


Introduction

Monitoring crop condition at different stages
of crop growth is as important as knowing the
exact production after harvest time. Identify
crop condition as early as possible has great
influence on the crop management, price,
circulation and storage. Crop growth estimates
based on field reports are often expensive and
cannot provide real-time, spatially explicit
estimates or forecasting of crop condition
(Lobell et al., 2003).

In particular, remote sensing applications
for monitoring crop condition at regional scale
have been studied extensively during the past
several decades (Bocco et al., 2007). Rajan and
Maas (2009) showed that remote sensing
images are effective in displaying the spatial
variation in crop within agricultural f ields.
Satellite data provide a spatially and periodic,
comprehensive view of actual crops state (Nu-
mata et al., 2007; Bocco et al., 2012).

With the launch and continuous availability
of multi-spectral sensors (visible, near-infrared)
onboard of satellites for earth observation,
remote sensing data has become an important
tool for surveying. The spatial resolution (250 m)
and temporal (daily) coverage of Moderate-
resolution Imaging Spectroradiometer (MODIS)
data offers potential for retrieval of crop
biophysical parameters and improved accuracy
in crop yield assessment (Doraiswamy et al.,
2004).

Daily images in a continuous time series do
not always precisely describe the condition of
vegetation during the growing season, since
contamination by clouds decreases the vege-
tation index quality. Consequently, the solution
is to retain a high temporal resolution uncove-
ring and removing cloudy pixels from daily
images, thus creating composite images of 10
to 15 days only with data taken during the smal-
lest cloud contamination days (Báez-González
et al., 2002).

Vegetation indices (VI) show the abundance
and vigorousness of green plants and are
among the oldest tools in remote sensing stu-
dies (Glenn et al., 2008). Crop biophysical
parameters are usually inferred from satellite
image data through the calculation of VI, which
are derived from several wavelength bands by

using linear and nonlinear algorithms. These
relationships between VI and crop parameters,
as leaf area index (LAI), ground cover, chloro-
phyll content, above-ground green biomass and
absorbed photosynthetically active radiation,
are empirical (Liu et al., 2006).

One of the earliest VI developed to identify
the vegetation state in an image is the simple
ratio vegetation index, created by dividing near
infrared (NIR) by red (Red) reflectances. The
basis of this relationship is the strong absorp-
tion (low reflectance) of red light by chlorophyll
and low absorption (high reflectance and
transmittance) in the NIR by green leaves. Den-
se green vegetation produces a high ratio while
soil has a low value, thus yielding a contrast bet-
ween the two surfaces (Shanahan et al., 2001).

Gitelson et al. (2002) showed, for wheat
(Triticum aestivum L.), that when percent cover
increased from 0 to 50%, the reflectance in the
red range decreased steeply, while the NIR
increased. When ground cover exceeded 50%,
the rate of change in both reflectances
decreased, becoming invariant for cover values
between 60% and 100%. These reports for
wheat canopy are consistent with Kanemasu
(1974) who reported a decrease of the NIR
reflectances for soybean (Glycine max (L.)
Merrill), wheat and sorghum (Sorghum sp.) in
the midseason.

Actually, VI developed can be assigned into
two broad categories; the ratio indices and
orthogonal indices (Huete et al., 1985). The
near infrared to red ratio (SR), normalized
difference vegetation index (NDVI), and the
transformed difference vegetation index
(TDVI) are the most common of the ratio
transformations used for estimate vegetation
status. The orthogonal transformation two-
dimensional perpendicular vegetation index
(PVI) was presented for Richardson and
Wiegand (1977).

Mauget and Upchurch (2000), evaluated
vegetation indices based on their ability to
respond linearly to ground cover and LAI of
cotton. Percent ground cover measurements
were obtained from high resolution photo-
graphs through a maximum likelihood clas-
sif ier algorithm that identif ied regions of
shaded and un-shaded vegetation and bare soil.
Cyr et al. (1995) studied the relation between
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ground cover and different vegetation indices
for soybean, corn (Zea mays L.), barley
(Hordeum vulgare) and pastures, by photo-
graphic and radiometric measurements
throughout the growing season.

