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a b s t r a c t

Auto-logistic models are widely used to describe binary images texture and spatial
presence–absence data. There exist some techniques, like Gibbs sampler algorithm among
others, that allow simulating the process, but its performance depends on themodel global
properties atZ2. Under general conditions there will be at least a global distribution which
conditionals are Gibbs specifications. The present work establishes sufficient conditions on
the parameters of an auto-logistic model, in order to ensure the distribution’s uniqueness.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In his doctoral thesis, Ising (in 1925) laid the foundation of the Random fields in Statistical Physics (Ising, 1924, 1925). He
presented a ferromagnetic model where particles fixed in a lattice, each one associated with a spin value +1 or −1, interact
with their nearest neighbors. Besag applied this idea for the first time to image processing (Besag, 1974). Statisticalmodeling
of images is a valuable tool and there is awide range of interests in image processing in several areas of knowledge. Ising and
Besagmodels take into account the dependence between nearest pixels. This kind of models is calledMarkov random fields.
Moreover, by means of Hammersley–Clifford Theorem (Winkler, 1995), it is shown that Markov random fields presents a
Gibbs distribution. There are algorithms that simulate Gibbs distribution being Gibbs sampler is the most popular one (see
Bustos and Ojeda (1994), Winkler (1995)). Gibbs sampler generates a Markov chain of images converging to a realization
of the Gibbs model using its local dependence. The convergence holds if there is only one global distribution. At finite
lattice there is only one global distribution, it can be obtained through the Brook expansion (see Besag (1974), Bartolucci
and Besag (2002), At Z2.) under general condition existence is demonstrated, but uniqueness is not trivial (see Georgii
(1988)). There are a lot of papers on this topic (see, for instance, Albeverioa et al. (1997), Betz and Lorinczi (2003), Kepa and
Kozitsky (2007), Weitz (2005)). Dobrushin’s condition theorem provides sufficient conditions for uniqueness. However, the
verification of this condition is not straightforwardly attained and furthermore it is actually model dependent. Auto-logistic
models handle the dependence of spatial binary data like binary images indicating presence–absence of something. These
kinds of data appear in several areas like biology and geoscience. The present work presents a theorem giving a sufficient
(but not necessary) condition that ensures uniqueness in the auto-logistic model for 4 and 8 neighbors. This condition does
not involve any external field and constrains interaction parameters to a bounded region (in R2 or R4). Preliminary and
in progress works suggest that this theorem could be extended to larger neighborhoods as well as to 3D lattices. This goal
might be attained by increasing the dimension of the vector parameters in order to include new neighbors. This article is
organized in different parts, Section 2 is dedicated to main required definitions, Section 3 is the description of the proposed
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model and condition bases; whereas Section 4 presents and demonstrates the theorem. Finally, Section 5 is devoted to a
discussion about theorem condition.

2. Theoretical framework

Consider the lattice S ⊆ Z2, not necessarily finite. Let us introduce the following definitions as assumptions

E = {0, 1}; its σ -algebra E = P (E), the set of all subset of E;
λ : E → N ∪ {0}, the counting measure (λ(A)=̇#A);
x = {xs}s∈S ∈ ES is a binary image;
X = {Xs}s∈S is the underlying stochastic process;
V ⊆ S; xV =̇ {xs}s∈V ∈ EV ; E V is the product σ -algebra;
A ⊆ S; ξ = {ξs}s∈A ∈ EA; if A ⊆ S \ V , then ξxV =̇ {(ξxV )s}s∈A∪V ∈ EA∪V , where (ξxV )s = ξs for s ∈ A, and (ξxV )s = xs for
s ∈ V ;
FV =̇


B × ES\V

: B ∈ E V


⊆ F=̇E S ;
S =̇


Λ ⊂ Z2

: 1 ≤ # (Λ) < ∞

;

Φ=̇ (ΦΛ)Λ∈S is a potential. That is ΦΛ(x) = φΛ(xΛ) where φΛ is a real function E Λ-measurable and there exists a
energy function HΛ=̇


∆∈S ∩Λ Φ∆;

γ = (γΛ)Λ∈S is the Gibbs specification (for Φ) that is

γΛ(A|x)=̇


ξ∈EΛ 1A(ξxS\Λ)exp(−HΛ(ξxS\Λ))
ξ∈EΛ exp(−HΛ(ξxS\Λ))

, 1A indicator function, A ∈ F ;

G (γ )=̇{µ : µ(A ∩ B) =

B γΛ(A| )dµ, ∀B ∈ FS\Λ} is the set of global Gibbs measures µ in ES such that γΛ(A|x) is the

probability of Awith respect to µ conditional to xS\Λ.

Since E is finite, (E, E ) is a standard Borel space, then #G (γ ) ≥ 1 holds (see Theorem 4.23 in Georgii (1988)).

