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Palabras y frases clave. álgebras de Hopf semisimples.

1. Introduction

Semisimple Hopf algebras have been studied intensively in the last years be-
cause their representation categories have a rich structure, they are fusion cat-
egories [9, 10]. Conversely, one of the more fruitful approaches to classification
problems of semisimple Hopf algebras is through fusion categories. However
the basic notion of extension of Hopf algebras is not categorical [11], at least
in a straightforward way. Here we explore this notion of extension. First, we
propose a definition of composition series of Hopf algebras. After we shared
this definition with her, S. Natale endorsed it with a suitable Jordan-Hölder
theorem [21], see Theorem 3.2; cf. also [2, Question 2.1]. Next we discuss briefly
simple Hopf algebras and then present some new examples of length 2. We raise
questions along the text; some of them are very natural and perhaps not new,
some of them are perhaps naive but we feel they might be useful.

The article is organized as follows. Section 2 contains preliminaries. Sec-
tion 3 is devoted to composition series and thoughts on simple Hopf algebras.
In Section 4, we discuss general ways to construct extensions, in particular Hopf
algebras of length 2, whose specific examples are in Section 5.

aThe work was partially supported by CONICET, FONCyT-ANPCyT, Secyt (UNC).
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194 NICOLÁS ANDRUSKIEWITSCH & MONIQUE MÜLLER

Notations

Let k be an algebraically closed field of characteristic 0. All vector spaces, tensor
products, and algebras are over k. If G is a group, then Ĝ := Hom

(
G,k×

)
. The

notation F 6 G means that F is a subgroup of G, while F � G means that
F 6 G is normal. The standard basis of the group algebra kG is (g)g∈G,
while

(
δg
)
g∈G is the basis of the dual group algebra kG given by δg(h) = δg,h,

g, h ∈ G. If . is an action of a group G on a set F , then we denote by FG the
subset of F of points fixed by ..

Let H be a Hopf algebra, with coproduct ∆, counit ε and antipode S.
We use Heynemann-Sweedler’s notation ∆(h) = h(1) ⊗ h(2). The group of its
group-like elements is G(H) and the augmentation ideal is H+ = ker ε. If
π : H → T is a Hopf algebra map, then its subalgebra of right coinvariants is
Hcoπ =

{
x ∈ H : (id⊗π)∆(x) = x⊗ 1

}
. As usual, HHYD denotes the category

of Yetter-Drinfeld modules over H. An element X =
∑r
i=1Xi⊗Xi ∈ A⊗B is

expressed X = Xi ⊗Xi using the Einstein summation convention.

2. Preliminaries

2.1. Hopf Algebra Extensions

We write K ≤ H to express that K is a Hopf subalgebra of H. We denote a

short exact sequence of Hopf algebras by K
ι

↪−−−→ H
π
−−−� T , meaning that ι

and π are Hopf algebra maps, ι is injective, π is surjective, kerπ = Hι(K+)
and Hcoπ = K. We say that H is an extension of K by T . From [15, 3.1], we
get

Remark 2.1. If H is an extension of K by T and H ′ ≤ H, then H ′ is an
extension of K ′ = K ∩H by T ′ = π(H ′).

Let H a finite dimensional Hopf algebra. A Hopf subalgebra K ≤ H is
normal if adh(k) := h(1)kS

(
h(2)

)
∈ K, for all h ∈ H, k ∈ K; we denote K�H

and H // K := H/HK+. If K � H, then there is an exact sequence of Hopf

algebras K
ι

↪−−−→ H
π
−−−� H // K, where ι is the inclusion and π the canonical

projection. See [3, 15, 27].

A finite dimensional Hopf algebra is simple if it does not contain proper
normal Hopf subalgebras; then its dual is simple too.

Let K, T be Hopf algebras and ⇀: T⊗K → K, ρ : T → T⊗K, σ : T⊗T →
K and τ : T → K ⊗ K be linear maps. If (⇀,ρ, σ, τ) is a compatible datum,
i.e., satisfies the conditions in [1, §3] and σ, τ are invertible with respect to the
convolution product, then there is a Hopf algebra structure H = Kτ#σT on

Volumen 49, Número 1, Año 2015
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EXAMPLES OF EXTENSIONS OF HOPF ALGEBRAS 195

the vector space K ⊗ T given by

(a#g)(b#h) = a
(
g(1) ⇀ b

)
σ
(
g(2), h(1)

)
#g(3)h(2),

∆(a#g) = a(1)τ
(
g(1)

)
j
#ρ
(
g(2)

)
i
⊗ a2τ

(
g(1)

)j
ρ
(
g(2)

)i
#g(3).

An element a ⊗ g in H is denoted by a#g. Further, H is an extension of
K by T ; conversely, any cleft extension of K by T is ' Kτ#σT , for some
compatible data (⇀,ρ, σ, τ) [3]. All finite-dimensional extensions are cleft [27].
The next is a particular case, that historically appeared first.