Soybean is the most important crop in
Argentina taking into account the economic
yield obtained by farmers and the approximate
sown area (18,886,600 ha in 2010-2011), fol-
lowed by corn, with 4,559,800 ha. In particular,
the province of Córdoba is the second producer
of soybean and corn in Argentina with
approximately 5,054,400 ha and 1,143,000 ha
in 2010-2011, respectively (MAGyP, 2012).

The objective of this work was to prove that
simple mathematical models, from different
vegetation indices derived of MODIS images
as inputs, allow estimating soybean and corn
percent ground cover over the growing season.
The application was carried out in Córdoba
(Argentina).

Material and methods

Study site

The study area is located in the central plains
of Córdoba province, Argentina (Figure 1), in
the sub-region known as “Pampa Alta” (32° S;

64° W) which presents a slightly undulating
relief of hills developed on loessic material, with
silt loam texture with a slight slope to the east;
soils in this area are classified as entic and typic
Haplustol. The average annual rainfall is
approximately 800 mm, concentrated in summer
(INTA, 2006). The climate in the study area is
classified as dry sub-humid (Mather, 1965).

In the agricultural area predominate two
summer crops (soybean and corn) due to the
annually rainfall distribution, which are con-
centrated around October-March, and, in smal-
ler degree, winter cereals (principally wheat).

Ground data

Field data (179) were acquired continuously
throughout the growing season in 33 cultivated
plots, 7 of which were sown with corn and the
remaining 26 with soybean. The number of
each crop plots was selected taking account
that, for this study area, the relation between
cultivated area of corn and soybean was 26%.
All plots should have an area larger than 50 ha
to adjust to the resolution of the MODIS sensor.

In this region, agricultural production is
mainly rainfed. Soybean is sown by direct
seeding with maturity groups 3 and 4 of
transgenic varieties resistant to glyphosate,
with spacing between rows of 35 cm, without
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Figure 1: Study area in Córdoba, Argentina (LANDSAT Image). Dot marks indicate the studied plots. Figure
adapted from Bocco et al. (2012)



fertilizer application (Piatti and Ferreyra,
2009); on the other hand, corn, is sown late
October to early November. This crop is also
sown by direct seeding with a distance between
rows of 53 cm with an average plant density of
76,000 per hectare (Piatti and Ferreyra, 2008).

In this study area, soybean and corn show a
uniform distribution so, only three vertical
digital photographs from 1.5 m high in each
plot were used to estimate percentage of
ground coverage (fCover). These digital photo-
graphs were classified into two classes: green
vegetation and soil, using the maximum
likelihood methodology.

Satellite data

Eleven images from AQUA satellite were
used for the period, which corresponded to the
time of field data acquisition; these came from
the MODIS-MYD13Q1/Aqua 16-Day integra-
ted L3 Global 250 m SIN Grid, Tile h12v12 and
were obtained by the Land Processes Distri-
buted Active Archive Center (LPDAAC)-US
Geological Survey (USGS) for Earth Resour-
ces Observation and Science (EROS) Data
Center.

In order to evaluate the information content
in reflectance spectra and devise a technique
for remote estimation of vegetation fraction,
we used MODIS red reflectance (Red, 620-
670 nm) and near infrared reflectance (NIR,
841-876 nm), for the central pixels in each one
of the 33 plots as input.

Models

Three simple mathematical models were
evaluated: linear, second order polynomial and
exponential, which general formulas are as
follows:

I. linear: 
fCover(VI) = a + bVI

II. second order polynomial:
fCover(VI) = a + bVI + cVI 2

III. exponential: 
fCover(VI) = a + b exp(cVI)

where a, b and c are the coefficients of each
model and the input variables used are the

vegetation indices: NDVI, SR, SAVI, MSAVI
and PVI.

From the combination of the three main
simple model types with the five selected VI’s,
fifteen models are determined.