3. Auto-logistic model and Dobrushin’s condition

Consider the potential

ΦΛ(x) =


βixtxt+vi Λ = {t, t + vi}

β0xt Λ = {t}
0 otherwise,

where t ∈ S, i = 1, . . . , g (g = 2, first order and g = 4, second order), v1 = (0, 1), v2 = (1, 0), v3 = (1, 1), and
v4 = (−1, 1).

For s ∈ S the following definitions are introduced

γ 0
s (B|x) =̇ γ{s}(B × ES\{s}

|x)

=


ξ∈B

exp

−H{s}


ξxS\{s}



ξ∈E

exp

−H{s}


ξxS\{s}



=


ξ∈B

exp


−


Λ∈{s}∩S

ΦΛ


ξxS\{s}



ξ∈E

exp


−


Λ∈{s}∩S

ΦΛ


ξxS\{s}

 , B ∈ E .

Then, the local characteristic is1

π(xs|x−s) = γ 0
s ({xs}|x) =

e−xs(β0+
g

i=1 βi(xs+vi+xs−vi ))

e−(β0+
g

i=1 βi(xs+vi+xs−vi )) + 1
. (3.1)

We note that γ 0
s (.|x) depends on x∂s, with ∂s = {s± vi}

g
i=1 neighborhood of s. For g = 4, ∂s =

s − v3 s − v1 s + v4
s − v2 s + v2
s − v4 s + v1 s + v3

.

β = (β0, β1, β2, β3, β4) is the parameter vector for the second order model (8 neighbors) and β = (β0, β1, β2) is the
parameter vector for the first order model (4 neighbors). Now, β0 is the external field parameter. Then, if β0 = 0 we say the

1 Following some usual notation, where x−s=̇xS\{s} .
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model does not have an external field. Therefore, in absence of external field, we have β = (β1, β2, β3, β4) and β = (β1, β2)
in the 8 and 4 neighbors cases, respectively. It is then clear that g = 2 is the particular case of g = 4 when β3 = β4 = 0,
and Φ is translation-invariant (i.e. β does not depend on t ∈ S). It is remarkable that we cannot consider the auto-logistic
regression model, since the external field depends on t (Hughes et al., 2011; Wang and Zheng, 2013).

We introduced now the Uniform Distance between the probabilities µ and µ̃ by

d (µ, µ̃) =̇ sup {|µ(B) − µ̃(B)| : B ∈ E } .

For s and t in S we define the Dobrushin interdependence between s and t

Cs,t=̇ sup

d(γ 0

s (·|x), γ 0
s (·|w)) : xS\t = wS\t


.

We note that Cs,t = 0 if t ∉ ∂s.
Finally,

α(γ )=̇ sup
s∈S


t∈S

Cs,t


.

Definition 3.1. Letγ be an specification.γ will be said to satisfy Dobrushin’s condition ifγ is quasilocal2 and α(γ ) < 1.

Since E is finite then φ is λ-admissible and then γ is quasilocal (see Eq. (2.7) and Proposition 2.24 in Georgii (1988)). If
α(γ ) < 1 then γ meets Dobrushin’s condition and #G (γ ) = 1 (see Theorem 8.7 in Georgii (1988)).

4. Uniqueness theorem

Theorem 4.1. Let γ be the Gibbs specification for Φ . Then

2
g

l=1

tanh(|βl| /4) < 1 ⇒ #G (γ ) = 1. (4.1)

Proof. To prove theorem it is enough to check that α(γ ) ≤ 2
g

l=1 tanh(|βl| /4).
Let s ∈ S, t ∈ ∂s, x and w in ES such that xS\t = wS\t .
If xt = wt , then x = w and d(γ 0

s (·|x), γ 0
s (·|w)) = 0.

If xt = 1−wt , where t = s+vl or t = s−vl, for 1 ≤ l ≤ g . Without loss of generality, it may be assumed that t = s−vl.
Then xr = wr , r ≠ s − vl and xs−vl = 1 − ws−vl .

Hence,

d(γ 0
s (·|x), γ 0

s (·|w)) = sup

|γ 0

s (A|x) − γ 0
s (A|w)|/A ∈ E


,

= max

|γ 0

s (A|x) − γ 0
s (A|w)|/A = ∅, E, {0}, {1}


,

and

|γ 0
s (∅|x) − γ 0

s (∅|w)| = |0 − 0| = 0,

|γ 0
s (E|x) − γ 0

s (E|w)| = |1 − 1| = 0,

|γ 0
s ({1}|x) − γ 0

s ({1}|w)| = |γ 0
s ({0}|x) − γ 0

s ({0}|w)|,

(because γ 0
s ({1}|x) = 1 − γ 0

s ({0}|x)), therefore

d(γ 0
s (·|x), γ 0

s (·|w)) =
γ 0

s ({1}|x) − γ 0
s ({1}|w)

