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INVARIANTS OF COMPLEX STRUCTURES

ON NILMANIFOLDS

Edwin Alejandro Rodríguez Valencia

Abstract. Let (N, J) be a simply connected 2n-dimensional nilpotent Lie
group endowed with an invariant complex structure. We define a left invariant
Riemannian metric on N compatible with J to be minimal, if it minimizes the
norm of the invariant part of the Ricci tensor among all compatible metrics
with the same scalar curvature. In [7], J. Lauret proved that minimal metrics
(if any) are unique up to isometry and scaling. This uniqueness allows us to
distinguish two complex structures with Riemannian data, giving rise to a
great deal of invariants.

We show how to use a Riemannian invariant: the eigenvalues of the Ricci
operator, polynomial invariants and discrete invariants to give an alternative
proof of the pairwise non-isomorphism between the structures which have
appeared in the classification of abelian complex structures on 6-dimensional
nilpotent Lie algebras given in [1]. We also present some continuous families
in dimension 8.

1. Introduction

Let N be a real 2n-dimensional nilpotent Lie group with Lie algebra n, whose
Lie bracket will be denoted by µ : n×n −→ n. An invariant complex structure on N
is defined by a map J : n −→ n satisfying J2 = −I and the integrability condition
(1) µ(JX, JY ) = µ(X,Y ) + Jµ(JX, Y ) + Jµ(X,JY ) , ∀X,Y ∈ n .

By left translating J , one obtains a complex manifold (N, J), as well as compact
complex manifolds (N/Γ, J) if N admits cocompact discrete subgroups Γ, which
are usually called nilmanifolds and play an important role in complex geometry.

The automorphism group Aut(n) acts by conjugation on the set of all invariant
complex structures on n, and hence two such structures are considered to be
equivalent if they belong to the same conjugation class. The lack of invariants
makes the classification of invariant complex structures a difficult task. This has
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only been achieved in dimension ≤ 6 in the nilpotent case in [2], and for any
6-dimensional Lie algebra in the abelian case in [1].

Our aim in this paper is to use two different invariants (namely, minimal metrics
and Pfaffian forms, see below), to give an alternative proof of the non-equivalence
between any two abelian complex structures on nilpotent Lie algebras of dimension
6 obtained in the classification list given in [1, Theorem 3.4.]. Along the way, we
prove that any such structure, excepting only one, does admit a minimal metric. As
another application of the invariants, we give in Section 5 many families depending
on one, two and three parameters of abelian complex structures on 8-dimensional
2-step nilpotent Lie algebras, showing that a full classification could be really
difficult in dimension 8.

1.1. Minimal metrics.
A left invariant metric which is compatible with (N, J), also called a Hermitian
metric, is determined by an inner product 〈·, ·〉 on n such that

〈JX, JY 〉 = 〈X,Y 〉 , ∀X,Y ∈ n .

We consider
Ricc

〈·,·〉 := 1
2
(
Ric〈·,·〉−J Ric〈·,·〉 J

)
,

the complexified part of the Ricci operator Ric〈·,·〉 of the Hermitian manifold
(N, J, 〈·, ·〉), and the corresponding (1, 1)-component of the Ricci tensor ricc

〈·,·〉 :=
〈Ricc

〈·,·〉 ·, ·〉.
A compatible metric 〈·, ·〉 on (N, J) is called minimal if

tr (Ricc
〈·,·〉)2 = min

{
tr (Ricc

〈·,·〉′)2 : sc(〈·, ·〉′) = sc(〈·, ·〉)
}
,

where 〈·, ·〉′ runs over all compatible metrics on (N, J) and sc(〈·, ·〉) = tr Ric〈·,·〉 =
tr Ricc

〈·,·〉 is the scalar curvature. In [7], the following conditions on 〈·, ·〉 are proved
to be equivalent to minimality, showing that such metrics are special from many
other points of view:

(i) The solution 〈·, ·〉t with initial value 〈·, ·〉0 = 〈·, ·〉 to the evolution equation
d
dt 〈·, ·〉t = −2 ricc

〈·,·〉t ,

is self-similar, in the sense that 〈·, ·〉t = ctϕ
∗
t 〈·, ·〉 for some ct > 0 and

one-parameter group of automorphisms ϕt of N .
(ii) There exist a vector field X on N and c ∈ R such that

ricc
〈·,·〉 = c〈·, ·〉+ LX〈·, ·〉 ,

where LX〈·, ·〉 denotes the usual Lie derivative. In analogy with the well-known
concept in Ricci flow theory, one may call 〈·, ·〉 a (1, 1)-Ricci soliton.

(iii) Ricc
〈·,·〉 = cI +D for some c ∈ R and D ∈ Der(n).

The uniqueness up to isometric isomorphism and scaling of a minimal metric on
a given (N, J) was also proved in [7], and can be used to obtain invariants in the
following way. If (N, J1, 〈·, ·〉1) and (N, J2, 〈·, ·〉2) are minimal and J1 is equivalent
to J2, then they must be conjugate via an automorphism which is an isometry
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between 〈·, ·〉1 and 〈·, ·〉2. This provides us with a lot of invariants, namely the
Riemannian geometry invariants including all different kind of curvatures.

1.2. Pfaffian forms.
Consider a real vector space n and fix a direct sum decomposition

n = n1 ⊕ n2 , dim n1 = m, dim n2 = n .

Every 2-step nilpotent Lie algebra of dimension m + n with derived algebra of
dimension ≤ n can be represented by a bilinear skew-symmetric map

µ : n1 × n1 −→ n2 .

For a given inner product 〈·, ·〉 on n = n1 ⊕ n2 (with n1 ⊥ n2), one can encode
the structural constants of µ in a map Jµ : n2 −→ so(n1) defined by

〈Jµ(Z)X,Y 〉 = 〈µ(X,Y ), Z〉, ∀X,Y ∈ n1, Z ∈ n2.

There is a nice and useful isomorphism invariant for 2-step algebras (with m
even) called the Pfaffian form, which is the projective equivalence class of the
homogeneous polynomial fµ of degree m/2 in n variables defined by

fµ(Z)2 = det Jµ(Z) , ∀Z ∈ n2 ,

for each µ of type (n,m) (see Section 3.2).
For each µ ∈ Vn,m := Λ2n∗1 ⊗ n2, let Nµ denote the simply connected nilpotent

Lie group with Lie algebra (n, µ). We prove that if two complex nilmanifolds
(Nµ, J) and (Nλ, J) are holomorphically isomorphic, then fλ ∈ R>0GLq(C) · fµ,
with n = 2q (see Proposition 3.12). This will allow us to use the existence of
minimal metrics to distinguish complex nilmanifolds by means of invariants of
forms.
Acknowledgement. This research is part of the Ph.D. thesis (Universidad Na-
cional de Córdoba) by the author. I am grateful to my advisor Dr. Jorge Lauret
for his invaluable help during the preparation of the paper.

2. Preliminaries

In this section, we recall basic notions on complex structures on nilmanifolds
and their Hermitian metrics.

Let N be a simply connected 2n-dimensional nilpotent Lie group with Lie algebra
n, whose Lie bracket will be denoted by µ : n × n → n. An invariant complex
structure on N is defined by a map J : n→ n satisfying J2 = −I and such that

µ(JX, JY ) = µ(X,Y ) + Jµ(JX, Y ) + Jµ(X,JY ) , ∀X,Y ∈ n .

We say that J is abelian if the following condition holds:
µ(JX, JY ) = µ(X,Y ) , ∀X,Y ∈ n .

Definition 2.1. Two complex structures J1 and J2 on N are said to be equivalent
if there exists an automorphism α of n satisfying J2 = αJ1α

−1. Two pairs
(N1, J1) and (N2, J2) are holomorphically isomorphic if there exists a Lie algebra
isomorphism α : n1 → n2 such that J2 = αJ1α

−1.
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We fix a 2n-dimensional real vector space n, and consider as a parameter space
for the set of all real nilpotent Lie algebras of a given dimension 2n, the algebraic
subset

N := {µ ∈ V : µ satisfies Jacobi and is nilpotent} ,
where V := Λ2n∗ ⊗ n is the vector space of all skew-symmetric bilinear maps from
n× n to n. Recall that any inner product 〈·, ·〉 on n determines an inner product
on V , also denoted by 〈·, ·〉, as follows: if {ei} is a orthonormal basis of n,

(2)

〈µ, λ〉 :=
∑
i,j

〈µ(ei, ej), λ(ei, ej)〉

=
∑
i,j,k

〈µ(ei, ej), ek〉〈λ(ei, ej) , ek〉 .