Vegetation indices

The NDVI is an indicator of vegetation cover
density and plant growth condition; it has been
widely employed to measure canopy attributes
(D’Urso et al., 2010):

Several studies have found that NDVI sa-
turates if the crop density or LAI is high (Srini-
vas et al., 2004). Also, this index can be uns-
table, varying with soil, sun-view geometry,
atmospheric conditions, and the presence of
dead material, as well as with changes within
the canopy itself. For this, many researchers
tried correcting the index for soil and atmos-
pheric sources of variance (Huete and Liu, 1994).

Other vegetation indices were developed to
reduce or eliminate soil influence on solar
reflectance values, such as Simple Ratio (SR)
and Soil Adjusted Vegetation Index (SAVI),
this last includes a constant to minimize the
effect of soil background reflectance variation
in the index (Zhang et al., 2009):

where L is a constant empirically determined
(typically around 0.5, for intermediate vege-
tation cover ranges).

In particular, a modified SAVI, the MSAVI
index, which uses an iterative, continuous func-
tion to optimize soil-adjustment and increases the
dynamic range of the SAVI was introduced by Qi
et al. (1994). This index is less sensitive to these
external influences (Rondeaux et al., 1996):
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To take into account the soil effect, Maas and
Rajan (2008) used a 2D-scatterplot, produced
by plotting the corresponding pixel values in the
NIR and red spectral bands, to determinate a set
of points along a straight line, called bare soil
line, representing image pixels containing bare
soil. The orthogonal distance from any point in
the distribution to the bare soil line represents
the perpendicular vegetation index (PVI):

where a0 and a1 are the intercept and slope,
respectively, of the bare soil line.

The coeff icient of determination (R2) and
the root mean squared error (RMSE) between
observed and estimated values of percentage
of ground coverage were used for the models
evaluation and validation.

Results and discussion

For all plots and samples, fCover ranged
between 0-98%. In Table 1, the coefficients of
determination (R2) values for linear, second
order polynomial and exponential models, are
shown. It can be observed that, in general, all

models have a good performance for all VI
used.

Analyzing the results presented in Table 1
we can state that, due to their simplicity and
the significance level of its coefficients, linear
models are more appropriate for NDVI, SAVI,
MSAVI and PVI. For SR index, although the
R2 value equal to 0.68 is good, the exponential
model is better (R2 = 0.89).

Glenn et al. (2008), using NDVI data
obtained with a Dycam digital camera that
records Red, Blue and NIR reflectances, found
a linear regression with vegetation fraction for
tree species (R2 = 0.82). Liu et al. (2008)
correlated various vegetation indices
(including NDVI, SAVI, and MSAVI calculated
with hyperspectral Compact Airborne
Spectrographic Imager (CASI) data) with
measured crop fractions of corn, soybean, and
wheat. They found that all these indices were
highly correlated (R2 = 0.90) with the f ield
data. The coeff icients of determination
obtained in our study are similar to those
reported by Glenn et al. (2008) and Liu et al.

(2008) although the latter were obtained from
higher spatial resolution sensors.

Radari et al. (2010) compared different VI
using Landsat Multispectral Scanner (MSS),
Landsat Thematic Mapper (TM) and Enhan-
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Table 1: Coefficients for all models that estimate percent ground cover with different vegetation indices
(VI) and their statistical R2 values. (*) indicates that the coeffcient is not statistically significant (p < 0.05)

Model VI
Coefficients

R2

a b c

Linear –33.3480* 131.4390* 0.88
Second order polynomial NDVI –12.6920* 36.921*0 87.4770* 0.88
Exponential –70.6959* 53.1947* 1.2379* 0.88

Linear 5.9080* 5.2250* 0.68
Second order polynomial SR –15.6740* 13.8540* –0.4120* 0.85
Exponential 91.4525* –132.0700* –0.2361* 0.89

Linear –25.2730* 169.2230* 0.89
Second order polynomial SAVI –33.1320* 219.3500* –61.5160* 0.89
Exponential 297.6320* –330.715*0 –0.669*0 0.89

