
 Development of a Design Model for Functionality and Content

Access from Rich Internet Application Requirements

Juan Eduardo Durán and Hernán Casalánguida
Facultad de Matemática, Astronomía y Física, Córdoba National University, Medina Allende s/n, Córdoba, Argentina

duran@mate.uncor.edu, hcasalan@hal.famaf.unc.edu.ar

Keywords: Rich Internet Applications, User Interface Models, Metamodelling, Use Case Diagram.

Abstract: We have found several methodologies for the development of rich internet applications (RIA); however,

they did not give enough attention to the problem of defining both appropriate notations and adequate

process for developing the user interface (UI) of functionality and content access (UIFCA). The UIFCA is

important, because it concerns with the global organization/behaviour of the UI of a RIA application; the

UIFCA is complex in several RIA applications due to the several tasks/workflows/business process that

need to be organized/accessed, and the use of single page applications and desktop like UIs. A good model

for functionality and content access (MFCA) should be expressive enough, respect some abstraction

requirements, and be understandable by the client; a good process to develop a MFCA should consider the

creation of parts of the MFCA by the client, its completion by analysts, its early validation by clients, and

the refinement of MFCA elements. In this work, we defined a metamodel called RIAFCA for building

MFCAs, and a development process involving RIAFCA respecting these requirements. The metamodel and

the process are illustrated with the help of an online e-mail application case study.

1 INTRODUCTION

There exist several RIA methods for the develop-

ment of the application’s UI or at least the UI of the

application functionality (e.g. UWE (Kozuruba,

2010), WebML ((Brambilla, et al, 2010) and

(Fraternali et al, 2010)), OOH4RIA (Melia et al,

2008), MARIA (Paternò et al, 2009), OOWS 2.0

(Valverde Giromé, 2010)); however, such methods

did not give enough attention to the problem of how

to define both appropriate notations and adequate

method for developing the UI of functionality and

content access. A UIFCA is of central importance

(e.g., to clients and end users), because it concerns

with the global organization/behaviour of the UI of

the RIA application; in addition, a UIFCA is a

complex part of the UI in several RIA applications

due to the several tasks/workflows/business process

that need to be organized/accessed, and the use of

single page applications/desktop like UIs.

The essence of a UIFCA consists of the structure

of it (i.e. how functions/content elements are

grouped, and how groupings are organized) and of

the dynamic change of the set of accessible

functions/content elements to the user.

Notations of RIA methods found have limitations

satisfying the following requirements that a good

MFCA should satisfy:

R1. A MFCA should have a rich set of elements for

describing the structure of a UIFCA, and to have a

rich set of actions for modifying the accessible

functionality/content elements of a UIFCA.

R2. A MFCA should abstract from the description of

functionality, of UI elements for content output, of

UI elements for data input and of access structures

for inputs (e.g., menu, index, breadcrumbs).

R3. A MFCA should be understandable by clients

(i.e. it must not involve elements corresponding to

technical concepts not known by the clients,).

Usually RIA methodologies have abstract nota-

tions for describing the requirements and the UI, and

concrete notations for describing the UI. In general,

concrete UI notations are worse in satisfying

requirements R2 and R3 than abstract UI notations,

and usually abstract UI notations are not bad to

capture the structure of a UIFCA. For these reasons,

we consider as related work the abstract notations

for RIA requirements/UI. The abstract modelling

notations found for RIAs have limitations on

describing the essence of a UIFCA, they do not

satisfy all requirements in R2 at the same time, and

they are either not understandable by clients or very

incomplete and understandable by clients.

The reasons for the above requirements are:

R2. 1) less aspects to think about when developing a

MFCA; 2) after an early validation of a MFCA, the

correction of errors in the MFCA will not obligate to

make changes concerning the aspects abstracted by

the MFCA; 3) less aspects to think about when

changing a MFCA; 4) it is easier to consider changes

to user requirements; 5) a MFCA remains stable

when UI element descriptions for content elements

are changed; 6) separation of MFCA description

from: function description and the UI for output

content/data input/access structures.

R3. This requirement allows the clients to: validate a

MFCA, and to provide parts of such models (e.g.,

parts concerning innovative concepts and functions,

parts that are not easy to comprehend by analysts).

RIA methodologies found have limitations w.r.t.

the following requirements that a development

process involving a MFCA should satisfy:

P1. The client is enabled to provide part of the

structural part of the essence of a UIFCA.