For each µ ∈ N , let Nµ denote the simply connected nilpotent Lie group with Lie
algebra (n, µ). We now fix a map J : n→ n such that J2 = −I. The corresponding
Lie group

GLn(C) = {g ∈ GL2n(R) : gJ = Jg}
acts naturally on V by g · µ(·, ·) = gµ(g−1·, g−1·), leaving N invariant, as well as
the algebraic subset NJ ⊂ N given by

NJ := {µ ∈ N : µ satisfies (1)} .
We can identify each µ ∈ NJ with a complex nilmanifold as follows:

(3) µ↔ (Nµ, J) .

Proposition 2.2. Two complex nilmanifolds µ and λ are holomorphically isomor-
phic if and only if λ ∈ GLn(C) · µ.

Proof. If we suppose that (Nµ, J) and (Nλ, J) are holomorphically isomorphic,
then there exists a Lie algebra isomorphism g−1 : (n, λ) 7→ (n, µ) such that J =
gJg−1. Hence, λ = g · µ and g ∈ GLn(C) (taking their matrix representation). �

A left invariant Riemannian metric on N is said to be compatible with a complex
structure J on N if it is defined by an inner product 〈·, ·〉 on n such that

〈JX, JY 〉 = 〈X,Y 〉 , ∀X,Y ∈ n ,

that is, J is orthogonal with respect to 〈·, ·〉. We denote by C = C(N, J) the set of
all left invariant metrics on N compatible with J .

Definition 2.3. Two triples (N1, J1, 〈·, ·〉) and (N2, J2, 〈·, ·〉′), with 〈·, ·〉 ∈ C(N1, J1)
and 〈·, ·〉′ ∈ C(N2, J2), are said to be isometric isomorphic if there exists a Lie
algebra isomorphism ϕ : n1 → n2 such that J2 = ϕJ1ϕ

−1 and 〈·, ·〉′ = 〈ϕ−1·, ϕ−1·〉.

We now identify each µ ∈ NJ with a Hermitian nilmanifold in the following
way:
(4) µ↔

(
Nµ, J, 〈·, ·〉

)
,

where 〈·, ·〉 is a fixed inner product on n compatible with J . Therefore, each µ ∈ NJ
can be viewed in this way as a Hermitian metric compatible with (Nµ, J), and two
metrics µ, λ are compatible with the same complex structure if and only if they



INVARIANTS OF COMPLEX STRUCTURES 31

live in the same GLn(C)-orbit. Indeed, each g ∈ GLn(C) determines a Riemannian
isometry preserving the complex structure
(5)

(
Ng·µ, J, 〈·, ·〉

)
→
(
Nµ, J, 〈g·, g·〉

)
by exponentiating the Lie algebra isomorphism g−1 : (n, g · µ) 7→ (n, µ). We then
have the identification GLn(C) · µ = C(Nµ, J), for any µ ∈ NJ .

3. Invariants

We now discuss the problem of distinguishing two complex nilmanifolds up to
holomorphic isomorphism, by considering different types of invariants.

3.1. Minimal metrics.
In [7], J. Lauret showed how to use the complexified part of the Ricci operator of
a nilpotent Lie group given, to determinate the existence of compatible minimal
metrics with an invariant geometric structure on the Lie group. Furthermore, he
proved that these metrics (if any) are unique up to isometry and scaling. This
property allows us to distinguish two geometric structure with invariants coming
from Riemannian geometric. In this section, we will be apply these results to the
complex case and use the identifications (3) and (4) to rewrite them in terms of
data arising from the Lie algebra; this will be the basis of our method: fix a complex
structure and move the bracket. This method is explained in a more detailed way
in Section 4 in the 6-dimensional case.

The following theorem was obtained by using strong results from geometric
invariant theory, mainly related to the moment map of a real representation of a
real reductive Lie group.
Theorem 3.1 ([7]). Let F : NJ → R be defined by F (µ) := tr(Ricc

µ)2/‖µ‖4, where
Ricc

µ is the orthogonal projection of the Ricci operator Ricµ of the Riemannian
manifold (Nµ, 〈·, ·〉) onto the space of symmetric maps of (n, 〈·, ·〉) which commute
with J . Then for µ ∈ NJ , the following conditions are equivalent:

(i) µ is a critical point of F .
(ii) F |GLn(C)·µ attains its minimum value at µ.
(iii) Ricc

µ = cI +D for some c ∈ R, D ∈ Der(n).
Moreover, all the other critical points of F in the orbit GLn(C) ·µ lie in R∗U(n) ·µ.

A complex nilmanifold µ is said to be minimal if it satisfies any of the conditions
in the previous theorem.
Corollary 3.2. Two minimal complex nilmanifolds µ and λ are holomorphically
isomorphic if and only if λ ∈ R∗U(n) · µ.

Let (N, J, 〈·, ·〉) be a Hermitian nilmanifold, i.e. J is an invariant complex
structure on N and 〈·, ·〉 ∈ C(N, J).
Definition 3.3. Let Ric〈·,·〉 be the Ricci operator of (N, 〈·, ·〉). The Hermitian
Ricci operator is given by

Ricc
〈·,·〉 := 1

2
(
Ric〈·,·〉−J Ric〈·,·〉 J

)
.
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A metric 〈·, ·〉 ∈ C is called minimal if it minimizes the functional tr(Ricc
〈·,·〉)2

on the set of all compatible metrics with the same scalar curvature. We now rewrite
Theorem 3.1 in geometric terms, by using the identification (4).
Theorem 3.4 ([7]). For 〈·, ·〉 ∈ C, the following conditions are equivalent:

(i) 〈·, ·〉 is minimal.
(ii) Ricc

〈·,·〉 = cI +D for some c ∈ R, D ∈ Der(n).
Moreover, there is at most one compatible left invariant metric on (N, J) up to
isometry (and scaling) satisfying any of the above conditions.

Let 〈·, ·〉 ∈ C be a minimal metric with Ricc
〈·,·〉 = cI + D for some c ∈ R,

D ∈ Der(n). We say that µ is of type (k1 < ... < kr; d1, ..., dr) if {ki} ⊂ Z≥0 are
the eigenvalues of D with multiplicities {di} respectively and gcd(k1, . . . , kr) = 1.
Corollary 3.5 ([7]). Let J1, J2 be two complex structures on N , and assume
that they admit minimal compatible metrics 〈·, ·〉 and 〈·, ·〉′, respectively. Then J1
is equivalent to J2 if and only if there exists ϕ ∈ Aut(n) and c > 0 such that
J2 = ϕJ1ϕ

−1 and
〈ϕX,ϕY 〉′ = c〈X,Y 〉 , ∀X,Y ∈ n .

In particular, if J1 and J2 are equivalent, then their respective minimal compatible
metrics are necessarily isometric up to scaling.

By (4) and (5), it is easy to see that two Hermitian nilmanifolds µ and λ are
isometric (i.e. if (Nµ, J, 〈·, ·〉) and (Nλ, J, 〈·, ·〉) are isometric isomorphic) if and only
if they live in the same U(n)-orbit. Corollary 3.5 and (4) imply the following result.
Corollary 3.6. If µ is a minimal Hermitian metric, then R∗U(n) ·µ parameterizes
all minimal Hermitian metrics on (Nµ, J).
Example 3.7. For t ∈ (0, 1], consider the 2-step nilpotent Lie algebra whose
bracket is given by

µt(e1, e2) =
√
te5 , µt(e1, e4) = 1√

t
e6 ,

µt(e2, e3) = − 1√
t
e6 , µt(e3, e4) = −

√
te5 .

