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Abstract

Let Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and
unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing
continuous function such that k1ξ

p ≤ f (ξ) ≤ k2ξ
p for all ξ ≥ 0 and some k1, k2 > 0 and

p ∈ (0, 1). We study existence and nonexistence of strictly positive solutions for nonlinear
elliptic problems of the form −∆u = m (x) f (u) in Ω, u = 0 on ∂Ω.
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1 Introduction
Let Ω ⊂ RN , N ≥ 1, be a C1,1 bounded domain. Our aim in this paper is to consider the question of
existence of solutions for nonlinear problems of the form

−∆u = m f (u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,
(1.1)

where m : Ω → R is a function that changes sign in Ω and f : [0,∞) → [0,∞) is a continuous
function satisfying

H1. f is nondecreasing, and there exist k1, k2 > 0 and p ∈ (0, 1) such that k1ξ
p ≤ f (ξ) ≤ k2ξ

p

for all ξ ≥ 0.
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As pointed out in [?], the existence of strictly positive solutions for sublinear problems with
indefinite nonlinearities as (??) raises many interesting questions and is intriguing even in the one-
dimensional case for various reasons. One of them is that the existence of (nontrivial) nonnegative
solutions does not guarantee the strict positivity of such solutions (in contrast for example to su-
perlinear problems, where they even belong to the interior of the positive cone). In fact, there are
situations in which there exist nonnegative solutions which actually vanish in a subset of Ω (see
e.g. [?]). Another one is for instance that several non-comparable sufficient conditions on m can be
established for the existence of solutions for (??) in the one-dimensional case under some evenness
assumptions on m (see [?], Section 2), and these solutions may not be in the interior of the positive
cone.

The present work is a natural continuation of the research started in [?], where m was considered
(when N > 1) to be radially symmetric. Let us note that the nonlinearity studied there was f (ξ) = ξp.
One of the most important differences between ξp and the nonlinearities treated in this paper is that
here (??) is no longer homogeneous in m (i.e. (??) may admit a solution but km may not (k > 0
constant), and viceversa), and the homogeneity was crucial in the existence proofs given in [?].

We shall primarily rely on the well-known sub- and supersolution method in the presence of
weak sub and supersolutions (see e.g. [?], Theorem 4.9). One of the reasons is that the existence
of supersolutions represent no difficulty, see Remark 2.3 below. In order to supply (strictly positive)
subsolutions, we shall divide the domain in parts and construct “subsolutions” in each of them, and
later check that they can be joined appropriately to get a subsolution in the entire domain. This
last fact depends on obtaining estimates for the normal derivatives of these subsolutions on the
boundaries of the subdomains. In [?] these bounds could be computed rather explicitly making
use of the radial symmetry of m (and the fact that Ω was a ball) but in the present situation those
computations cannot be done any more. Let us mention that here the key tool will be an estimate
due to Morel and Oswald, see Lemma 2.1 below.

In Theorem 3.1 we shall state a sufficient condition on m for the existence of solutions of (??),
while in Theorem 3.2 we shall provide a “local” necessary condition and a “global” one in Corollary
3.3 under an additional assumption on m. We observe that this last condition is of similar type to the
one in Theorem 3.1. In order to relate these results to others already existing, we mention that two
necessary conditions were proved for some particular radial functions in [?], Theorem 3.4 (see also
Remark 3.5 there), and as far as we know there are no other results (other than the obvious condition
m+ . 0 implied by the maximum principle). Concerning the matter of sufficient conditions, the only
theorem we found in the literature, apart from the ones proved in [?] for m radial, is that there exists
a solution for (??) provided that the solution of the linear problem −∆φ = m in Ω, φ = 0 on ∂Ω,
satisfies φ > 0 in Ω (see [?], Theorem 4.4, or [?], Theorem 10.6). As a matter of fact, this even holds
for linear second order elliptic operators with nonnegative zero order coefficient. We note however
that the aforementioned condition is far from being necessary in the sense that there are examples
of (??) having a solution but with the corresponding φ satisfying φ < 0 in Ω (cf. [?]). Let us finally
mention that for m smooth an p ∈ (0, 1) it is known that the problem −∆u = mup in Ω, u = 0 on ∂Ω

admits a (nontrivial) nonnegative solution if and only if m (x0) > 0 for some x0 ∈ Ω (see e.g. [?] or
[?]).

