.927	B.P.E
324	4380199.490	6521761.893	504.721	B. Pav.
325	4380204.976	6521748.486	504.611	B. Pav.
326	4380196.388	6521745.204	504.829	B.P.E
327	4380191.088	6521742.910	504.859	EJE PISTA
328	4380185.506	6521740.647	504.831	B.P.O
329	4380177.265	6521737.432	504.670	B. Pav.
330	4380183.105	6521724.084	504.575	B. Pav.
331	4380190.968	6521727.247	504.770	B.P.O
332	4380196.613	6521729.602	504.799	EJE PISTA
333	4380202.057	6521731.722	504.792	B.P.E
334	4380210.333	6521735.287	504.525	B. Pav.
335	4380215.842	6521721.867	504.450	B. Pav.
336	4380207.061	6521718.737	504.723	B.P.E
337	4380201.644	6521716.673	504.730	EJE PISTA
338	4380196.044	6521714.511	504.705	B.P.O
339	4380188.048	6521711.679	504.512	B. Pav.
340	4380193.759	6521697.759	504.458	B. Pav.
341	4380201.668	6521701.126	504.602	B.P.O
342	4380207.317	6521703.393	504.669	EJE PISTA
343	4380212.891	6521705.305	504.606	B.P.E
344	4380221.223	6521708.712	504.409	B. Pav.
345	4380226.829	6521694.226	504.256	B. Pav.
346	4380218.390	6521691.102	504.494	B.P.E
347	4380213.200	6521689.103	504.582	EJE PISTA
348	4380207.316	6521686.945	504.545	B.P.O
349	4380199.340	6521683.878	504.402	B. Pav.
350	4380205.026	6521669.599	504.272	B. Pav.
351	4380212.997	6521673.302	504.467	B.P.O
352	4380218.415	6521675.673	504.494	EJE PISTA
353	4380223.797	6521677.767	504.415	B.P.E
354	4380232.479	6521680.681	504.193	B. Pav.
355	4380238.214	6521666.639	504.060	B. Pav.
356	4380229.620	6521663.354	504.323	B.P.E
357	4380224.260	6521661.218	504.386	EJE PISTA
358	4380218.942	6521659.084	504.325	B.P.O
359	4380210.613	6521655.546	504.116	B. Pav.
360	4380216.314	6521641.913	503.976	B. Pav.
361	4380224.311	6521645.243	504.187	B.P.O
362	4380229.997	6521647.407	504.231	EJE PISTA
363	4380235.419	6521649.106	504.216	B.P.E
364	4380243.867	6521652.367	503.926	B. Pav.
365	4380249.354	6521638.924	503.810	B. Pav.
366	4380240.997	6521635.571	504.037	B.P.E
367	4380235.361	6521633.680	504.107	EJE PISTA
368	4380230.018	6521631.587	504.041	B.P.O
369	4380221.816	6521628.222	503.866	B. Pav.
370	4380227.186	6521614.765	503.760	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
371	4380235.229	6521618.204	503.943	B.P.O
372	4380240.875	6521620.641	503.993	EJE PISTA
373	4380246.150	6521622.707	503.930	B.P.E
374	4380254.481	6521626.242	503.671	B. Pav.
375	4380260.033	6521612.951	503.616	B. Pav.
376	4380251.415	6521609.806	503.845	B.P.E
377	4380245.931	6521608.121	503.928	EJE PISTA
378	4380240.382	6521606.114	503.896	B.P.O
379	4380231.941	6521603.129	503.682	B. Pav.
380	4380237.141	6521590.028	503.575	B. Pav.
381	4380245.426	6521593.650	503.794	B.P.O
382	4380250.899	6521596.072	503.815	EJE PISTA
383	4380255.965	6521598.275	503.752	B.P.E
384	4380264.477	6521602.046	503.732	B. Pav.
385	4380269.945	6521588.442	503.398	B. Pav.
386	4380269.943	6521585.426	503.648	B.P.E
387	4380255.984	6521583.373	503.742	EJE PISTA
388	4380250.450	6521581.257	503.682	B.P.O
389	4380242.050	6521578.180	503.425	B. Pav.
390	4380247.331	6521565.273	503.315	B. Pav.
391	4380255.579	6521568.735	503.603	B.P.O
392	4380261.184	6521570.758	503.655	EJE PISTA
393	4380266.320	6521572.830	503.531	B.P.E
394	4380274.867	6521576.351	503.317	B. Pav.
395	4380280.180	6521563.062	503.238	B. Pav.
396	4380271.621	6521559.780	503.460	B.P.E
397	4380266.454	6521557.660	503.562	EJE PISTA
398	4380260.921	6521555.513	503.518	B.P.O
399	4380252.489	6521552.285	503.209	B. Pav.
400	4380258.038	6521539.009	503.160	B. Pav.
401	4380266.281	6521542.407	503.407	B.P.O
402	4380271.841	6521544.382	503.474	EJE PISTA
403	4380277.197	6521546.240	503.377	B.P.E
404	4380285.515	6521549.823	503.182	B. Pav.
405	4380290.877	6521536.616	503.069	B. Pav.
406	4380282.403	6521533.207	503.275	B.P.E
407	4380277.164	6521531.127	503.349	EJE PISTA
408	4380271.628	6521529.102	503.320	B.P.O
409	4380263.219	6521526.009	503.087	B. Pav.
410	4380268.359	6521513.123	503.056	B. Pav.
411	4380276.503	6521516.586	503.255	B.P.O
412	4380281.937	6521518.705	503.247	EJE PISTA
413	4380287.483	6521520.858	503.165	B.P.E
414	4380295.729	6521524.484	502.963	B. Pav.
415	4380301.060	6521511.449	502.834	B. Pav.
416	4380292.538	6521508.143	503.079	B.P.E
417	4380287.244	6521506.380	503.160	EJE PISTA
418	4380281.445	6521504.223	503.123	B.P.O
419	4380273.262	6521501.207	502.979	B. Pav.
420	4380278.778	6521487.877	502.835	B. Pav.
421	4380286.993	6521491.311	503.049	B.P.O

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
422	4380292.404	6521493.730	503.089	EJE PISTA
423	4380297.639	6521495.751	502.967	B.P.E
424	4380306.080	6521499.305	502.780	B. Pav.
425	4380311.625	6521486.097	502.637	B. Pav.
426	4380302.804	6521482.933	502.896	B.P.E
427	4380297.366	6521480.985	503.010	EJE PISTA
428	4380291.737	6521478.771	502.929	B.P.O
429	4380283.704	6521475.998	502.719	B. Pav.
430	4380289.242	6521462.848	502.624	B. Pav.
431	4380296.857	6521466.183	502.850	B.P.O
432	4380302.600	6521468.595	502.904	EJE PISTA
433	4380307.681	6521471.023	502.794	B.P.E
434	4380315.929	6521474.792	502.605	B. Pav.
435	4380321.380	6521461.615	502.546	B. Pav.
436	4380312.710	6521458.482	502.708	B.P.E
437	4380307.371	6521456.845	502.820	EJE PISTA
438	4380301.588	6521454.798	502.758	B.P.O
439	4380293.281	6521451.938	502.738	B. Pav.
440	4380298.700	6521438.936	502.493	B. Pav.
441	4380306.498	6521442.358	502.679	B.P.O
441	4380300.498	6521444.807	502.768	EJE PISTA
442	4380317.418	6521447.093	502.649	B.P.E
444	4380317.418	6521450.741	502.461	
444				B. Pav.
445	4380330.884	6521437.208	502.423	B. Pav.
447	4380322.482	6521434.341	502.598	B.P.E EJE PISTA
447	4380317.132 4380311.455	6521432.252	502.674	B.P.O
		6521430.188	502.624	
449	4380303.292	6521427.139	502.415	B. Pav. B. Pav.
450 451	4380309.025 4380317.061	6521413.669 6521417.245	502.377 502.582	<u>в. гач.</u> В.Р.О
451	4380317.001	6521419.459	502.619	EJE PISTA
453	4380327.641	6521421.802	502.541	B.P.E
454	4380335.846	6521425.548	502.345	B. Pav.
455	4380341.113	6521412.159	502.326	B. Pav.
456	4380332.701	6521409.267	502.522	B.P.E
457	4380327.451	6521407.371	502.586	EJE PISTA
458	4380322.026	6521405.431	502.528	B.P.O
459	4380313.520	6521402.244	502.290	B. Pav.
460	4380318.878	6521389.076	502.232	B. Pav.
461	4380327.340	6521392.412	502.441	B.P.O
462	4380332.537	6521394.548	502.528	EJE PISTA
463	4380338.175	6521396.636	502.433	B.P.E
464	4380346.252	6521399.975	502.248	B. Pav.
465	4380350.512	6521401.282	502.335	T.N.
466	4380351.907	6521386.166	502.107	B. Pav.
467	4380343.475	6521382.936	502.325	B.P.E
468	4380338.195	6521380.930	502.418	EJE PISTA
469	4380332.667	6521378.782	502.361	B.P.O
470	4380324.212	6521375.692	502.099	B. Pav.
471	4380329.556	6521362.697	502.031	B. Pav.
472	4380335.058	6521364.782	502.217	B.P.O

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
473	4380343.536	6521367.776	502.320	EJE PISTA
474	4380348.746	6521369.963	502.248	B.P.E
475	4380357.065	6521373.667	502.004	B. Pav.
476	4380362.519	6521360.220	501.959	B. Pav.
477	4380354.167	6521357.291	502.168	B.P.E
478	4380348.723	6521355.131	502.241	EJE PISTA
479	4380343.002	6521352.954	502.180	B.P.O
480	4380334.830	6521349.816	501.948	B. Pav.
481	4380340.209	6521336.296	501.856	B. Pav.
482	4380348.526	6521339.467	502.120	B.P.O
483	4380353.913	6521341.673	502.155	EJE PISTA
484	4380359.437	6521343.878	502.072	B.P.E
485	4380367.769	6521347.458	501.910	B. Pav.
486	4380373.148	6521333.687	501.845	B. Pav.
487	4380365.044	6521330.511	502.005	B.P.E
488	4380359.521	6521328.308	502.066	EJE PISTA
489	4380354.038	6521326.114	502.050	B.P.O
490		6521322.877		
490	4380345.758 4380350.966	6521309.801	501.757 501.723	B. Pav.
491				B. Pav.
	4380359.096	6521313.108	501.957	B.P.O
493	4380364.811	6521315.390	501.944	EJE PISTA
494	4380370.064	6521317.971	501.926	B.P.E
495	4380378.398	6521321.230	501.725	B. Pav.
496	4380383.827	6521307.957	501.631	B. Pav.
497	4380375.205	6521305.129	501.858	B.P.E
498	4380369.699	6521302.669	501.847	EJE PISTA
499	4380364.469	6521300.436	501.860	B.P.O
500	4380356.016	6521297.203	501.682	B. Pav.
501	4380361.466	6521284.341	501.632	B. Pav.
502	4380369.702	6521287.391	501.780	B.P.O
503	4380375.172	6521289.613	501.816	EJE PISTA
504	4380380.380	6521291.802	501.852	B.P.E
505	4380388.939	6521295.418	501.626	B. Pav.
506	4380394.038	6521282.479	501.578	B. Pav.
507	4380385.454	6521279.017	501.721	B.P.E
508	4380380.317	6521277.221	501.763	EJE PISTA
509	4380374.631	6521275.158	501.746	B.P.O
510	4380366.914	6521272.450	501.559	<u>B. Pav.</u>
511	4380371.562	6521259.167	501.505	B. Pav.
512	4380379.738	6521262.455	501.681	B.P.O
513	4380385.381	6521264.852	501.730	EJE PISTA
514	4380390.315	6521266.995	501.677	B.P.E
515	4380398.923	6521270.683	501.542	B. Pav.
516	4380404.082	6521257.965	501.428	B. Pav.
517	4380395.634	6521254.751	501.670	B.P.E
518	4380390.211	6521252.142	501.706	EJE PISTA
519	4380384.970	6521249.640	501.657	B.P.O
520	4380376.784	6521246.694	501.444	B. Pav.
521	4380382.835	6521232.356	501.386	B. Pav.
522	4380390.634	6521235.701	501.628	B.P.O
523	4380395.898	6521238.021	501.666	EJE PISTA

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
524	4380401.253	6521240.378	501.637	B.P.E
525	4380409.608	6521243.781	501.379	B. Pav.
526	4380415.158	6521230.721	501.355	B. Pav.
527	4380406.707	6521226.875	501.546	B.P.E
528	4380401.543	6521224.922	501.598	EJE PISTA
529	4380395.785	6521222.912	501.586	B.P.O
530	4380387.822	6521219.464	501.408	B. Pav.
531	4380392.817	6521207.266	501.361	B. Pav.
532	4380400.747	6521210.773	501.578	B.P.O
533	4380406.359	6521213.043	501.598	EJE PISTA
534	4380411.693	6521215.429	501.518	B.P.E
535	4380419.881	6521218.901	501.299	B. Pav.
536	4380424.894	6521206.311	501.352	B. Pav.
537	4380416.265	6521203.024	501.524	B.P.E
538	4380411.006	6521201.263	501.589	EJE PISTA
539	4380405.495	6521199.139	501.571	B.P.O
540	4380397.437	6521195.959	501.387	B. Pav.
541	4380402.411	6521183.235	501.412	B. Pav.
542	4380410.450	6521186.740	501.603	B.P.O
543	4380415.772	6521189.098	501.604	EJE PISTA
544	4380421.720	6521191.662	501.536	B.P.E
545	4380429.507	6521195.046	501.398	B. Pav.
546	4380434.508	6521182.180	501.323	B. Pav.
547	4380426.231	6521178.721	501.529	B.P.E
548	4380421.016	6521176.668	501.601	EJE PISTA
549	4380415.691	6521174.091	501.548	B.P.O
550	4380407.523	6521170.876	501.360	B. Pav.
551	4380412.710	6521158.577	501.346	B. Pav.
552	4380420.781	6521162.163	501.587	B.P.O
553	4380425.854	6521164.341	501.600	EJE PISTA
554	4380431.538	6521166.455	501.534	B.P.E
555	4380439.603	6521169.783	501.348	B. Pav.
556	4380445.000	6521156.905	501.372	B. Pav.
557	4380436.561	6521153.509	501.546	B.P.E
558	4380431.207	6521151.349	501.621	EJE PISTA
559	4380425.845	6521149.017	501.599	B.P.O
560	4380417.610	6521145.928	501.314	B. Pav.
561	4380423.247	6521132.760	501.330	B. Pav.
562	4380432.027	6521136.552	501.602	B.P.O
563	4380436.585	6521138.371	501.603	EJE PISTA
564	4380441.877	6521140.414	501.521	B.P.E
565	4380450.422	6521143.731	501.386	B. Pav.
566	4380455.392	6521131.189	501.378	B. Pav.
567	4380447.025	6521127.756	501.544	B.P.E
568	4380441.565	6521125.568	501.626	EJE PISTA
569	4380436.358	6521123.496	501.617	B.P.O
570	4380428.108	6521120.649	501.378	B. Pav.
571	4380433.102	6521108.552	501.354	B. Pav.
572	4380440.572	6521113.773	501.643	B.P.O
573	4380445.750	6521115.326	501.638	EJE PISTA
574	4380451.538	6521117.418	501.545	B.P.E