P2. The analyst develops the part of the essence of a

UIFCA not provided by the client.

P3. There is an early validation by the client of the

essence of a UIFCA.

P4. There is a phase where content/input elements of

a MFCA and requirements for the dynamic variation

of the accessible functionality/content elements are

refined; the refinements are expressed using UI

elements of a UI notation that abstracts from layout,

style and specific technological widgets, and is

modality independent. This is to allow the

mapping/adaptation of a MFCA with these refine-

ments to obtain UIs considering different modalities/

devices/implementation technologies; in addition, if

a content element is complex we can master the

complexity of its development by first describing an

abstract UI element for it, and next, incorporating

modality, device, layout and style.

There is a lack of RIA methodologies

considering P1, P3 and P4; with respect to P2, we

have only found some RIA methods were the analyst

develops the essence of a UIFCA with some

limitations and without a participation of the client.

The objectives of this paper are: 1) the definition

of a MFCA for RIAs satisfying the above

requirements, and that is independent from modality

and implementation technology, and 2) the

definition of a development process satisfying the

above requirements.

In Sec. 2 we defined a MOF metamodel (called

RIAFCA) for describing the essence of a UIFCA,

and respecting the abstraction requirements; to

produce this metamodel we have taken some

decisions in order to permit the client to understand

its models. In Sec. 3 we defined a process

considering: 1) the development of a RIAFCA

model taking into account P1, P2 and P3, and 2) the

refinement of RIAFCA model elements by using

trace relationships for fulfilling P4.

2 RIAFCA METAMODEL

A user role site view is the part of a RIA UI used by

a specific user role. RIAFCA abstracts from specific

UI widgets and from specific devices. Each

RIAFCA model contains some elements used to

describe how the a role site view is organized into

coarse grained elements (see Fig. 1); we define a

concrete syntax for the this part of RIAFCA that

looks like a screen with some regions and elements

(for Access) inside - we assume that clients

understand and may produce such kind of sketches.

Figure 1: The RIAFCA part for describing the

organization of the user role site views.

A site view: a user role site view. A Grouping: a

piece of the UI for grouping Groupings or Group

Members. Members of a Grouping can be either all

present at the same time (type=All), or only one

present at a time (type = Alternative). A site view

contains a hierarchy of Groupings and Group

members. A root grouping is a Grouping at the root

of its hierarchy. Grouping elements are represented

with rectangles of different shapes according with

the kind of grouping (See Fig. 2).

Figure 2: Concrete Syntax for groupings.

Input: - - for providing some input; Access: for

accessing a functionality– use case, task; Empty: -
- contains nothing; Content: for showing some

content. Content with Interaction - - allows

user interaction; Read Only Content: - - only for

reading. Task - - for a task, a use case, a service,

a command; Access to grouping: for navigating into

a Grouping - -; Access to content: for naviga-

ting into a content; we use for access to read

only content; we use for access to content

with interaction. PeriodicRefresh set to true (use

icon) means that the information of a Content

element changes periodically. In the RIA UI abstract

notations found only elements Empty and Content

with interaction, classifications of content and of

Access and association between content with

interaction and Access are not present.

For choosing an Access inside a Content we use

the meta-relation with roles from and accessible. For

accessing from inside a task of extension tasks (that

are not necessary for the extended task to exist) we

use the meta-relation with roles extends and

extension. When an alternative grouping G is not

present, and is presented, we need to say that a child

E of G is presented by default; to express this we put

on E initial = true. We graphically represent a

member E of G with initial=true with the rectangle

of E filled with grey color.

Fig. 3 shows a User Agent grouping for a mail

application. Work, Commands, Lists, are alternative

Groupings. Lists Grouping contains 2 Content.

Commands Grouping contains Refresh task, Actions

Grouping and an Empty. There are 2 Access to

grouping: view settings (to access a grouping for

settings parameterization) and Account group (to

access a Grouping with account information and

tasks). There is a view mail access to content that is

used to access the mail content in Work Grouping.

Some alternative Groupings have conditions on

all of its members (use cond metavariables); such

conditions are propositional formulas whose

propositions have names of Groupings/Group

members (a proposition is true if and only if its

corresponding element is present). In the modeling

notations for RIA we have found (i.e. abstract UI

models, navigation models) the use of conditions for

alternative groupings is not considered.