2.2. Abelian Extensions

It is customary to call group algebras and their duals trivial Hopf algebras. The
first non-trivial examples of finite-dimensional Hopf algebras are the abelian
extensions [13, 28, 14]. The input for the definition consists of

(i) A matched pair of finite groups (F,G, /, .);

(ii) a pair of compatible cocycles (σ, τ) ∈ Z2
(
F,
(
kG
)×) × Z2

(
G,
(
kF
)×)

,

both normalized, denoted by

σ(x, y) =
∑
s∈G

σs(x, y)δs, x, y ∈ F, τ(s, t) =
∑
x∈F

σx(s, t)δx, s, t ∈ G,

Here (i) means that G
/←−−− G × F .−−−→ F are (respectively, right and left)

actions, such that s . xy = (s . x)
(
(s / x) . y

)
and st / x =

(
s / (t . x)

)
(t / x),

for all s, t ∈ G, x, y ∈ F . Given these data, there is a Hopf algebra structure
H = kGτ ./σ kF on the vector space kG ⊗ kF by

(δs#x)(δt#y) = δs/x,tσs(x, y)δs#xy,

∆(δs#x) =
∑
s=ab

τx(a, b)δa#(b . x)⊗ δb#x.

Then H fits into an extension kG ↪→ H � kF and every extension of kG
by kF arises like this. Hopf algebras of this sort are named abelian extensions.

Lemma 2.2. Hopf subalgebras of abelian extensions are abelian extensions.

Proof. Let A fit into an exact sequence kG ι
↪−−−→ A

π
−−−� kF and B ≤ A.

Since π(B) is a Hopf subalgebra of kF , π(B) = kF ′, for some F ′ 6 F . Also,
Bcoπ|B = B ∩ Acoπ = B ∩ kG is a Hopf subalgebra of kG; thus there is a
quotient group G → G′ such that Bcoπ|B = kG′ . Then B fits into the exact
sequence kG′ ↪→ B � kF ′ by Remark 2.1. �X

Revista Colombiana de Matemáticas
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196 NICOLÁS ANDRUSKIEWITSCH & MONIQUE MÜLLER

2.3. Twisting

There are ways to obtain new Hopf algebras by altering the comultiplication or
the multiplication. The first appears in [6] in the context of quasi-Hopf algebras;
the second, dual to the first, was first studied in [5].

2.3.1. Twisting the Comultiplication

Let H be a Hopf algebra. A twist for H is J ∈ H ⊗H invertible such that

(∆⊗ id)(J)(J ⊗ 1) = (id⊗∆)(J)(1⊗ J),

(ε⊗ id)(J) = (id⊗ε)(J) = 1.
(1)

If J is a twist, then the new Hopf algebra HJ (called a twist of H) has un-
derlying algebra HJ = H, comultiplication ∆J(h) = J−1∆(h)J and antipode
SJ(h) = u−1S(h)u, h ∈ H, where u = m(S ⊗ id)(J). If J is a twist and v ∈ H
is invertible, then J ′ = ∆(v)J

(
v−1 ⊗ v−1

)
is again a twist, and HJ ' HJ′ .

One says that J and J ′ are gauge-equivalent. Two Hopf algebras H and K
are gauge-equivalent if and only if the tensor categories RepH and RepK are
equivalent [26].

Twists in a group algebra H = kN , where N is a finite group, are classified,
up to gauge equivalence, by classes of pairs (S, ω), where S 6 N is solvable, |S|
is a square and ω ∈ H2

(
S,k×

)
is a non-degenerate 2-cocycle on S. See [17, 8].

Namely, if J is a twist for H, then S 6 N is the subgroup minimal for J , i.e., the
components of J−1

21 J span kS; and J determines ω. For instance, if S is abelian,
then the twist corresponding to (S, ω) is given by J =

∑
χ,η∈Ŝ ω(χ, η)eχ ⊗ eη,

where eχ =
1

|S|
∑
h∈S χ(h−1)h.

Theorem 2.3. [7, Theorem 2.1] If H is a semisimple triangular Hopf algebra,
then it is isomorphic to a twist of a group algebra.

We shall need the following fact.

Lemma 2.4. [11, 2.6] Let J ∈ kN ⊗ kN be the twist associated to the pair
(S, ω), where S is the minimal subgroup of J . Then (kN)J is cocommutative if
and only if S �N , S is abelian and ω is adN -invariant in H2

(
S,k×

)
.

2.3.2. Twisting the Multiplication

Dually, a cocycle for a Hopf algebra H is a linear map σ : H⊗H → k, invertible
for the convolution product and satisfying the requirements dual to (1). There is
a new Hopf algebra Hσ (called a cocycle-twist of H) with underlying coalgebra
H and multiplication mσ = σ−1 ∗m ∗ σ. If H is finite-dimensional and σ is a

Volumen 49, Número 1, Año 2015
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cocycle for H, then J = σ∗(1) ∈ H∗ ⊗ H∗ is a twist and (Hσ)∗ ' (H∗)J . It
follows at once from Theorem 2.3 that if H is a semisimple cotriangular Hopf
algebra, then it is isomorphic to a cocycle-twist of a dual group algebra.

2.4. Weakly Group-Theoretical Hopf Algebras

Semisimple Hopf algebras can be studied through their representations; the
category RepH is a fusion category [9]. We discuss briefly the interplay between
classes of fusion categories and extensions.

Two fusion categories C and D are Morita-equivalent if there exists an inde-
composable C-module category M such that D is equivalent to EndC(M) [9].
This relation settles a basic reduction in the classification program of fusion
categories and has the following counterpart: two semisimple Hopf algebras
H and K are Morita-equivalent if RepH and RepK are Morita-equivalent.
Taking M = Vec, we see that H and H∗ are Morita-equivalent. Thus, gauge
equivalence implies Morita equivalence, but not vice versa.