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
575	4380459.608	6521120.742	501.303	B. Pav.
576	4380464.365	6521107.693	501.340	B. Pav.
577	4380456.529	6521104.578	501.537	B.P.E
578	4380451.228	6521102.011	501.605	EJE PISTA
579	4380445.972	6521099.727	501.634	B.P.O
580	4380437.886	6521096.346	501.387	B. Pav.
581	4380442.815	6521083.806	501.330	B. Pav.
582	4380451.475	6521087.565	501.596	B.P.O
583	4380456.776	6521089.534	501.578	EJE PISTA
584	4380462.508	6521091.857	501.517	B.P.E
585	4380469.521	6521094.928	501.403	B. Pav.
586	4380475.589	6521081.411	501.360	B. Pav.
587	4380466.927	6521077.730	501.529	B.P.E
588	4380461.664	6521075.994	501.573	EJE PISTA
589	4380456.232	6521074.055	501.562	B.P.O
590	4380448.423	6521070.713	501.393	B. Pav.
591	4380453.988	6521056.882	501.378	B. Pav.
592	4380453.988	6521060.283	501.528	B.P.O
593	4380467.469	6521062.693	501.565	
593 594				EJE PISTA
	4380472.673	6521064.666	501.498	B.P.E
595	4380480.895	6521068.236	501.258	B. Pav.
596	4380486.028	6521055.799	501.361	B. Pav.
597	4380477.724	6521052.391	501.544	B.P.E
598	4380472.304	6521049.860	501.606	EJE PISTA
599	4380466.955	6521047.860	501.530	B.P.O
600	4380458.528	6521045.071	501.375	B. Pav.
601	4380463.928	6521032.282	501.416	B. Pav.
602	4380471.793	6521036.162	501.577	B.P.O
603	4380476.851	6521038.541	501.609	EJE PISTA
604	4380482.343	6521041.050	501.558	B.P.E
605	4380490.412	6521044.310	501.344	B. Pav.
606	4380495.975	6521030.875	501.388	B. Pav.
607	4380487.799	6521027.410	501.567	B.P.E
608	4380482.493	6521024.983	501.629	EJE PISTA
609	4380477.114	6521022.538	501.593	B.P.O
610	4380469.150	6521019.951	501.452	B. Pav.
611	4380474.806	6521006.601	501.398	B. Pav.
612	4380482.967	6521009.295	501.539	B.P.O
613	4380488.252	6521011.431	501.605	EJE PISTA
614	4380493.802	6521013.808	501.574	B.P.E
615	4380501.648	6521017.270	501.378	B. Pav.
616	4380506.789	6521004.053	501.357	B. Pav.
617	4380498.495	6521000.864	501.557	B.P.E
618	4380493.220	6520998.645	501.568	EJE PISTA
619	4380487.924	6520996.462	501.531	B.P.O
620	4380480.065	6520993.100	501.328	B. Pav.
621	4380485.836	6520979.752	501.232	B. Pav.
622	4380493.425	6520983.051	501.433	B.P.O
623	4380498.527	6520985.034	501.472	EJE PISTA
624	4380504.618	6520987.070	501.446	B.P.E
625	4380512.465	6520990.398	501.274	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
626	4380517.978	6520977.031	501.141	B. Pav.
627	4380509.622	6520973.528	501.344	B.P.E
628	4380504.140	6520971.198	501.403	EJE PISTA
629	4380499.310	6520968.978	501.355	B.P.O
630	4380491.177	6520965.801	501.066	B. Pav.
631	4380496.479	6520952.746	501.082	B. Pav.
632	4380504.615	6520956.162	501.367	B.P.O
633	4380509.572	6520958.357	501.435	EJE PISTA
634	4380515.003	6520960.414	501.384	B.P.E
635	4380522.988	6520963.746	501.175	B. Pav.
636	4380528.568	6520949.996	501.218	B. Pav.
637	4380520.470	6520946.847	501.396	B.P.E
638	4380514.990	6520944.880	501.400	EJE PISTA
639	4380510.124	6520943.123	501.312	B.P.O
640	4380501.347	6520939.969	501.024	B. Pav.
641	4380506.776	6520927.443	501.115	B. Pav.
642	4380514.951	6520930.906	501.330	B.P.O
643	4380520.005	6520933.053	501.401	EJE PISTA
644	4380525.460	6520935.292	501.382	B.P.E
645	4380533.269	6520938.462	501.139	B. Pav.
646	4380539.110	6520925.156	501.117	B. Pav.
647	4380530.887	6520922.297	501.390	B.P.E
648	4380525.304	6520920.051	501.446	EJE PISTA
649	4380520.151	6520918.244	501.419	B.P.O
650	4380511.714	6520914.565	501.154	B. Pav.
651	4380516.796	6520901.228	501.127	B. Pav.
652	4380525.790	6520905.219	501.422	<u>в. гач.</u> В.Р.О
653	4380530.393	6520907.213	501.469	EJE PISTA
654	4380535.861	6520909.791	501.401	B.P.E
655	4380543.917	6520913.078	501.401	
656	4380549.403	6520899.485	501.120	B. Pav.
657	4380541.238	6520896.162	501.373	<u>B. Pav.</u> B.P.E
658	4380535.486 4380530.833	6520893.975	501.431	EJE PISTA
659		6520892.023	501.385	B.P.O
660	4380522.001	6520888.307	501.082	B. Pav.
661	4380527.466	6520874.916	501.009	B. Pav.
662	4380536.586	6520878.788	501.356	B.P.O
663	4380541.273	6520880.684	501.393	EJE PISTA
664	4380546.895	6520883.050	501.332	B.P.E
665	4380554.703	6520886.263	501.026	B. Pav.
666	4380560.130	6520872.449	501.095	B. Pav.
667	4380552.610	6520869.214	501.341	B.P.E
668	4380546.731	6520866.572	501.452	EJE PISTA
669	4380542.649	6520864.256	501.411	<u>B.P.O</u>
670	4380533.468	6520860.172	501.101	B. Pav.
671	4380539.008	6520847.076	501.160	B. Pav.
672	4380548.172	6520850.742	501.463	B.P.O
673	4380552.569	6520852.545	501.456	EJE PISTA
674	4380558.389	6520854.863	501.328	B.P.E
675	4380566.109	6520858.112	501.086	B. Pav.
676	4380571.493	6520845.108	501.102	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
677	4380563.748	6520841.804	501.337	B.P.E
678	4380558.188	6520839.157	501.428	EJE PISTA
679	4380553.710	6520837.228	501.485	B.P.O
680	4380544.379	6520833.768	501.235	B. Pav.
681	4380549.740	6520820.524	501.239	B. Pav.
682	4380559.129	6520824.337	501.478	B.P.O
683	4380563.521	6520826.011	501.388	EJE PISTA
684	4380568.897	6520828.589	501.263	B.P.E
685	4380576.485	6520832.097	501.028	B. Pav.
686	4380582.086	6520818.692	501.103	B. Pav.
687	4380574.119	6520815.607	501.319	B.P.E
688	4380568.395	6520813.318	501.406	EJE PISTA
689	4380564.269	6520811.571	501.439	B.P.O
690	4380555.384	6520808.508	501.275	B. Pav.
691	4380560.225	6520794.700	501.197	B. Pav.
692	4380569.838	6520798.211	501.443	B.P.O
693	4380574.172	6520799.791	501.453	EJE PISTA
694	4380580.044	6520802.192	501.387	B.P.E
695	4380587.550	6520805.481	501.171	B. Pav.
696	4380592.979	6520791.833	501.164	B. Pav.
697	4380585.541	6520788.517	501.338	B.P.E
698	4380579.614	6520785.457	501.378	EJE PISTA
699	4380575.647	6520783.883	501.389	B.P.O
700	4380566.601	6520779.991	501.140	B. Pav.
701	4380572.053	6520766.183	501.041	B. Pav.
701	4380581.314	6520770.129	501.308	B.P.O
703	4380585.356	6520771.803	501.319	EJE PISTA
704	4380591.263	6520774.435	501.284	B.P.E
705	4380598.596	6520777.523	501.069	B. Pav.
706	4380604.360	6520763.783	501.041	B. Pav.
707	4380596.759	6520760.948	501.285	B.P.E
708	4380590.822	6520758.344	501.369	EJE PISTA
709	4380586.852	6520756.678	501.328	B.P.O
710	4380577.085	6520753.171	501.045	B. Pav.
710	4380582.798	6520739.536	501.123	B. Pav.
712	4380592.211	6520743.554	501.384	B.P.O
713	4380596.162	6520745.263	501.410	EJE PISTA
713	4380602.184	6520747.769	501.344	B.P.E
715	4380609.639	6520750.741	501.097	B. Pav.
716	4380615.317	6520736.965	501.067	B. Pav.
717	4380607.907	6520733.578	501.372	<u>в. Рау.</u> В.Р.Е
				EJE PISTA
718	4380601.873	6520731.051	501.393	
719	4380597.226	6520728.856	501.406	B.P.O
720	4380588.463	6520725.519	501.253	B. Pav.
721	4380593.977	6520711.932	501.285	B. Pav.
722	4380602.621	6520715.722	501.476	B.P.O
723	4380607.423	6520717.742	501.526	EJE PISTA
724	4380613.373	6520720.155	501.372	B.P.E
725	4380620.809	6520723.225	501.120	B. Pav.
726	4380626.019	6520710.599	501.170	B. Pav.
727	4380618.136	6520707.148	501.415	B.P.E