Figure 3: User Agent and Actions Groupings.

Fig. 3 shows the Actions alternative grouping; its

member Actions I must be shown when Inbox

content is present, and its member Actions SM must

be shown when Sent Mail content is present.

To express requirements for the dynamic change

of the accessible functions and content elements to

the user, RIAFCA provides a set of modelling

elements that are shown in Fig. 4; such elements are

used to represent a set of requirements of the form:

<user’s interaction or another event, system’s

response>, where the system’s response consists of

one or more actions modifying the actual set of

content elements and accessible functions.

The selection of this kind of notation was

motivated by Pane and others (Pane et al, 2001) who

conducted a pair of studies to examine the language

and structure that children and adults used before

they have been exposed to programming. In these

studies, they presented programming tasks to

nonprogrammers, who then had to solve them on

paper. In these studies they observed that an event-

based or rule-based structure was used, where

actions were taken in response to events.

Each action of the systems response of a

requirement has a Target (i.e. Content, Grouping,

Task, Empty) and a type that can be either open -

-, remove - -, enable - -, disable - -, show -

 -, hide - -, interval - - (the target is

presented only during a time interval). A

Requirement says that after an event happened the

actions on the targets must be performed; if an event

has associated a Condition, the condition must be

valid to perform the actions associated to the event;

if an action has a Condition associated, the condition

must be valid to perform the action. Only action

types open, remove and interval are not present in

the found abstract UI notations for RIAs.

Figure 4: RIAFCA elements for expressing requirements.

Event elements can be: a) A user’s interaction

with a source element or another event associated to

a grouping; for this case we use the icon ()

together with the event’s name. b) An Access is

chosen (When=before and use), or an Access

execution is finished (When=after and use).

A requirement is graphically represented with an

arrow with one or more heads from the element

where the event occurs to the Targets; the action

type icons are put near the heads of the arrow. Event

elements are shown on the tail of the requirement’s

arrow. A Condition is represented with the question

mark (?) and a text for its description. A Condition

associated to an event is put near the start of an

arrow, and a Condition associated to an action is put

near the head of an arrow.

Suppose that a target is a grouping G; if G is not

associated with other targets (i.e. using the include

association end), then G is presented with the default

elements of its alternative groupings; else the targets

associated with G are presented instead of the

default elements of the corresponding alternative

groupings. An associated Target with G is

represented with an arrow with rhombus head from

G to the associated Target.

Figure 5: Some of the requirements associated with

elements in User Agent grouping.

Figure 6: (a) show complete screen requirement, (b) play a

weather forecast requirement, (c) view next hours

requirement.

Fig. 5 shows some requirements associated with

elements of User Agent Grouping (see Fig. 3).

When the user unselects all the mails in inbox the

refresh task is presented, and when in inbox there

are no mails selected and the user selects one, the

Actions Grouping is opened. When the user choses

to go back to lists in the mail Content, the lists

Grouping is shown, the refresh Task is opened if

there are no mails selected on the actual list, and the

Actions Grouping is opened if there are mails

selected on the actual list. The requirement at the top

says that before presenting the settings grouping the

Empty member is presented. Observe that the

reading of the diagram should start with the initial

elements (i.e. these elements without a # mark).

Fig. 6(a) shows a requirement for an online text

editor. There is a window with both a file content

and an editing commands grouping; when in editing

commands show complete screen is selected, the

editing commands grouping is hidden and a message

content telling “press Esc key to view the editing

commands menu” appears for an interval of time.

Fig. 6(b) shows a requirement of a weather forecast

application. There is a satellite grouping with a map

content (satellite view of a region); when play is

selected, the map content is hidden and a periodic

map content with interaction with periodic refresh

set to true is opened. Fig. 6(c) shows a requirement

of a weather forecast application; this requirement

says that after executing next hours task in weather

in a city grouping the extended grouping containing

an each hour content element is opened.

3 DEVELOPMENT PROCESS

First, the client develops some fragments of the

RIAFCA model; next, the analyst develops some

requirement models (e.g. use case diagrams, task

models); following, the analyst using the fragments

and requirements models, develops a complete

RIAFCA model; next this model is validated by the

client; using this feedback a revised RIAFCA model

is constructed by the analyst; finally, elements of a

RIAFCA model are refined into more concrete

elements (e. g. UI elements on an abstract UI, events

on a UI element).