We conclude this introduction with some few words on the case of a general second order elliptic
operator. We believe that at least some of the results presented here should still be true when −∆ is
replaced by such differential operators. In fact, one can verify that except the use of Lemma 2.1, the
proof of Theorem 3.1 can be carried out exactly as it is done here (with the obvious changes) in the
case of a general operator. Hence, if a similar version of the aforementioned lemma holds for these
operators (which a priori it is not clear since the proof makes use of the mean value properties for
superharmonic functions), then an analogue of Theorem 3.1 can be proved in this case.
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2 Preliminaries
The following estimate appeared first in an unpublished work by Morel and Oswald ([?]), and a nice
proof can be found in the paper of Brezis and Cabré, [?], Lemma 3.2.

Lemma 2.1 Let 0 ≤ h ∈ Lr (Ω), r > N, and let u be the solution of{
−∆u = h in Ω

u = 0 on ∂Ω.
(2.2)

Then there exists some c = c (Ω) > 0 such that

u (x) ≥ cδΩ (x)
∫

Ω

hδΩ for all x ∈ Ω,

where δΩ (x) := dist (x, ∂Ω) .

The next result is also known (see e.g. Theorem 3.4 in [?]). We present a brief sketch of the
proof for the sake of completeness. Let us note that the following proof is much simpler than the
one given in [?]. We set

P◦ .
= interior of the positive cone of C1,α

(
Ω
)

, α ∈ (0, 1) .

Lemma 2.2 Let m ∈ Lr (Ω) with r > N and such that 0 . m ≥ 0, and let f satisfying H1. Then
there exists v ∈ W2,r (Ω) ∩ P◦ solution of

−∆v = m f (v) in Ω

v > 0 in Ω

v = 0 on ∂Ω.
(2.3)

Proof. Let φ > 0 be the solution of −∆φ = m in Ω and φ = 0 on ∂Ω. Then using the second inequality
in H1 one can verify that for every k > 0 large enough it holds that k (φ + 1) is a supersolution of
(??). On the other side, let ϕ > 0 with ‖ϕ‖∞ = 1 satisfying{

−∆ϕ = λ1 (m,Ω) mϕ in Ω

ϕ = 0 on ∂Ω,

where λ1 (m,Ω) denotes the (unique) positive principal eigenvalue for m. It is easy to check employ-
ing the first inequality in H1 that εϕ is a subsolution of (??) for all ε > 0 sufficiently small, and the
lemma follows. �

Remark 2.3 Let us mention that the construction of the supersolution made in the first part of the
above proof still works if m changes sign in Ω, taking there φ as the solution of −∆φ = m+ in Ω and
φ = 0 on ∂Ω (where as usual we write m = m+ − m− with m+ = max (m, 0) and m− = max (−m, 0)).
Furthermore, this is also true for a strongly uniformly elliptic differential operator with nonnegative
zero order coefficient. �
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3 Main results
Theorem 3.1 Let Ω0 be a C1,1 domain with Ω0 ⊂ Ω, and let m ∈ Lr (Ω) with r > N and 0 . m ≥ 0
in Ω0. Let k1, k2 be given by H1. There exist some C0,C1 > 0 depending only on Ω and Ω0 such that
if ∥∥∥m−

∥∥∥
Lr

(
Ω−Ω0

) ≤ k1C0

k2C1−p
1

∫
Ω0

mδp+1
Ω0

then (??) has a solution u ∈ W2,r (Ω).

Proof. Let Ω −Ω0 := Ω1. For M > 0, we start constructing some 0 ≤ w ∈ W2,r (Ω1) solution of
−∆w = −m− f (w) in Ω1
w = 0
w = M

on ∂Ω

on ∂Ω0.
(3.4)

Let us first note that since by H1 f (0) = 0, it holds that w := 0 is a subsolution of (??), and also since
f is nonnegative we have that w := M is a supersolution of (??). It follows from Theorem 4.9 in
[?] that there exists some w weak solution of (??) satisfying 0 ≤ w ≤ M. Furthermore, by standard
arguments we may conclude that w ∈ W2,r (Ω1) (indeed, it is enough to note that if z ∈ W2,r (Ω1) is
the unique solution of the problem −∆z = −m− f (w) in Ω1, z = 0 on ∂Ω and z = M on ∂Ω0, then the
maximum principle implies that z = w).