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
728	4380612.365	6520704.872	501.537	EJE PISTA
729	4380607.855	6520702.616	501.530	B.P.O
730	4380599.003	6520699.145	501.347	B. Pav.
731	4380604.313	6520686.409	501.358	B. Pav.
732	4380612.472	6520690.087	501.496	B.P.O
733	4380617.811	6520692.113	501.547	EJE PISTA
734	4380623.268	6520694.438	501.431	B.P.E
735	4380630.947	6520697.669	501.158	B. Pav.
736	4380636.453	6520684.162	501.209	B. Pav.
737	4380628.768	6520680.930	501.423	B.P.E
738	4380623.134	6520678.767	501.560	EJE PISTA
739	4380617.387	6520676.447	501.475	B.P.O
740	4380609.604	6520673.748	501.342	B. Pav.
741	4380615.638	6520660.028	501.274	B. Pav.
742	4380623.088	6520663.150	501.465	B.P.O
743	4380628.498	6520665.271	501.499	EJE PISTA
744	4380633.713	6520667.741	501.388	B.P.E
745	4380641.817	6520671.273	501.131	B. Pav.
746	4380647.233	6520658.058	501.152	B. Pav.
747	4380639.224	6520654.818	501.401	B.P.E
748	4380633.513	6520652.909	501.531	EJE PISTA
749	4380628.420	6520650.478	501.457	B.P.O
750	4380620.305	6520647.724	501.230	B. Pav.
751	4380625.809	6520633.724	501.252	B. Pav.
752	4380633.661	6520636.826	501.470	B.P.O
753	4380639.363	6520638.901	501.552	EJE PISTA
754	4380644.815	6520641.156	501.451	B.P.E
755	4380652.620	6520644.463	501.190	B. Pav.
756	4380657.517	6520630.902	501.317	B. Pav.
757	4380650.094	6520628.084	501.480	B.P.E
758	4380644.638	6520625.958	501.537	EJE PISTA
759	4380638.982	6520623.738	501.488	B.P.O
760	4380630.882	6520620.919	501.269	B. Pav.
761	4380636.272	6520607.343	501.252	B. Pav.
762	4380644.297	6520610.904	501.455	B.P.O
763	4380649.839	6520613.452	501.590	EJE PISTA
764	4380655.442	6520615.582	501.533	B.P.E
765	4380663.026	6520619.097	501.374	B. Pav.
766	4380668.286	6520605.219	501.383	B. Pav.
767	4380660.559	6520602.619	501.525	B.P.E
768	4380654.932	6520600.360	501.609	EJE PISTA
769	4380649.383	6520598.426	501.478	B.P.O
770	4380641.547	6520595.756	501.251	B. Pav.
771	4380648.405	6520578.192	501.319	B. Pav.
772	4380656.501	6520581.585	501.569	B.P.O
773	4380661.846	6520583.875	501.573	EJE PISTA
774	4380667.155	6520585.916	501.530	B.P.E
775	4380675.006	6520589.056	501.320	B. Pav.
776	4379965.271	6522112.249	507.580	T.N
777	4379962.758	6522141.319	507.563	T.N
778	4379959.707	6522155.579	507.324	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
779	4379959.432	6522158.070	507.342	T.N
780	4379958.609	6522161.135	507.450	T.N
781	4379961.363	6522158.798	507.321	T.N
782	4379973.424	6522168.043	507.463	T.N
783	4379975.239	6522166.034	507.373	T.N
784	4379979.561	6522156.473	507.261	T.N
785	4379990.270	6522130.773	507.362	T.N
786	4380011.411	6522149.252	507.195	T.N
787	4380001.370	6522172.176	507.124	T.N
788	4379998.157	6522180.506	507.227	T.N
789	4379997.335	6522182.355	507.333	T.N
790	4380010.360	6522189.438	507.297	T.N
791	4380011.196	6522187.791	507.256	T.N
792	4380016.102	6522174.951	507.063	T.N
793	4380017.894	6522170.077	507.223	T.N
794	4380023.546	6522155.900	507.057	T.N
795	4380037.683	6522161.033	506.946	T.N
796	4380030.878	6522177.784	507.125	T.N
797	4380024.016	6522194.353	507.242	T.N
798	4380023.184	6522196.295	507.285	T.N
799	4380025.026	6522109.621	506.854	T.N
800	4380013.221	6522105.935	506.744	T.N
801	4380012.070	6522105.477	506.882	T.N
802	43800012.070	6522104.959	507.081	T.N
803	4380006.084	6522106.490	506.762	T.N
804	4380004.734	6522110.263	507.046	T.N
805	4379998.694	6522109.527	507.153	T.N
806	4380000.096	6522105.368	506.874	T.N
807	4380000.090	6522104.110	507.120	T.N
808	4379992.172	6522099.549	507.247	T.N
809				
	4379991.287	6522100.776	506.901	T.N
810	4379988.690 4379979.572	6522103.913	507.231	T.N
811		6522095.400	507.270	T.N T.N
812	4379983.524	6522092.142	507.045	
813	4379984.206	6522091.450	507.237	T.N
814	4379980.987	6522085.047	507.137	T.N
815	4379979.259	6522084.611	506.979	T.N
816	4379970.409	6522082.877	507.241	T.N
817	4379969.551	6522075.694	507.209	T.N
818	4379979.675	6522076.056	507.089	T.N
819	4379989.249	6522077.035	507.099	T.N
820	4380001.388	6522078.871	507.042	T.N
821	4380026.411	6522084.787	507.011	T.N
822	4380030.160	6522085.923	506.513	T.N
823	4380034.758	6522086.838	506.639	T.N
824	4380040.916	6522072.738	506.536	T.N
825	4380036.215	6522071.633	506.351	T.N
826	4380034.348	6522071.231	506.746	T.N
827	4380032.141	6522070.474	506.884	<u>T.N</u>
828	4379999.692	6522061.273	506.805	<u>T.N</u>
829	4379988.327	6522059.259	506.898	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
830	4379971.524	6522056.688	507.118	T.N
831	4379973.591	6522034.014	507.080	T.N
832	4379980.775	6522034.494	506.968	T.N
833	4379996.060	6522036.071	507.017	T.N
834	4380042.312	6522041.975	506.599	T.N
835	4380044.843	6522042.207	506.182	T.N
836	4380052.323	6522044.062	506.430	T.N
837	4380081.767	6521970.726	505.878	T.N
838	4380071.245	6521966.650	505.550	T.N
839	4380068.339	6521965.651	506.017	T.N
840	4380053.544	6521960.075	506.274	T.N
841	4380027.224	6521951.774	506.466	T.N
842	4380002.345	6521942.775	506.555	T.N
843	4379992.918	6521941.309	506.698	T.N
844	4380000.388	6521848.210	506.371	T.N
845	4380007.304	6521848.281	506.138	T.N
846	4380009.928	6521848.347	506.399	T.N
847	4380027.082	6521851.855	506.099	T.N
848	4380061.821	6521859.336	505.938	T.N
849	4380097.482	6521868.465	505.676	T.N
850	4380103.629	6521870.044	504.967	T.N
851	4380119.350	6521874.456	505.323	T.N
852	4380148.206	6521805.046	505.011	T.N
853	4380122.578	6521793.994	504.856	T.N
854	4380121.148	6521793.640	504.550	T.N
855	4380117.988	6521792.724	505.081	T.N
856	4380086.760	6521784.113	505.549	T.N
857	4380018.231	6521762.682	506.121	T.N
858	4380016.173	6521762.182	505.859	T.N
859	4380007.534	6521760.460	506.112	T.N
860	4380010.202	6521739.851	506.068	T.N
861	4380010.202	6521710.179	505.916	T.N
862	4380017.993	6521710.797	505.841	T.N
863	4380020.222	6521710.928	505.998	T.N
864	4380020.222	6521712.200	505.973	T.N
865	4380024.579	6521718.952		T.N
866	4380023.550	6521722.041	505.816 505.977	T.N
867	4380023.330			
		6521736.440 6521750.526	505.962 505.985	T.N
868	4380021.730	6521750.526 6521757.371	505.985	T.N
869	4380021.771	6521757.371	505.808	T.N
870	4380022.124	6521760.069	506.023	T.N
871	4380048.979	6521771.126	505.788	T.N
872	4380050.851	6521766.593	505.577	T.N
873	4380052.171	6521762.098	505.591	T.N
874	4380052.688	6521760.482	505.423	T.N
875	4380053.846	6521756.426	505.614	T.N
876	4380055.789	6521749.278	505.587	T.N
877	4380058.892	6521737.344	505.643	T.N
878	4380062.098	6521727.319	505.621	T.N
879	4380062.518	6521725.743	505.505	<u>T.N</u>
880	4380062.716	6521724.359	505.479	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
881	4380063.127	6521721.097	505.718	T.N
882	4380097.778	6521723.066	505.442	T.N
883	4380097.286	6521728.032	505.285	T.N
884	4380097.064	6521731.894	505.467	T.N
885	4380096.965	6521734.858	505.379	T.N
886	4380096.937	6521743.270	505.515	T.N
887	4380096.473	6521755.884	505.222	T.N
888	4380095.719	6521762.535	505.177	T.N
889	4380095.795	6521767.683	505.061	T.N
890	4380096.058	6521772.947	505.423	T.N
891	4380114.854	6521775.987	505.113	T.N
892	4380119.855	6521770.400	504.673	T.N
893	4380121.212	6521768.538	504.913	T.N
894	4380123.486	6521765.771	505.089	T.N
895	4380124.938	6521770.500	504.551	T.N
896	4380126.614	6521772.535	504.396	T.N
897	4380129.135	6521774.184	504.573	T.N
898	4380132.476	6521768.952	504.909	T.N
899	4380130.956	6521768.116	504.433	T.N
900	4380128.722	6521767.326	504.254	T.N
901	4380126.821	6521766.551	504.390	T.N
902	4380124.014	6521762.593	505.247	T.N
903	4380126.792	6521751.771	505.306	T.N
904	4380129.412	6521732.055	505.176	T.N
905	4380130.271	6521728.723	504.944	T.N
906	4380130.971	6521725.263	505.099	T.N
907	4380137.412	6521719.680	505.015	T.N
908	4380142.581	6521716.983	504.822	T.N
909	4380144.572	6521716.146	504.553	T.N
910	4380145.252	6521716.135	504.222	T.N
911	4380147.406	6521717.087	504.082	T.N
912	4380149.107	6521718.044	504.014	T.N
913	4380152.296	6521719.451	504.479	T.N
914	4380152.035	6521724.487	504.734	T.N
915	4380150.484	6521723.440	504.180	T.N
916	4380147.152	6521721.646	503.983	T.N
917	4380144.268	6521719.725	504.266	T.N
918	4380142.413	6521719.155	504.369	T.N
919	4380140.631	6521720.084	504.549	T.N
920	4380141.674	6521722.294	505.093	T.N
921	4380142.719	6521722.140	504.526	T.N
922	4380143.569	6521722.657	504.008	T.N
923	4380145.322	6521723.385	503.962	T.N
924	4380147.749	6521724.944	504.014	T.N
925	4380149.376	6521725.521	504.153	T.N
926	4380150.093	6521725.698	504.367	T.N
927	4380151.350	6521726.724	504.901	T.N
928	4380131.330	6521726.106	504.996	T.N
928				
	4380138.177	6521741.258	505.233	T.N
930	4380129.127	6521764.786	505.307	T.N
930	4380129.127	6521764.786	505.065	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
932	4380148.622	6521755.254	505.139	T.N
933	4380157.788	6521731.170	504.987	T.N
934	4380174.400	6521730.310	504.651	T.N
935	4380170.878	6521747.701	504.762	T.N
936	4380160.317	6521774.473	504.887	T.N
937	4380184.916	6521712.674	504.495	T.N
938	4380174.865	6521709.498	504.300	T.N
939	4380172.071	6521708.290	504.528	T.N
940	4380158.567	6521701.592	504.426	T.N
941	4380156.252	6521700.244	503.953	T.N
942	4380155.017	6521699.555	503.863	T.N
943	4380152.988	6521698.890	504.337	T.N
944	4380150.297	6521697.835	504.965	T.N
945	4380146.759	6521696.131	505.006	T.N
946	4380155.579	6521675.838	504.932	T.N
946	4380155.579	6521675.838	504.932	T.N
947	4380159.916	6521677.340	504.795	T.N
949	4380163.612	6521679.130	503.790	T.N
950	4380165.011	6521679.976	503.850	T.N
951	4380167.289	6521680.841	504.364	T.N
952	4380175.094	6521683.463	504.142	T.N
953	4380178.661	6521684.582	503.979	T.N
954	4380194.539	6521690.930	504.406	T.N
955	4380237.477	6521584.582	503.443	T.N
956	4380224.654	6521578.821	503.038	T.N
957	4380223.061	6521578.169	502.977	T.N
958	4380220.747	6521577.269	503.346	T.N
959	4380211.422	6521573.046	503.674	T.N
960	4380209.828	6521572.545	503.345	T.N
961	4380208.787	6521572.184	502.910	T.N
962	4380207.061	6521571.454	503.210	T.N
963	4380204.348	6521570.492	503.837	T.N
964	4380199.504	6521568.142	503.946	T.N
965	4380242.352	6521464.243	503.569	T.N
966	4380247.383	6521465.659	503.213	T.N
967	4380249.268	6521466.279	502.783	T.N
968	4380250.329	6521466.516	502.426	T.N
969	4380251.838	6521466.841	502.561	T.N
970	4380253.570	6521467.386	503.060	T.N
971	4380256.896	6521468.489	503.126	T.N
972	4380265.205	6521471.462	502.471	T.N
973	4380266.792	6521471.931	502.291	T.N
974	4380280.497	6521477.076	502.666	T.N
975	4380302.968	6521423.422	502.348	T.N
976	4380290.720	6521417.745	502.014	T.N
977	4380289.108	6521417.175	501.973	T.N
978	4380286.757	6521416.263	502.240	T.N
979	4380278.215	6521412.311	502.793	T.N
980	4380275.747	6521410.925	502.649	T.N
981	4380274.235	6521410.249	502.297	T.N
982	4380272.766	6521409.678	502.406	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
983	4380270.294	6521408.575	503.090	T.N
984	4380266.909	6521407.127	503.330	T.N
985	4380379.179	6521237.362	501.404	T.N
986	4380363.560	6521230.413	501.222	T.N
987	4380361.510	6521229.530	501.147	T.N
988	4380359.161	6521228.309	501.302	T.N
989	4380352.275	6521225.732	501.363	T.N
990	4380350.296	6521224.845	501.265	T.N
991	4380348.612	6521224.111	501.213	T.N
992	4380346.673	6521223.268	501.697	T.N
993	4380342.777	6521221.586	501.908	T.N
994	4380334.720	6521218.238	501.812	T.N
995	4380328.979	6521216.415	501.840	T.N
1001	4380351.966	6521386.156	502.100	T.N
1050	4380034.562	6521447.148	504.463	B. Pav.
1051	4380034.871	6521442.544	504.424	B. Pav.
1052	4380034.745	6521437.215	504.416	B. Pav.
1053	4380035.558	6521432.234	504.410	B. Pav.
1054	4380036.250	6521427.158	504.429	B. Pav.
1055	4380036.525	6521422.189	504.545	B. Pav.
1056	4380036.351	6521420.536	504.588	B. Pav.
1057	4380036.347	6521420.487	504.635	B. Pav.
1058	4380036.553	6521417.027	504.769	B. Pav.
1059	4380036.879	6521412.153	504.844	B. Pav.
1060	4380037.362	6521407.249	504.881	B. Pav.
1061	4380037.777	6521402.142	504.893	B. Pav.
1062	4380038.296	6521397.312	504.898	B. Pav.
1063	4380039.048	6521392.225	504.906	B. Pav.
1064	4380039.790	6521387.342	504.961	B. Pav.
1065	4380040.359	6521382.295	505.010	B. Pav.
1066	4380040.805	6521377.341	505.044	B. Pav.
1067	4380041.105	6521372.325	505.053	B. Pav.
1068	4380041.667	6521367.261	505.076	B. Pav.
1069	4380042.099	6521362.593	505.116	B. Pav.
1070	4380042.396	6521357.676	505.095	B. Pav.
1071	4380042.861	6521352.711	505.072	B. Pav.
1071	4380043.244	6521347.489	505.011	B. Pav.
1073	4380043.705	6521342.488	504.956	B. Pav.
1074	4380044.108	6521337.444	504.894	B. Pav.
1074	4380044.596	6521332.672	504.827	B. Pav.
1075	4380044.766	6521327.774	504.737	<u>Б. Fav.</u> Т.N
1076	4380044.766	6521326.312	504.673	T.N
1077			504.595	T.N
1078	4380068.676 4380087.269	6521320.851 6521321.283	504.236	T.N
1079				
	4380109.480	6521322.420	504.085 501.332	T.N
1081	4380410.961	6521160.697 6521156 557	501.332	T.N
1082	4380400.764	6521156.557	501.209	T.N
1083	4380393.426	6521153.634	501.000	T.N
1084	4380391.866	6521152.922	500.856	T.N
1085	4380390.650	6521152.335	501.025	T.N
1086	4380386.165	6521150.494	501.151	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1087	4380381.879	6521148.802	501.103	T.N
1088	4380380.761	6521148.272	501.001	T.N
1089	4380379.769	6521147.977	501.020	T.N
1090	4380378.566	6521147.403	501.406	T.N
1091	4380375.858	6521146.422	501.675	T.N
1092	4380356.736	6521139.079	501.503	T.N
1093	4380341.840	6521133.879	501.718	T.N
1094	4380318.746	6521128.987	501.862	T.N
1095	4380293.995	6521120.406	501.863	T.N
1096	4380290.080	6521118.795	502.179	T.N
1097	4380286.432	6521117.414	502.322	B. Pav.
1098	4380282.501	6521116.762	502.363	T.N
1099	4380291.907	6521040.700	501.883	T.N
1100	4380292.268	6521039.688	501.872	T.N
1101	4380291.391	6521041.730	501.912	T.N
1102	4380293.198	6521042.540	501.838	T.N
1103	4380294.118	6521040.374	501.834	T.N
1104	4380296.960	6521041.519	501.857	T.N
1105	4380308.877	6521047.357	501.779	T.N
1106	4380308.498	6521048.165	501.778	T.N
1107	4380312.489	6521048.099	501.720	T.N
1108	4380311.719	6521049.480	501.707	T.N
1109	4380314.087	6521049.920	501.733	T.N
1110	4380327.942	6521052.701	501.670	T.N
1111	4380372.070	6521073.731	501.450	T.N
1112	4380372.070	6521084.460	501.366	T.N
1113	4380400.996	6521085.796	501.485	T.N
1114	4380400.990	6521086.766	501.306	T.N
1115	4380405.531	6521087.994	500.938	T.N
1116	4380406.794	6521088.543	500.937	T.N
<u>1117</u> 1118	4380411.216	6521090.452 6521091.405	501.017	<u>T.N</u> T.N
1119	4380413.513		500.925	
	4380414.753	6521091.887	500.674	T.N T.N
1120	4380416.899	6521092.666	500.897	
1121	4380425.754	6521096.707	501.250	T.N
1122	4380434.937	6521100.023	501.367	T.N
1123	4380466.285	6521020.411	501.418	T.N
1124	4380454.389	6521014.162	501.130	T.N
1125	4380448.465	6521011.788	500.964	T.N
1126	4380446.701	6521010.991	500.857	T.N
1127	4380445.354	6521010.373	500.622	T.N
1128	4380444.797	6521010.088	500.458	T.N
1129	4380443.926	6521009.673	500.716	T.N
1130	4380441.178	6521008.860	500.943	T.N
1131	4380438.425	6521007.867	500.830	T.N
1132	4380436.438	6521007.060	501.223	T.N
1133	4380432.489	6521005.555	501.418	<u>T.N</u>
1134	4380402.198	6520993.727	501.449	<u>T.N</u>
1135	4380386.142	6520987.888	501.467	T.N
1136	4380368.450	6520981.188	501.760	T.N
1137	4380324.784	6520965.645	502.032	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1138	4380360.170	6520897.392	502.041	T.N
1139	4380383.761	6520905.607	501.876	T.N
1140	4380412.608	6520917.490	501.726	T.N
1141	4380451.143	6520933.629	501.392	T.N
1142	4380461.704	6520937.545	501.118	T.N
1143	4380464.522	6520938.670	500.792	T.N
1144	4380466.282	6520939.488	500.415	T.N
1145	4380468.473	6520940.356	500.397	T.N
1146	4380470.907	6520941.366	500.421	T.N
1147	4380472.180	6520941.879	500.228	T.N
1148	4380473.441	6520942.438	500.289	T.N
1149	4380475.519	6520943.271	500.417	T.N
1150	4380481.205	6520945.747	500.747	T.N
1151	4380489.145	6520949.332	501.007	T.N
1152	4380495.492	6520951.511	501.061	T.N
1153	4380542.301	6520835.732		T.N
1153	4380529.505	6520828.824	501.168 500.943	T.N
1155	4380529.503	6520825.722		T.N
1156			500.754	T.N
	4380520.896	6520824.776	500.474	
1157	4380519.788 4380519.164	6520824.278	500.353	T.N
1158		6520824.079	500.632	T.N
1159	4380517.821	6520823.470	500.816	T.N
1160	4380516.023	6520823.076	500.724	T.N
1161	4380514.354	6520822.601	500.625	T.N
1162	4380512.849	6520822.113	500.876	T.N
1163	4380510.695	6520821.440	501.404	T.N
1164	4380505.342	6520819.275	501.914	T.N
1165	4380498.323	6520816.445	502.113	T.N
1166	4380490.312	6520812.971	501.685	T.N
1167	4380464.958	6520802.655	501.794	T.N
1168	4380444.029	6520794.406	501.949	T.N
1169	4380502.060	6520713.962	501.800	T.N
1170	4380526.747	6520707.664	501.519	T.N
1171	4380539.985	6520703.956	501.496	T.N
1172	4380548.275	6520702.934	501.867	T.N
1173	4380557.207	6520701.861	501.527	T.N
1174	4380560.224	6520701.938	500.997	T.N
1175	4380561.471	6520702.024	500.642	T.N
1176	4380562.635	6520701.908	500.503	T.N
1177	4380564.119	6520702.103	500.507	T.N
1178	4380567.445	6520702.234	500.643	T.N
1179	4380568.910	6520702.278	500.534	<u>T.N</u>
1180	4380569.792	6520702.226	500.298	T.N
1181	4380571.566	6520702.482	500.474	<u>T.N</u>
1182	4380576.024	6520702.770	500.753	<u>T.N</u>
1183	4380587.084	6520702.342	501.142	T.N
1184	4380596.078	6520701.933	501.280	T.N
1185	4380635.249	6520604.257	501.136	T.N
1186	4380616.521	6520609.160	500.894	T.N
1187	4380610.165	6520609.520	500.609	T.N
1188	4380607.989	6520608.514	500.359	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1189	4380607.171	6520608.100	500.249	T.N
1190	4380606.019	6520607.452	500.484	T.N
1191	4380604.601	6520606.830	500.541	T.N
1192	4380602.524	6520605.852	500.351	T.N
1193	4380601.140	6520605.081	500.318	T.N
1194	4380599.041	6520603.968	500.725	T.N
1195	4380591.080	6520600.387	501.428	T.N
1196	4380586.225	6520597.695	501.488	T.N
1197	4380583.939	6520596.259	501.151	T.N
1198	4380581.757	6520594.748	500.913	T.N
1199	4380578.124	6520592.754	501.069	T.N
1200	4380576.243	6520591.675	500.855	T.N
1201	4380569.290	6520586.548	500.876	T.N
1202	4380648.418	6520576.015	501.203	T.N
1203	4380641.375	6520557.822	500.936	T.N
1204	4380635.738	6520546.448	500.425	T.N
1205	4380633.781	6520544.462	500.159	T.N
1206	4380632.555	6520543.640	500.390	T.N
1207	4380629.895	6520541.706	500.344	T.N
1208	4380628.797	6520540.941	500.385	T.N
1209	4380626.448	6520539.537	500.947	T.N
1210	4380624.284	6520538.169	501.350	T.N
1211	4380621.740	6520536.387	501.425	T.N
1212	4380662.279	6520582.199	501.509	T.N
1213	4380672.314	6520557.798	501.468	T.N
1214	4380683.742	6520528.326	500.997	T.N
1215	4380684.675	6520517.982	500.496	T.N
1216	4380685.144	6520509.882	500.108	T.N
1217	4380684.565	6520505.013	500.039	T.N
1218	4380684.252	6520502.591	500.359	T.N
1219	4380681.033	6520490.020	500.606	T.N
1220	4380675.544	6520588.253	501.309	T.N
1221	4380684.728	6520575.272	501.237	T.N
1222	4380691.826	6520566.314	500.996	T.N
1223	4380698.231	6520558.913	500.465	T.N
1224	4380704.603	6520550.902	500.427	T.N
1225	4380712.605	6520541.557	500.242	T.N
1226	4380719.214	6520533.887	500.283	T.N
1227	4380729.687	6520519.841	499.808	T.N
1228	4380731.804	6520516.757	499.940	T.N
1229	4380749.984	6520482.032	499.915	T.N
1230	4380674.452	6520596.754	501.270	T.N
1231	4380687.064	6520600.572	500.562	T.N
1232	4380736.660	6520610.017	499.963	T.N
1233	4380809.450	6520625.807	499.509	T.N
1234	4380803.567	6520721.434	499.374	T.N
1235	4380753.859	6520710.713	499.733	T.N
1236	4380702.332	6520693.224	500.285	T.N
1237	4380670.138	6520679.106	500.470	T.N
1238	4380643.098	6520669.119	501.095	T.N
1239	4380602.693	6520770.447	500.950	T.N

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1240	4380628.003	6520782.705	500.387	T.N
1241	4380655.009	6520789.415	500.193	T.N
1242	4380680.624	6520797.346	500.054	T.N
1243	4380647.033	6520892.458	500.164	T.N
1244	4380623.532	6520884.506	500.332	T.N
1245	4380598.970	6520875.127	500.511	T.N
1246	4380565.043	6520863.583	501.003	T.N
1247	4380528.557	6520953.478	501.137	T.N
1248	4380556.271	6520963.852	500.720	T.N
1249	4380586.685	6520974.579	500.562	T.N
1250	4380618.665	6520984.618	500.505	T.N
1251	4380580.859	6521081.523	500.271	T.N
1252	4380553.081	6521069.509	500.335	T.N
1253	4380527.701	6521058.894	500.635	T.N
1254	4380491.140	6521045.464	501.321	T.N
1255	4380452.851	6521140.180	501.310	T.N
1256	4380471.576	6521147.285	500.787	T.N
1257	4380473.037	6521147.951	500.600	T.N
1258	4380475.383	6521148.741	500.794	T.N
1259	4380506.402	6521161.272	500.748	T.N
1260	4380537.291	6521174.048	500.446	T.N
1261	4380504.690	6521258.434	500.841	T.N
1262	4380481.462	6521249.630	501.055	T.N
1263	4380453.538	6521239.552	501.111	T.N
1264	4380433.518	6521232.284	501.016	T.N
1265	4380418.247	6521226.211	501.271	T.N
1266	4380381.078	6521317.092	501.659	T.N
1267	4380388.496	6521320.342	501.540	T.N
1268	4380397.062	6521323.762	501.295	T.N
1269	4380409.433	6521328.511	501.166	T.N
1270	4380436.528	6521339.900	500.990	T.N
1271	4380467.381	6521349.575	501.018	T.N
1272	4380428.007	6521447.395	501.725	T.N
1273	4380392.832	6521434.305	501.977	T.N
1274	4380365.397	6521423.306	501.918	T.N
1275	4380341.337	6521414.698	502.237	T.N
1276	4380301.735	6521513.325	502.761	T.N
1277	4380316.553	6521518.928	502.530	T.N
1278	4380321.028	6521520.736	502.680	T.N
1279	4380350.089	6521531.885	502.484	T.N
1280	4380379.084	6521543.524	502.386	T.N
1281	4380338.925	6521644.871	503.188	T.N
1282	4380309.489	6521634.261	503.394	T.N
1283	4380278.596	6521621.943	503.483	T.N
1284	4380275.217	6521620.477	503.241	T.N
1285	4380261.346	6521614.477	503.477	T.N
1286	4380222.485	6521708.852	504.323	T.N
1287	4380237.761	6521714.469	503.923	T.N
1288	4380242.844	6521716.900	504.115	T.N
1289	4380271.923	6521729.086	503.970	T.N
1200	4380309.897	6521744.176	503.685	T.N