Fragments of the RIAFCA Model Provided by

the Client. This phase is to improve client´s

satisfaction (we assume that an analyst lacks the

domain knowledge that a client cannot easily convey

when communicating requirements for a new

application – such an assumption is a premise for

End-User-Software-Development area – see

(Paternò, 2013:1)).

The client could provide two kinds of RIAFCA

fragments: 1) A decomposition of the root Grouping

of a user role site view considering only the first

levels of the decomposition; for each Grouping in

this decomposition its purpose may be expressed. 2)

Groupings for innovative concepts involving content

and task elements related to the content (some of

them may be accessible from the Content).

In Fig. 7 for the mail application the client

provides an incomplete user agent Grouping, which

is decomposed into: 1) Commands (for executing

commands for lists of mails), 2) Access to lists (for

choosing a list of mails to see), 3) Work (here the

user may either interact with lists of mails, read

mails, or configure the user agent), 4) Account

Group (to manage the user account information).

Figure 7: a skeleton of User Agent Grouping.

Figure 8: use case diagram for an E-mail application.

Requirements Provided by the Analyst.
Examples of requirement models are use case

diagrams (UCD), business process models, task

models. We consider the case of UCDs from UML

(see (Miles and Hamilton 2006)). Use cases (UC)

may be developed considering: a) Groupings for

innovative concepts provided by the client. b) Other

functional requirements provided by the client. In

Fig. 8 you can see some of the UCs and UC

packages for a mail application.

Development of a Complete RIAFCA Model

by the Analyst. We assume that we have the

fragments of a RIAFCA model provided by the

client and a UCD available for the transition to a

complete RIAFCA model; however, we do not

prescribe a method for this phase. Independently of

the method used, several decisions need to be taken

by the method: D1: If a UC package P is mapped

directly onto a grouping with the same name and

containing mappings of its UCs and UC packages; in

this case, the type of the P grouping is decided. D2:

How to treat UC packages that are not mapped

directly onto a grouping. D3: If a UC is mapped

either onto a task or onto an access to grouping/

content. D4: Which are the content elements that are

not provided by clients. D5: If the translation of a

UC is accessible from a content or not. D6: Which

are the UCs that affect a content element (i.e.

modify, or process it). D7: Which are the members

of the groupings of the first levels provided by

clients. Depending on the method used these

decisions will be made either manually or

automatically or semi-automatically.

For the role site view user we create the Mail

root grouping (See Fig. 9). We decided that Mail

Grouping has two alternative children: Start

(suggested by the Start UC package) and User

Agent. For the Start UC package we considered

D1as true; for the sign in UC we decided to

introduce an input element called Access data. Next,

we develop the User Agent Grouping of Fig. 3 from

its skeleton; for access to lists UC package we

considered D1 as true; from the purpose of the work

Grouping we decided to decompose it into lists

Grouping, mail Content and settings Grouping (D7).

The lists Grouping is an alternative grouping with

inbox and sent mails Content elements; they contain

view mail Access to content. UCs Compose, Sign out

and Search are mapped onto tasks that are put as

children of User Agent Grouping (D3). We decided

that the Account group Grouping contains an

account info Content and a view account Access to

grouping Account. The Commands Grouping

contains tasks for the UCs of Commands on Lists

UC package; however, for this package we consider

D1 as false; the reasons are: a) for performing

commands for lists, the lists Grouping must be

present (in other case the Empty element must be

presented), b) when no mails are selected only the

refresh task may be executed; therefore, Commands

must be an alternative Grouping containing Empty,

refresh Task and Actions Grouping as alternatives

(D2). For UCs of the Read UC package (with the

exception of view mail) we considered D5 – i.e. their

Tasks are put inside the mail Content box (See Fig.

9). The Account Grouping corresponds to Manage

Account UC package. For the settings UC package

we considered D1 as true, and the settings Grouping

is alternative. For the General UC package we

considered D1 as true, and a general settings

Content is added. We needed a Content for the

actual filters; for create filters and delete UCs affect

actual filters (D6); from this Content UCs edit filter

and delete filter are accessible (D5).

Figure 9: Other Groupings for the mail case study.

Next, the analyst expresses the requirements of a

RIAFCA model; for each child of the root grouping

of a user role site view a requirements diagram is

developed.

Figure 10: requirement associated to actual filters Content.