We claim now that there exists some C > 0 depending only on Ω1 such that if M :=
[
Ck2 ‖m−‖Lr

]1/(1−p)

then w > 0 in Ω1 (k2 given by H1). To confirm this, let θ, ψ ∈ W2,r (Ω1) be the unique solutions of
∆θ = 0 in Ω1
θ = 0
θ = 1

on ∂Ω

on ∂Ω0,

{
−∆ψ = m− in Ω1
ψ = 0 on ∂Ω1.

From the Sobolev imbedding theorems and the W2,r-theory for elliptic equations (e.g. [?], Theorem
2.4.2.5) we derive that

|ψ| ≤ ‖∇ψ‖L∞ δΩ1 ≤ ‖ψ‖C1 δΩ1 ≤ c0 ‖ψ‖W2,r δΩ1 ≤ c1
∥∥∥m−

∥∥∥
Lr δΩ1

for some c1 = c1 (Ω1) > 0, and we also have that θ > c2δΩ1 in Ω1 for some c2 = c2 (Ω1) > 0.
On the other hand, since w ≤ M, recalling H1 we get that in Ω1

−∆ (Mθ − k2Mpψ) = −m−k2Mp ≤ −m−k2wp ≤ −m− f (w) = −∆w

and so
w ≥ Mθ − k2Mpψ >

(
c2M − c1k2Mp

∥∥∥m−
∥∥∥

Lr

)
δΩ1 in Ω1

and the claim is proved. We fix for rest of the proof M as in the aforementioned claim.
Let ν denote the outward unit normal to ∂Ω0. Let us observe now that∣∣∣∣∣∂w

∂ν

∣∣∣∣∣ ≤ ‖w‖C1 ≤ c0 ‖w‖W2,r ≤ c1

(
M +

∥∥∥m−
∥∥∥

Lr ‖ f (w)‖L∞
)
≤ (3.5)

c1

(
M + k2Mp

∥∥∥m−
∥∥∥

Lr

)
≤ 2c1

[
max {1,C} k2

∥∥∥m−
∥∥∥

Lr

]1/(1−p)
:=

c3

[
c4k2

∥∥∥m−
∥∥∥

Lr

]1/(1−p)
,

with c3 and c4 depending only on Ω1.
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On the other side, let v > 0 be the solution of (??) with Ω0 in place of Ω. Taking into account H1
and Lemma 2.1, there exists c5 = c5 (Ω0) > 0 such that v ≥ c5k1δΩ0

∫
Ω0

mvpδΩ0 and so raising this

inequality to the power p, multiplying by mδΩ0 and integrating over Ω0 we obtain
(∫

Ω0
mvpδΩ0

)1−p
≥

(c5k1)p
∫

Ω0
mδ1+p

Ω0
and hence

v ≥
[
c5k1

∫
Ω0

mδ1+p
Ω0

]1/(1−p)

δΩ0 .

Define now u := M + v. Then ∂u/∂ν ≤ −
[
c5k1

∫
Ω0

mδp+1
Ω0

]1/(1−p)
and u = w on ∂Ω0. Hence, if we set

ω := u in Ω0 and ω := w in Ω −Ω0 it follows applying the divergence theorem (as stated e.g. in [?],
p. 742) that ω is a weak subsolution of (??) if ∂u/∂ν ≤ ∂w/∂ν. Recalling (??) this occurs if

c1−p
3 c4k2

∥∥∥m−
∥∥∥

Lr ≤ c5k1

∫
Ω0

mδp+1
Ω0

and thus, taking into account Remark 2.3, this ends the proof. �

We denote with BR (x0) the open ball in RN centered at x0 with radius R, and we write (−∆)−1 :
Lr (Ω)→ L∞ (Ω) for the solution operator of (??). We also set

CN,p :=
(1 − p)2

2 (N (1 − p) + 2p)
. (3.6)

Theorem 3.2 Let m ∈ Lr (Ω) with r > N, let CN,p be given by (??) and let k1, k2 be given by H1. If
there exists a solution u ∈ C

(
Ω
)

of (??), then

CN,p∥∥∥(−∆)−1
∥∥∥ sup

BR(x0)∈B

[
mRR2

]
<

k2

k1

∥∥∥m+
∥∥∥

Lr(Ω) , where (3.7)

B := {BR (x0) ⊂ Ω : m ≤ 0 in BR (x0)} , mR := inf
BR(x0)

m−.