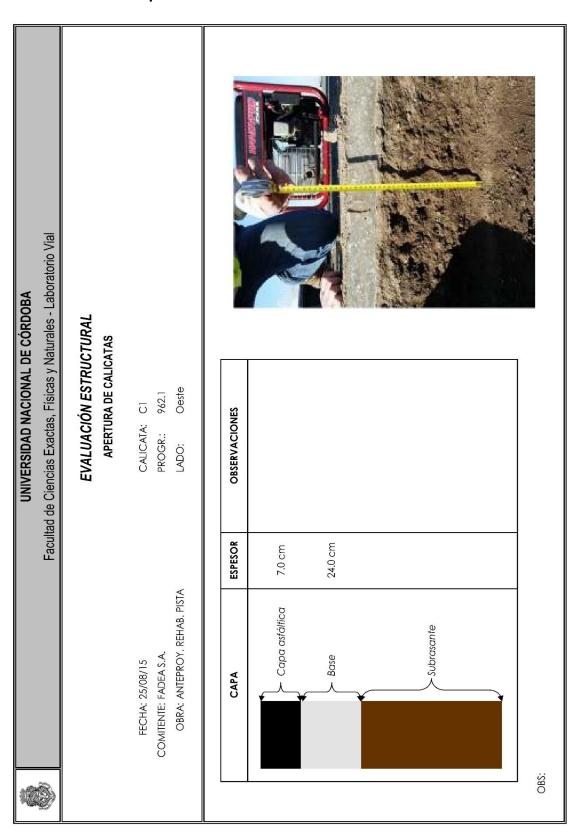
ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1291	4380272.473	6521839.642	504.280	T.N
1292	4380246.444	6521830.516	504.026	T.N
1293	4380226.980	6521822.669	504.584	T.N
1294	4380206.512	6521815.762	504.710	T.N
1295	4380201.013	6521813.557	504.555	T.N
1296	4380184.834	6521806.953	504.842	T.N
1297	4380146.256	6521895.371	505.331	T.N
1298	4380166.698	6521903.549	505.072	T.N
1299	4380170.841	6521905.430	505.248	T.N
1300	4380200.524	6521917.132	505.046	T.N
1301	4380231.667	6521927.742	504.853	T.N
1302	4380192.068	6522021.972	505.384	T.N
1303	4380159.179	6522009.253	505.645	T.N
1304	4380132.139	6521999.106	505.755	T.N
1305	4380109.587	6521990.516	505.930	T.N
1306	4380072.636	6522077.556	506.475	T.N
1307	4380099.080	6522086.316	506.231	T.N
1308	4380100.871	6522086.845	506.132	T.N
1309	4380102.549	6522087.440	506.195	T.N
1310	4380133.199	6522097.839	505.902	T.N
1311	4380165.721	6522106.844	505.601	T.N
1312	4380116.196	6522196.631	506.357	T.N
1313	4380087.199	6522181.324	506.522	T.N
1314	4380064.636	6522169.794	506.701	T.N
1315	4380041.203	6522158.084	506.872	T.N
1316	4380012.719	6521699.613	505.873	T.N
1317	4380018.365	6521699.704	505.756	T.N
1318	4380019.925	6521699.876	505.935	T.N
1319	4380048.529	6521699.791	505.559	T.N
1320	4380083.135	6521699.743	505.318	T.N
1321	4380094.497	6521676.984	505.337	T.N
1322	4380073.745	6521673.545	505.460	T.N
1323	4380050.412	6521671.115	505.617	T.N
1324	4380022.495	6521668.504	505.852	T.N
1325	4380020.980	6521668.398	505.628	T.N
1326	4380016.316	6521667.729	505.806	T.N
1327	4380019.273	6521630.068	505.637	T.N
1328	4380024.494	6521630.238	505.514	T.N
1329	4380026.382	6521630.462	505.752	T.N
1330	4380051.981	6521632.289	505.542	T.N
1331	4380079.052	6521633.917	505.296	T.N
1332	4380103.485	6521635.674	505.181	T.N
1333	4380128.435	6521571.444	504.664	T.N
1334	4380100.808	6521564.577	504.907	T.N
1335	4380070.740	6521559.616	505.132	T.N
1336	4380033.367	6521554.228	505.517	T.N
1337	4380030.776	6521553.856	505.185	T.N
1338	4380025.943	6521553.220	505.316	T.N
1339	4380032.359	6521489.554	505.000	T.N
1340	4380073.390	6521489.645	504.568	T.N
1341	4380082.285	6521489.740	504.282	T.N

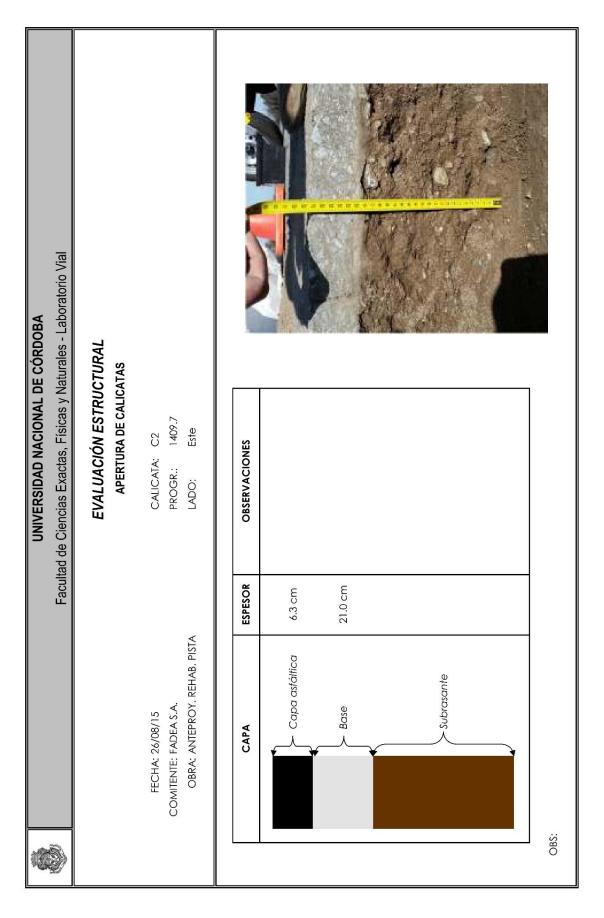
ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1342	4380100.758	6521490.997	504.364	T.N
1343	4380130.156	6521494.074	504.105	T.N
1344	4380161.810	6521495.241	503.879	T.N
1345	4380149.782	6521442.426	503.616	T.N
1346	4380146.358	6521436.672	503.653	T.N
1347	4380145.267	6521435.125	504.173	T.N
1348	4380144.562	6521434.377	504.230	B. Pav.
1349	4380137.464	6521424.598	504.090	B. Pav.
1350	4380137.159	6521424.147	504.030	T.N
1351	4380131.197	6521415.644	503.353	T.N
1352	4380112.336	6521393.880	503.818	T.N
1353	4380101.689	6521397.206	503.826	T.N
1354	4380110.396	6521415.831	503.498	T.N
1355	4380114.963	6521426.488	503.644	T.N
1356	4380115.780	6521428.533	503.583	T.N
1357	4380117.677	6521433.255	504.133	T.N
1358	4380117.377	6521435.211	504.153	T.N
1359		6521436.467	504.279	B. Pav.
1360	4380117.803 4380122.158			
1361		6521446.575 6521446.737	504.351	B. Pav. T.N
	4380122.243	6521449.620	504.308	
1362	4380123.363		503.802	T.N
1363	4380129.171	6521464.806	503.859	T.N
1364	4380103.212	6521476.325	503.998	T.N
1365	4380097.848	6521463.136	503.875	T.N
1366	4380095.591	6521457.630	504.559	B. Pav.
1367	4380091.711	6521447.129	504.491	B. Pav.
1368	4380090.941	6521444.941	504.230	T.N
1369	4380084.135	6521422.698	503.843	T.N
1370	4380074.719	6521395.896	504.252	T.N
1371	4380062.975	6521362.411	504.744	T.N
1372	4380044.051	6521343.708	504.986	T.N
1373	4380042.103	6521372.033	505.035	T.N
1374	4380039.016	6521407.465	504.885	T.N
1375	4380038.804	6521425.032	504.456	T.N
1376	4380036.657	6521451.681	504.383	T.N
1377	4380039.553	6521465.435	504.790	B. Pav.
1378	4380149.641	6521411.548	503.916	B. Pav.
1379	4380138.088	6521400.360	503.363	T.N
1380	4380136.854	6521399.179	503.657	T.N
1381	4380135.275	6521397.746	503.867	T.N
1382	4380133.456	6521396.497	503.641	T.N
1383	4380123.894	6521390.380	503.739	T.N
1384	4380161.493	6521414.794	504.108	T.N
1385	4380162.565	6521415.358	504.052	B. Pav.
1386	4380166.288	6521417.380	503.248	<u>T.N</u>
1387	4380169.992	6521419.227	503.190	T.N
1388	4380180.760	6521426.631	503.270	T.N
1389	4380214.083	6521354.659	503.251	T.N
1390	4380197.523	6521347.053	503.395	T.N
1391	4380195.871	6521346.410	503.159	T.N
1392	4380194.517	6521345.667	503.347	B. Pav.

ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1393	4380183.061	6521341.719	503.379	B. Pav.
1394	4380182.083	6521341.325	503.225	T.N
1395	4380179.801	6521340.431	503.480	T.N
1396	4380173.693	6521337.808	503.469	T.N
1397	4380171.884	6521337.064	503.103	T.N
1398	4380171.221	6521336.752	503.170	T.N
1399	4380169.016	6521335.978	503.594	T.N
1400	4380161.977	6521332.741	503.352	T.N
1401	4380146.669	6521326.833	503.781	T.N
1776	4380011.085	6521710.844	505.960	T.N
1777	4380012.202	6521698.987	505.904	B. Pav.
1778	4380013.520	6521684.448	505.874	B. Pav.
1779	4380014.767	6521670.241	505.880	B. Pav.
1780	4380015.831	6521656.610	505.820	B. Pav.
1781	4380016.296	6521650.445	505.763	B. Pav.
1782	4380017.041	6521644.827	505.726	B. Pav.
1783	4380018.113	6521632.507	505.716	B. Pav.
1784	4380019.465	6521617.533	505.671	B. Pav.
1785	4380020.650	6521604.104	505.627	B. Pav.
1786	4380021.488	6521594.682	505.548	B. Pav.
1787	4380021.807	6521591.042	505.517	B. Pav.
1788	4380022.455	6521583.767	505.567	B. Pav.
1789	4380023.528	6521571.769	505.500	B. Pav.
1790	4380024.669	6521558.632	505.422	B. Pav.
1791	4380025.993	6521544.499	505.321	B. Pav.
1792	4380027.337	6521528.796	505.238	B. Pav.
1793	4380028.580	6521515.500	505.128	B. Pav.
1794	4380028.743	6521511.905	505.064	B. Pav.
1795	4380029.340	6521506.803	505.100	B. Pav.
1796	4380030.841	6521489.367	505.056	B. Pav.
1797	4380031.904	6521488.575	505.078	B. Pav.
1798	4380033.059	6521476.110	504.998	B. Pav.
1799	4380033.039	6521463.168	504.745	B. Pav.
1800	4380034.812	6521457.154	504.716	B. Pav.
1801	4380034.812	6521456.970	504.710	B. Pav.
1802	4380033.072	6521452.044	504.502	T.N
1810	4380268.131	6521206.329	502.561	B. Pav.
1811	4380241.522	6521244.951	502.708	B. Pav.
1812	4380250.583	6521240.675	502.708	B. Pav.
1813	4380259.393	6521239.454	502.573	B. Pav.
	4380259.393			
1814 1815		6521242.921	502.520	B. Pav. B. Pav.
1815 1816	4380280.551	6521243.722	502.375 502.295	
<u>1816</u> 1817	4380292.317	6521240.533		B. Pav.
	4380301.397	6521234.360	502.254	B. Pav.
1818	4380309.532	6521232.801	502.211	B. Pav.
1819	4380316.832	6521230.171	502.156	B. Pav.
1820	4380323.175	6521224.094	502.097	B. Pav.
1821	4380326.505	6521214.186	502.068	B. Pav.
1822	4380324.409	6521203.823	502.074	B. Pav.
1823	4380317.328	6521196.099	502.061	B. Pav.
1824	4380309.043	6521191.353	502.089	B. Pav.

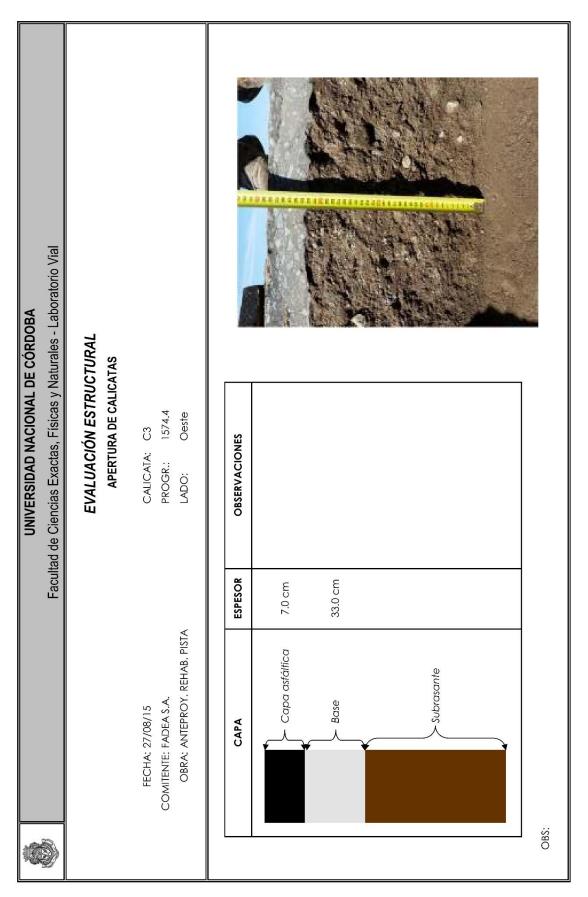
ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1825	4380302.692	6521182.534	502.106	B. Pav.
1826	4380291.721	6521174.821	502.174	B. Pav.
1827	4380277.972	6521171.809	502.275	B. Pav.
1828	4380262.991	6521174.339	502.468	B. Pav.
1829	4380264.566	6521173.009	502.186	B. Pav.
1830	4380273.644	6521164.390	502.322	T.N
1831	4380277.299	6521165.102	501.921	T.N
1832	4380288.659	6521158.877	501.997	T.N
1833	4380295.361	6521158.348	501.908	T.N
1834	4380303.085	6521163.597	501.866	T.N
1835	4380311.964	6521174.257	501.813	T.N
1836	4380322.899	6521181.960	501.795	T.N
1837	4380332.620	6521197.371	501.879	T.N
1838	4380327.917	6521200.528	501.733	T.N
1839	4380322.489	6521233.278	501.783	T.N
1840	4380314.884	6521242.962	502.118	T.N
1841	4380302.982	6521248.113	502.108	T.N
1842	4380291.330	6521249.421	502.260	T.N
1843	4380261.616	6521245.474	502.392	B. Pav.
1844	4380229.461	6521233.675	502.874	T.N
1845	4380228.163	6521233.488	502.797	B. Pav.
1846	4380226.583	6521232.748	503.093	T.N
1847	4380220.160	6521230.745	502.931	T.N
1848	4380218.510	6521229.940	502.559	T.N
1849	4380216.469	6521229.225	502.974	T.N
1850	4380212.535	6521228.025	502.988	T.N
1851	4380205.886	6521224.966	503.099	T.N
1852	4380228.893	6521169.731	502.659	T.N
1853	4380231.553	6521170.922	502.572	T.N
1854	4380235.831	6521173.198	502.705	T.N
1855	4380238.900	6521174.476	502.231	B. Pav.
1856	4380241.857	6521175.820	502.695	T.N
1857	4380246.019	6521177.459	502.669	T.N
1858	4380248.122	6521178.142	502.360	B. Pav.
1859	4380269.569	6521123.391	502.159	T.N
1860	4380268.319	6521122.649	501.972	B. Pav.
1861	4380267.022	6521121.609	502.164	B. Pav.
1862	4380263.023	6521118.679	502.188	T.N
1863	4380259.167	6521115.874	502.087	T.N
1864	4380548.733	6521306.267	500.199	T.N
1865	4380551.198	6521299.609	500.157	T.N
1866	4380553.928	6521292.347	500.007	T.N
1867	4380558.400	6521281.465	500.024	T.N
1868	4380560.560	6521277.336	500.061	T.N
1869	4380576.558	6521277.381	500.059	T.N
1870	4380577.769	6521286.869	499.734	T.N
1871	4380579.803	6521297.655	499.773	T.N
1872	4380581.240	6521307.708	499.818	T.N
1873	4380583.242	6521315.446	499.896	T.N
1874	4380591.178	6521307.364	499.682	T.N
	1.1/O	0021001.004	+33.00Z	1.18