A fusion category is pointed if all simple objects are invertible; all pointed
fusion categories are of the form VecGω , that is, categories of G-graded vector
spaces (for some finite group G) with associator induced by ω ∈ H3

(
G,k×

)
. A

fusion category Morita-equivalent to a pointed one is called group-theoretical [24].
A semisimple Hopf algebra H is group-theoretical when Rep H is so; hence the
class of group-theoretical Hopf algebras is stable under twisting. Abelian ex-
tensions are group-theoretical [18]. It was conjectured that every semisimple
Hopf algebra is group-theoretical [9], but counterexamples were found in [23]:
there is a non-group-theoretical Hopf algebra Hp of dimension 4p2 for each odd
prime p. Indeed, Hp fits into an exact sequence kZ/2 ↪→ Hp � (kG)J , where
G = (Z/p × Z/p) o Z/2 and J is a non-trivial twist in kG. Thus the class of
group-theoretical Hopf algebras is not stable under extensions. More general
examples of non-group-theoretical Hopf algebras were described in [12].

The notions of weakly group-theoretical fusion categories and Hopf algebras
were introduced in [10]; [10, Question 2] asks whether any semisimple Hopf
algebra is weakly group-theoretical.

Problem 2.5. [20] Is an extension of weakly group-theoretical Hopf algebras,
again weakly group-theoretical?

Affirmative answers are known under some specific hypothesis [10].

3. Composition Series and Length

3.1. Basic Facts

Every finite-dimensional Hopf algebra can be constructed from simple ones by
succesive extensions. More precisely, we propose the following definition.

Revista Colombiana de Matemáticas
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Definition 3.1. Let H be a finite-dimensional Hopf algebra. A composition
series H of H is a sequence of simple Hopf algebras H1, . . . ,Hn obtained recur-
sively as follows.

• If H is simple, then we let n = 1 and H1 = H.

• If H is not simple, then there are A � H, A 6= k, H, and composition
series A1, . . . ,Am, B1, . . . ,Bl, of A and B = H//A respectively such that
n = m+ l and

Hi = Ai, 1 ≤ i ≤ m; Hi = Bi−m, m+ 1 ≤ i ≤ m+ l.

The simple Hopf algebras H1, . . . ,Hn are the factors of the series H and n
is its length. Clearly every finite-dimensional Hopf algebra admits at least one
composition series.

Theorem 3.2. [21, Theorem 1.2] (Jordan-Hölder theorem for finite-dimensional
Hopf algebras). Let H1, . . . ,Hn and H′1, . . . ,H

′
m be two composition series of a

finite-dimensional Hopf algebra H. Then there exists a bijection ν : {1, . . . , n} →
{1, . . . ,m} such that Hi ' H′ν(i) as Hopf algebras.

Thus, we define the length and the factors of H as the length and the
factors (up to permutation) of any composition series. For instance, H is of
length 1 means that it is simple; of length 2, that it is an extension of K by
T where K and T are simple. Also, H is of length 3 means that it fits into an
extension K ↪→ H � T where either K is simple and T is of length 2, or else
T is simple and K is of length 2; but these two situations do not need to hold
simultaneously, see [21]. See [21, Section 5] for the comparison of the notion of
decomposition series with those of upper or lower series in [16].

3.1.1. Length 1

Theorem 3.2 supports the quest of simple semisimple Hopf algebras as a funda-
mental step in the classification of semisimple Hopf algebras. Group algebras
of simple groups, their twistings and duals are all simple [22], but there are
twistings of group algebras of solvable groups that are simple as Hopf algebras
[11]. However, a twisting of the group algebra of a nilpotent group is never
simple. To our understanding, all known examples of simple semisimple Hopf
algebras are twistings of group algebras or their duals. It would be decisive
either to prove that these are all, or else to find essentially new examples. We
propose a working definition in this direction.

Definition 3.3. Let H,K be finite-dimensional Hopf algebras. We say that
H is reachable from K if it can be obtained from K by a finite number of
operations that are either duality or twisting. For instance, a cocycle-twist Kσ

Volumen 49, Número 1, Año 2015
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is reachable from K : K  K∗  (K∗)J  
(
(K∗)J

)∗
= Kσ, where J is σ up

to identification. Thus H is reachable from K if and only if either H or H∗

is obtained from K by applying succesively twists and cocycle deformations.
Clearly, being reachable is an equivalence relation.

Problem 3.4. Is every simple semisimple Hopf algebra reachable from a group
algebra?

In particular, we ignore the answer to:

Problem 3.5. Is a cocycle-twist of a triangular Hopf algebra again triangular?
Is there any simple Hopf algebra of the form

(
kGJ

)
σ

but not triangular?

By [11], there are simple Hopf algebras reachable from the group algebra of
a super-solvable group. Also, we ask:

Problem 3.6. Classify all simple Hopf algebras reachable from a group alge-
bra.

If H is reachable from K, then they are Morita-equivalent, but it is unlikely
that the converse is true. However, we ask:

Problem 3.7. Let H and K be simple semisimple Hopf algebras. If H and K
are Morita-equivalent, is then H reachable from K?

Perhaps the most natural, and ambitious, question is the following:

Problem 3.8. Is every simple semisimple Hopf algebra Morita-equivalent to
a group algebra?

The answer to Question 3.8 is negative without the simplicity hypothesis; in-
deed Hopf algebras Morita-equivalent to a group algebra are group-theoretical.
Question 3.8 can be rephrased as follows– see also Question 2.5:

Problem 3.9. Can every semisimple Hopf algebra be obtained as an extension
of group-theoretical ones?