Examples: After the sign out Task is executed

the User Agent Grouping is removed, and the Start

Grouping is opened. In the actual filters Content the

user may select or unselect filters; Fig. 10 says that

when the first filter is selected, the delete Task is

enabled, and when all the filters are unselected, the

delete Task is disabled.

Definition of Trace Relationships. The follow-

ing tasks are considered: T1: If the UI model is

legible by the client, then the client may provide UI

elements (UIE) refining content elements (e.g.

corresponding to innovative concepts). T2: Trace

relationships between content/input elements and

UIEs are constructed by using a UI model. We are

not worried about how to obtain these trace

relationships (e.g. automatically, manually). T3:

Trace relationships between event/conditions in

requirements and atomic events (possibly on UIEs)/

detailed conditions are constructed. We do not

prescribe a method to obtain these trace relations.

We decided to use an abstract UI model for

refining content and input elements that is platform

and modality independent; this model must have a

variety of content structures, access structures and

basic UIEs. (Casalánguida and Durán, 2013) defines

a UML profile containing design elements for RIAs

called RIAAD considering such requirements. Now

trace relationships between RIAFCA Content/Input

elements and UIEs of RIAAD are considered; before

explaining them, we include the definition of the

needed RIAAD UI elements.

A BasicUiElement can be either an Atomic

element or a MediaObject.. An Atomic can be: text,

number, anchor and selector (i.e. Single Choice or

Multiple Choice). Atomic elements have a type of

edition attribute with values: input (for information

input), editable (for information editing) and

no_editable (for information presentation). UIInput-

Structure represents a UIE used for user input; a

special kind of UiInputStructure is a form. Content-

Structure (CS) represents a UIE used for content

presentation. Examples of CS are: List, Table, Tree,

and Record. A CS can be editable (i.e. allowing the

edition of some of its contents) or not. Access-

Structure represents a UIE used for accessing other

UIEs, or performing an action. Examples of

AccessStructure are NavigationBar and NavList.

NavigationBar represents a set of Anchors and one

or more UiInputStructures. NavList represents a UIE

containing a set of items; each item contains:

optionally an anchor corresponding with content

displayed for this item, optionally a navigationBar

for parameters providing and/or functionality access,

and BasicUIElements for describing an item.

Input Group Members can be refined into a

UiInputStructure. Read only content elements can be

refined into a no editable CS or a NavList. Content

with interaction can be refined into a CS (e.g. an

editable one) or into a navList involving possibly a

navigationBar.

In Fig. 11 for the mail case study: Input Access

Data is refined into a UiInputStructure with two text

UIEs; account info is refined into a record with the

same name with two text UIEs; Inbox Content is

refined into a NavList with the same name

containing items having an anchor to the mail, three

text UIEs for mail information and a single choice

UIE for mail selection.

Figure 11: some refinements for mail application.

An atomic event consists of its name, its source

and its data. We assume that in any given time of a

web application execution, there exists a stream of

the atomic events that happened; in addition, for

each atomic event in the stream there is a time stamp

for its occurrence.

We consider three kind of traces: traces from an

interaction in Access element to an atomic event

(perhaps on a UIE), traces from an event element to

an atomic event (perhaps on a UIE) and traces from

a Condition element to a more specific condition

(perhaps referring to the UI).

Example: For the requirement in Fig. 5 saying to

open the refresh task after all the mails are

unselected on Inbox content, we have a trace from

unselected mails to the event: Select NO on «single

choice» select UIE inside «item» mail item.

Example: For the requirement in Fig. 5 with

source the mail Content, we have a trace from back

to list event to the event Press on «anchor» back,

that is inside of «record» mail (from mail content

there is a trace to a «record» mail); in addition, we

have a trace from no mails selected Condition to “all

mail items in actual list have their «single choice»

select value equal to NO”; moreover, we have a

trace from mails selected Condition to “some mail

items in actual list have their «Single Choice» select

value = YES”.

4 RELATED WORK

Tables 1 and 2 compare the relevant RIA approaches

found in the literature. The references of these

approaches are given once in the next paragraph.

Table 1: Comparison between abstract notations.