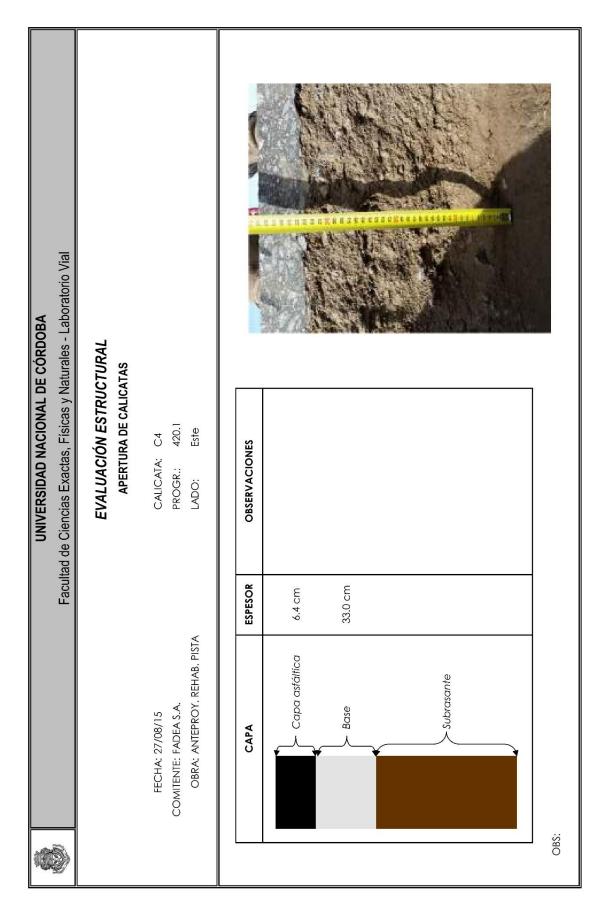
ID	Easting (m)	Northing (m)	Elevation (m)	Feature Code
1876	4380608.676	6521290.364	499.575	T.N
1877	4380617.111	6521282.714	499.690	T.N
1878	4380620.785	6521294.111	499.452	T.N
1879	4380627.651	6521308.094	499.349	T.N
1880	4380631.576	6521316.368	499.293	T.N
1881	4380831.348	6520388.735	499.959	T.N
1900	4380132.311	6521767.471	505.342	ALCANTARILLA 1
1901	4380131.763	6521766.163	505.536	ALCANTARILLA 2
1902	4380127.398	6521764.324	505.548	ALCANTARILLA 3
1903	4380125.445	6521764.664	505.347	ALCANTARILLA 4
1904	4380149.285	6521726.597	505.041	ALCANTARILLA 5
1905	4380148.073	6521727.143	505.250	ALCANTARILLA 6
1906	4380143.509	6521725.312	505.275	ALCANTARILLA 7
1907	4380142.503	6521723.570	505.095	ALCANTARILLA 8
1908	4380297.143	6521041.431	502.794	ALCANTARILLA 9
1909	4380297.754	6521042.558	502.804	ALCANTARILLA 10
1910	4380297.314	6521043.587	502.785	ALCANTARILLA 11
1911	4380296.151	6521043.881	502.795	ALCANTARILLA 12
1912	4380309.027	6521049.358	502.716	ALCANTARILLA 13
1913	4380308.181	6521048.338	502.762	ALCANTARILLA 14
1914	4380308.706	6521047.050	502.759	ALCANTARILLA 15
2000	4380835.357	6521790.458	499.513	T.N. ALCANT.
2001	4380840.666	6521240.461	498.303	T.N. ALCANT.
2002	4380847.094	6520799.266	498.806	T.N. ALCANT.
2003	4380848.692	6520665.261	498.940	T.N. ALCANT.
2004	4380526.571	6521202.416	500.721	CAMARA
2005	4380790.783	6522239.921	500.399	MASTIL TN





ANEXO II. TRABAJOS DE CAMPO


ANEXO II.A. Apertura de calicatas



ANEXO II.B. Densidad in situ

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial UNIVERSIDAD NACIONAL DE CÓRDOBA

25/08/15 FADEA S.A. FECHA: MATERIAL: COMITENTE:

BASE GRANULAR

ANTEPROY, REHAB, PISTA PLANILLA: 1/1

NORMA: VN-E8-66

PLANILLA DE CÁLCULO - ENSAYO DE DENSIDAD - MÉTODO DE LA ARENA

-			_	_
Grado de comp. (%)	02.30	08.16	95.50	95.00
Densidad máx. (gr/cm3)	2.216	2.225	2,225	2.225
Densidad in situ (gr/cm3)	2.111	2.041	2.125	2.113
Volumen pozo (cm3)	2032	1296	1538	1750
Densidad Volumen arena pozo (gr/cm3)	1.35	1.35	1.35	1.35
Arena pozo (gr)	2743	1750	2076	2362
Constante cono (gr)	1173	1173	1173	1173
Arena remanente (gr)	3188	1385	191	848
Arena inicial (gr)	7104	4308	4016	4383
Humedad in situ (%)	5.5	5.3	0.9	4.4
Pss (gr)	4290	2646	3268	3697
Psh (gr)	4528	2787	3464	3860
Pozo N°	Cl	C5	ည	C4

OBERVACIONES POZO:

Descartado

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

25/08/15 FADEA S.A. FECHA: COMITENTE: MATERIAL:

SUBRASANTE

ANTEPROY, REHAB, PISTA OBRA:

PLANILLA: 1/1 NORMA: VN-E8-66

PLANILLA DE CÁLCULO - ENSAYO DE DENSIDAD - MÉTODO DE LA ARENA

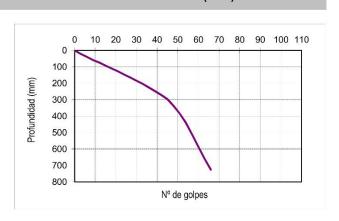
Grado de comp. (%)	83.8	82.3	88.1	88.4
Densidad máx. (gr/cm3)	1.758	1.782	1.782	1.758
Densidad in situ (gr/cm3)	1.473	1.466	1.57	1.553
Volumen pozo (cm3)	1150	1288	1328	1269
Densidad arena (gr/cm3)	1.35	1.35	1.35	1.35
Arena pozo (gr)	1553	1739	1793	1713
Constante cono (gr)	1173	1173	1173	1173
Arena remanente (gr)	689	1235	1039	600
Arena inicial (gr)	3415	4147	4005	3486
Humedad in situ (%)	21.4	18.5	19.8	19.5
Pss (gr)	1695	8881	2085	1971
Psh (gr)	2057	2237	2497	2356
Pozo	C	C2	C3	C4

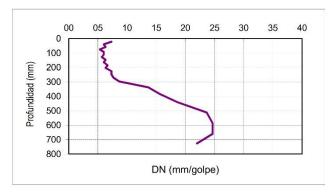
OBERVACIONES POZO:

ANEXO II.C. Ensayos DCP

UNIVERSIDAD NACIONAL DE CÓRDOBA

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY, REHAB, PISTA


COMITENTE: FADEA S.A. PLANILLA: 1/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

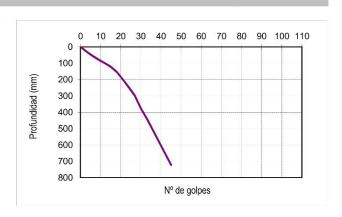
0 22 40 59	0 7.3 6.0 6.3 5.3 6.0 6.0 5.7 6.3 6.0 6.7 6.3 7.3 7.7 8.7 13.7 15.7 18.7 23.7 24.7
22 40 59	7.3
40 59	6.0
59	0.0
	6.3
75	5.3
93	6.0
111	6.0
128	5.7
147	6.3
165	6.0
185	6.7
204	6.3
226	7.3
248	7.3
271	7.7
297	8.7
338	13.7
385	15.7
441	18.7
512	23.7
586	24.7
660	24.7
726	22.0

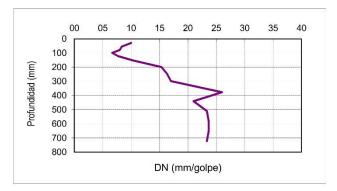
Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	324	6.3
2	429	23.7
3		

Nota: Ensayo realizado en lugar de extracción de testigo T1.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 2/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

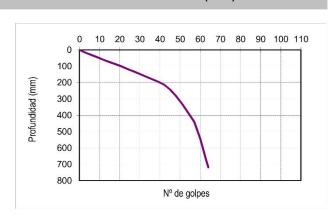
Golpes	Prof. (mm)	DN (mm/g)
0	0	0
0 3 3 3 3 3 3	30	10.0
3	55	8.3
3	79	8.0
3	99	6.7
3	122	7.7
3	153	10.3
3	199	15.3
3 3 3 3	248 299	16.3
3	299	17.0
3	377	26.0
3	440	21.0
3	510	23.3
3	581	23.7
3	652	23.7
3	722	23.3
	<i>(</i>	
)	

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	229	8.9
2	527	22.7
3		

Nota: Ensayo realizado en lugar de extracción de testigo T2.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 3/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

Golpes	Prof. (mm)	DN (mm/g)
0	0	0
3	18 32	6.0
3	32	6.0 4.7 4.7 5.0 4.7 4.3 4.7 5.3 5.0 5.2 5.0
3	46	4.7
3	61	5.0
3	75	4.7
3	88	4.3
3	102	4.7
3	118	5.3
3	102 118 133	5.0
6	164 179 195 213 243	5.2
3	179	5.0
3	195	5.3 6.0 10.0 13.3 15.7 18.3
3	213	6.0
3	243	10.0
3	283	13.3
3	330	15.7
3	385	18.3
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	440	18.3 34.7 44.7
3	544	34.7
3	678	44.7
1	718	40.0

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	259	5.0
2	487	24.4
3		

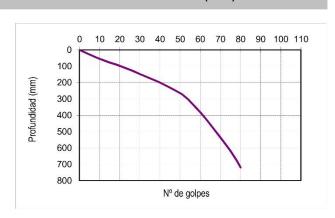
Nota: Ensayo realizado en lugar de extracción de testigo T3.

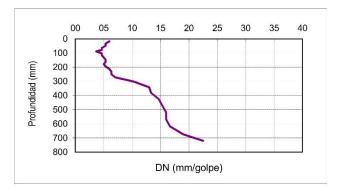
Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

FECHA: 15/08/15

OBRA: ANTEPROY, REHAB, PISTA

PLANILLA: 4/15


NORMA: ASTM D-6951


COMITENTE: FADEA S.A.

MATERIAL: PAQUETE ESTRUCTURAL

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

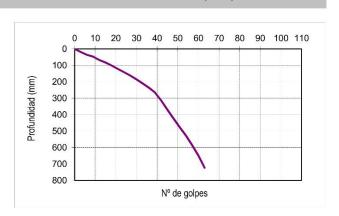
Golpes	Prof. (mm)	DN (mm/g)
0	0	0
3	18	0 6.0 5.3 5.3 4.7 4.7 4.7 5.0 5.3 5.3 5.3 6.0 6.3 7.0
3	34	5.3
3	50	5.3
3	64 78 89 103 117 132 148 164 179 195 213 232 251 272	4.7
3	78	4.7
3	89	3.7
3	103	4.7
3	117	4.7
3	132	5.0
3	148	5.3
3	164	5.3
3	179	5.0
3	195	5.3
3	213	6.0
3	232	6.3
3	251	6.3
3	272	7.0
3	303	10.3
3	342	13.0
3	382	13.3
3	426	14.7
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	303 342 382 426 472 520	10.3 13.0 13.3 14.7 15.3 16.0 16.0
3	520	16.0
3	568	16.0
3	618	16.7
3	675	19.0

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	293	5.1
2	451	16.2
3		

Nota: Ensayo realizado en lugar de extracción de testigo T4.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 5/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

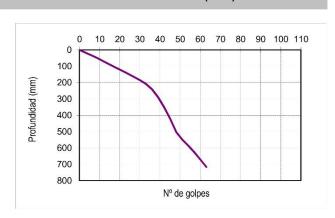
Golpes	Prof. (mm)	DN (mm/g)
0	0	0
3	19	6.3 5.7 3.7 7.0 5.0 6.3 7.0 6.3 7.0 7.7
3	36	5.7
3 3 3	47	3.7
3	68	7.0
3 3 3	83 102 123	5.0
3	102	6.3
3	123	7.0
3	142 163 186	6.3
3	163	7.0
3	186	7.7
3 3 3	211 236 266 314 370	8.3 8.3
	236	8.3
3	266	10.0
3 3 3	314	16.0
3	370	10.0 16.0 18.7 18.0
3	424	18.0
3	477 528	17.7 17.0
3	528	17.0
3	586	19.3
3	648	20.7
3	723	25.0

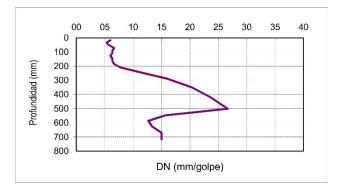
Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	239	5.9
2	510	18.4
3		

Nota: Ensayo realizado en lugar de extracción de testigo T5.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 6/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

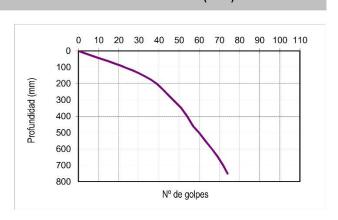
Golpes	Prof. (mm)	DN (mm/g)
0	0	0
3	18	6.0
3	34 51 71 90 109 127 146 165 185 208 241	6.0 5.3 5.7 6.7 6.3 6.3 6.0 6.3 6.3 6.7 7.7
3	51	5.7
3	71	6.7
3	90	6.3
3	109	6.3
3	127	6.0
3	146	6.3
3	165	6.3
3	185	6.7
3	208	7.7
3	241	11.0
3	289	16.0
3	350 421	20.3
3	421	23.7
3	501 548	26.7
3	548	15.7
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	586	16.0 20.3 23.7 26.7 15.7 12.7 13.3 15.0
3	626	13.3
3	671	15.0
3	716	15.0
		i.

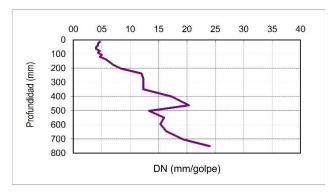
Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	225	6.1
2	517	17.4
3		

Nota: Ensayo realizado en lugar de extracción de testigo T6.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 7/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

Golpes	Prof. (mm)	DN (mm/g)
0	0	
3	14	0 4.7
3	27	4.3
3	40	4.3
3	52	4.0
3	64	4.0
3	78	4.7
3	91	4.3
3	106	5.0
3	120	4.7
3	137	5.7
3	156	6.3
3	177	7.0
3	202	8.3
3	238	12.0
3	275	12.3
3	312	12.3
3	349	12.3
3	401	17.3
3	462	20.3
3	27 40 52 64 78 91 106 120 137 156 177 202 238 275 312 349 401 462 502 550	13.3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	550	4.3 4.3 4.0 4.0 4.7 4.3 5.0 4.7 5.7 6.3 7.0 8.3 12.0 12.3 12.3 17.3 20.3 13.3 16.0
3	596	15.3
3	645	16.3 19.3
3	645 703	19.3
2	751	24.0

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	214	4.9
2	558	15.7
3		

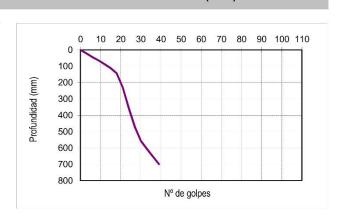
Nota: Ensayo realizado en lugar de extracción de testigo T7.

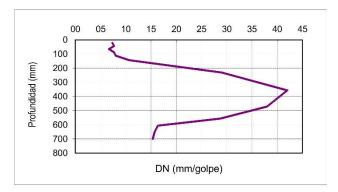
Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

FECHA: 15/08/15

OBRA: ANTEPROY, REHAB, PISTA

COMITENTE: FADEA S.A.