Let

J =

 0 −1
1 0

0 −1
1 0

0 −1
1 0

 , 〈ei, ej〉 = δij .

A straightforward verification shows that J is an abelian complex structure on
Nµt for all t, 〈·, ·〉 is compatible with (Nµt , J), and the Ricci operator is given by

Ricµt =

 − 1
2

(
t2+1
t

)
I4

t 0
0 1/t

 .
By definition, we have

Ricc
µt =

 −( t2+1
2t

)
I4 (

t2+1
2t

)
I2

 = t2 + 1
2t

(
−3I + 2

[ 1
1

1
1

2
2

])
,
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and thus µt is minimal of type (1 < 2; 4, 2) by Theorem 3.4. It follows from

Ricµt |n2 =
[
t 0
0 1/t

]
,

that the Hermitian nilmanifolds {(Nµt , J, 〈·, ·〉) : 0 < t ≤ 1} are pairwise non-iso-
metric. Indeed, if there exists c ∈ R∗ and ϕ ∈ U(3) ⊂ O(6) such that cµs = ϕ · µt
(see Corollary 3.6), then ϕ = [ ϕ1

ϕ2 ] ∈ U(2) × U(1) (recall that it is of type
(4,2)) and c2 Ricµs |n2 = ϕ2 Ricµt |n2ϕ

−1
2 , hence c2 [ s

1/s
]

=
[
t

1/t
]
. By taking

quotients of their eigenvalues we deduce that s2 = t2 or s2 = 1/t2, which gives
s = t if s, t ∈ (0, 1]. We therefore obtain a curve {(Nµt , J) : 0 < t ≤ 1} of pairwise
non-isomorphic abelian complex nilpotent Lie groups, by the uniqueness in result
Theorem 3.4 (see [6] for more examples).

From the above results, the problem of distinguishing two complex struc-
tures can be stated as follows: if we fix the nilpotent Lie group N then the
GL2n(R)-invariants give us all possible complex structures on N (Definition 2.1),
and the O(2n)-invariants distinguish their respective minimal metrics (if any), up
to scaling (Corollary 3.5). If we now fix a 2n-dimensional vector space and vary
the brackets, the GLn(C)-invariants provide the posible compatible metrics with
a given complex structure (see identification (4)), and the U(n)-invariants their
respective minimal metrics (if any), up to scaling (see Corollary 3.6). In the latter
case, the above example shows how to use one of the Riemannian invariants: the
eigenvalues of the Ricci operator. Since this is not always possible, in the next
section we will introduce a new invariant applicable to 2-step nilpotent Lie algebras.

3.2. Pfaffian form.
With the purpose to differentiate Lie algebras, up to isomorphism, we assign to each
one a unique homogeneous polynomial called the Pfaffian form, and by Proposition
3.10 we will use the known polynomial invariants to obtain curves or families of
brackets in a vector space given. We follow the notation used in [8].

Let n be a real Lie algebra, with Lie bracket µ, and fix an inner product 〈·, ·〉 on n.
For each Z ∈ n consider the skew-symmetric R-linear transformation JZ : n −→ n
defined by

(6) 〈JZX,Y 〉 = 〈µ(X,Y ), Z〉 , ∀ X,Y ∈ n .

If n and n′ are two real Lie algebras and J , J ′ are the corresponding maps,
relative to the inner products 〈·, ·〉 and 〈·, ·〉′ respectively, then it is easy to see that
a linear map B : n→ n′ is a Lie algebra isomorphism if and only if

(7) BtJ ′ZB = JBtZ , ∀ Z ∈ n′,

where Bt : n′ → n is given by 〈BtX,Y 〉 = 〈X,BY 〉′ for all X ∈ n′, Y ∈ n.
Assume now that n is 2-step nilpotent and the decomposition n = n1 ⊕ n2

satisfies n2 = [n, n]. If 〈n1, n2〉 = 0, then n1 is JZ-invariant for any Z and JZ = 0
if and only if Z ∈ n1. Under these conditions, the Pfaffian form f : n2 → R of n is
defined by

f(Z) = Pf(JZ |n1) , Z ∈ n2 ,
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where Pf : so(n1,R) → R is the Pfaffian, that is, the only polynomial function
satisfying Pf(B)2 = detB for all B ∈ so(n1,R) and Pf(J) = 1 for

J =


0 −1
1 0

0 −1
1 0

. . .
0 −1
1 0

 .(8)

Note that we need dim n1 to be even in order to get f 6= 0. Furthermore, if
dim n1 = 2m and dim n2 = k then the Pfaffian form f = f(x1, . . . , xk) of n is a
homogeneous polynomial of degree m in k variables with coefficients in R.

Let Pk,m(K) denote the set of all homogeneous polynomials of degree m in k
variables with coefficients in a field K.

Definition 3.8. For f , g ∈ Pk,m(K), we say that f is projectively equivalent to g,
and denote it by f 'K g, if there exists A ∈ GLk(K) and c ∈ K∗ such that

f(x1, . . . , xk) = cg(A(x1, . . . , xk)) .

Remark 3.9. If f, g ∈ Pk,m(R), then

f 'R g ⇔

{
f ∈ GLk(R) · g, if m is odd,
f ∈ ±GLk(R) · g, if m is even.

Recall that (A · f)(x1, . . . , xk) = f(A−1(x1, . . . , xk)) for all A ∈ GLk(K), f ∈
Pk,m(K).

Proposition 3.10. [8] Let n, n′ be two-step nilpotent Lie algebras over R. If n
and n′ are isomorphic then f 'R f

′, where f and f ′ are the Pfaffian forms of n
and n′, respectively.

The above proposition says that the projective equivalence class of the form
f(x1, . . . , xk) is an isomorphism invariant of the Lie algebra n. Note that if we do the
composition I ◦ f(µ) of the Pfaffian form f(µ) with an invariant I ∈ Pk,m(R)SLk(R)

(the ring of invariant polynomials), we obtain scalar SLk(R)-invariants. Mo-
reover, if we consider quotients of same degree of the form I1(f(µ))

I2(f(µ)) we obtain
GLk(R)-invariants (see Example 3.11).

In what follows, we give some basic properties of the Pfaffian form and some
invariants for binary quartic forms.

(i) If A is a skew symmetric matrix of order 4× 4, say

A =


0 b12 b13 b14
−b12 0 b23 b24
−b13 −b23 0 b34
−b14 −b24 −b34 0

 ,
then Pf(A) = b12b34 − b13b24 + b14b23.

(ii) Pf
([
A1 0
0 A2

])
= Pf(A1) Pf(A2).
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(iii) Let p(x, y) =
∑4
i=0 aix

4−iyi ∈ P2,4(R). Define
S(p) := a0a4 − 4a1a3 + 3a2

2.

T (p) := a0a2a4 − a0a
2
3 + 2a1a2a3 − a2

1a4 − a3
2.

We have that S and T are SL2(R)-invariant (see for instance [4]), that is
S(g ·p) = S(p) and T (g ·p) = T (p) for any p ∈ P2,4(R), g ∈ SL2(R). Moreover,
S(cp) = c2S(p) and T (cp) = c3T (p) for all c ∈ R.

Example 3.11. Let n be the 2-step nilpotent Lie algebra whose bracket is defined,
for any t ∈ R, by

λt(X1, X3) = −λt(X2, X4) = Z1 ,

λt(X1, X4) = λt(X2, X3) = λt(X5, X8) = λt(X6, X7) = −Z2 ,

λt(X5, X7) = −λt(X6, X8) = tZ1 .

Consider the inner product 〈Xi, Xj〉=〈Zi, Zj〉=δij . In this case n1 =〈X1, . . . , X8〉R
and n2 = 〈Z1, Z2〉R. If Z = xZ1 + yZ2, with x, y ∈ R, then

JZ |n1 =


−x y
y x

x −y
−y −x

−tx y
y tx

tx −y
−y −tx

 .
By definition (see also properties (i) and (ii) above), the Pfaffian form of n is

ft := f(λt) = (x2 + y2)(t2x2 + y2) = t2x4 + (t2 + 1)x2y2 + y4 .