 ,
=

 e−(β0+
g

i=1 βi(xs+vi+xs−vi ))

e−(β0+
g

i=1 βi(xs+vi+xs−vi )) + 1
−

e−(β0+
g

i=1 βi(ws+vi+ws−vi ))

e−(β0+
g

i=1 βi(ws+vi+ws−vi )) + 1

 ,
=

 1

1 + eβ0+βl(xs+vl+xs−vl )+


i≠l βi(xs+vi+xs−vi )
−

1

1 + eβ0+βl(ws+vl+ws−vl )+


i≠l βi(ws+vi+ws−vi )

 ,
=

 1

1 + eβ0+βl(xs+vl+xs−vl )+


i≠l βi(xs+vi+xs−vi )
−

1

1 + eβ0+βl(xs+vl+(1−xs−vl ))+


i≠l βi(xs+vi+xs−vi )

 ,
2 See Georgii (1988).
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=

 1
1 + eβlxs−vl eθ

−
1

1 + eβl(1−xs−vl )eθ

 3
=

 eβl(1−xs−vl ) − eβlxs−vl

e−θ + eβl(xs−vl ) + eβl(1−xs−vl ) + eβleθ

 ,
=

|1 − eβl |

eβleθ + e−θ + eβle0 + e−0
,

≤
|1 − eβl |

eβle−βl/2 + e−(−βl/2) + eβl + 1
,

=
|1 − eβl |

(1 + eβl/2)2
=

(1 + eβl/2)|1 − eβl/2|

(1 + eβl/2)2

=
|1 − eβl/2|

1 + eβl/2
=

e|βl|/2 − 1
e|βl|/2 + 1

= tanh(|βl| /4)

(since eβle−βl/2 + eβl/2 ≤ eβlez + e−z , z ∈ R).
Summarizing, Cs,s−vl ≤ tanh(|βl| /4) and


t∈∂s Cs,t ≤

g
l=1 2 tanh(|βl| /4), ∀s ∈ S, then

α (γ ) = sup
s∈S


t∈∂s

Cs,t


≤ 2

g
l=1

tanh(|βl| /4). �

Remark 4.1. The counterpart is false (:).

Proof. Identifying 0 with −1, first order Auto-logistic model with β0/2 = β1 = β2 is the (−1)-normalized Ising model
for β1/4 and without an external field (see Example 3.3.33 in Bustos and Guerrero (2011)). The β1 = β2 = 1.6 case does
not match theorem conditions. But there is uniqueness because β1/4 < βc = (log(1 +

√
2))/2 = 0.4402 (Ising critical

parameter, see page 100 of Georgii (1988) and example in Comets (1997)).

5. Discussion

Theorem 4.1 provides a region for interaction parameters. It was called uniqueness region, which graphical schema is
outlined in Fig. 1 for the first order model. A lot of binary textures could characterized by auto-logistic models through his

Fig. 1. Uniqueness region.

parameters (see Cross and Jain (1983), Derin and Elliott (1987), Schröder et al. (1997)). The uniqueness region constrains
parameters and ensure uniqueness but bound models diversity. There are a lot of textures, like the one in Fig. 2, that might
be not characterized by an auto-logistic model if parameter values has to lie in the uniqueness region. Images in Fig. 2



V. Rulloni / Statistics and Probability Letters 87 (2014) 1–6 5

(a) 500 iterations of Gibbs sampler. (b) 8000 iterations of Gibbs sampler.

Fig. 2. Images of size 64 × 64, from an auto-logistic model with β = (20, −20, −20, 10, 10).

(a) 500 iterations of Gibbs sampler. (b) 8000 iterations of Gibbs sampler.

Fig. 3. Images of size 64 × 64, from an auto-logistic model with β̂NR = (0.66, −0.66, −0.66, 0.33, 0.32).

(a) 500 iterations of Gibbs sampler. (b) 8000 Gibbs iterations.

Fig. 4. Images of size 64 × 64, from an auto-logistic model with β̂SA = (0.82, −0.95, −0.69, −0.07, 0.23).

correspond to an auto-logisticmodel with β = (20, −20, −20, 10, 10). Image in Fig. 2(a) was generatedwith 500 iterations
of Gibbs sampler and image in Fig. 2(b) was generated with 8000 iterations of the same algorithm.