 R1 R2 R3
UWE Navigation M. reg - reg - reg

UWE/R Navigation M. reg - reg - reg

OOH4RIA Navigation M. reg - reg - no

WebML Hypertext M. reg no no

Rosado da Cruz UCD reg reg + reg+

OOWS 2.0 reg reg + no

MARIA AUI model reg no no

UsiXML AUI model reg - reg reg ++

RIAFCA good good yes

R1: Captures the essence of the UIFCA: for

describing the dynamic change of the accessible

functions/content elements: OOWS 2.0 (Valverde

Giromé, 2010) interaction metamodel and MARIA

(Paternò et al, 2009) dialog model have not open,

remove and interval actions; (Rosado da Cruz, 2010)

UCD notation has not open/remove, show/hide and

interval actions; UWE/R (Filho and Ribeiro, 2009)

considers requirements saying that after the

execution of a task (e.g. a client process) some

properties of the UI are changed (e.g. enable,

disable, hide, show of an element of the UI, but not

the other type of actions); navigation models of

UWE (Kozuruba, 2010), WebML ((Brambilla, et al,

2010), (Fraternali et al, 2010)), OOH4RIA (Melia et

al, 2008) have not action types; the UsiXML abstract

UI model (Martínez Ruiz, 2007) does not consider

the dynamic change of the accessible functions/

content elements. Concerning the structure of a

UIFCA OOWS 2.0, UsiXML and the navigation

models of UWE, UWE/R and OOH4RIA have not

alternative groupings, UCDs in (Rosado da Cruz,

2010) have not content elements, and MARIA has

not content with interaction elements.

R2: Abstraction from description of output

content, input element, access structures and

functionality: OOWS 2.0 RIA metamodel and UCDs

in (Rosado da Cruz, 2010) do not abstract from

functionality description. The other UI models for

RIAs found do not abstract from functionality

description. UsiXML does not abstract from input

element description; UWE and UWE/R do not

abstract from access structures; OOH4RIA does not

abstract from output content description; WebML

does not abstract from access structures and output

content description; MARIA does not abstract from

output content and input element description.

R3: Understandable by the client, and the client

may create parts of it: notations that may be used by

clients are: UCDs in (Rosado da Cruz, 2010) and UI

abstract model of UsiXML - there is a concrete

syntax based on sketches that is probably legible by

the client to model part of the structure of the

UIFCA. The navigation model of UWE captures

part of the essence of the UIFCA, and we think that

is understandable by clients if they know some

concepts (e.g. index, menu, guided tour). UWE/R,

OOH4RIA, WebML, MARIA have several technical

concepts; OOWS2.0 has not a concrete syntax for

the RIA metamodel, and the interaction metamodel

has a rather complex textual syntax.

Table 2: Comparison between development processes.

 P1 P2 P3 P4
UWE no reg no no

UWE/R no no no no

OOH4RIA no no no no

WebML no no no no

UsiXML for RIAs no reg no no

Rosado da Cruz no reg no no

OOWS 2.0 no reg no no

MARIA no reg no no

RIAFCA yes yes yes yes

P1: The client is enabled to provide part of the

structural part of the essence of a UIFCA.

P2: The analyst develops the part of the essence

of the UIFCA not provided by the client: in UWE

the navigation model is generated from UML UCDs,

and is refined; in OOWS 2.0 the RIA UI model is

generated from an abstract interaction model, and

the analyst produces an ECA model of the UI; in

(Rosado da Cruz, 2010) the analyst produces an

extended UCD; in UsiXML the AUI model is

generated from a task model, and there is not a

description of the dynamic variation of accessible

functionality/content elements. In OOH-4RIA the

designer produces the navigation model; in MARIA

the abstract UI can be generated from a task model

and additional information, and the generated

abstract UI needs to be refined by the designer.

WebML and UWE/R do not prescribe this task. The

reason of rating as reg some methods is their

limitations for modelling the essence of a UIFCA.

P3: There is an early validation by the client of

the essence of a UIFCA: there is only a late

validation of a prototype in OOH4RIA, WebML

(Rosado da Cruz, 2010), MARIA, and OOWS 2.0;

this task is not prescribed by UWE/R and UsiXML.

P4: Abstract UI elements (independent from

modality, style and device) refining the content/

input elements of a MFCA are constructed.

5 CONCLUSIONS

We considered the following case studies for

identifying the elements of RIAFCA metamodel: an

e-mail application, an e-commerce application, an

online text editor, a weather forecast application.

For analysts/graphic designers to work with a

RIAFCA with traces is better than to produce/use a

UCD/navigation models/abstract UI model due to

expressiveness of the RIAFCA, (see Sec. 4).