We claim that if ft 'R fs then t = s for all t, s in any of the following intervals:
(−∞,−1], [−1, 0], [0, 1], [1,∞) .

Indeed, by assumption, there exists c ∈ R∗ and g ∈ GL2(R) such that c g · fs = ft.
From this we deduce that there exists c̃ ∈ R∗ and g̃ ∈ SL2(R) such that c̃ g̃ ·fs = ft.
For all t ∈ R, define the function (see (iii) above)

h(t) := S(ft)3

T (ft)2 .

It follows that

h(t) = S(ft)3

T (ft)2 = S(c̃ g̃ · fs)3

T (c̃ g̃ · fs)2 = c̃6 S(g̃ · fs)3

c̃6 T (g̃ · fs)2 = S(fs)3

T (fs)2 = h(s) .

It follows that
h(t) = (3t4 + 7t2 + 3)3

(t2 + 1)2(t2 + t+ 1)2(t2 − t+ 1)2 .

Since the derivative of h(t) only vanishes at −1, 0, 1, we conclude that h is injective
on any of the intervals mentioned above. Proposition 3.10 now shows that {(n, λt) :
t ∈ [1,∞)} (or t in any of the other intervals) is a pairwise non-isomorphic family
of Lie algebras.

If we take GLn(C) := {g ∈ GL2n(R) : gJ = Jg}, where J is given by (8), we
can state the analogue of Proposition 3.10, which will be crucial in Section 4.
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Proposition 3.12. Suppose that n = n1 ⊕ n2, with dim n1 = 2p and dim n2 = 2q,
and Jni = ni. Assume µ, λ ∈ Λ2n∗1 ⊗ n2 satisfy µ(n1, n1) = λ(n1, n1) = n2. If
λ ∈ GLn(C) · µ (n=p+q), then

f(λ) ∈ R>0GLq(C) · f(µ) ,
where f(µ), f(λ) are the Pfaffian forms of (n, µ) and (n, λ), respectively.

Proof. Let h := (n, µ), h′ := (n, λ) and Jµ, Jλ the corresponding maps, relative
to the inner products on n (see (6)). Suppose that g · µ = λ with g ∈ GLn(C)
(i.e. g ∈ GL2n(R), gJ = Jg). By assumption, g = [ g1

g2 ] ∈ GLp(C)×GLq(C) and
g : h→ h′ is a Lie algebra isomorphism satisfying gn1 = n1 and gn2 = n2. It follows
from (7) that

gtJλ(Z)g = Jµ(gtZ) , ∀Z ∈ n1 ,

and since the subspaces n1 and n2 are preserved by g y gt we have that
f ′(Z) = cf(gt2Z) ,

where c−1 = det g1 > 0 (GLp(C) is connected) and gt2 : λ(n1, n1)→ µ(n1, n1). It is
clear that gt2 ∈ GL2q(R) and satisfies
〈Jgt2Z, Y 〉 = 〈gt2Z,−JY 〉 = 〈Z, g2(−JY )〉 = 〈Z,−Jg2Y 〉 = 〈JZ, g2Y 〉 = 〈gt2JZ, Y 〉.
Thus gt2 ∈ GLq(C) and we conclude that f(λ) ∈ R>0GLq(C) · f(µ). �

We end this section with an example of two homogeneous polynomials that are
projectively equivalent over R but not over C (in the sense of Proposition 3.12).

Example 3.13. In h5 × R, define the Lie brackets µ+ and µ− by
µ±(e1, e2) = e6 , µ±(e3, e4) = ±e6 .

Consider the inner product 〈ei, ej〉 = δij . If Z = xe6, with x ∈ R, then

J+
Z |n1 =

[ 0 −x
x 0

0 −x
x 0

]
, J−Z |n1 =

[ 0 −x
x 0

0 x
−x 0

]
.

Hence f(µ+) = x2 and f(µ−) = −x2. It follows that f(µ−) 'R f(µ+) but
f(µ−) /∈ R>0U(1) · f(µ+).

Recall that GL1(C) = R>0U(1).

4. Minimal metrics on 6-dimensional abelian complex nilmanifolds

The classification of 6-dimensional nilpotent real Lie algebras admitting a
complex structure was given in [11], and the abelian case in [3]. Lately, A. Andrada,
M.L. Barberis and I.G. Dotti in [1] gave a classification of all 6-dimensional
Lie algebras admitting an abelian complex structure; furthermore, they give a
parametrization, on each Lie algebra, of the space of abelian structures up to
holomorphic isomorphism. In particular, there are three nilpotent Lie algebras
carrying curves of non-equivalent structures. Based on this parametrization, we
study the existence of minimal metrics on each of these complex nilmanifolds (see
Theorem 4.4), and provide an alternative proof of the pairwise non-isomorphism
between the structures.
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The classification in [1] fix the Lie algebra and varies the complex structure. For
example, on the Lie algebra h3 × h3 they found the curve Js of abelian complex
structures defined by Jse1 = e2, Jse3 = e4, Jse5 = se5 + e6, s ∈ R, and fix the
bracket [e1, e2] = e5, [e3, e4] = e6. We now fix the complex structure and varies the
bracket as follows.

For n = v1⊕v2, with v1 = R4 and v2 = R2, consider the vector space Λ2v∗1⊗v2
of all skew symmetric bilinear maps µ : v1 × v1 → v2. Any 6-dimensional 2-step
nilpotent Lie algebra with dimµ(n, n) ≤ 2 can be modelled in this way. Fix a basis
of n, say {e1, . . . , e6}, such that v1 = 〈e1, . . . , e4〉R, v2 = 〈e5, e6〉R. The complex
structure and the compatible metric will be always defined by

J :=

 0 −1
1 0

0 −1
1 0

0 −1
1 0

 , 〈ei, ej〉 := δij .(9)

Proposition 4.1. Let (N
µ̃
, J̃) be a complex nilmanifold, with µ̃ ∈ Λ2v∗1 ⊗ v2. If

there exists g ∈ GL6(R) such that gJ̃g−1 = J , then (N
µ̃
, J̃) and (N

g·µ̃, J) are
holomorphically isomorphic.

Returning to the above example, by choosing

g =

 1 0
0 1

1 0
0 1

1 −s
0 1

 ,
we have gJsg−1 = J , and therefore (N[·,·], Js) and (Nµ3 , J) are holomorphically
isomorphic by Proposition 4.1, where now the bracket is given by µ3(e1, e2) = e5
and µ3(e3, e4) = −se5 + e6 with s ∈ R. By arguing as above for each item in [1,
Theorem 3.4.], we have obtained Table 1.

Remark 4.2. In the classification given in [1], they incorrectly claim that the
curves of structures J1

t and J2
t on n4 are non-equivalent (see a corrected version

at arXiv:0908.3213). Indeed, the matrix g defined in (10) is an automorphism
of n4 and gJ1

t g
−1 = J2

t , hence J1
t and J2

t are equivalent. Note that in Table 1
only appears a ‘curve’ (it is proved below) of brackets on n4, which is due to the
following proposition and Theorem 4.4. The brackets µ1,t

4 and µ2,t
4 are obtained

from the curves of structures J1
t and J2

t , respectively.