Linear –16.7310* 146.6200* 0.88
Second order polynomial MSAVI –31.4820* 242.5340* –110.8300* 0.89
Exponential –1350.78*00 1335.21*00 0.10*00 0.87

Linear 5.0030* 343.2270* 0.87
Second order polynomial PVI 1.102*0 520.2640* –710.5400* 0.89
Exponential 138.3650* –164.4700* –3.9090* 0.90



ced Thematic Mapper Plus (ETM+) images to
estimate cover of crown trees from linear re-
gressions. Among different vegetation indices
considered, SAVI had the highest value of
determination coefficient (R2 = 0.78). Gonzá-
lez-Dugo and Mateos (2008) also found a
linear relationship between ground cover and
SAVI obtained from satellite data for com-
mercial fields of cotton and sugar beet crops.
They stated that the determination of the
relationship between fCover and the VI, when
the crop has grown, is more sensitive to errors
when NDVI is used than when SAVI is the

input. In this work, SAVI had the best perfor-
mance for all models considered (R2 = 0.89).

On the other hand, Vaesen et al. (2001)
found, for fCover, a linear correlation with PVI
and a nonlinear regression using NDVI
(R2 = 0.63 and R2 = 0.68, respectively), for
paddy rice with reflectance data acquired with
a hand-held multi-spectral Cropscan radio-
meter.

Figure 2 shows the relationship between
estimated and observed fCover for the best
model of each vegetation index (NDVI-SR-
SAVI-MSAVI-PVI) for soybean and corn.
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Figure 2: Percent ground cover estimated (fCover Est.) versus observed (fCover Obs.) for the best models of each
vegetation index (NDVI-SR-SAVI-MSAVI-PVI) for soybean (�) and corn (�) crops.



The errors between estimated and observed
fCover were quantified using RMSE. For the
linear model, RMSE values of 11.7% and
10.7% were found, when the input variables
were NDVI and SAVI, respectively. The qua-
dratic model, using MSAVI, presented a RMSE
value equal to 10.3%; for the exponential
model, considering PVI and SR as inputs,
RMSE values of 10.6% and 11.0%, respecti-
vely, were obtained.

Zhang et al. (2011), when estimated fCover
from digital photographs of various grassland
components, in Canada, using a linear
relationship with NDVI calculated from
LANDSAT 5 TM, obtained R2 of 0.55, with
RMSE equal to 5.71%. Although the linear
model using NDVI (with MODIS data) in our
work presented a higher RMSE value, the
coeff icient of determination value in our
model was also higher (R2 = 0.88), despite the
lower spatial satellite resolution used in our
paper.

Jiménez-Muñoz et al. (2009) over different
crops in an agricultural area in Spain obtained
RMSE values between 13% and 19% when
estimated fCover by means of a linear relation-
ship with NDVI calculated from CHRIS/Proba.

Models were also applied in soybean and
corn separately, the coeff icients of determi-
nation obtained for the best models are shown
in Table 2.

In soybean, the coefficient of determination
remained similar to those obtained using both
crops, perhaps due to the data from this crop
represents 77% of total; however in corn, when
we applied the linear model (with NDVI
index), this had a lower value, suggesting that
VI which consider the soil background
estimate fCover more adequately for this
specie. The SR index with an exponential
model showed more difference in R2 values
between soybean and corn.

Conclusions

With simple mathematical models based on
vegetation indices, obtained from red and NIR
reflectances of MODIS sensor, the percent
ground cover for soybean and corn could be
described adequately.

The estimations obtained using linear
models with NDVI, MSAVI, SAVI and PVI
presented the practical advantage of simplicity
and good accuracy; while for SR the best f it
was found with an exponential model for both
crops. SAVI index with linear model showed
the highest determination coefficient value for
soybean and corn separately.

For corn, models which include VI conside-
ring the soil background, estimated fCover
more adequately than NDVI based models. So,
in order to improve the models performance,
errors to estimate fCover associated with effect
of soil (row orientation, water content, etc)
must be reduced.
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