Finally, let us consider a Hopf algebra H together with a twist J and a
cocycle σ, and let HJ

σ be the vector space H with multiplication mσ and co-
multiplication ∆J (this is not the same as (HJ)σ because being a cocycle with
respect to ∆ is not the same as being a cocycle with respect to ∆J). A straight-
forward computation brings the conditions needed for HJ

σ to be a Hopf algebra;
we call this a simultaneous twist.

Problem 3.10. Find non-trivial examples of simultaneous twists.

Revista Colombiana de Matemáticas
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3.1.2. Length 2

An abelian extension kGτ./σkF has length 2 if G and F are simple, but the
determination of all semisimple Hopf algebras of length 2 (with known factors)
is far from being clear.

Problem 3.11. Let G and F be finite non-abelian simple groups. Find exten-
sions of the forms

(I) kG ↪→ A� kF ,

(II) kG ↪→ A� kF ,

(III) kG ↪→ A� kF ,

that can not be presented as abelian extensions (in particular, they are non-
trivial). By duality, solutions to (I) give solutions to (III).

Example 3.12. [19, Proposition 4.10] Let G be a finite group and A be a Hopf
algebra that fits into an exact sequence kG ↪→ A � kZ2. Then A fits into an
abelian exact sequence.

We discuss more on length 2 in the next sections.

4. Examples

Here we discuss some particular cases of extensions, see e.g. [4, 1.1, 1.2], and
specific sources of examples. In this Section, K, R and T be Hopf algebras,
while F , G, Γ, L and N are finite groups.

4.1. Smash Coproduct

First we consider the smash coproduct R o K; the input is a left coaction
ρ : R→ K ⊗R such that

(1) ∆R : R→ R⊗R, ε : R→ k, are K-comodules maps;

(2) mR : R⊗R→ R, uR : k→ R, are K-comodules maps;

(3) r(−1)k ⊗ r(0) = kr(−1) ⊗ r(0), for all r ∈ R, k ∈ K.

Then the smash coproduct Hopf algebra RoK is the tensor product algebra
R⊗K, where r#k := r ⊗ k, with the comultiplication and antipode

∆(r#k) = r(1)#
(
r(2)

)
(−1)

k(1) ⊗
(
r(2)

)
(0)

#k(2),

S(r#k) = S
(
r(0)

)
#S
(
r(−1)k

)
,

Volumen 49, Número 1, Año 2015
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for all r ∈ R, k ∈ K. The Hopf algebra RoK is an extension

K
ι

↪−−−→ RoK
π
−−−� R, (2)

where ι and π are ι(k) = 1#k and π(r#k) = ε(k)r, for r ∈ R, k ∈ K.

Remark 4.1. [4, 1.1.5] The hypothesis (1), (2) and (3) mean that R is a Hopf
algebra in the category K

KYD, with coaction ρ and trivial action. Also, R oK
coincides with the bosonization R#K.

Remark 4.2. Assume that dimR < ∞. If R is a left comodule that satisfies
(1), (2) and (3), then R∗ also does, with coaction δ : R∗ → K ⊗R∗ in the form〈
α,S

(
r(−1)

)〉〈
f, r(0)

〉
=
〈
α, f(−1)

〉〈
f(0), r

〉
, for all α ∈ K∗, f ∈ R∗, r ∈ R.

Remark 4.3. A coaction ρ : R → kG ⊗ R satisfying (1), (2) and (3), is
equivalent to a morphism θ : G→ AutHopf R, by ρ(r) =

∑
γ∈G δγ ⊗ θ

(
γ−1

)
(r).

Remark 4.4. A left coaction ρ : R → kG ⊗ R satisfying (1), (2) and (3), is
equivalent to a G-grading of algebras R =

⊕
g∈GRg, such that ε and ∆ are

homogeneous, and supp(R) ⊆ Z(G). In particular, ε(Rg) = 0 if g 6= e.

4.1.1. Extensions of Group Algebras

Here we assume that R and K are group algebras. Let ϕ : kF → kG be
an algebra isomorphism and ψ : G → L a group homomorphism. Set ag =
ϕ−1(g), g ∈ G. Then kF has a G-grading of algebras kF = ⊕g∈G(kF )g, where
(kF )g = kag, and an L-grading of algebras kF =

⊕
l∈L(kF )l, where (kF )l =⊕

g∈G:ψ(g)=l kag. Let ρG, ρL be the associated coactions and ⇀ the trivial
action of kF on either kG or kL.

• Let (⇀,ρL, σ, τ) be a compatible datum. If ψ is surjective, then the ex-

tension kL ι
↪−−−→ kLτ#σkF

π
−−−� kF is abelian. Hence the extension

kG ι
↪−−−→ kGτ#σkF

π
−−−� kF is abelian for any (⇀,ρG, σ, τ) compatible.

Proof. From [1, (3.1.10)], (1 ⊗ l)ρ(ag) = ρ(ag)(1 ⊗ l), ∀g ∈ G, l ∈ L. Thus
supp(kF ) = Imψ = L ⊆ Z(L), and L is abelian. �X

• If ϕ comes from an isomorphism between F and G, then ρL is trivial;
hence kF o kL ' kF ⊗ kL. Indeed, if g ∈ G, then ag ∈ F , so ε(ag) =
1 and ag ∈ (kF )e, by Remark 4.4. Therefore kF = (kF )e. Thus we
have to consider isomorphisms of group algebras not arising from group
homomorphisms. These have been intensively studied.