Proposition 4.3. µ2,t
4 ∈ U(2)× U(1) · µ1,t

4 for all t ∈ (0, 1], where the brackets
µ1,t

4 , µ2,t
4 on n4 are given by

µ1,t
4 (e1, e2)=

√
te5 , µ1,t

4 (e1, e4)= 1√
t
e6 , µ2,t

4 (e1, e3)=
√
te5 , µ2,t

4 (e2, e4)=
√
te5 ,

µ1,t
4 (e2, e3)= − 1√

t
e6, µ

1,t
4 (e3, e4)=−

√
te5 , µ2,t

4 (e1, e4)=− 1√
t
e6, µ

2,t
4 (e2, e3)= 1√

t
e6 .
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n Bracket
n1 := h3 × R3 µ1(e1, e2) = e6

n2 := h5 × R µ±2 (e1, e2) = e6, µ±2 (e3, e4) = ±e6

n3 := h3 × h3 µs3(e1, e2) = e5, µs3(e3, e4) = −se5 + e6

s ∈ R
n4 := h3(C) µt4(e1, e2) =

√
te5, µt4(e1, e4) = 1√

t
e6

µt4(e2, e3) = − 1√
t
e6, µt4(e3, e4) = −

√
te5

t ∈ (0, 1]
n5 µ5(e1, e2) = e5, µ5(e1, e4) = −e6

µ5(e2, e3) = e6

n6 µ6(e1, e2) = −e3, µ6(e1, e4) = −e6

µ6(e2, e3) = e6

n7 µt7(e1, e2) = −e4, µt7(e1, e3) =
√
te5

µt7(e2, e4) =
√
te5, µt7(e1, e4) = − 1√

t
e6

µt7(e2, e3) = 1√
t
e6, t ∈ (0, 1]

µ̃t7(e1, e2) = −e4, µ̃t7(e1, e3) =
√
−te5

µ̃t7(e2, e4) =
√
−te5, µ̃t7(e1, e4) = 1√

−te6

µ̃t7(e2, e3) = − 1√
−te6, t ∈ [−1, 0)

Tab. 1. Abelian complex nilmanifolds of dimension 6.

Proof. We have

g =


√

2
2 i −

√
2

2 0
√

2
2 −

√
2

2 i 0

0 0 1

 ∈ U(2)×U(1).

Using the identification a+ bi 7→
[
a −b
b a

]
, we thus get

(10) g =



0 −
√

2
2 −

√
2

2 0 0 0
√

2
2 0 0 −

√
2

2 0 0
√

2
2 0 0

√
2

2 0 0

0
√

2
2 −

√
2

2 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


By definition, it follows that
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– µ2,t
4 (e1, e2) = 0.
g · µ1,t

4 (e1, e2) = gµ1,t
4

(
−
√

2
2 e2 −

√
2

2 e3,
√

2
2 e1 −

√
2

2 e4

)
= g{ 1

2

(√
te5 −

√
te5
)
} = 0.

– µ2,t
4 (e1, e3) =

√
te5.

g · µ1,t
4 (e1, e3) = gµ1,t

4

(
−
√

2
2 e2 −

√
2

2 e3,
√

2
2 e1 +

√
2

2 e4

)
= g{ 1

2

(√
te5 +

√
te5
)
}

=
√
te5.

– µ2,t
4 (e1, e4) = − 1√

t
e6.

g · µ1,t
4 (e1, e4) = gµ1,t

4

(
−
√

2
2 e2 −

√
2

2 e3,
√

2
2 e2 −

√
2

2 e3

)
= g{ 1

2

(
− 1√

t
e6 − 1√

t
e6

)
}

= − 1√
t
e6.

– µ2,t
4 (e2, e3) = 1√

t
e6.

g · µ1,t
4 (e2, e3) = gµ1,t

4

(√
2

2 e1 −
√

2
2 e4,

√
2

2 e1 +
√

2
2 e4

)
= g{ 1

2

(
1√
t
e6 + 1√

t
e6

)
}

= 1√
t
e6.

– µ2,t
4 (e2, e4) =

√
te5.

g · µ1,t
4 (e2, e4) = gµ1,t

4

(√
2

2 e1 −
√

2
2 e4,

√
2

2 e2 −
√

2
2 e3

)
= g{ 1

2

(√
te5 +

√
te5
)
}

=
√
te5.

– µ2,t
4 (e3, e4) = 0.
g · µ1,t

4 (e3, e4) = gµ1,t
4

(√
2

2 e1 +
√

2
2 e4,

√
2

2 e2 −
√

2
2 e3

)
= g{ 1

2

(√
te5 −

√
te5
)
} = 0.

Hence g · µ1,t
4 = µ2,t

4 , which completes the proof. �

Theorem 4.4. Any 6-dimensional abelian complex nilmanifold admits a minimal
metric, with the only exception of (N5, J).

Proof. By applying Theorem 3.4 (as we described in Example 3.7 for n4), it
is easily seen that (N1, J) admit a minimal metric of type (3 < 5 < 6; 2, 2, 2);
(N2, J), (N3, J) and (N4, J) one of type (1 < 2; 4, 2); (N6, J) and (N7, J) one of
type (1 < 2 < 3; 2, 2, 2). Furthermore, we can see that each µi on ni is minimal,
if i 6= 5 (column 4, Table 2). Note that the Table 2 differs from the Table 1 in n3
and n7, this is due to get µ3 and µ7 minimals was required to act with a matrix
g ∈ GL3(C) in the brackets given in the Table 1. For example, for n7, take

g =
[ α

1
α

1

]
,

where α = (t+ 1
t )
− 1

6 for µt7, and α = (−t− 1
t )
− 1

6 for µ̃t7.
It remains to prove that (N5, J) does not admit minimal compatible metrics.

To do this, we will use some properties of the GLn(R)-invariant stratification for
the representation Λ2(Rn)∗ ⊗ Rn of GLn(R) (see [10], [9] for more details).

Let β = diag(−1/2,−1/2,−1/2,−1/2, 1/2, 1/2). Hence

Gβ :=
{
g ∈ GL(6) : gβg−1 = β, gJg−1 = J

}
= GL2(C)×GL1(C)
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n Bracket Type Minimal

n1 µ1(e1, e2) = e6 (3 < 5 < 6; 2, 2, 2) Yes

n2 µ±2 (e1, e2) = e6, µ±2 (e3, e4) = ±e6 (1 < 2; 4, 2) Yes

n3 µs3(e1, e2) = e5, µs3(e3, e4) = −s√
1+s2

e5 + 1√
1+s2

e6 (1 < 2; 4, 2) Yes

s ∈ R

n4 µt4(e1, e2) =
√
te5, µt4(e1, e4) = 1√

t
e6 (1 < 2; 4, 2) Yes

µt4(e2, e3) = − 1√
t
e6, µt4(e3, e4) = −

√
te5

t ∈ (0, 1]

n5 µ5(e1, e2) = e5, µ5(e1, e4) = −e6 —— No

µ5(e2, e3) = e6

n6 µ6(e1, e2) = −e3, µ6(e1, e4) = −e6 (1 < 2 < 3; 2, 2, 2) Yes

µ6(e2, e3) = e6

n7 µt7(e1, e2) = −
√
t+ 1/te4, µt7(e1, e3) =

√
te5 (1 < 2 < 3; 2, 2, 2) Yes

µt7(e2, e4) =
√
te5, µt7(e1, e4) = − 1√

t
e6

µt7(e2, e3) = 1√
t
e6, t ∈ (0, 1]

µ̃t7(e1, e2) = −
√
−t− 1/te4, µ̃t7(e1, e3) =

√
−te5

µ̃t7(e2, e4) =
√
−te5, µ̃t7(e1, e4) = 1√

−te6

µ̃t7(e2, e3) = − 1√
−te6, t ∈ [−1, 0)

Tab. 2. Minimal metrics on 6-dimensional abelian complex nilmanifolds.

Since gβ = Rβ ⊕⊥ hβ , it follows that hβ is Lie subalgebra. Let Hβ ⊂ Gβ denote
the Lie subgroup with Lie algebra hβ . We thus get

hβ =
{[

A 0
0 B

]
: trA = trB

}
, Hβ =

{[
g 0
0 h

]
: det(g) = det(h)

}
.

But hβ = (R [ I 2I ])⊕ h̃β where

h̃β =
{[

A 0
0 B

]
: trA = trB = 0

}
.

This clearly forces H̃β = SL2(C) × {I}. Therefore, it suffices to prove that 0 /∈
SL2(C) · µ5 and µ2 ∈ SL2(C) · µ5, with µ2 and µ5 the brackets of n2 and n5
respectively, which is due to the fact that G · µ is minimal if and only if Hβ · µ is
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closed (see for instance [9, Theorem 9.1]). Indeed, an easy computation shows that[ a
a

1/a
1/a

]
· µ5 −→ µ2 letting a→∞.