PLANILLA: 8/15


MATERIAL: PAQUETE ESTRUCTURAL

NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

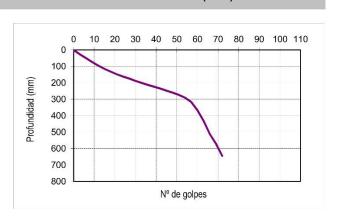
Golpes	Prof. (mm)	DN (mm/g)
0	0	0
3	22	7.3
3	45	7.7
3	65	6.7
3	88	7.7
3	112	8.0
	144	10.7
3 3 3	231	29.0
3	357	42.0
3	471	38.0
3	557	28.7
3	606	16.3
3	653	15.7
3	699	15.3

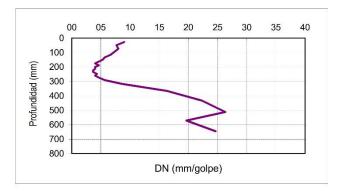
Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	173	8.0
2	413	34.4
3		

Nota: Ensayo realizado en lugar de extracción de testigo T8.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 9/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

Golpes	Prof.	DN
Golpes	(mm)	(mm/g)
0	0	0
3	0 27 50 74 96 116 133 149 163 175 189 201 213 224 235 248 260 274 291	9.0
3	50	7.7
3	74	8.0
3	96	7.3
3	116	6.7
3	133	5.7
3	149	5.3
3	163	4.7
3	175	4.0
3	189	4.7
3	201	4.0
3	213	4.0
3	224	3.7
3	235	3.7
3	248	4.3
3	260	4.0
3	274	4.7
3	291	5.7
3	317	8.7
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	366 433 512	0 9.0 7.7 8.0 7.3 6.7 5.7 5.3 4.7 4.0 4.0 4.0 3.7 3.7 4.3 4.0 4.7 5.7 8.7 16.3 22.3 26.3 19.7 24.7
3	433	22.3
3	512	26.3
3	571 645	19.7
3	645	24.7
3	705	20.0

Resumen:

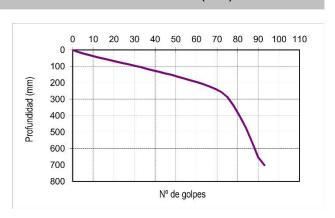
Capa	Espesor (mm)	DN (mm/g)
1	349	5.6
2	419	20.7
3		

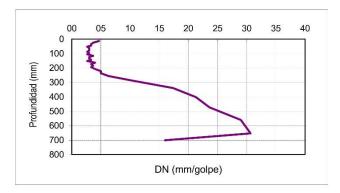
736

Nota: Ensayo realizado en lugar de extracción de testigo T9.

15.5

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 10/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

Golpes	Prof. (mm)	DN (mm/g)
0		(11111/9/
0	1.4	4.7
3	14	4./
3	0 14 25 35 45 53 62 71 80	3./
3	35	3.3
3	45	3.3
3	53	2./
3	62	3.0
3	71	3.0
3	80	3.0
3	88	2.7
3	97	3.0
3	105	2.7
3	116	3.7
3	125	3.0
3	134	3.0
3	144	3.3
3	152	2.7
3	164	4.0
3	174	3.3
3	185	3.7
3	195	3.3
3	207	4.0
3	222	5.0
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	97 105 116 125 134 144 152 164 174 185 195 207 222 237 256 287	0 4.7 3.7 3.3 3.3 3.3 2.7 3.0 3.0 2.7 3.0 2.7 3.7 3.0 3.0 3.0 3.0 2.7 3.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
3	256	6.3
3	287	10.3
3	339	17.3
3	403	21.3
	47.4	21.0

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	262	3.3
2	460	22.8
3		

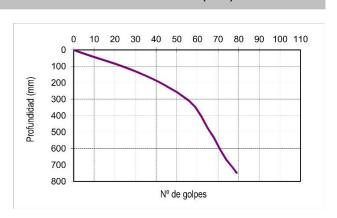
561 653 701

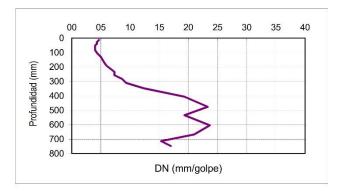
Nota: Ensayo realizado en lugar de extracción de testigo T10.

29.0 30.7

16.0

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 15/08/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 11/15

MATERIAL: PAQUETE ESTRUCTURAL NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

Golpes	Prof.	DN
	(mm)	(mm/g)
0	0	0
3	14	0 4.7
3	0 14 27 40	4.3
3	40	4.3
3	52	4.0
3	64	4.0
5	84	4.3 4.3 4.0 4.0 4.0 4.4 5.0 5.4 5.7 6.0 6.7 7.3 8.7 9.3
5	106 131 158 175 193	4.4
5	131	5.0
5	158	5.4
3	175	5.7
3	193	6.0
3	213	6.7
3	235	7.3
3	257	7.3
3	283	8.7
3	311	9.3
0 3 3 3 3 3 5 5 5 5 5 5 3 3 3 3 3 3 3 3	213 235 257 283 311 348 406	12.3 19.3
3	406	19.3
3	476	23.3 19.3
3	534	19.3
3	605	23.7 21.0
3	668	21.0

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	334	5.7
2	437	19.9
3		

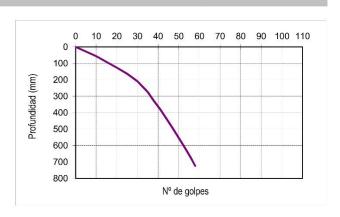
714

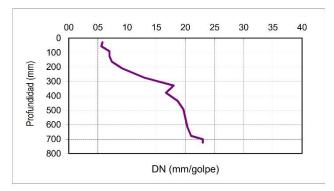
748

Nota: Ensayo realizado en lugar de extracción de testigo T11.

15.3 17.0

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 12/09/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 12/15

MATERIAL: CALICATA N°1 NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

Golpes	Prof. (mm)	DN (mm/g)
0	0	0
5	29	5.8
5	57	5.6
5	92	7.0
5	127	7.0
5	164	7.4
5 5	210	9.2
5	275	13.0
3	329	18.0
5 3 3 3 3	379	16.7
3	435	18.7
3	494	19.7
3	554	20.0
3	615	20.3
3		21.0
1	678 701	23.0
1	724	23.0
	_	

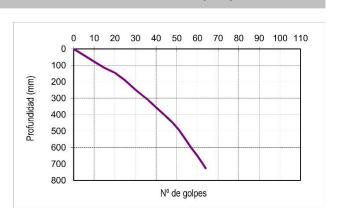
Resumen:

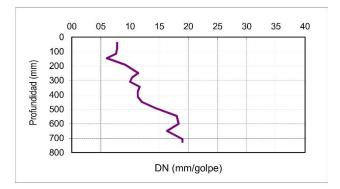
Capa	Espesor (mm)	DN (mm/g)					
1	232	6.6					
2	518	19.0					
3							

Nota: Ensayo realizado al borde de Calicata C1.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

FECHA: 12/09/15 COMITENTE: FADEA S.A.


MATERIAL: CALICATA Nº2


OBRA: ANTEPROY, REHAB, PISTA

PLANILLA: 13/15 NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

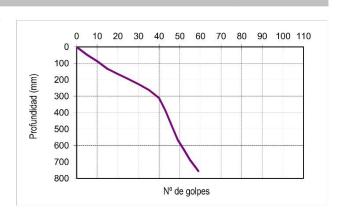
Golpes	Prof. (mm)	DN (mm/g)
0	0	0
0 5 5 5 5 5 3 3 3 3 3 3 3 3 3	39	7.8
5	78	7.8
5	116	7.6
5	116 146	6.0
5	192	9.2
5	249	11.4 10.3 10.0
3	280	10.3
3	310	10.0
3	345	11.7 11.3 11.3 12.0
3	379	11.3
3	413	11.3
3	449	12.0
3	492	14.3
3	546	18.0
3	601	18.3
3	650	16.3
3	707	19.0
1	726	19.0

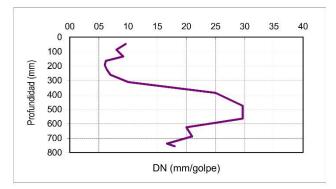
Resumen:

Capa	Espesor (mm)	DN (mm/g)					
1	237	7.5					
2	513	13.4					
3							

Nota: Ensayo realizado al borde de Calicata C2.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 12/09/15 OBRA: ANTEPROY. REHAB. PISTA


COMITENTE: FADEA S.A. PLANILLA: 14/15

MATERIAL: CALICATA N°3 NORMA: ASTM D-6951

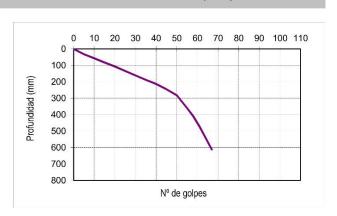
ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

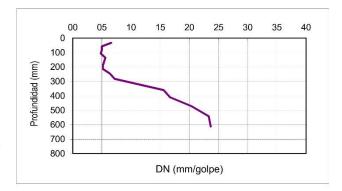
Golpes	Prof. (mm)	DN (mm/g)
0	0	0
0 5 5 5	48	9.6
5	88	8.0
5	134	9.2
5 5	165	6.2
5	195	6.0
5	227	6.4
5	262	7.0
5	312	10.0
3	387	25.0
3	476	25.0 29.7
	565	29.7 20.0
3 3 3	625	20.0
3	688	21.0
3	738	16.7
1	756	18.0
		2

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	337	7.9
2	449	22.7
3		

Nota: Ensayo realizado al borde de Calicata C3.


Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial


FECHA: 12/09/15 OBRA: ANTEPROY. REHAB. PISTA COMITENTE: FADEA S.A. PLANILLA: 15/15

MATERIAL: CALICATA N°4 NORMA: ASTM D-6951

ENSAYO PENETRÓMETRO DINÁMICO DE CONO (DCP)

Golpes	Prof. (mm)	DN (mm/g)
0	0	0
5	33	6.6
0 5 5 5 5 5 5 5	58	5.0
5	83	5.0
5	107	4.8
5	135	5.6
5	162	5.4
5	188	5.2
5 5	214	5.2
	246	6.4
5 5	282	7.2
5	360	15.6
3 3 3	410	16.7
3	471	20.3
3	541	23.3
3	612	23.7

Resumen:

Capa	Espesor (mm)	DN (mm/g)
1	312	5.4
2	327	22.5
3		

Nota: Ensayo realizado al borde de Calicata C4.

ANEXO II.D. Testigos de concreto asfáltico

UNIVERSIDAD NACIONAL DE CÓRDOBA

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 1/15
TESTIGO: T1 PROG.: 42.4

Espesor:

6.17 cm

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 2/15
TESTIGO: T2 PROG.: 255.9

Espesor: 6.14 cm

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 3/15
TESTIGO: T3 PROG.: 501.8

Espesor: 6.33 cm

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 4/15
TESTIGO: T4 PROG.: 692.8

Espesor: 6.33 cm

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 5/15
TESTIGO: T5 PROG.: 905.2

Espesor: 4.53 cm

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 6/15
TESTIGO: T6 PROG.: 1112.0

Espesor: 4.24 cm

OBS.: Menor espesor medido.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 7/15
TESTIGO: T7 PROG.: 1287.1

Espesor: 7.38 cm

OBS.: Mayor espesor medido fuera de zona de bacheo.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 8/15
TESTIGO: T8 PROG.: 1469.2

Espesor: 5.93 cm

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 9/15
TESTIGO: T9 PROG.: 1623.7

Espesor:

6.35 cm

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 10/15
TESTIGO: T10 PROG.: 1504.6

Espesor: 10.00 cm

OBS.: Extraído en zona de bacheo.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 14/08/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 11/15
TESTIGO: T11 PROG.: 1235.5

Espesor: 7.42 cm

OBS.: Extraído en zona de bacheo.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 11/09/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 12/15
TESTIGO: T12 PROG.: 962.1

Espesor: 5.54 cm

OBS.: Extraído el costado de la Calicata C1.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 11/09/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 13/15
TESTIGO: T13 PROG.: 1409.7

Espesor: 4.90 cm

OBS.: Extraído el costado de la Calicata C2.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 11/09/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 14/15
TESTIGO: T14 PROG.: 1574.4

Espesor: 6.63 cm

OBS.: Extraído el costado de la Calicata C3.

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

EVALUACIÓN ESTRUCTURAL EXTRACCIÓN DE TESTIGOS

FECHA: 11/09/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE: FADEA S.A. PLANILLA: 15/15
TESTIGO: T15 PROG.: 420.1

Espesor: 5.59 cm

OBS.: Extraído el costado de la Calicata C4.

ANEXO II.E. Peso unitarios de testigos de concreto asfáltico

				(cm)	6.17	6.14	6.33	6.33	4.53	4.24	7.38	5.93	6.35	10.00	7.42	5.54	4.90	6.63	5.59		
	4		eta (cm)	Espesor 3	6.23	6.11	6.36	6.31	4.53	4.12	7.43	9.00	6.07	10.04	7.42	5.68	4.82	99.9	5.71		
_	REHAB. PIST.	TADAS	Espesor de la probeta (cm)	Espesor 2	6.27	6.24	6.33	6.39	4.56	4.22	7.46	5.93	6.47	10.00	7.41	5.55	4.84	6.56	5.68		
oratorio Via	OBRA: ANTEPROY. REHAB. PISTA "LANILLA: 1/1 NORMA: VN-E12-67	COMPAC	Espesor	Espesor 1	6.02	90.9	6.31	6.29	4.51	4.39	7.25	5.87	6.52	9.95	7.42	5.40	5.05	6.67	5.37		
UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial	OBRA: AN PLANILLA: 1/1 NORMA: VN	PLANILLA DE CÁLCULO - PESO UNITARIO PROBETAS ASFÁLTICAS COMPACTADAS	Grado de	compactación (%)																	
AD NACIONAL Ictas, Físicas y		RIO PROBETA	Peso unitario	máximo (gr/cm³)																	
INIVERSID/ Diencias Exa		ESO UNITA	Circlian Cac	reso unindino (gr/cm³)	2.326	2.253	2.247	2.298	2.281	2.195	2.301	2.256	2.232	2.390	2.276	2.271	2.263	2.257	2.204		
u cultad de C		-culo - P	aoan loy		473	471	909	506	349	365	628	493	505	803	597	451	399	525	144		
Fa	/09/15 ÁLTICOS	ILLA DE CÁI	probeta (gr)	Saturado																	
	FECHA: 20/08/15 - 12/09/15 OMITENTE: FADEA S.A. MATERIAL: TESTIGOS ASFÁLTICOS	PLAN	Peso de la probeta (gr)	Seco	1100	1061	1137	1163	96/	801	1445	1112	1127	1919	1359	1024	903	1185	972		
	FECHA: 20/08/15 - COMITENTE: FADEA S.A MATERIAL: TESTIGOS /			Fecha	20/08	20/08	20/08	20/08	20/08	20/08	20/08	20/08	20/08	20/08	20/08	12/09	12/09	12/09	12/09		
	O			Probeta	_	2	3	4	5	9	7	8	6	10	11	12	13	14	15		

ANEXO III. TRABAJOS DE LABORATORIO

ANEXO III. A. Ensayos de compactación y VSR.

UNIVERSIDAD NACIONAL DE CÓRDOBA

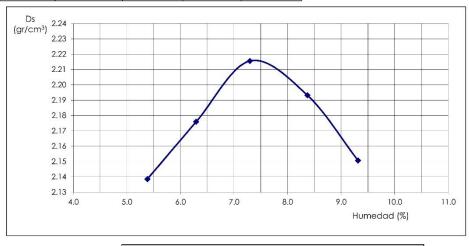
Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

FECHA: 09/09/15 PLANILLA: N^01 COMITENTE: FADEA S.A. NORMA: VN-E5-93

MATERIAL: BASE CALICATA Nº1

PLANILLA DE CÁLCULO - ENSAYO DE COMPACTACIÓN DE SUELOS

Ensayo	Diámetro del molde (mm)	Peso pisón (kg)	Altura de caída (cm)	Número de capas	Número de golpes	
1	101.6	2.50	30.5	3	25	
II	101.6	4.54	45.7	5	25	
111	101.6	2.50	30.5	3	35	
IV	152.4	2.50	30.5	3	56	
V	152.4	4.54	45.7	5	56	


Características del ensayo:

Tipo de ensayo:VGolpes por capa:56Diámetro molde (mm):152.4Peso del martillo (kg):4.54 N^o de capas:5Altura caída martillo (cm):45.7

Resultados del ensayo:

Punto	Humedad estimada (%)	Wm + Ws (gr)	Wm (gr)	Ws (gr)	Vm (cm³)	Dh (g/cm³)	Ds (g/cm³)
1	5.00	7779	3053	4726	2097	2.254	2.139
2	6.00	7903	3053	4850	2097	2.313	2.176
3	7.00	8038	3053	4985	2097	2.377	2.216
4	8.00	8037	3053	4984	2097	2.377	2.193
5	9.00	7983	3053	4930	2097	2.351	2.151

Punto	Wsh (gr)	Wss (gr)	Ww (gr)	Humedad (%)
1	1742	1653	89.0	5.4
2	1824	1716	108.0	6.3
3	1603	1494	109.0	7.3
4	1644	1517	127.0	8.4
5	1678	1535	143.0	9.3

Densidad seca máxima: 2.216 g/cm³
Humedad óptima: 7.3 %

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

ENSAYO DE VALOR SOPORTE E HINCHAMIENTO

FECHA: 02/10/15 OBRA: ANTEPROY, REHAB, PISTA

COMITENTE FADEA S.A. PLANILLA: 1/1
MATERIAL: M1B NORMA: VN-E6-84

COMPACTACIÓN DE PROBETAS

Características del ensayo:

Tipo de ensayo: Dinámico N°1 (Simplificado)