• In particular, we may assume that F , G are abelian groups of the same

order n. Set eχ = 1
n

∑
g∈G

χ
(
g−1

)
g, for χ ∈ Ĝ; these are the primitive

Revista Colombiana de Matemáticas
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idempotents of kG and g =
∑
χ∈Ĝ

χ(g)eχ. Thus every isomorphism of al-

gebras ϕ : kF → kG is determined by a bijection π : Ĝ → F̂ ; precisely,
ϕ−1 : kG→ kF is given by

ϕ−1 (g) =
1

n

∑
χ∈Ĝ

∑
x∈F

χ(g)π(χ)
(
x−1

)
x.

Then ρL is trivial and kF o kL ' kF ⊗ kL.

Proof. For each g ∈ G,

ε(ag) =
1

n

∑
χ∈Ĝ

∑
x∈F

χ(g)π(χ)
(
x−1

)
=

1

n

∑
χ∈Ĝ

χ(g)nδπ(χ),ε = π−1(ε)(g) 6= 0.

Thus ag ∈ (kF )e and ρ is trivial. �X

4.2. Smash Product

Here the input is a left action of K on T such that

(4) ∆T : T → T ⊗ T , ε : T → k, are K-modules maps;

(5) mT : T ⊗ T → T , uT : k→ T , are K-modules maps;

(6) k(1) ⊗ k(2)·t = k(2) ⊗ k(1)·t, for all t ∈ T , k ∈ K.

That is, T is a Hopf algebra in K
KYD, with the given action and trivial

coaction. Then the smash product T#K is the bosonization, i.e. the tensor
product coalgebra T ⊗K with the multiplication and antipode

(t#k)(u#l) = t
(
k(1)·u

)
#k(2)l,

S(t#k) = S
(
k(2)

)·S(t)#S
(
k(1)

)
,

for all t ∈ T , k ∈ K; here t#k denotes again t⊗ k. The Hopf algebra T#K fits
into an exact sequence of Hopf algebras (with obvious maps ι and π)

T
ι

↪−−−→ T#K
π
−−−� K. (3)

Remark 4.5. Assume that dimK < ∞. Then R is a left K-comodule that
satisfies (1), (2) and (3), if and only if R a left K∗-module that satisfies (4), (5)
and (6), with action α·r =

〈
α,S

(
r(−1)

)〉
r(0), α ∈ K∗, r ∈ R. Hence, assuming

also that dimR <∞ and combining with Remark 4.2, we have

(RoK)∗ ' R∗#K∗. (4)
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Clearly, an action of kF on T satisfying (4), (5) and (6), is equivalent to a
morphism θ : F → AutHopf T . We describe all Hopf algebra sections in

T
ι

↪−−−→ T#kF
π
−−−� kF.

Lemma 4.6. If ϕ ∈ Hom
(
F,G(T )

)
satisfies

g·t = ϕ(g)tϕ
(
g−1

)
, g ∈ F, t ∈ T, (5)

then sϕ : kF → T#kF , sϕ(g) = ϕ
(
g−1

)
#g, g ∈ F is a Hopf algebra section of

π and Kϕ := Im sϕ � T#kF . Moreover, any Hopf algebra section s such that
Im s�T#kF is like this. If π admits a Hopf algebra section with normal image,
then T#kF ' T ⊗ kF as Hopf algebras.

Proof. If ϕ : F → G(T ) is a group homomorphism satisfying (5), then a
straightforward verification shows that sϕ is a Hopf algebra section of π and
Kϕ is normal in T#kF . Conversely, let s be a Hopf algebra section of π such
that K = Im s is normal in T#kF . Given g ∈ F , write s(g) =

∑
γ∈F dγ(g)#γ.

Since s is a coalgebra map, ε
(
dγ(g)

)
= δg,γ and ∆

(
dγ(g)

)
= dγ(g)⊗ dγ(g), for

all γ ∈ F . Therefore, s(g) = dg(g)#g. Write simply d(g) = dg(g) ∈ G(T ), for
g ∈ F . Being s an algebra map, d(gh) = d(g)

(
g·d(h)

)
and d(1) = 1, for all g,

h ∈ F . Since K �T#kF , t(1)s(g)S
(
t(2)

)
∈ K and (1#γ)s(g)

(
1#γ−1

)
∈ K, for

all g, γ ∈ F , t ∈ T . Therefore,

ε(t)d(g) = t(1)d(g)
(
g·S(t(2)

))
, γ·d(g) = d

(
γgγ−1

)
, ∀t ∈ T, g, γ ∈ F.

Now if g ∈ F and t ∈ T , then

d(g)−1S(t)d(g) = d(g)−1S
(
t(1)

)
ε
(
t(2)

)
d(g)

= d(g)−1S
(
t(1)

)
t(2)d(g)

(
g · S

(
t(3)

))
= g·S(t);

hence g·f = d(g)−1fd(g). Let ϕ : F → G(T ), ϕ(g) = d(g)−1 for g ∈ F . Since

d(gh) = d(g)
(
g·d(h)

)
= d(g)d(g)−1d(h)d(g) = d(h)d(g), ∀g, h ∈ F,

ϕ is a group homomorphism and clearly (5) holds. Finally, observe that

s(g)(t#1) = ϕ(g)−1(g·t)#g = tϕ(g)−1#g = (t#1)s(g), g ∈ F, t ∈ T.