From what has already been and the fact that SL2(C) ·µ2 is closed (n2 is minimal),
we conclude that 0 /∈ SL2(C) · µ5 by the uniqueness of closed orbits in the closure
of an orbit (note that {0} is a closed orbit). �

We now will use the Pfaffian forms to give an alternative proof of the pairwise
non-isomorphism of the family given in [1, Theorem 3.4] in the 2-step nilpotent case.
Since dim v1 = 4 and dim v2 = 2 , the Pfaffian forms of n1, . . . , n5 belong to the set
P2,2(R); so we are left with the task of determining the quotient P2,2(R)/GL1(C) =
P2,2(R)/R>0U(1) (see Proposition 3.12).

Using the identification P = ax2 + bxy + cy2 ↔ PA := 〈A(x, y), (x, y)〉, where
A =

[
a b/2
b/2 c

]
, we have (see Remark 3.9)

P2,2(R)/±GL2(R) =


x2 + y2,

x2 − y2,

x2,

0.

Proposition 3.12 now implies that

P2,2(R)/R>0U(1) = {ax2 + by2 : a ≤ b, a2 + b2 = 1} ∪ {0} .

This allows us to classify the Pfaffian forms of n1, . . . , n5, which is summarized in
Figure 1. The Lie algebra n∗4 is given by µt(e1, e3) = −tse6, µt(e1, e4) = µt(e2, e3) =
se5, µt(e2, e4) = s(2− t)e6, with s =

√
2 + t2 + (2− t)2, 1 ≤ t < 2; it is minimal

and (Nµt , J) is not abelian (see [7, Example 5.3]).
From Figure 1, it is clear that n3 and n4 have (minimal) Hermitian metric curves;

(n2, µ
+
2 ) and (n2, µ

−
2 ) are distinguished; n1 has an unique (minimal) Hermitian

metric; and n5 has an unique Hermitian metric.
We now consider the Lie algebras which are not 2-step nilpotent. The Lie algebra

n6 has an unique minimal metric up to isometry and scaling, by Theorem 3.4. For
n7, an easy computation shows that for all t ∈ [−1, 0), s ∈ (0, 1]

Ric
µ̃t7
|z=

[
−t 0
0 −1/t

]
, Ricµs7 |z=

[
s 0
0 1/s

]
,

where z := 〈e5, e6〉R. From this we deduce that the Hermitian nilmanifolds
{(Nµt7 , J, 〈·, ·〉) : t ∈ (0, 1]} are pairwise non-isometric (as we described in Example
3.7 for n4). Likewise for {(N

µ̃t7
, J, 〈·, ·〉) : t ∈ [−1, 0)}.
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We will distinguish µt7, t ∈ (0, 1], of µ̃t7, t ∈ [−1, 0). To do this we need the
following (see (2))

‖µt7‖2 = 2
(
‖µt7(e1, e2)‖2 + ‖µt7(e1, e3)‖2 + ‖µt7(e1, e4)‖2 + ‖µt7(e2, e3)‖2

+ ‖µt7(e2, e4)‖2) = 6
(
t+ 1

t

)
, t ∈ (0, 1] .

‖µ̃t7‖2 = 2
(
‖µ̃t7(e1, e2)‖2 + ‖µ̃t7(e1, e3)‖2 + ‖µ̃t7(e1, e4)‖2 + ‖µ̃t7(e2, e3)‖2

+ ‖µ̃t7(e2, e4)‖2) = −6
(
t+ 1

t

)
, t ∈ [−1, 0) .

Fig. 1. Pfaffian forms of n1,. . . ,n5.

Proposition 4.5. µ̃t7 /∈ R∗ U(1)×U(1)×U(1) · µs7 for all t ∈ [−1, 0), s ∈ (0, 1].
Proof. If we suppose that there exists c ∈ R∗ and ϕ ∈ U(1)×U(1)×U(1) such
that cµ̃t7 = ϕ · µs7, then ϕ =

[ ϕ1
ϕ2

ϕ3

]
and c2 Ric

µ̃t7
|z = ϕ3 Ricµs7 |zϕ

−1
3 . Hence

c2
[
−t
−1/t

]
=
[ s

1/s
]
; taking quotients of their eigenvalues we deduce that s2 = t2

or s2 = 1/t2, which gives t = −s if t ∈ [−1, 0), s ∈ (0, 1]. From this it is enough
to prove that for all t ∈ (0, 1], c ∈ R∗,

µ̃−t7 /∈ c U(1)×U(1)×U(1) · µt7.(11)

Moreover, if µ̃−t7 ∈ c U(1)×U(1)×U(1) · µt7, then ‖µ̃−t7 ‖2 = c2‖µt7‖2, which yields
c2 = 1, and hence c = ±1. Thus it is sufficient to take c = 1 (if c = −1 the equations
does not change).

Suppose, contrary to our claim, that µ̃−t7 = G · µt7 where

G =

 a −bb a
c −d
d c

k −h
h k

 , G−1 =

 a b
−b a

c d
−d c

k h
−h k

 ,
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with a2 + b2 = c2 + d2 = k2 + h2 = 1. We thus get

• µ̃−t7 (e1, e2) = −
√
t+ 1/te4 = G · µt7(e1, e2) = d

√
t+ 1/te3 − c

√
t+ 1/te4 .

• µ̃−t7 (e1, e3) =
√
te5 = G · µt7(e1, e3) =

{
(ac+ bd)k

√
t+ (bc− ad) h√

t

}
e5

+
{

(ac+ bd)h
√
t+ (ad− bc) k√

t

}
e6 .

• µ̃−t7 (e1, e4) = 1√
t
e6 = G · µt7(e1, e4) =

{
(ad− bc)k

√
t+ (ac+ bd) h√

t

}
e5

+
{

(ad− bc)h
√
t− (ac+ bd) k√

t

}
e6 .

This is equivalent at next system (the other tree brackets produce the same
equations): 

c = 1 , d = 0 ,
a = k ,

b− ht = 0 ,
a = −k ,
h+ bt = 0 ,

It follows easily that a = b = 0, contrary to a2 + b2 = 1. Since G was arbitrary,
(11) is proved. �

5. Results obtained in dimension eight

In this section, our aim is to exhibit many families depending on one (see
Example 5.4 and Example 5.8), two (see Example 5.3 and Example 5.5) and three
(see Example 5.2) parameters of abelian complex structures on 8-dimensional 2-step
nilpotent Lie algebras, by using that they all admit minimal metrics for the types
(1 < 2; 4, 4) and (1 < 2; 6, 2).

Following the idea developed in dimension six, we will determine the quotients
P4,2(R)/R>0U(2) and P2,3(R)/R>0U(1) in the cases (4, 4) and (6, 2) respectively.
This may be viewed as a first step towards the classification of abelian complex
structures on 8-dimensional nilmanifolds. From now on, we keep the notation used
in [6].

5.1. Type (4,4).
In this case v1 = R4 and v2 = R4, and we consider the vector space W := Λ2v∗1⊗v2.
If {X1, . . . , X4, Z1, . . . , Z4} is a basis of n such that v1 = 〈X1, . . . , X4〉R and v2 =
〈Z1, . . . , Z4〉R, then each element in W will be described as

µ(X1, X2) =a1Z1+ a2Z2+ a3Z3+ a4Z4, µ(X1, X3)=b1Z1+ b2Z2+ b3Z3+ b4Z4,

µ(X1, X4) =c1Z1+ c2Z2+ c3Z3+ c4Z4, µ(X2, X3)=d1Z1+ d2Z2+ d3Z3+ d4Z4,

µ(X2, X4) =e1Z1+ e2Z2+ e3Z3+ e4Z4, µ(X3, X4)=f1Z1+ f2Z2+ f3Z3+ f4Z4.
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The complex structure and the compatible metric will be always defined by

J =


0 −1
1 0

0 −1
1 0

0 −1
1 0

0 −1
1 0

 , 〈Xi, Xj〉 = 〈Zi, Zj〉 = δij .