The β vector of image in Fig. 2(b) was estimated by maximizing pseudo-likelihood function within Uniqueness region.
As assessment it results β̂NR = (0.66, −0.66, −0.66, 0.33, 0.32) and β̂SA = (0.82, −0.95, −0.69, −0.07, 0.23). β̂SA was
obtained using the Newton–Raphson method (see Johansson (2001)) and β̂NR using Simulated annealing (see Bustos and
Ojeda (1994),Winkler (1995)). Images in Fig. 3were generatedwith aGibbs sampler and β̂NR. Images in Fig. 4were generated
with Gibbs sampler and β̂SA. Differences between images in Fig. 2 and images in Figs. 3 and 4 are noticeable. Thus, pointing

3 θ = β0 + βl(xs+vl ) +


i≠l βi(xs+vi + xs−vi ).
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out limitations for the constrained model. However uniqueness region avoids the phenomenon known in Statistical Physics
as Phase transition (i.e. #G (γ ) > 1). Eq. (4.1) suggests that the theorem could be extended to larger neighborhoods and to
3D lattices increasing the dimension of β . Let us introduce the following examples, in order to include new neighbors

• at Z2, g = 6, ∂s =

s − v5
s − v3 s − v1 s + v4

s − v6 s − v2 s + v2 s + v6
s − v4 s + v1 s + v3

s + v5

; and β = (β0, β1, β2, β3, β4, β5, β6).

• at Z3 (3D), g3D = 5, ∂s = s − v5 ×

s − v3 s − v1 s + v4
s − v2 s + v2
s − v4 s + v1 s + v3

× s + v5 ; and β = (β0, β1, β2,

β3, β4, β3D,5).

Acknowledgments

The author is grateful to her tutor Oscar Bustos specially for his guidance and persistence. Actually, without his help
this work would not be possible. He reviewed the manuscript several times contributing very important suggestions that
improved the manuscript.

References

Albeverioa, S., Kondratieva, Y., Röcknera,M., Tsikalenkoa, T., 1997. Uniqueness of Gibbs states on loop lattices. C. R. Seances Acad. Sci. I 324 (12), 1401–1406.
Bartolucci, F., Besag, J., 2002. A recursive algorithm for Markov random fields. Biometrika 89, 724–730.
Besag, J.E., 1974. Spatial interaction and the statistical analysis of lattice systems (with discussion). Jr. R. Stat. Soc. B 2, 192–236.
Betz, V., Lorinczi, J., 2003. Uniqueness of gibbs measures relative to Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 39, 877–889.
Bustos, O.H., Guerrero, A., 2011. Breve introducción a la matemática de la estadística espacial. In: Ensaios Matemáticos, vol. 20. Sociedade Brasileira de

Matemática.
Bustos, O.H., Ojeda, S.M, 1994. Campos Aleatorios Markovianos en Procesamiento de Imágenes. Trabajos de Matemática, Serie B, 25/94, Facultad de

Matemática, Astronomía y Física, Universidad Nacional de Córdoba.
Comets, F., 1997. Detecting phase transition for gibbs measures. Ann. Probab. 7 (2), 545–563.
Cross, G.R., Jain, A.K., 1983. Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5, 25–39.
Derin, H., Elliott, H., 1987. Modeling and segmentation of noisy and textured images using random fields. IEEE Trans. Pattern Anal. Mach. Intell. 9, 39–55.
Georgii, H.O., 1988. Gibbs Measures and Phase Transitions. De Gruyter, Berlin.
Hughes, J., Haran, M., Caragea, P., 2011. Autologistic models for binary data on a lattice. Environmetrics 22, 857–871.
Ising, E., 1924. Beitrag zur theorie des ferro- und paramagnetismus. In: Dissertation, Mathematish-Naturewissenschaftliche Fakultät der Universität

Hamburg.
Ising, E., 1925. Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253–258.
Johansson, J.-O., 2001. Parameter-estimation in the auto-binomial model using the coding- and pseudo-likelihood method approached with simulated

annealing and numerical optimization. Pattern Recognit. Lett. 22, 1233–1246.
Kepa, D., Kozitsky, Y., 2007. Uniqueness of gibbs states of a quantum system on graphs. Rep. Math. Phys. 59, 281–288.
Schröder, M., Seidel, K., Datcu, M., 1997. Gibbs random field models for image content characterization. Int. Geosci. Remote Sens. Sympos. 1, 258–260.
Wang, Z., Zheng, Y., 2013. Analysis of binary data via a centered spatial–temporal autologistic regression model. Environ. Ecol. Stat. 20, 37–57.
Weitz, D., 2005. Combinatorial criteria for uniqueness of gibbs measures. Random Struct. Algorithms 27 (4), 445–475.
Winkler, G., 1995. Image Analysis, Random Fields and Dynamic Monte Carlo Methods — A Mathematical Introduction. Springer-Verlag, Berlin.

http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref1
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref2
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref3
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref4
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref5
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref7
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref8
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref9
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref10
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref11
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref13
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref14
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref15
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref16
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref17
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref18
http://refhub.elsevier.com/S0167-7152(13)00414-8/sbref19

	Uniqueness condition for an auto-logistic model
	Introduction
	Theoretical framework
	Auto-logistic model and Dobrushin's condition
	Uniqueness theorem
	Discussion
	Acknowledgments
	References