Let ψ : T#kF → T ⊗K defined by ψ(t#g) = tϕ(g) ⊗ s(g), t ∈ T , g ∈ F .
Then ψ is an isomorphism of Hopf algebras with inverse ψ−1 : T⊗K → T#kF ,
ψ−1

(
t⊗ s(g)

)
= tϕ(g)−1#g, t ∈ T , g ∈ F , and the last claim follows. �X
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4.2.1. A Context

We shall consider the following context:

• Γ is a finite simple group,

• R is a simple semisimple Hopf algebra, and

• θ : Γ→ AutHopf R is a group homomorphism.

Then the Hopf algebras Ro kΓ, R#kΓ, R∗ o kΓ, R∗ o kΓ are of length 2.

Lemma 4.7. If B � R o kΓ and B 6= k, R o kΓ, then either B = kΓ or else
there exists ϕ : Γ→ G(R∗) such that (5) holds and B ' R.

Proof. Set kΓ ι
↪−−−→ RokΓ

π
−−−� R. Since R is simple and π(B)�R, π(B) = k

or π(B) = R. Since Γ is simple and Bcoπ|B = B ∩
(
RokΓ

)coπ
= B ∩ kΓ � kΓ,

Bcoπ|B = k or kΓ. But Bcoπ|B ↪→ B � π(B), is exact, whence B = kΓ or π|B :
B → R is an isomorphism of Hopf algebras. In the last case, let j : B → RokΓ

be the inclusion, p : R∗#kΓ → B∗, p = j∗, and K := (R∗#kΓ)co p � R∗#kΓ.
Then ι∗|K : K → kΓ is an isomorphism of Hopf algebras and Lemma 4.6 applies
to s = (ι∗|K)−1. �X

4.3. Examples where R is a Twisting of a Finite Group

Let J be a twist of the finite group algebra kN corresponding to a pair (S, ω).
Let θ : G → AutHopf(kN)J be a morphism and H := (kN)J o kG. Note that
℘ : H → kG, ℘(r#k) = ε(r)k, is a Hopf algebra retraction of ι : kG → H.

Lemma 4.8. Assume that

(i) G is non-abelian,

(ii) there exists M 6 NG non-abelian such that [M,S] = 1.

Then H is neither triangular nor cotriangular.

Proof. By (i), kG, and a fortiori H, is not quasitriangular (use ℘). By (ii),
kM ≤ H; as M is non-abelian, kM is not coquasitriangular, ditto H. �X

Lemma 4.9.

(i) H is commutative if and only if N is abelian.

(ii) H is cocommutative if and only if (kN)J is cocommutative, G is abelian
and ρ is trivial.
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See Lemma 2.4 for the cocommutativity of (kN)J .

Proof. By Remark 4.1 and [25, Proposition 1]. �X

We now show that under some assumptions, H is not an abelian extension.

Proposition 4.10. Assume that

(i) G is a simple non-abelian group;

(ii) (kN)J is a simple Hopf algebra;

(iii) if C �N is abelian, then C = {e} (in particular N is non-abelian),

(iv) J is a non-trivial twist.

Then H = (kN)J o kG has length 2 and is not an abelian extension.

Proof. H is neither commutative nor cocommutative by Lemma 4.9. Let B �

H. If B = kG, then H // B ' (kN)J is not cocommutative by Lemma 2.4
and hypotheses (iii) and (iv). If B ' (kN)J , then it is not commutative (or
alternatively H //B ' kG is not cocommutative). By Lemma 4.7, these are the
possible non-trivial normal Hopf subalgebras of H. Hence (kN)J o kG is not
an abelian extension. �X

4.4. The Basic Construction [4, 2.1.5]

We consider the following data

• group homomorphisms Γ
θ−−−−→ AutHopfR

µ←−−−− G such that[
µ(G), θ(Γ)

]
= 1,

• a 2-cocycle [σ] ∈ H2
(
G, Γ̂

)
.

Let A := R o kΓ#σkG be a Hopf algebra with underlying vector space
R⊗kΓ⊗kG (where r#f#g := r⊗f⊗g) with product, coproduct and antipode
given by

(r#f#g)
(
s#f ′#g′

)
= rµ(g)(s)#ff ′σ

(
g, g′

)
#gg′,

∆(r#δγ#g) =
∑
uv=γ

r(1)#δu#g ⊗ θ
(
u−1

)(
r(2)

)
#δv#g,

S(r#δγ#g) = µ
(
g−1

)
◦ θ
(
γ−1

)(
S(r)

)
#σ
(
g−1, g

)−1
δγ−1#g−1,

for all r, s ∈ R, f, f ′ ∈ kΓ,= γ, u, v ∈ Γ, g, g′ ∈ G. It fits into an exact sequence
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Ro kΓ ι
↪−−−→ Ro kΓ#σkG

π
−−−� kG. (6)

If [σ] = [σ′] in H2
(
G, Γ̂

)
then Ro kΓ#σkG ' Ro kΓ#σ′kG.

Remark 4.11. If Γ, G are finite simple groups (we may assume that σ is
trivial) and R is a simple semisimple Hopf algebra, then the Hopf algebra
Ro kΓ#kG is of length 3.

4.4.1. Examples where R a Twisting of a Finite Group

Here we consider a basic construction A = (kN)J o kΓ#kG, where J is a
twist of kN corresponding to a pair (S, ω), and θ : Γ → AutHopf(kN)J and
µ : G→ AutHopf(kN)J are group homomorphisms such that

[
µ(G), θ(Γ)

]
= 1.