Proof. We proceed by contradiction. If (??) does not hold, then there exists some BR (x0) ∈ B such
that

CN,pmRR2∥∥∥(−∆)−1
∥∥∥ ≥ k2

k1

∥∥∥m+
∥∥∥

Lr(Ω) . (3.8)

Let β := 1/ (1 − p), and for x ∈ BR (x0) define

w (x) :=
[
k1CN,pmR |x − x0|

2
]β

.

After some computations one can verify that ∆w ≤ k1m−wp in BR (x0). Let u be a solution of (??). In
particular, it holds that ∆u ≥ k1m−up in BR (x0). Also, taking into account H1, from (??) we deduce
that

‖u‖L∞(Ω) ≤
[
k2

∥∥∥(−∆)−1
∥∥∥ ∥∥∥m+

∥∥∥
Lr(Ω)

]β
. (3.9)

Moreover, if x ∈ ∂BR (x0), employing (??) and (??) we derive that

w (x) =
(
k1CN,pmRR2

)β
≥

[
k2

∥∥∥(−∆)−1
∥∥∥ ∥∥∥m+

∥∥∥
Lr(Ω)

]β
≥ ‖u‖L∞(Ω) ≥ u (x) .
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It follows by the comparison principle that w ≥ u in BR (x0), but w (x0) = 0, contradicting the fact
that u > 0 in Ω. �

Corollary 3.3 Let Ω1 ⊂ Ω be a convex domain and let m ∈ Lr (Ω) with r > N and such that in Ω1
m is convex and m ≤ 0. If there exists a solution u ∈ C

(
Ω
)

of (??), then

4CN,p

27 |Ω1|
∥∥∥(−∆)−1

∥∥∥
∫

Ω1

m−δ2
Ω1
<

k2

k1

∥∥∥m+
∥∥∥

Lr
(
Ω−Ω1

) . (3.10)

Proof. Let α := 2/3 and let x1 ∈ Ω1. We set R1 := αδΩ1 (x1) and let y ∈ BR1 (x1). Observe that
zy (t) := x1 + t (y − x1) ∈ Ω1 for every t ∈ [0, 1/α] since

∣∣∣zy (t) − x1
∣∣∣ < δΩ1 (x1). Define M (t) :=

m−
(
zy (t)

)
. Then M (t) is concave in [0, 1/α] and hence

m− (y) = M (1) ≥ αM (1/α) + (1 − α) M (0) ≥ (1 − α) M (0) = m− (x1) /3.

It follows that infBR1 (x1) m− ≥ m− (x1) /3. Now, if (??) possesses a solution u ∈ C
(
Ω
)
, by Theorem

3.2 we obtain that

k2

k1

∥∥∥m+
∥∥∥

Lr(Ω) >
CN,p∥∥∥(−∆)−1

∥∥∥ sup
BR(x0)∈B

[
mRR2

]
≥

CN,p

3
∥∥∥(−∆)−1

∥∥∥m− (x1) R2
1 =

4CN,p

27
∥∥∥(−∆)−1

∥∥∥m− (x1) δ2
Ω1

(x1)

for every x1 ∈ Ω1. Integrating this inequality in Ω1 with respect to x1 gives (??) and thus the
corollary is proved. �

Remark 3.4 We observe that CN,p → 0 when p → 1 and thus (??) and (??) are satisfied for any
m provided that p is close enough to 1. Let us mention that this must occur since, at least when
m− ∈ L∞ (Ω), f (ξ) = ξp, and either N = 1 or N > 1 and m is radial with 0 . m ≥ 0 in some Br (0), it
is known that (??) has a solution if p is sufficiently close to 1 (cf. [?], Theorems 2.1 (i) and 3.2). �
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