If A = (a1, . . . , a4), . . . , F = (f1, . . . , f4) and JA = (−a2, a1,−a4, a3), . . . , JF =
(−f2, f1,−f4, f3), then J is integrable on Nµ (i.e. J satisfies (1)), µ ∈ W , if and
only if

E = B + JC + JD,(12)
and J is abelian if and only if

E = B, D = −C.(13)

Define vi = (ai, bi, ci, di, ei, fi), i = 1, 2, 3, 4. It is easy to check that for any
µ ∈W , Ricµ |v2= 1

2 [〈vi, vj〉], 1 ≤ i, j ≤ 4, and

Ricµ |v1= −1
2

 ‖A‖2+‖B‖2+‖C‖2 〈B,D〉+〈C,E〉 −〈A,D〉+〈C,F 〉 −〈A,E〉−〈B,F 〉
〈B,D〉+〈C,E〉 ‖A‖2+‖D‖2+‖E‖2 〈A,B〉+〈E,F 〉 〈A,C〉−〈D,F 〉
−〈A,D〉+〈C,F 〉 〈A,B〉+〈E,F 〉 ‖B‖2+‖D‖2+‖F‖2 〈B,C〉+〈D,E〉
−〈A,E〉−〈B,F 〉 〈A,C〉−〈D,F 〉 〈B,C〉+〈D,E〉 ‖C‖2+‖E‖2+‖F‖2

 .
Therefore

Ricc
µ |v1

= 1
4

 −α 0 〈A+ F,D − C〉 〈A+ F,B + E〉
0 −α −〈A+ F,B + E〉 〈A+ F,D − C〉

〈A+ F,D − C〉 −〈A+ F,B + E〉 −β 0
−〈A+ F,B + E〉 〈A+ F,D − C〉 0 −β

 ,

Ricc
µ |v2

= 1
4

 ‖v1‖2 + ‖v2‖2 0 〈v1, v3〉+ 〈v2, v4〉 〈v1, v4〉 − 〈v2, v3〉
0 ‖v1‖2 + ‖v2‖2 〈v2, v3〉 − 〈v2, v4〉 〈v2, v4〉+ 〈v1, v3〉

〈v1, v3〉+ 〈v2, v4〉 〈v2, v3〉 − 〈v2, v4〉 ‖v3‖2 + ‖v4‖2 0
〈v1, v4〉 − 〈v2, v3〉 〈v2, v4〉+ 〈v1, v3〉 0 ‖v3‖2 + ‖v4‖2

 ,
where α := 2‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2 + ‖E‖2 and β := ‖B‖2 + ‖C‖2 + ‖D‖2 +
‖E‖2 + 2‖F‖2.

One type of minimality which is easy to characterize is (1 < 2; 4, 4). Indeed, if
for any µ ∈W we have that Ricc

µ |v1= pI4 and Ricc
µ |v2= qI4, then

Ricc
µ =

[
pI4

qI4

]
= (2p− q)I8 + (q − p)

[
I4

2I4

]
∈ RI + Der(µ).

The following are sufficient conditions for any µ ∈W is minimal of type (1 < 2; 4, 4).
(i) Conditions for Ricc

µ |n1∈ RI:
• 〈A+ F,D − C〉 = 0.
• 〈A+ F,B + E〉 = 0.
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• ‖A‖2 = ‖F‖2.

(ii) Conditions for Ricc
µ |n2∈ RI:

• ‖v1‖2 + ‖v2‖2 = ‖v3‖2 + ‖v4‖2.

• 〈v1, v3〉 = −〈v2, v4〉.

• 〈v1, v4〉 = 〈v2, v3〉.

Moreover, if µ satisfies the conditions given in (i) and (ii), we obtain p = − 1
4α and

q = 1
4
(
‖v1‖2 + ‖v2‖2).

In the rest of this section we will study the Pfaffian forms of µ ∈ W . Since
dim v1 = dim v2 = 4, it follows that the Pfaffian form of any µ ∈ W belongs to
the set P4,2(R); so the goal is to determine the quotient P4,2(R)/R>0U(2). As
in the case (4, 2) there is the identification f(µ) ∈ P4,2(R) ↔ Af , where Af is a
symmetric matrix, and, in consequence,

P4,2(R)/±GL4(R) =
{[ 1

1
−1

0

]
, . . .

}
.(14)

Based on the classification of complex metabelian (two-step nilpotent) Lie algebras
in dimension up to 9 given by L. Yu. Galitski and D. A. Timashev in [5], and by
using the identifications of the real forms of Lie algebra on C, we have

(15) P4,2(C)/GL2(C) =



x2 − y2 − z2 + w2

x2 − y2 − z2

x2 − y2

x2

0

'


+ + + +
+ + + 0
+ + 0 0
+ 0 0 0
0 0 0 0

Remark 5.1. The polynomial f = x2 + y2 + z2 + w2 is not the Pfaffian form of
any µ ∈W . In general, f > 0 (⇔ JZ are invertible ∀Z) is not the Pfaffian form of
any µ ∈W . The dimensions allowed for this are: (2k, 1), (4k, 2), (4k, 3), (8k, 4), . . . ,
(8k, 7), (16k, 8), (32k, 9).

The following expression was obtained by direct calculation rather than the
equations (14) and (15).
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P4,2(R)/U(2) ' sym(4)/U(2)

=



(
aI,

[
b
−b

c
−c

])
; a, b, c ∈ R.

([ a
a
b
b

]
,

[
c h
h −c

d l
l −d

])
; a, b, c, d, h, l ∈ R (a < b).

=



ax2 + by2 + cz2 + dw2; a+ b = c+ d ,

a, b, c, d ∈ R .

ax2 + by2 + cz2 + dw2 + hxy + lzw; a+ b < c+ d ,

a, b, c, d, h, l ∈ R .

In what follows, we given some curves and families of minimal metrics of type
(1 < 2; 4, 4), which Pfaffian forms appear in the above quotient.

Example 5.2. Let µkrst ∈W be given by

A = (s, t, 0, 0) , B = (0, 0, r, 0) ,
C = (0, 0, 0, k) , D = (0, 0, 0,−k) ,
E = (0, 0, r, 0) , F = (s,−t, 0, 0) ,

with k, r, s, t ∈ R. It is clear that µkrst satisfies (12) and (13), and hence (Nµkrst , J)
is an abelian complex nilmanifold for all k, r, s, t ∈ R. Furthermore, if k2+r2 = s2+t2
then the family {(Nµkrst , J, 〈·, ·〉) : k2 + r2 = s2 + t2} of minimal (conditions (i)
and (ii)) metrics is pairwise non-isometric, up to scaling. This gives rise then
a 3-parameter family of pairwise non-isomorphic abelian complex nilpotent Lie
groups (see Theorem 3.4). On the other hand, the Pfaffian form of µkrst is

f(µkrst) = s2x2 − t2y2 − r2z2 − k2w2 .

Example 5.3. Let λrst be defined by:

A = (0, r, 0, 0) , B = (0, 0, s, 0) ,
C = (0, 0, 0, t) , D = (0, 0, 0,−t) ,
E = (0, 0, s, 0) , F = (0,−r, 0, 0) ,

where r, s, t ∈ R. We have (Nλrst , J) is an abelian complex nilmanifold for all
r, s, t in R. If r2 = s2 + t2 then the family {(Nλrst , J, 〈·, ·〉) : r2 = s2 + t2} of
minimal compatible metrics is pairwise non-isometric, unless scalar multiples. This
gives rise then a 2-parameter family of pairwise non-isomorphic abelian complex
nilpotent Lie groups. Note that the Pfaffian form of λrst is

f(λrst) = −r2y2 − s2z2 − t2w2 .
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Example 5.4. Let νst be given by A = (s, 0, 0, 0) = −F , B = E = 0, C =
(0, 0, t, 0) = −D, with s, t ∈ R. Therefore, (Nνst , J) is an abelian complex nilma-
nifold for all s, t ∈ R. Furthermore, if s2 = t2 then the curve {νst : s2 = t2} of
minimal compatible metrics is pairwise non-isometric, unless scalar multiples. This
gives a curve of pairwise non-isomorphic abelian complex nilpotent Lie groups.
Finally, the Pfaffian form of νst is

f(νst) = −s2x2 − t2z2 .