Proposition 4.12. Assume that:

(i) Γ is simple non-abelian;

(ii) (kN)J is a simple Hopf algebra;

(iii) if C �N is abelian, then C = {e} (in particular N is non-abelian);

(iv) J is a non-trivial twist.

Then A is not an abelian extension.

Proof. By Lemma 2.2, since (kN)J o kΓ is not so by Proposition 4.10. �X

Lemma 4.13. Assume that

(i) Γ is simple non-abelian,

(ii) G is simple,

(iii) R is a simple semisimple Hopf algebra,

(iv) there exists M 6 NΓ non-abelian such that [M,S] = 1 and

(v) µ(g) ∈ Aut(N) and
(
µ(g)⊗ µ(g)

)
(J) = J .

Then A is neither triangular nor cotriangular, but it fits in the exact sequence

kΓ ι
↪−−−→ A

p
−−−� (kN)J#kG, where (kN)J#kG is triangular.

Proof. By Lemma 4.8, RokΓ 6 A is not coquasitriangular; then neither is A.
Note that η : A→ kΓ, η(r#f#g) = ε(r)f , is an epimorphism of Hopf algebras.
Since Γ is non-abelian, A is not quasitriangular. It is not difficult to see that

the sequence is exact. By (v), (kN)J#kG ' (kN#kG)J̃ =
(
k(NoG)

)J̃
, where

J̃ = Ji ⊗ 1⊗ J i ⊗ 1. �X
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5. Concrete Examples

In the Examples below, we consider a finite group N and a twist J of kN
corresponding to a pair (S, ω). Then

C(N,S) :=
{
φ ∈ AutN : φ|S = idS

}
↪→ AutHopf(kN)J . (7)

If Z(N) = 1, then Ad : N → AutN induces a monomorphism from the
centralizer CN (S) to C(N,S), and this is an isomorphism if Ad : N → AutN
is so. In any case, if Γ 6 CN (S) > G and Γ ∩ Z(N) = 1 = G ∩ Z(N), then we
denote by θ : Γ→ AutHopf(kN)J , µ : G→ AutHopf(kN)J the compositions of
the corresponding monomorphisms.

Example 5.1. Let n,m ∈ N such that n > m > 9. Let N = An, Z/2 ×
Z/2 ' S =

〈
(12)(34), (13)(24)

〉
6 N , 0 6= ω ∈ H2

(
Ŝ,k×

)
and J ∈ kS ⊗

kS the corresponding twist. By [22, 4.3],
(
kAn

)J
is simple. Let Γ = Am−4(

acting on {5, 6, . . . ,m}
)
; by hypothesis, Γ is simple non-abelian. Now assume

that n −m > 4; then M = An−m
(
acting on {m + 1,m + 2, . . . , n}

)
is non-

abelian and commutes with Γ and S. By Lemma 4.8,
(
kAn

)JokAm−4 is neither
triangular nor cotriangular. By Proposition 4.10, is not an abelian extension;
and is of length 2. Now assume that n −m > 5; then G = An−m

(
acting on

{m+ 1,m+ 2, . . . , n}
)

is simple non-abelian and commutes with Γ. Therefore,(
kAn

)J o kAm−4#kAn−m is not an abelian extension but is an extension of a
triangular by a cotriangular.

Example 5.2. Let n,m ∈ N such that n > m > 9. Let N = Sn, Z/2 ×
Z/2 ' S =

〈
(12), (34)

〉
6 N , 0 6= ω ∈ H2

(
Ŝ,k×

)
' Z/2 and J ∈ kS ⊗

kS the corresponding twist. By [11, 3.5],
(
kSn

)J
is simple. Let Γ = Am−4(

acting on {5, 6, . . . ,m}
)
; by hypothesis, Γ is simple non-abelian. Now assume

that n − m > 3; then M = Sn−m
(
acting on {m + 1,m + 2, . . . , n}

)
is non-

abelian and commutes with Γ and S. By Lemma 4.8,
(
kSn

)JokAm−4 is neither
triangular nor cotriangular; by Proposition 4.10, is not an abelian extension;
and is of length 2. Now asume that n − m > 5; then G = An−m

(
acting on

{m+ 1,m+ 2, . . . , n}
)

is simple non-abelian and commutes with Γ. Therefore,(
kSn

)J o kAm−4#kAn−m is not an abelian extension but is an extension of a
triangular by a cotriangular.

Example 5.3. Let Fq be a finite field with q elements. Let n, r ∈ N, s ∈ N0

such that n = 3 + r + s, r > 2, (r, q − 1) = 1 and (r, q) 6= (2, 2). Let
N = PSLn(Fq) = SLn(Fq)/

{
λIn : λ ∈ Fq, λn = 1

}
. Let Fq× × Fq× ' S =
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
Ir

x 0 0

0 y 0

0 0 (xy)−1

Is

 : x, y ∈ Fq×


6 N , ω ∈ H2

(
Ŝ,k×

)
− 0

and J ∈ kS ⊗ kS the corresponding twist. Since r > 2, (r, q − 1) = 1

and (r, q) 6= (2, 2), Γ =


A I3

Is

 : A ∈ SLr(Fq)

 ' PSLr(Fq) 6 N

is simple non-abelian. Now assume that s > 2; then

M =


Ir I3

B

 : B ∈ SLs(Fq)

 ' PSLs(Fq) 6 N is non-abelian and

commutes with Γ and S. By Lemma 4.8,
(
kPSLn(Fq)

)J o kSLr(Fq) is neither
triangular nor cotriangular; by Proposition 4.10, is not an abelian extension;
and is of length 2. Assume that s > 2, (s, q − 1) = 1 and (s, q) 6= (2, 2). Then

SLs(Fq) ' G =


Ir I3

B

 : B ∈ SLs(Fq)

 is simple non-abelian and

commutes with Γ. Therefore,
(
kPSLn(Fq)

)J o kSLr(Fq)#kSLs(Fq) is not an
abelian extension but is an extension of a triangular by a cotriangular.