Peso del martillo (kg): 4,54

Altura de caída (cm) 45,7

Número de capas: 5

Humedad óptima (%; 7,3

Densidad máx. (g/cn 2.216

Fecha compactació 02/10/15

Fecha penetración: 06/10/15

Días de embebimier 4

Sobrecarga emb. (k; 4.54

Sobrecarga pen. (kç 4.54

Molde	N° de golpes	Peso M+S+A (gr)	Peso molde (gr)	Peso S+A (gr)	Volume n molde (cm³)	Densidad húmeda (g/cm³)	Humedad (%)	Densidad seca (g/cm³)	Comp. relativa (%)
7	56	9129	4261	4868	2105	2.31	7.0	2.161	97.6
2	56	10222	5228	4994	2147	2.33	7.1	2.171	98.0
11	25	8829	4146	4683	2114	2.21	6.8	2.074	93.6
12	25	8781	4128	4653	2086	2.23	7.2	2.081	93.9
15	12	8821	4384	4437	2088	2.13	6.9	1.988	89.7
14	12	8720	4294	4426	2108	2.10	7.1	1.960	88.5

DETERMINACION DEL HINCHAMIENTO

	NIO da	Altura	Hinchamiento (mm)						
Molde	N° de golpes	probeta (mm)	1º día	2º día	3º día	4º día	Porcentaj e (%)		
7	56	117	46			82	0.03		
2	56	117	80			116	0.03		
11	25	117	49			75	0.02		
12	25	117	79			122	0.04		
15	12	117	37			74	0.03		
14	12	117	26			64	0.03		

Molde	N° de golpes	CBR (%)	Densida d (g/cm³)	CBR (%)	Densidad (g/cm³)	Densidad máxima	
7	56	40	2.161	41	2.17	97.8	
2	56	42	2.171	41	2.17	77.0	
11	25	19	2.074	19	2.08	93.8	
12	25	20	2.081	17	2.00	93.8	
15	12	8	1.988	7	1.97	89.1	
14	12	6	1.960	/	1.77	07.1	

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

 FECHA:
 08/09/15
 PLANILLA:
 N°1

 COMITENTE:
 FADEA S.A.
 NORMA:
 VN-E5-93

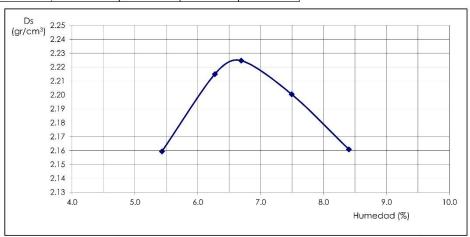
MATERIAL: BASE CALICATAS N°2, N°3 Y N°4

PLANILLA DE CÁLCULO - ENSAYO DE COMPACTACIÓN DE SUELOS

Ensayo	Diámetro del molde (mm)	Peso pisón (kg)	Altura de caída (cm)	Número de capas	Número de golpes
I	101.6	2.50	30.5	3	25
Ш	101.6	4.54	45.7	5	25
III	101.6	2.50	30.5	3	35
IV	152.4	2.50	30.5	3	56
V	152.4	4.54	45.7	5	56

Características del ensayo:

 Tipo de ensayo:
 V
 Golpes por capa:
 56


 Diámetro molde (mm):
 152.4
 Peso del martillo (kg):
 4.54

 Nº de capas:
 5
 Altura caída martillo (cm):
 45.7

Resultados del ensayo:

Punto	Humedad estimada (%)	Wm + Ws (gr)	Wm (gr)	Ws (gr)	Vm (cm³)	Dh (g/cm³)	Ds (g/cm³)
1	5.00	7827	3053	4774	2097	2.277	2.159
2	6.00	7989	3053	4936	2097	2.354	2.215
3	6.50	8030	3053	4977	2097	2.373	2.225
4	7.00	8013	3053	4960	2097	2.365	2.200
5	8.00	7965	3053	4912	2097	2.342	2.161

Punto	Wsh (gr)	Wss (gr)	Ww (gr)	Humedad (%)
1	1631	1547	84.0	5.4
2	1525	1435	90.0	6.3
3	1611	1510	101.0	6.7
4	1521	1415	106.0	7.5
5	1445	1333	112.0	8.4

Densidad seca máxima: Humedad óptima: 2.225 g/cm³ 6.7 %

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

ENSAYO DE VALOR SOPORTE E HINCHAMIENTO

FECHA: 19/09/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE FADEA S.A. PLANILLA: 1/1
MATERIAL: M2B NORMA: VN-E6-84

COMPACTACIÓN DE PROBETAS

Características del ensayo:

Tipo de ensayo: Dinámico N°1 (Simplificado)

Peso del martillo (kg): 4,54

Altura de caída (cm) 45,7

Número de capas: 5

Humedad óptima (%; 6,7

Densidad máx. (g/cn 2.225

Fecha penetración: 23/09/15

Pecha penetración: 23/09/15

Días de embebimier 4

Sobrecarga emb. (kg 4.54

Sobrecarga pen. (kg 4.54

Molde	N° de golpes	Peso M+S+A (gr)	Peso molde (gr)	Peso S+A (gr)	Volume n molde (cm³)	Densidad húmeda (g/cm³)	Humedad (%)	Densidad seca (g/cm³)	Comp. relativa (%)
2	56	10218	5228	4990	2147	2.32	6.5	2.182	98.1
13	56	8981	4100	4881	2088	2.34	6.6	2.194	98.6
3	25	9838	5121	4717	2113	2.23	6.2	2.103	94.5
5	25	9900	5205	4695	2105	2.23	6.3	2.098	94.3
12	12	8699	4128	4571	2086	2.19	6.2	2.063	92.7
14	12	8833	4294	4539	2108	2.15	6.5	2.021	90.8

DETERMINACION DEL HINCHAMIENTO

	NIO ala	Altura	Hinchamiento (mm)						
Molde	N° de golpes	probeta (mm)	1º día	2º día	3º día	4º día	Porcentaj e (%)		
2	56	117	40			62	0.02		
13	56	117	24			74	0.04		
3	25	117	26			86	0.05		
5	25	117	7			107	0.09		
12	12	117	11			95	0.07		
14	12	117	29			93	0.05		

Molde	N° de golpes	CBR (%)	Densida d (g/cm³)	CBR (%)	Densidad (g/cm³)	Densidad máxima	
2	56	45	2.182	44	2.19	98.4	
13	56	43	2.194	44	2.17	75.4	
3	25	16	2.103	17	2.10	94.4	
5	25	19	2.098	17	2.10	94.4	
12	12	8	2.063	9	2.04	91.8	
14	12	9	2.021	7	2.04		

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

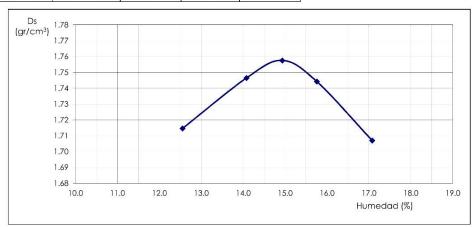
 FECHA:
 10/09/15
 PLANILLA:
 N°1

 COMITENTE:
 FADEA S.A.
 NORMA:
 VN-E5-93

MATERIAL: SUBRASANTE CALICATAS N°1 Y N°4

PLANILLA DE CÁLCULO - ENSAYO DE COMPACTACIÓN DE SUELOS

Ensayo	Diámetro del	Peso pisón	Altura de	Número de	Número de
Elisayo	molde (mm)	(kg)	caída (cm)	capas	golpes
L	101.6	2.50	30.5	3	25
П	101.6	4.54	45.7	5	25
III	101.6	2.50	30.5	3	35
IV	152.4	2.50	30.5	3	56
V	152.4	4.54	45.7	5	56


Características del ensayo:

Tipo de ensayo: V Golpes por capa: 56
Diámetro molde (mm): 152.4 Peso del martillo (kg): 4.54
N° de capas: 5 Altura caída martillo (cm): 45.7

Resultados del ensayo:

Punto	Humedad estimada (%)	Wm + Ws (gr)	Wm (gr)	Ws (gr)	Vm (cm³)	Dh (g/cm³)	Ds (g/cm³)
1	10.50	7100	3053	4047	2097	1.930	1.715
2	12.00	7231	3053	4178	2097	1.992	1.746
3	13.50	7289	3053	4236	2097	2.020	1.758
4	15.00	7287	3053	4234	2097	2.019	1.744
5	16.50	7244	3053	4191	2097	1.999	1.707

Punto	Wsh (gr)	Wss (gr)	Ww (gr)	Humedad (%)
1	1524	1354	170.0	12.6
2	1353	1186	167.0	14.1
3	1493	1299	194.0	14.9
4	1616	1396	220.0	15.8
5	1426	1218	208.0	17.1

Densidad seca máxima: 1.758 g/cm³
Humedad óptima: 14.9 %

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

ENSAYO DE VALOR SOPORTE E HINCHAMIENTO

FECHA: 09/10/15 OBRA: ANTEPROY. REHAB. PISTA

COMITENTE FADEA S.A. PLANILLA: 1/1
MATERIAL: M1S NORMA: VN-E6-84

COMPACTACIÓN DE PROBETAS

Características del ensayo:

Tipo de ensayo: Dinámico Nº1 (Simplificado)

Peso del martillo (kg): 4.54

Altura de caída (cm): 45.7

Número de capas: 5

Humedad óptima (%): 14.9

Densidad máx. (g/cm³) 1.758

Fecha penetración: 13/10/15

Días de embebimiento 4

Sobrecarga emb. (kg): 4.54

Sobrecarga pen. (kg): 4.54

Molde	N° de golpes	Peso M+S+A (gr)	Peso molde (gr)	Peso S+A (gr)	Volume n molde (cm³)	Densidad húmeda (g/cm³)	Humedad (%)	Densidad seca (g/cm³)	Comp. relativa (%)
12	56	8405	4128	4277	2086	2.05	14.9	1.785	101.5
13	56	8403	4100	4303	2088	2.06	15.2	1.789	101.8
14	25	8275	4294	3981	2108	1.89	15.2	1.640	93.3
15	25	8298	4384	3914	2088	1.87	14.7	1.634	93.0
2	12	8977	5228	3749	2147	1.75	15.5	1.512	86.0
12	12	7809	4128	3681	2086	1.76	14.6	1.540	87.6

DETERMINACION DEL HINCHAMIENTO

3	NIO ala	Altura	Hinchamiento (mm)						
Molde	N° de golpes	probeta (mm)	1º día	2º día	3º día	4º día	Porcentaj e (%)		
12	56	117	65			503	0.37		
13	56	117	41			515	0.41		
14	25	117	79			642	0.48		
15	25	117	82			496	0.35		
2	12	117	43			473	0.37		
12	12	117	55			542	0.42		

Molde	N° de golpes	CBR (%)	Densida d (g/cm³)	CBR (%)	Densidad (g/cm³)	Densidad máxima	
12	56	20	1.785	20	1.787	101.7	
13	56	21	1.789	20	1.707	101.7	
14	25	10	1.640	10	1.637	93.1	
15	25	9	1.634	10	1.007	73.1	
2	12	2	1.512	2	1.526	86.8	
12	12	3	1.540	2	1.526		

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

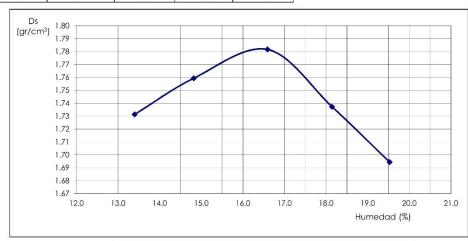
 FECHA:
 10/09/15
 PLANILLA:
 N°1

 COMITENTE:
 FADEA S.A.
 NORMA:
 VN-E5-93

MATERIAL: SUBRASANTE CALICATAS N°2 Y N°3

PLANILLA DE CÁLCULO - ENSAYO DE COMPACTACIÓN DE SUELOS

Ensayo	Diámetro del molde (mm)	Peso pisón (kg)	Altura de caída (cm)	Número de capas	Número de golpes
1	101.6	2.50	30.5	3	25
II.	101.6	4.54	45.7	5	25
111	101.6	2.50	30.5	3	35
IV	152.4	2.50	30.5	3	56
V	152.4	4.54	45.7	5	56


Características del ensayo:

Tipo de ensayo:VGolpes por capa:56Diámetro molde (mm):152.4Peso del martillo (kg):4.54Nº de capas:5Altura caída martillo (cm):45.7

Resultados del ensayo:

Punto	Humedad estimada (%)	Wm + Ws (gr)	Wm (gr)	Ws (gr)	Vm (cm³)	Dh (g/cm³)	Ds (g/cm³)
1	10.50	7170	3053	4117	2097	1.963	1.731
2	12.00	7289	3053	4236	2097	2.020	1.759
3	13.50	7409	3053	4356	2097	2.077	1.782
4	15.00	7357	3053	4304	2097	2.052	1.737
5	16.50	7300	3053	4247	2097	2.025	1.694

Punto	Wsh (gr)	Wss (gr)	Ww (gr)	Humedad (%)
1	1532	1351	181.0	13.4
2	1449	1262	187.0	14.8
3	1560	1338	222.0	16.6
4	1628	1378	250.0	18.1
5	1812	1516	296.0	19.5

Densidad seca máxima: 1.782 g/cm³ Humedad óptima: 16.6 %

Facultad de Ciencias Exactas, Físicas y Naturales - Laboratorio Vial

ENSAYO DE VALOR SOPORTE E HINCHAMIENTO

FECHA: 09/10/15 OBRA: ANTEPROY, REHAB, PISTA

COMITENTE FADEA S.A. PLANILLA: 1/1
MATERIAL: M2S NORMA: VN-E6-84

COMPACTACIÓN DE PROBETAS

Características del ensayo:

Tipo de ensayo: Dinámico Nº1 (Simplificado)