Example 5.5. Let µrst ∈W be defined by:

A = (r, 0, 0, 0) , B = (0, 0, s, 0) ,
C = (0, 0, 0, t) , D = (0, 0, 0,−t) ,
E = (0, 0, s, 0) , F = (0, r, 0, 0) ,

where r, s, t ∈ R. Hence (Nµrst , J) is an abelian complex nilmanifold for all
r, s, t ∈ R. If r2 = s2 + t2 then {µrst : r2 = s2 + t2} of minimal compatible metrics
is pairwise non-isometric, up to scaling. This gives rise then a 2-parameter family
of pairwise non-isomorphic abelian complex nilpotent Lie groups. Note that the
Pfaffian form of µrst is given by

f(µrst) = r2xy − s2z2 − t2w2 .

5.2. Type (6,2).
For v1 = R6 and v2 = R2, consider W̃ := Λ2v∗1 ⊗ v2. Fix basis {X1, . . . , X6} and
{Z1, Z2} of v1 and v2, respectively. Each element µ ∈ W̃ will be described as

µ(X1, X2)= a1Z1+ a2Z2, µ(X1, X3)= b1Z1+ b2Z2, µ(X1, X4)= c1Z1+ c2Z2,

µ(X1, X5)= d1Z1+ d2Z2, µ(X1, X6)= e1Z1+ e2Z2, µ(X2, X3)= f1Z1+ f2Z2,

µ(X2, X4)= g1Z1+ g2Z2, µ(X2, X5)= h1Z1+ h2Z2, µ(X2, X6)= i1Z1+ i2Z2,

µ(X3, X4)=k1Z1+ k2Z2, µ(X3, X5)= l1Z1+ l2Z2, µ(X3, X6)=m1Z1+m2Z2,

µ(X4, X5)= n1Z1+ n2Z2, µ(X4, X6)= p1Z1+ p2Z2, µ(X5, X6)= q1Z1+ q2Z2.

The complex structure and the compatible metric will be always defined by
JX1 = X2, JX3 = X4,
JX5 = X6, JZ1 = Z2.

〈Xi, Xj〉 = δij , 〈Zk, Zl〉 = δkl.

If A = (a1, a2), . . . , Q = (q1, q2) and JA = (−a2, a1), . . . , JQ = (−q2, q1), then
J satisfies (1) if and only if

G = B + JC + JF , I = D + JE + JH , P = L+ JM + JN ,(16)

and J is abelian if and only if

B = G , C = −F , D = I , E = −H , L = P , M = N .(17)

Let vi = (ai, bi, ci, di, ei, fi), i = 1, 2. It follows that Ricµ |v2= 1
2 [〈vi, vj〉], 1 ≤

i, j ≤ 2, and
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Ricc
µ |v2= 1

4

[
‖v1‖2 + ‖v2‖2 0

0 ‖v1‖2 + ‖v2‖2

]
∈ RI .

For the complicated expressions, we only give sufficient conditions for any µ ∈ W̃
is minimal of type (1 < 2; 6, 2) when J is abelian.

(†) Conditions for Ricc
µ |n1∈ RI:

(a) ‖A‖2 = ‖K‖2 = ‖Q‖2, ‖B‖2 + ‖C‖2 = ‖D‖2 + ‖E‖2 = ‖L‖2 + ‖M‖2.
(b) 〈A + K,B〉 = 〈A + K,C〉 = 〈A + Q,D〉 = 〈A + Q,E〉 = 〈K + Q,L〉 =
〈K +Q,M〉 = 0.

(c) 〈B,L〉 = −〈C,N〉, 〈B,M〉 = −〈C,P 〉, 〈B,D〉 = −〈C,E〉.
(d) 〈C,D〉 = −〈G,H〉, 〈D,L〉 = −〈E,M〉, 〈H,L〉 = −〈I,M〉.

If µ satisfies the conditions given in (†) we thus get q := 1
4
(
‖v1‖2 + ‖v2‖2) and

p := − 1
2

(
‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2 + ‖E‖2).

Since dim v1 = 6 and dim v2 = 2, the Pfaffian form of any µ ∈ W̃ belongs
to the set P2,3(R). Unlike the previous two cases, there is no identification of
f(µ) ∈ P2,3(R) with a matrix, but it is known that every polynomial in P2,3(R) is
the Pfaffian form of some µ ∈ W̃ (see [8]). Again, of [5], we obtain

(18) P2,3(C)/GL2(C) =


x3

x2y + xy2 = xy(x+ y)
x3 + x2y = x2(x+ y) ' x2y

But it is easy to see that

P2,3(R) ∩GL2(C) · x3 = GL2(R) · x3,

P2,3(R) ∩GL2(C) · (x2y + xy2) = GL2(R) · (x2y + xy2),
P2,3(R) ∩GL2(C) · x2y = GL2(R) · x2y,

and therefore

P2,3(R)/GL2(R) =


x3

x2y + xy2 = xy(x+ y)
x3 + x2y = x2(x+ y) ' x2y

Example 5.6. Let µ1
st, µ

2
st, µ

3
st ∈ W̃ be defined by: for all s, t ∈ R,

A1 = (0, s) , A2 = (t, 0) , A3 = (0, s) ,
E1 = (t, 0) , K2 = (0, s) , E3 = (t, 0) ,
H1 = (−t, 0) , Q2 = (s, t) . H3 = (−t, 0) ,
K1 = (s, 0) . K3 = (s, 0) ,

Q3 = (−s, 0) .

It follows immediately that (Nµ1
st
, J), (Nµ2

st
, J) and (Nµ3

st
, J) are abelian complex

nilmanifolds for all s, t ∈ R, as they satisfy (16) and (17). Furthermore, they are
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not minimal of type (1 < 2; 6, 2) and its Pfaffian forms are given by
f(µ1

st) = st2x3 , f(µ2
st) = s2tx2y + st2xy2 , f(µ3

st) = st2x3 + s3x2y .

Hence {(Nµ2
st
, J) : s, t ∈ R r {0,±1}} and {(Nµ3

st
, J) : s, t ∈ R r {0}} are curves

of abelian complex nilmanifolds, which is due to the fact that
∀a, b ∈ R r {0,±1}, a 6= b : x2y + axy2 /∈ U(1) · (x2y + bxy2) .
∀a, b ∈ R r {0}, a 6= b : x3 + ax2y /∈ U(1) · (x3 + bx2y) .

Remark 5.7. Let p(x, y) =
∑3
i=0 aix

3−iyi ∈ P2,3(R). Define

4(p) := (3a0 + a2)2 + (a1 + 3a3)2 .

‖p‖2 := 6a2
0 + 2a2

1 + 2a2
2 + 6a2

3 .

D(p) := 18a0a1a2a3 + a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 .

We have 4 is SO(2)-invariant, ‖ · ‖2 is O(2)-invariant and D is SL2(R)-invariant.
Note that using quotients of the above invariants we can also obtain that

{(Nµ2
st
, J) : s, t ∈ R r {0,±1}} and {(Nµ3

st
, J) : s, t ∈ R r {0}} are curves of

abelian complex nilmanifolds.

Example 5.8. Let λst ∈ W̃ be given by A = (t, s), K = (−s, t) and Q = (s, t),
with s, t ∈ R. We obtain (Nλst , J) is an abelian complex nilmanifold for all s,
t ∈ R. Furthermore, λst is minimal of type (1 < 2; 6, 2). On the other hand, the
Pfaffian form of λst is

f(λst) = s2tx3 + s3x2y − t3xy2 − st2y3 .

Define a := s2, b := t2, and consider

h(a, b) := D(f(λst))
(4(f(λst)))2 = 4ab(a2 − b2)2

(a+ b)6 .

If a+ b = 1 then h(a) = 4a(1− a)(2a− 1)2 is an injective function for all a ≥ 1.
Hence {λst : s2 + t2 = 1, s ≥ 1} is a curve of pairwise non-isometric metrics.
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