Remark 5.4. (Galindo). Let S 6 N abelian, ω ∈ H2
(
Ŝ,k×

)
and J the cor-

responding twist. Let G,Γ 6 CN (S) such that Γ ∩ Z(N) = 1 = G ∩ Z(N)
and θ : Γ → AutHopf(kN)J and µ : G → AutHopf(kN)J as above. Then

(kN)J o kΓ '
(
kN o kΓ

)J̃
as Hopf algebras, where J̃ = Ji ⊗ 1⊗ J i ⊗ 1. Since(

kNokΓ
)J̃

is group-theoretical [18], the extensions of length 2 in the Examples
5.1, 5.2 and 5.3 are group-theoretical. The examples of length 3 are also group-

theoretical. Indeed, (kN)JokΓ#kG ' k(NoG)J̃okΓ as Hopf algebras, where

k(NoG)J̃okΓ is the smash coproduct defined by θ̃ : Γ→ AutHopf

(
k(NoG)

)J̃
,

θ̃(γ)(n, g) =
(
θ(γ)(n), g

)
, for all γ ∈ Γ, n ∈ N, g ∈ G, see Remark 4.3. As be-

fore, k(N oG)J̃ okΓ '
(
k(N oG)okΓ

) ˜̃J
, where

˜̃
J = Ji ⊗ 1⊗ 1⊗ J i ⊗ 1⊗ 1,

and then is group-theoretical.

Remark 5.5. (Davydov). Let J be a twist of kN , K ∈ kN ⊗ kN N -invariant
and invertible and φ ∈ AutN such that (φ ⊗ φ)(J) = JK. Then φ ∈
AutHopf(kN)J . In our cases, N is simple and non-abelian or N = Sn with
n > 2, so K ⊆ Z(N) = 1. The existence of others elements of AutHopf(kN)J

could provides new examples of extensions of length 2.

Problem 5.6. What is AutHopf(kN)J?

Volumen 49, Número 1, Año 2015



i
i

“v49n1a10-AndruskiewitschMuller” — 2015/6/30 — 10:12 — page 209 — #17 i
i

i
i

i
i

EXAMPLES OF EXTENSIONS OF HOPF ALGEBRAS 209

Acknowledgements. We thank César Galindo for pointing out to us Re-
mark 5.4, Alexei Davydov for pointing out to us Remark 5.5 and Sonia Natale
for useful conversations and friendly remarks on a preliminar version.

References

[1] N. Andruskiewitsch, Notes on Extensions of Hopf Algebras, Canad. J.
Math. 48 (1996), 3–42.

[2] , About Finite Dimensional Hopf Algebras, Contemp. Math. 294
(2002), 1–54.

[3] N. Andruskiewitsch and J. Devoto, Extensions of Hopf algebras, Algebra
Anal. 7 (1995), 22–61.

[4] N. Andruskiewitsch and S. Natale, Examples of Self-Dual Hopf Algebras,
J. Math. Sci. Univ. Tokyo 6 (1999), 181–215.

[5] Y. Doi and Takeuchi M., Multiplication Alteration by Two-Cocycles. the
Quantum Version, Comm. Algebra 22 (1994), 5715–5732.

[6] V. Drinfeld, Quantum Groups, Proc. Int. Congr. Math. (Berkeley, USA),
1987, pp. 798–820.

[7] P. Etingof and S. Gelaki, Some Properties of Finite-Dimensional Semisim-
ple Hopf Algebras, Math. Res. Lett. 5 (1998), 191–197.

[8] , The Classification of Finite Dimensional Triangular Hopf Alge-
bras Over an Algebraically Closed Field of Char 0, Mosc. Math. J. 3 (2003),
37–43.

[9] P. Etingof, D. Nikshych, and V. Ostrik, On Fusion Categories, Ann. Math.
162 (2005), no. 2, 581–642.

[10] , Weakly Group-Theoretical and Solvable Fusion Categories, Adv.
Math. 226 (2011), 176–205.

[11] C. Galindo and S. Natale, Simple Hopf Algebras and Deformations of Fi-
nite Groups, Math. Res. Lett. 14 (2007), 943–954.

[12] S. Gelaki, D. Naidu, and D. Nikshych, Centers of Graded Fusion Cate-
gories, Algebra Number Theory 8 (2009), no. 3, 959–990.

[13] G. I. Kac, Extensions of Groups to Ring Groups, Math. USSR Sbornik 5
(1968), 451–474.

[14] S. Majid, Physics for Algebraists: Non-Commutative and Non-
Cocommutative Hopf Algebras by a Bicrossproduct Construction, J. Al-
gebra 130 (1990), 17–64.

Revista Colombiana de Matemáticas
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Medina Allende s/n

Ciudad Universitaria
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