Peso del martillo (kg): 4,54

Altura de caída (cm) 45,7

Número de capas: 5

Humedad óptima (%,16.6

Densidad máx. (g/cn 1.782

Fecha compactació 09/10/15

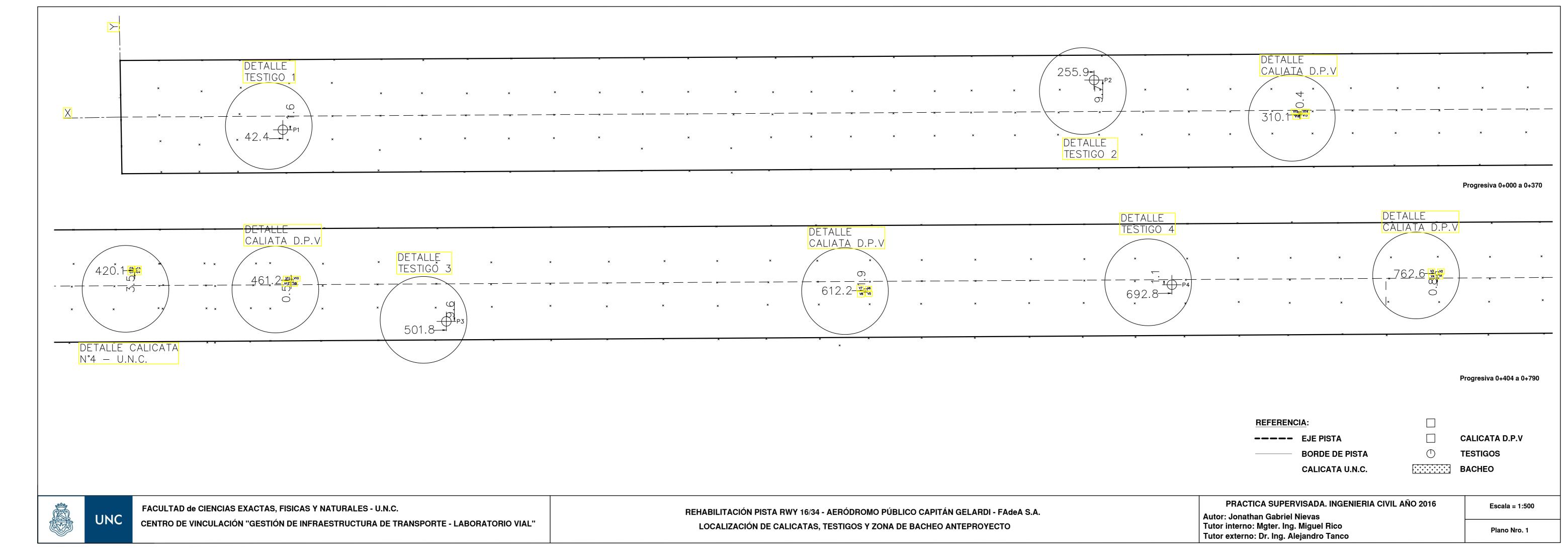
Fecha penetración: 13/10/15

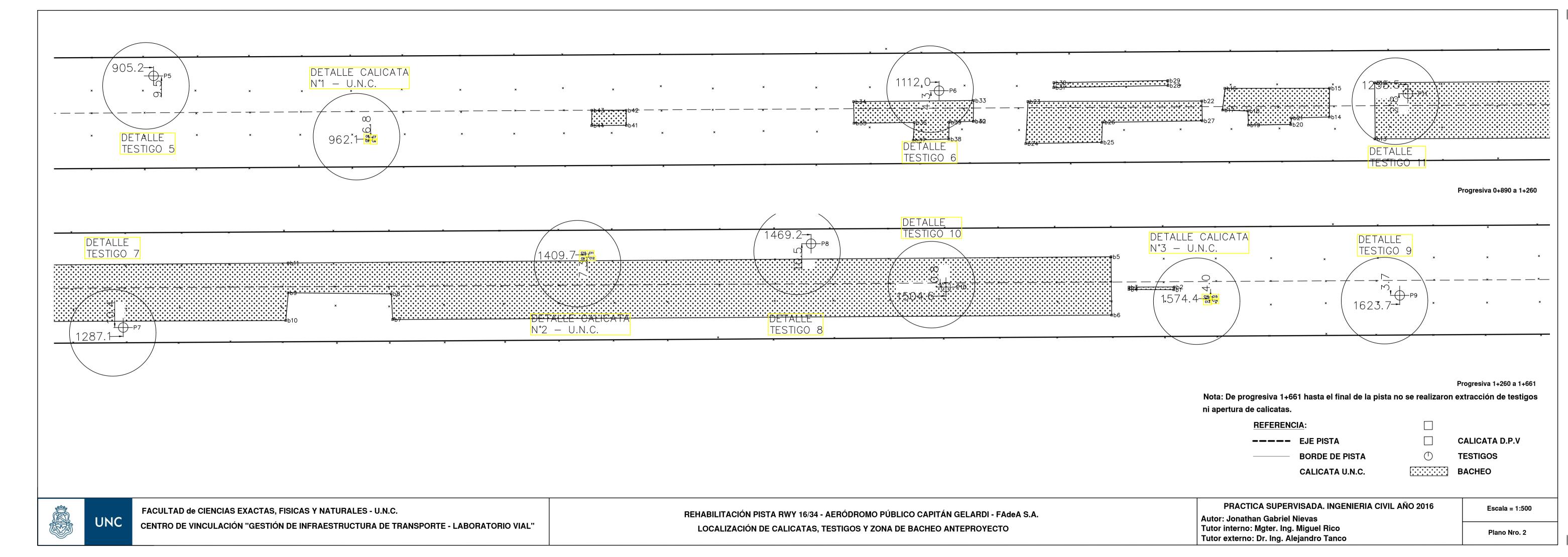
Días de embebimier 4

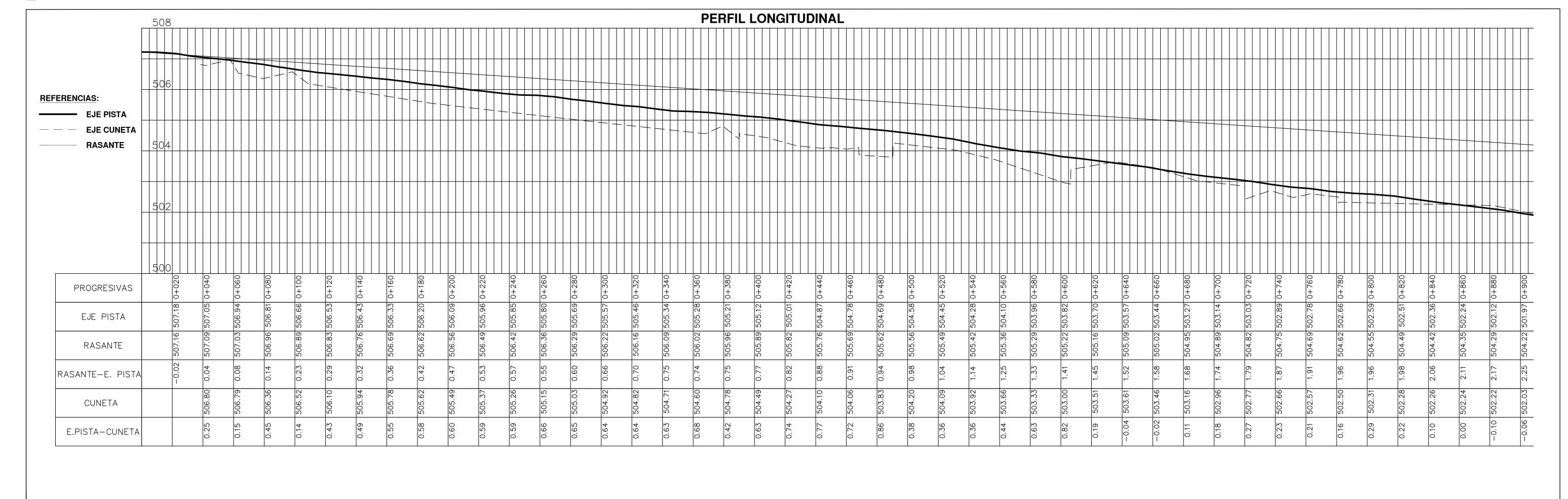
Sobrecarga emb. (k; 4.54

Sobrecarga pen. (kç 4.54

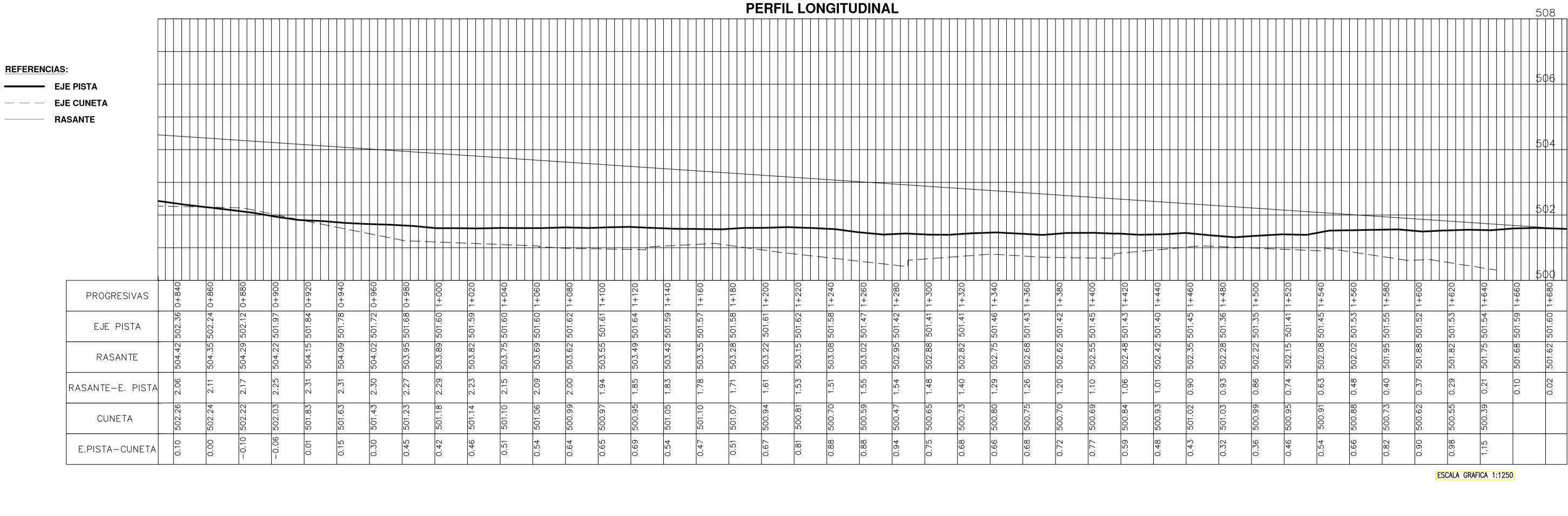
Molde	N° de golpes	Peso M+S+A (gr)	Peso molde (gr)	Peso S+A (gr)	Volume n molde (cm³)	Densidad húmeda (g/cm³)	Humedad (%)	Densidad seca (g/cm³)	Comp. relativa (%)
3	56	9464	5121	4343	2113	2.05	16.4	1.765	99.1
2	56	9636	5228	4408	2147	2.05	16.6	1.760	98.8
5	25	9289	5205	4084	2105	1.94	16.7	1.664	93.4
7	25	8322	4261	4061	2105	1.93	16.4	1.656	93.0
13	12	8007	4100	3907	2088	1.87	16.6	1.605	90.1
15	12	8270	4384	3886	2088	1.86	16.9	1.593	89.4


DETERMINACION DEL HINCHAMIENTO

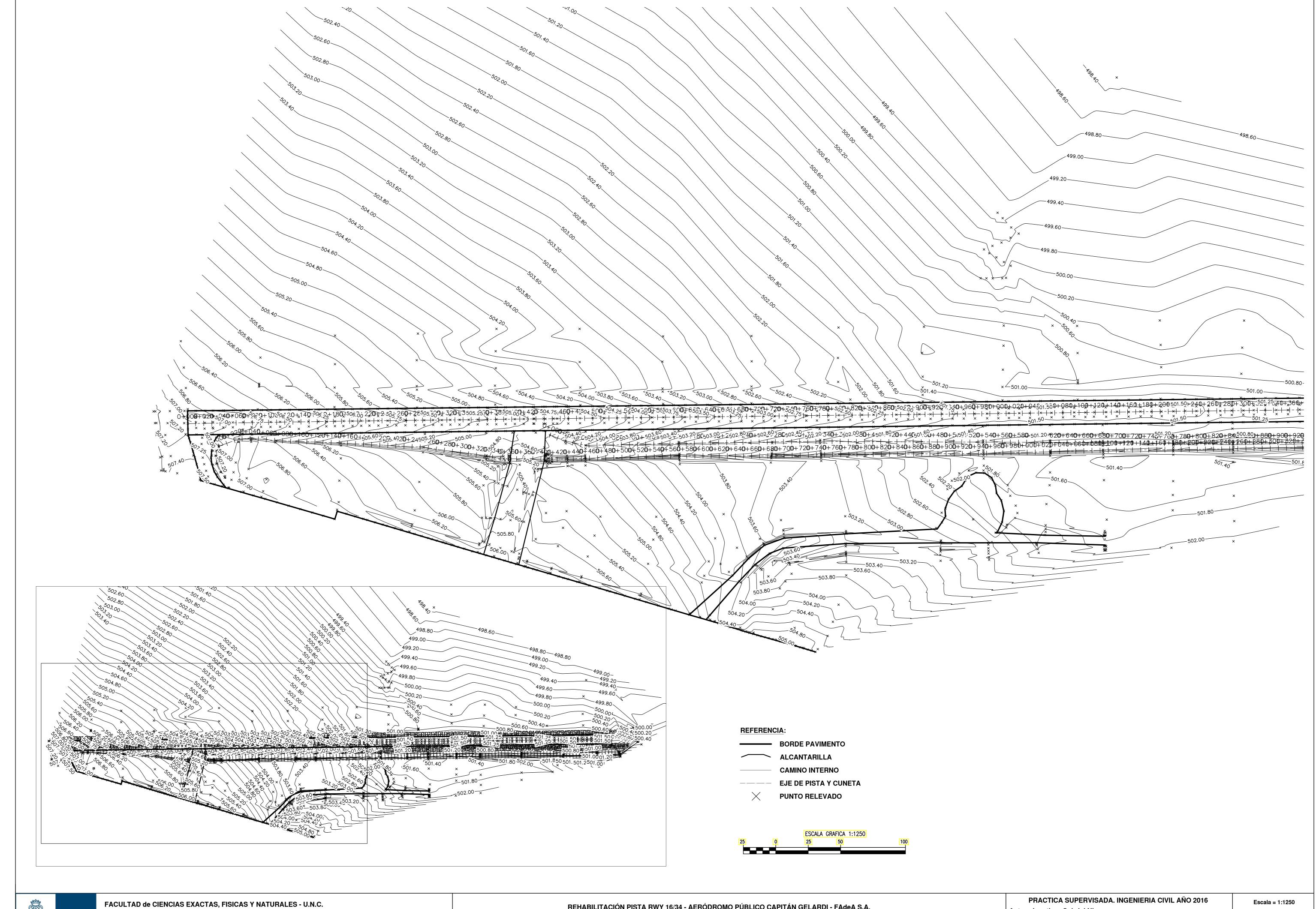

	Nº de		Hinchamiento (mm)							
Molde	N° de golpes	probeta (mm)	1º día	2º día	3º día	4º día	Porcentaj e (%)			
3	56	117	24			551	0.45			
2	56	117	56			602	0.47			
5	25	117	74			671	0.51			
7	25	117	12	8		476	0.40			
13	12	117	20			513	0.42			
15	12	117	46			598	0.47			

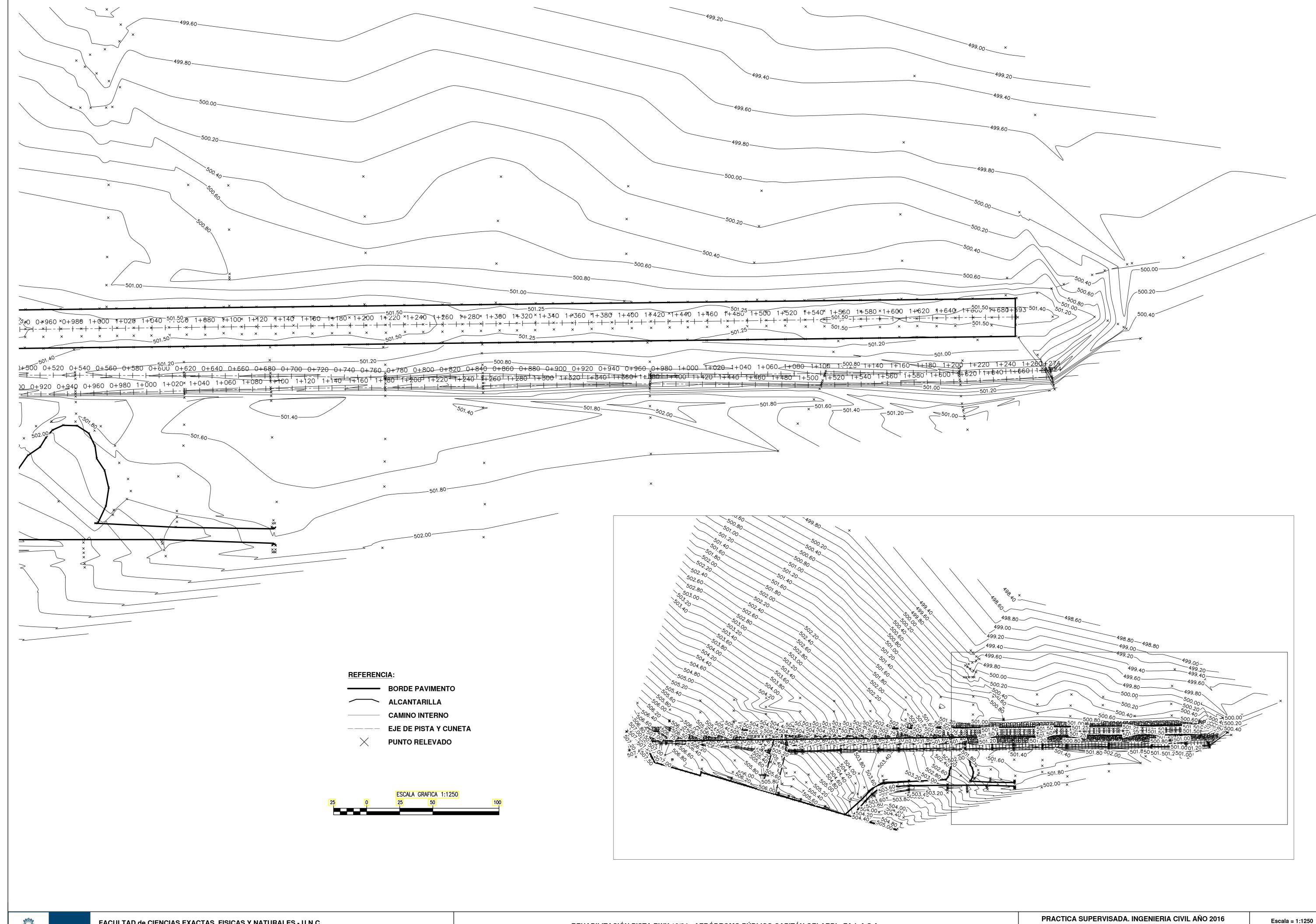

Molde	N° de golpes	CBR (%)	Densida d (g/cm³)	CBR (%)	Densidad (g/cm³)	Densidad máxima	
3	56	21	1.765	20	1.763	98.9	
2	56	19	1.760	20	1.700	75.7	
5	25	10	1.664	Q	1.660	93.2	
7	25	8	1.656	,	1.000	93.2	
13	12	5	1.605	5	1.599	89.7	
15	12	4	1.593	3	1.399	07./	

ANEXO IV. PLANOS


REHABILITACIÓN PISTA RWY 16/34 - AERÓDROMO PÚBLICO CAPITÁN GELARDI - FAdeA S.A.
PERFIL LONGITUDINAL. PROGRESIVAS 0+000 A 0+900 ANTEPROYECTO

PRACTICA SUPERVISADA. INGENIERIA CIVIL AÑO 2016


Autor: Jonathan Gabriel Nievas
Tutor interno: Mgter. Ing. Miguel Rico
Tutor externo: Dr. Ing. Alejandro Tanco


Escala = 1:1250

Plano Nro. 1

PRACTICA SUPERVISADA. INGENIERIA CIVIL AÑO 2016 Escala = 1:1250

REHABILITACIÓN PISTA RWY 16/34 - AERÓDROMO PÚBLICO CAPITÁN GELARDI - FAdeA S.A.

TOPOGRAFIA GENERAL. ANTEPROYECTO