Our approach permits to deal with the

complexity of a UIFCA: first construct a RIAFCA

without worrying about UIEs; next construct the

traces from RIAFCA elements to UIEs; finally, the

graphic designers should only concentrate on

widgets, style and layout.

RIAFCA metamodel abstracts from functionality

description, from UIEs for describing content/input

elements and from access structures; in addition, it is

platform independent and modality independent. For

these reasons, and because the RIAFCA considers

ECA requirements, we think that analysts are in

condition to develop RIAFCA models.

The reason for introducing our concrete syntax

for RIAFCA requirements is to make this part of the

RIAFCA understandable by clients, or at least very

easy to learn by them.

For the mail case study we have 12 requirements

from which 75% use open or remove actions, and

are not replacing an element with another one. For

the mail application for the transitioning from UCDs

to RIAFCA static view we obtained: 55% of the UC

packages are mapped directly onto Groupings, 33%

of the UC packages needed to be distributed among

more than one grouping, 11% of the UC packages

are mapped onto a Content with Tasks inside. For

the mail application 14% of the UCs are mapped

onto Access to grouping/content elements.

For the future we plan to develop a tool that will

consider: 1) the inspection of a RIAFCA model and

of the trace relationships; 2) the generation of a

program animating a RIAFCA where the client

interacts with Content/Gouping/Access by clicking

at event names inside of Groupings/Content or at

Access elements, and looks at the resulting

consequences; this is for permitting the client to

understand even better a RIAFCA model.

REFERENCES

Brambilla, M., Fraternali, P., Molteni, E., 2010. A Tool

for Model-driven Design of Rich Internet Applications

based on AJAX. Handbook of Research on Web 2.0,

3.0, and X.0: Technologies, Business, and Social

Apps., San Murugesan (ed.), pp. 96-118, IGI Global.

Casalánguida, H. and Durán, J. E., 2013. A Method for

Integrating Process Description and User Interface Use

During Design of RIA Applications. In ICWE'13, 13

th Intl. Conf. on Web Engineering. Springer Verlag.

Dos Santos Rosado da Cruz A., M., R., 2010. Automatic

Generation of User Interfaces from Rigorous Domain

and Use Case Models. Ph-D Thesis, Faculdade de

Engenharia da Universidade do Porto.

Filho, O., Ribeiro, J., 2009. UWE-R: An Extension to a

Web Engineering Methodology for Rich Internet

Applications. WSEAS Trans. Info. Sci. and App. 6(4):

601-610.

Fraternali, P., Comai, S., Bozzon, A., Toffetti Carughi, G.,

(2010): Engineering Rich Internet Applications with a

Model-Driven Approach. ACM Transactions on the

Web, Vol. 4(2).

Kozuruba, S., 2010: Modellbasierte Anforderungs-analyse

für die Entwicklung von adaptiven RIAs.

DiplomArbeit. Institut für Informatik Ludwig-

Maximilians-Universität München,.

Martínez Ruiz, F. J., 2007. A Development Method for

User Interfaces of Rich Internet Applications. A

Thesis for the Diploma of Extended Studies in

Management Science. Catholic University of Leuven.

Melia, S., Gomez, J., Perez, S. and Diaz, O., 2008: A

Model- Driven Development for GWT-Based Rich

Internet Applications with OOH4RIA. In: ICWE’10,

8th Intl. Conf. on Web Engineering: pp.13-23, IEEE.

Miles, R., Hamilton, K., 2007. Learning UML 2.0.

O’Reilly.

Pane, J., F. Ratanamahatana C. A., and Myers B. A., 2001:

Studying the Language and Structure in Non-

Programmers’ Solutions to Programming Problems.

Intl. J. of Human-Computer Studies, vol. 54, pp. 237-

264.

Paternò, F., Santoro, C., Spano. L. D., 2009. MARIA: A

universal, declarative, multiple abstraction-level

language for service-oriented applications in

ubiquitous environments. ACM Trans. Comput. Hum.

Interact., 16(4), November, pp 1-30.

Paternò, F., 2013. End User Development: Survey of an

Emerging Field for Empowering People. ISRN

Software Engineering, Vol. 2013, Article ID 532659.

Valverde Giromé, F., 2010. OOWS 2.0: Un Método De

Ingeniería Web Dirigido Por Modelos Para La

Producción De Aplicaciones WEB 2.0. PhD Thesis.

